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Dynamic flood modeling essential 
to assess the coastal impacts of 
climate change
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Patrick Limber 1,2, Andrea C. O’Neill  1, Maarten van Ormondt 3, Sean Vitousek 1,4, 

Nathan Wood 5, Maya K. Hayden6 & Jeanne M. Jones  7

Coastal inundation due to sea level rise (SLR) is projected to displace hundreds of millions of people 
worldwide over the next century, creating significant economic, humanitarian, and national-security 
challenges. However, the majority of previous efforts to characterize potential coastal impacts 
of climate change have focused primarily on long-term SLR with a static tide level, and have not 
comprehensively accounted for dynamic physical drivers such as tidal non-linearity, storms, short-term 
climate variability, erosion response and consequent flooding responses. Here we present a dynamic 
modeling approach that estimates climate-driven changes in flood-hazard exposure by integrating the 
effects of SLR, tides, waves, storms, and coastal change (i.e. beach erosion and cliff retreat). We show 
that for California, USA, the world’s 5th largest economy, over $150 billion of property equating to more 
than 6% of the state’s GDP and 600,000 people could be impacted by dynamic flooding by 2100; a three-
fold increase in exposed population than if only SLR and a static coastline are considered. The potential 
for underestimating societal exposure to coastal flooding is greater for smaller SLR scenarios, up to a 
seven-fold increase in exposed population and economic interests when considering storm conditions 
in addition to SLR. These results highlight the importance of including climate-change driven dynamic 
coastal processes and impacts in both short-term hazard mitigation and long-term adaptation planning.

Over 600 million people worldwide live in the coastal zone (<10 m elevation) and migration trends forecast an 
increase to more than 1 billion by 2050 (ref.1). SLR acceleration in recent decades2 and median global SLR projec-
tions ranging from 0.5 (ref.3) to 1.8 m by 2100 (ref.4) indicate that growing coastal populations will be increasingly 
at risk of displacement due to permanent �ooding (i.e. inundation), as well as annual �ood damages and adap-
tation costs that could top $1 trillion by the end of the 21st century5. Further elevating coastal societal risk is the 
recent instability of the Antarctic ice sheets6,7, indicating plausible SLR up to 3 m by 2100 (refs4,8,9).

In addition to long-term SLR, the exposure of the coastal zone population and infrastructure to �ooding 
is ampli�ed during episodic storms, when coastal water levels can increase by several meters or more due to 
locally-varying combinations of tides10, storm surge11, waves12, river discharge13, and seasonal water level �uctua-
tions, as exempli�ed during El Niño events along the west coast of North America14 (Fig. 1). In combination with 
SLR, these dynamic water level components can disproportionately increase the �ood frequency15 and volume in 
the coming decades16. To date, most climate-driven, hazard assessments exclude the short- and long-term e�ects 
of storms on coastal �ooding, beach erosion, and cli� retreat, and instead only account for SLR17,18, single com-
ponents of storm-driven variability19,20, or shoreline change due to SLR21.

Here we describe a primarily physics-based numerical modeling approach, the Coastal Storm Modeling 
System (CoSMoS), which was designed to thoroughly assess future coastal �ooding exposure by integrating 
SLR, dynamic water levels, and coastal change. We apply CoSMoS to one of the world’s largest economies and 
most developed coastal environments worldwide, the urbanized portion of the state of California, USA, which 
accounts for 95% of the 26 million residents of California coastal counties (2010 U.S. Census Bureau estimate). 
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�e model predictions are made available, via interactive web tools that include �ood hazard maps and socioec-
onomic exposure, to support local climate adaptation planning and facilitate large-scale policy action. We show 
that inclusion of storm-driven dynamic water levels in future coastal �ooding assessments (see Fig. 1) results in 
the additional projected exposure of approximately 200,000 residents and $50 billion in property over the next 
century compared to SLR alone, as well as signi�cant storm impacts for the lower SLR scenarios. �ese results 
illustrate the importance of including dynamic water levels and coastal change in hazard assessments and rein-
force the urgency to mitigate and adapt to the expected coastal impacts of climate change.

Modeling Approach
�e overarching concept of CoSMoS is to use a suite of linked oceanographic and geomorphic models (Fig. 2) to 
assess �ood impacts caused by future SLR and storms at management-relevant scales (2 m resolution). CoSMoS 
utilizes projections of global climate patterns over the 21st century from Global Climate Models (GCMs) devel-
oped for the 5th Assessment Report of the Intergovernmental Panel on Climate Change22 to determine regional 
oceanographic conditions. Native resolution GCM projections are dynamically downscaled to the regional and 
local level and used as boundary conditions for a number of physics-based, numerical ocean models to predict 
coastal waves, water levels, �ooding, and erosion for the range of possible SLR (10 scenarios: 0.00–2.00 m in 
0.25 m increments, and 5.00 m, relative to the year 2000) and storm scenarios (4 scenarios: average daily condi-
tions [i.e. including tides and typical wave conditions] and annual, 20-year and 100-year storms) over the 21st 
Century (Fig. 2, Supplementary Fig. 1, Methods).

�e results are provided to the public via two web tools, one focused on physical exposure (Our Coast, Our 
Future [OCOF]: www.ourcoastourfuture.org)23 and the other on socioeconomic impacts (Hazard Exposure 
Reporting and Analytics [HERA]: https://www.usgs.gov/apps/hera/)24,25. Translating the �ooding extents into 
community exposure expresses the consequences of unmitigated coastal hazards in terms of population and 
property at risk. �is is a critical exercise in developing e�ective return-on-investment strategies to improve 
coastal infrastructure via beach nourishments, construction of coastal protection structures, improving drainage, 
and/or managed retreat. Societal exposure to coastal-�ood hazards due to the various storm and SLR scenarios 
were estimated based on several societal indicators, including developed land, resident and employee popula-
tions, parcel values, and roads. A detailed technical description of dynamic �ood modeling and geospatial expo-
sure analyses are available in Methods.

Results
Physical Exposure. Active tectonics have produced a high-relief coastline dominated by coastal blu�s in many 
locations across California, providing a bu�er to SLR �ooding not common on passive margin settings like the U.S. 
East Coast. However, millions of California residents live in or immediately adjacent to low-lying coastal areas and 
urbanized estuaries, within several meters of present-day sea level. Along the entire study area for the open coast 
of California, predicted 100-year storm-driven total water levels (see Fig. 1) under present-day conditions average 
4.0 m ± 2.8 m (2 standard deviation range, 95%) above MSL (maximum value = 12.6 m). Within the largest estu-
ary, San Francisco Bay, in which waves are much smaller than the open coast, the 100-year water levels average 
1.8 m ± 0.8 m (maximum 3.4 m) above MSL. �ese vulnerable coastal settings o�en contain important infrastructure, 
such as airports and ports, which are shown here to be vulnerable to future SLR and extreme storm conditions (Fig. 3).

Many low-lying, exposed coastal areas are currently protected by levees or other defenses designed to with-
stand historical storm conditions. However, these defenses provide marginal protection against SLR and even less 
protection against the combined e�ects of storms and SLR, as most were designed without allowances for future 
conditions26. Our results demonstrate that many sensitive areas may be overwhelmed during storm conditions 
combined with small amounts of SLR expected within just a few decades (Fig. 4, Supplementary Fig. 2).

Figure 1. Dynamic water level concept. Example from California for 1 m of sea level rise of the signi�cant 
water level components that comprise total water levels on a beach during a storm along the coast resulting 
in potential �ooding. �e range of values are based on observations and modeling conducted during the 
development and application of the Coastal Storm Modeling System (CoSMoS) across the region50,61,89. 
(VLM = vertical land motion, H = wave height, Hbr = breaking wave height).
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Across the study area, 1.00–2.00 m of SLR is projected to permanently inundate 670–990 km2 of land (�ood 
potential/uncertainty range = 430–1,220 km2), and an additional 15–19% of land would be �ooded during a 
100-year storm (Fig. 5). However, for the 0.25 m and 0.50 m SLR scenarios, 48% and 32% more land, respectively, 
would be projected to �ood during the 20-year storm compared to that inundated solely by SLR. During the 
100-year storm, 77% and 41% more land would be �ooded compared to SLR alone. Based on current SLR trajec-
tories and the latest regional SLR projections for California, intermediate scenarios suggest 0.25 m and 0.50 m of 
SLR may be reached by the 2040 s and 2060 s, respectively9.

Projections of long-term coastal change driven by a 21st century total water level time series including each of 
the SLR scenarios are integrated into the coastal �ooding scenarios across the most populated part of the state, 
southern California (17 million coastal residents, 71% of total study area) (Supplementary Data, Supplementary 
Fig. 3). By 2100, 1.00–2.00 m of SLR would result in an average projected beach loss of 26–41 m across this por-
tion of the study area (95% con�dence range = −11 to 93 m), completely eroding up to 67% of the beaches27. 
Blu� retreat projections by 2100 are 19–30 m for SLR ranging from 1.00–2.00 m (95% con�dence range = 13 to 
38 m), with an increase in retreat rates of 180% for the 2.00 m SLR scenario as compared to the historical rates in 
southern California28. Lower SLR scenarios result in less but not insigni�cant erosion: for example, 0.50 m of SLR 
results in 14 m of beach loss and 11 m of cli� retreat. An additional 17–36 m of beach erosion is predicted during 
the storm simulations (Supplementary Fig. 3). �ese model projections assume existing shoreline infrastructure 
remains in place.

Socioeconomic Exposure. Translated to socioeconomic impacts, 0.25–2.00 m of SLR alone (no storm) 
equates to the �ooding exposure of between 37,000–406,000 residents (uncertainty range = 23,000 to 729,000 res-
idents) and 13,000–357,000 employees (uncertainty range = 7,000 to 593,000 employees) (Fig. 5, Supplementary 
Data). However, with the addition of a 100-year storm to 0.25–2.00 m of SLR, these values increase to 155,000–
612,000 residents (uncertainty range = 95,000 to 1,017,000 residents) and 86,000–534,000 employees (uncertainty 
range = 43,000 to 798,000 employees). For 0.25 m of SLR, the 100 year-storm compared to the no-storm scenario 
increases the residents and employees at risk by 322% and 576%, respectively, and 51% and 50% for the 2.00 m 
SLR scenario. While the percentages are smaller at the higher rates of SLR, the absolute number of population 
a�ected and economic impacts is far greater than for the lower SLR rates (Fig. 6). �e relative increases in popu-
lation exposure when including dynamic water level components from the annual to 100-year storms are 16–67% 
for 0.50 m SLR, 16–54% for 1.00 m SLR, and 19–51% for 2.00 m SLR.

The value of property in flood hazard zones due solely to SLR ranges from $8 billion for 0.25 m of SLR to 
$103 billion for 2.00 m of SLR (uncertainty range = $4 billion to $166 billion), but increases from $32–154 
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Figure 2. Coastal Storm Modeling System (CoSMoS) work�ow. CoSMoS features a series of coupled numerical 
models that translates the physical forcing derived from Global Climate Models into local coastal �ood projections, 
incorporating sea level rise, tides, seasonal e�ects, storm surge, �uvial discharge, and waves, as well as short- and 
long-term coastal change. �e hybrid numerical-statistical model is used to develop continuous time-series of 
total water levels at the shore using a linear superposition of wave runup (maximum excursion that waves reach 
onshore), storm surge, and sea levels, in contrast to the numerically modeled �ood maps which simulate non-linear 
interactions between changing water depths and waves. For more information on the CoSMoS framework see the 
Methods section and Supplementary Fig. 1. Figure modi�ed from O’Neill et al.61. So�ware citations: WaveWatch3 
– v. 3.14, polar.ncep.noaa.gov/waves/wavewatch; Del�3D and SWAN – Del�3D v. 4.01, oss.deltares.nl/web/del�3d 
with Matlab v. 2015b (mathworks.com) and Global Mapper v. 17 (bluemarblegeo.com) used to generate images.
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billion when considering the 100-year storm (uncertainty range = $18 billion to $210 billion). The consid-
eration of storm conditions in the dynamic flood projections results in an approximately 4-fold increase 
(283%) in property exposure for the 0.25 m SLR and 100-year storm scenario. As was the case with other 
socioeconomic factors, these relative increases are substantially lower for higher SLR scenarios: property 
value exposure for 2.00 m of SLR and a 100-year storm is only 50% higher than a SLR-only scenario, though 
the net value of property is much higher with the higher rates of SLR (e.g. +$51 billion for 2.00 m SLR vs 
+$24 billion for 0.25 m SLR). Similar trends related to changes in hazard exposure due to the inclusion 
of storm scenarios were also observed for roads and developed land (Figs. 5,6). Here in the results we 
mainly present the impacts associated with median flood projections, and only the full uncertainty/flood 
potential range in select instances, but the range for each of the socioeconomic metrics is provided in the 

Figure 3. Study area and coastal �ooding examples due to an extreme storm. (a) Study area for CoSMoS with 
insets. Examples of modeled �ood extents for the 100-year coastal storm in combination with 0, 0.50, 1.00, 1.50, 
2.00 and 5.00 m of SLR: (b) San Francisco International Airport, (c) City of Paci�ca, (d) Port of Los Angeles and 
Port of Long Beach, (e) Port of San Diego and San Diego International Airport, and (f) City of Del Mar. (Figure 
generated using ArcGIS v. 10.4.2, www.esri.com. Local basemaps from http://services.arcgisonline.com/arcgis/
services, World_Terrain_Base and ESRI_Imagery_World_2D, accessed 2 Oct 2018).
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Supplementary Data. This analysis takes into account the range in potential flood exposure related to the 
uncertainty of the underlying elevation data, model accuracy for prediction of total water levels, and vertical 
land motion (see Methods for more information).

Figure 4. Examples of coastal �ooding with 0.25 m of sea level rise and storms. �ese examples illustrate that 
there are locations with signi�cant �ood risks for small amounts of sea level rise when storms are considered. 
�e le� hand series of panels depicts projected coastal �ood extent during average conditions (i.e. daily/
background conditions with spring tide), and the right side select storm scenarios: (a) Santa Barbara Municipal 
Airport, (b) Alamitos Bay, Long Beach, and (c) Foster City. See Fig. 3 for locations. “Disconnected, low-lying 
�ood hazard” designates areas that are below the �ood elevation surface but are not hydraulically connected to 
the �ooding due to a �ow impediment (e.g. levee), and therefore subject to �ooding should the �ood barrier fail. 
See Supplementary Fig. 2 to see the uncertainty range for each of the scenarios. (Figure generated using ArcGIS 
v. 10.4.2, www.esri.com. Local basemaps from http://services.arcgisonline.com/arcgis/services, World_Terrain_
Base and ESRI_Imagery_World_2D, accessed 2 Oct 2018).
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Discussion
For the vast majority of the urbanized coast of California, the inclusion of storms in coastal �ooding projections 
– in combination with the range of SLR expected by 2100 (i.e. 0.50 to 2.00 m) – increases population and property 
exposure from 16% for the annual storm to 57% for the 100-year storm compared to the no-storm scenarios (i.e. 
average daily conditions, including tides, waves and long-term coastal change) (Fig. 6). More than 600,000 people 

Figure 5. Absolute changes in exposure to coastal-�ooding hazards. Absolute changes in �ooding exposure 
based on variations in sea level rise and storm scenarios for: (a) land, (b) residents, (c) employees, (d) parcel 
value, and (e) roads for the California study area. All values are in 2010 U.S. dollars.

Figure 6. Relative changes in exposure to coastal-�ooding hazards. Relative changes in �ooding exposure 
based on variations in sea level rise and storm scenarios for: (a) land, (b) residents, (c) employees, (d) parcel 
value, and (e) roads for the California study area. Percentages note relative increases in exposure due to the 
inclusion of storm conditions compared to hazard exposure based solely on select sea level rise scenarios (i.e. 
0.25 m, 0.50 m, 1.00 m, and 2.00 m). �ese estimates are based on present-day socioeconomic and land use 
conditions, and do not account for future economic growth, coastal development patterns, climate change 
mitigation measures, etc.

https://doi.org/10.1038/s41598-019-40742-z
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and $150 billion (2010 dollars) are at risk for the 2.00 m SLR + 100-year storm scenario. When factoring in coastal 
population trends18 this extreme scenario could equate to over 3 million residents at risk across the state by 2100. 
Excluding speculation about future population trends, these projected �ood impacts represent 1.6% of the cur-
rent California population and 6.3% of the state’s GDP, despite only directly a�ecting 0.3% of the state’s land area. 
�is re�ects the disproportionate density of the coastal population (5 times higher) and concentration of coastal 
property value (20 times higher). However, this example only estimates exposure from a single extreme, 100-year 
storm: under the same SLR scenario of 2.00 m, the recurring annual storm, which is more relevant to emergency 
response planning, is estimated to expose 483,000 residents (based on 2010 census data) and $119 billion (2010 
dollars) in property by 2100. �e economic impacts of projected future coastal �ooding in California are of the 
same order of magnitude as estimates (all in 2010 dollars) from two of the costliest recent natural disasters in the 
world, the Tōhoku Earthquake and Tsunami ($325 billion)29 and Hurricane Katrina ($127 billion)30, and an order 
of magnitude higher than the most costly natural disasters in California history, the 1989 Loma Prieta Earthquake 
($10 billion)31 and the 2017 Wild�re Season ($18 billion)30. A future hypothetical but scienti�cally-plausible 
megastorm, the ARkStorm, which was modeled to approximate the historic �ooding in 1861-62, would cause cat-
astrophic inland �ooding across California and property damage of over $300 billion32. �is comparison suggests 
to policy makers that future coastal �ooding due to storms and sea level rise must be considered an economic 
threat on par with the state’s and world’s most costly historical natural disasters.

Furthermore, the alarming scale of these impacts does not account for the ripple e�ects such extreme events 
have across economic sectors such as those related to closures of ports, disruption of transport of goods and 
services, business closures, and impairment of utilities both today and into the future33,34. As demonstrated by 
the impact of severe storms throughout the Gulf Coast and Caribbean in 2017, these disruptions impact critical 
lifeline services (e.g. water, power, sewage, public health, transportation, fuel and communication) essential for 
public safety and community stability. Indeed, the US Department of Defense (DoD) identi�ed climate change, 
and its ensuing impacts, as a potential “threat multiplier” that puts geopolitical stability at risk globally35.

�e cost of adaptation can be high, particularly for the ports, which are a critical part of the economy; for 
instance, the Ports of Los Angeles and Long Beach alone handle $478 billion in cargo annually (3% of national 
GDP) and support 2.8 million jobs across the United States (2 out of every 100 jobs, including 1 in 9 in the greater 
Los Angeles area)36,37. �e cost to elevate and retro�t the major commercial ports of California (i.e. San Diego, 
Los Angeles/Long Beach, and San Francisco) to adapt to 2.00 m of SLR is $9–12 billion38. Equally, local impacts 
along the California coast can have cascading economic impacts both nationally and globally33,34. Beyond the 
potential physical impacts to the port terminals and harbors that could impact the U.S.’s ability to accept imports, 
coastal �ooding and erosion will impact rail lines and roads exiting the ports, disrupting the movement of goods 
out of ports to other regions throughout the U.S.39. Hence, targeted adaptation e�orts will be critical to ensuring 
economic continuity in a changing climate.

Along the vulnerable shoreline of San Francisco Bay, which accounts for two-thirds of the �ooding impacts 
projected for California, building defenses to withstand 2.00 m of SLR and a 100-year storm could cost up to 
$450 billion, almost twice the cost of defending against SLR alone40. �ere is also a non-linear increase in costs 
to defend against the higher SLR projections, as costs are approximately 3-4 times higher for the 2.00 m SLR sce-
nario as compared to the 1.00 m scenario. �is highlights the need for the continual e�ort of scientists to improve 
estimates of 21st century SLR curves.

Previous e�orts to characterize coastal impacts from climate change o�en focus on high SLR assumptions 
on the order of 1-2 m18 that are most likely expected around the end of the century. In our study area, under the 
most extreme SLR projection, 1 m of SLR could arrive as soon as 2060 (ref.9). However, there is greater con�dence 
that 0.25 m of SLR will be reached by ~2040. Our work here shows that an extreme storm (i.e. 100-year storm) 
in combination with even this relatively low amount of SLR would cause substantial �ooding that would directly 
a�ect over 150,000 residents and $30 billion in property in California, a 4-fold increase over the impacts projected 
by only SLR.

Notably, for any of the socioeconomic factors, the relative increase in storm-related �ooding exposure under 
the lower SLR scenarios is greater than at the higher SLR scenarios, as storm driven water levels represent a larger 
percentage of the total water level in the former case. For instance, there is a nearly 7-fold increase (576%) in 
the number of employees exposed to �ooding with 0.25 m of SLR at the 100-year storm versus no storm; this is 
in comparison to only a 50% increase at 2.00 m of SLR. Similarly, with only 0.25 m of SLR projected to occur by 
~2040, the number of residents exposed to �ooding from an annual storm is expected to double compared to year 
2000, and increase �ve-fold for 0.5 m of SLR. Although the net number of people impacted with 0.25 m of SLR 
is less than those impacted with 2.00 m of SLR, emergency managers do not currently plan for increases of this 
magnitude. Local hazard mitigation plans – the main planning documents that outline a municipality’s strategies 
to reduce risk to natural and man-made hazards – generally only forecast out 25–30 years (with updates every 5 
years) and until recently have generally been based on historical and current day exposure. Although there are 
examples of emergency managers in California that are incorporating projections of the 100-year storm in tan-
dem with SLR41,42, many still do not and they therefore underestimate their community’s risk, particularly under 
low rates of SLR.

Compared to an earlier study for California that only accounted for SLR and tidal �ooding on a static coast-
line18, the addition of long-term coastal change (which for this summary was only completed for the southern 
California study area) modeled here produces twice the population at risk when comparing similar 2100 SLR 
scenarios with no storm (i.e. 0.90 in the prior publication vs 1.00 m in this study, and 1.80 vs 2.00 m). Including 
dynamic water levels and storm-driven beach erosion for the 100-year storm with long-term coastal change for 
both the 1.00 m and 2.00 m SLR scenarios tripled population risk compared to the prior study. �is suggests 
that �rst-order studies of climate impacts that do not account for dynamic water levels and shi�ing coastlines 
may vastly underestimate hazard risks to coastal populations over the next century. Further, the application to 
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California described herein is for a relatively high-relief coast, but the additional exposure due to storms and 
coastal change could be far greater for low-lying coastal settings that are already highly susceptible to coastal 
�ooding due to SLR, such as the majority of coastal megacities43 and island nations44. �erefore, to better assess 
the true risk of climate change to global coastal communities, a dynamic approach should be applied that pro-
jects long-term beach and cli� evolution and integrates those changes with a plausible range of SLR and storm 
scenarios.

The importance of dynamic modeling is further illustrated when considering non-linear feedbacks and 
non-stationarity of the physical drivers of extreme water levels (e.g., tides, surge, and waves), particularly in 
shallow estuaries and open coastal settings. For example, in San Francisco Bay over the 20th Century, the Mean 
Higher High Water tidal datum rose 26 cm, outpacing mean sea level rise by ~16%45. In addition, recent hydro-
dynamic modeling in San Francisco Bay indicates that measureable tidal ampli�cation occurs on the order of 
~5 cm if present-day shorelines are maintained and up to ~30 cm if seawalls are built in the future for 1 m of SLR, 
whereas dampening of up to ~10 cm could occur by allowing �ooding into intertidal regions that would serve 
as energy-absorbing sinks46,47. At broader scales, observations at over 150 tide gauges across the Paci�c Basin 
show a signi�cant correlation between SLR and tidal extremes48, and therefore the non-stationarity of tides and 
non-linear feedbacks within tidal basins needs to be considered in the modeling of future extreme water levels.

Along the open coast, a common practice is the linear superposition of extreme water level components to 
assess coastal hazard risk and establish coastal protection design requirements. However, shallow coastal areas are 
extremely sensitive to non-linear feedbacks between SLR and waves in particular due to an increase in shelf and 
nearshore water depth and a correlative reduction in frictional dampening that can also a�ect tides and surge49. 
�erefore, a dynamic modeling approach that includes morphodynamic response, depth-limited breaking, and 
wave-current interaction, as described in this manuscript, is essential to capture those non-linear feedbacks and 
properly assess future coastal hazard risk.

Study limitations and future work. �e CoSMoS modeling system is a comprehensive, physics-based 
approach for determining coastal �ood exposure in dynamic, high-energy open coastal and estuarine environ-
ments. While the scienti�c approach has been heavily vetted27,28,50–61, like any model it is imperfect, with key 
limitations, a few of which are discussed here. First, the wave climate and derivation of future storm conditions is 
based on a series of four GCMs from the CMIP5 suite of models22 and 2 Representative Concentration Pathways 
(RCP) scenarios (4.5 and 8.5) that project atmospheric conditions to 2100. While we have tested and utilize 
GCMs that yield the best results compared to observations of wind, pressure and waves for the California coast 
during the hindcast period, past �delity does not guarantee future performance. Each of over 40 commonly used 
GCMs provides but one possible realization of the future climate based on unique internal model physics and 
an assumed emissions trajectory. �erefore, the accuracy of the wave and storm climate derived from each real-
ization is highly uncertain and di�cult to quantify. Further, unlike tropical cyclones which are not resolved, the 
representation of the El Niño Southern Oscillation (ENSO) in CMIP5 GCMs has advanced but projections of the 
magnitude and frequency of future end member events, El Niño and La Niña, varies widely across GCMs62–66. 
�e precise 21st century behavior of ENSO, which is the dominant control on short-term climate variability and 
coastal hazards across the Paci�c Basin67, will play a signi�cant role in the timing and frequency of extreme �ood-
ing events when coupled with SLR. In addition to eustatic SLR, the uncertain future evolution of the time-varying 
spatial distribution of sea level across the Paci�c Basin due to factors such as ENSO68 and the Paci�c Decadal 
Oscillation69 will also contribute to local coastal hazard risk. Future work in leveraging the new CMIP6 suite of 
models may provide a more accurate representation of 21st century climate variability and storm conditions, and 
continued advances in computational e�ciency and ensemble projections can utilize a larger volume of models 
and RCP scenarios in developing wave climates and uncertainty estimates. Similarly, atmospheric rivers (ARs)70 
are poorly resolved in the older generation of GCMs due to their narrow width (~100 km), and while not asso-
ciated with extreme wave conditions they do account for 15–50% of annual storm surge maxima along the U.S. 
West Coast71. �erefore, the e�ect of ARs on �ooding in estuaries (in particular San Francisco Bay) where storm 
surge is a larger component of extreme water levels, may be underrepresented. A current limitation of CoSMoS 
is also its coupling with �uvial discharge, which is currently done via a 1-D, one-way coupling, where discharge 
rates are determined based on an empirical relationship between atmospheric conditions and discharge data, 
where it exists58,61. A dynamic coupling with a watershed-based model that incorporates �uvial and coastal cur-
rent interaction, wave and surge penetration, locally-downscaled future precipitation trends from GCMs and 
time-dependent factors that in�uence �ow rates such as seasonal precipitation and soil conditions would surely 
improve �ooding projections in these locations.

Communities along estuaries are highly vulnerable to present-day and future coastal �ooding, with the 
low-lying San Francisco Bay Area accounting for two-thirds of socioeconomic impacts across California in this 
study. �ese communities are protected by hundreds of kilometers of levees, but while they are assumed in our 
modeling approach to be stable, the engineering integrity of most of these structures is poorly understood. �e 
same follows for coastal protection infrastructure (e.g. revetments, sea walls, berms) across the state in smaller 
estuaries and on the open coast. �ere is no accommodation for the potential failure of these structures when 
stressed by future �ooding events, yet some will undoubtedly fail and expose more residents and assets to �ooding 
than estimated here. Future work would bene�t from a thorough engineering analysis of the potential for �ood 
protection structure failures. In addition, there are other �ood protection structures and �ow conduits important 
to local coastal �ooding patterns that are typically beyond the resolution of this modeling approach, such as tide 
gates, culverts, sewage out�ows, and narrow sea walls. Greater computational power and sub-grid resolution 
modeling in future work will enable hydrodynamic models to resolve more of the important, small-scale topo-
graphic features that control �ooding.
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Finally, a more robust assessment of uncertainty is a major challenge and need for future work to provide 
stakeholders with the most accurate coastal hazards risk assessments possible. Presently, the �ood exposure 
uncertainty is based on just a few, easily quanti�able parameters: topographic data elevation accuracy, model 
skill in predicting water levels at tide gauges during hindcasts, and projections of vertical land motion based 
on models and recent observations (see Methods). However, there are many other sources of uncertainty that 
directly a�ect the modeling results, including the future wave climate, ENSO variability, model skill in deep-water 
wave transformation to the nearshore (especially wave height and direction), beach morphology (especially 
slope), wave set-up and run-up, long-term coastal change, timing of storm during the tidal cycle, etc. Whereas 
state-of-the-science tools have been used to simulate these processes in the research described herein, highly 
accurate representations of future conditions remain a challenge. Uncertainty in the coastal change projections 
has been determined (see Supplementary Data) but not carried through to the storm scenarios runs due to com-
putation expense. Socioeconomic impacts are based only on the �ood uncertainty, but those �gures have their 
own inherent uncertainty based on present-day data limitations. Including estimates of future population trends, 
land use patterns, and economic conditions would be optimal, but further add to the complexity of the uncer-
tainty analysis. In short, while CoSMoS accounts for the primary physical processes that contribute to future 
coastal �ooding, there are a series of research paths that could be pursued to improve model performance and 
uncertainty analysis, enabling end-users to make more informed coastal management and climate adaptation 
decisions.

Methods
CoSMoS modeling framework. To address the non-stationarity of the future wave climate, global 
wind �elds from four GCMs, driven by 21st century climate change scenarios derived from the Coupled Model 
Intercomparison Project Phase 5 (ref.22), are fed into the WAVEWATCH III (WWIII)72 global wave model 
(Supplementary Fig. 1). A higher resolution Eastern North Paci�c WWIII model is nested within the global 
WWIII model to produce 21st century wave conditions at the edge of the continental shelf driven by winds from 
a single GCM (i.e. GFDL-ESM2M) and the RCP 4.5 climate scenario51. Regional wave conditions for individual 
storm events identi�ed a priori (see following sections on identifying storm events) are then fed into nested, 
higher resolution SWAN73 wave models that dynamically downscale both swell waves from the WWIII model 
and wave growth due to winds across the shelf to shore. Coupled to these wave models are a series of nested 
DELFT3D-FLOW74 hydrodynamic models that downscale the astronomic tides, seasonal water-level anomalies, 
storm surge and local river discharge from downscaled atmospheric pressure and wind �elds56,75 across the shelf 
and at the coast. Grids at a resolution of ∼10–20 m simulate overland �ows in complex coastal settings, such as 
along the margins of estuaries, harbors and river mouths. Along the exposed open coast, XBeach76 pro�le mod-
els, with a cross-shore resolution of 5 m at the shore, are applied every 100–200 m in the alongshore direction to 
simulate event-driven shoreline change, wave set-up, and swash (i.e. run-up). In contrast to SWAN, the XBeach 
model computes wave set-up and swash from both incident and infragravity wave energy, the latter which is a 
dominant component of storm-driven water levels on dissipative beaches12. Open boundary conditions for the 
XBeach models consist of time-varying Jonswap wave spectra and variations in water level due to tides, storm 
surge, and sea level anomalies extracted from the SWAN and DELFT3D-FLOW models along the 10 to 15 m 
depth contour. To include appropriate river discharge that may occur during the coastal storm events, river dis-
charge rates are estimated from the atmospheric pattern in a given storm event and are included as point source 
discharges in the DELFT3D-FLOW model58,61. Predicted �ood levels are interpolated onto regularly-spaced grids 
and subtracted by a 2-m resolution digital elevation model (DEM) to isolate areas that are not hydraulically linked 
to the ocean but were incorrectly �ooded in the coarser-resolution numerical model. �e DEMs were developed 
using nearshore multibeam bathymetry soundings and topographic LiDAR (Light Detection and Ranging) data77, 
providing a seamless elevation surface for the numerical hydrodynamic �ood models. �e DEMs also provide 
the initial geomorphic conditions for the long-term coastal change models (described below) that are integrated 
into the �ood projections.

�e computational expense of the full CoSMoS modeling system (coupled WWIII-SWAN-Del�3D-XBeach) 
prevents the generation of a continuous 21st century time-series for the entire region, and therefore a proxy 
approach was developed to identify storm scenarios that were subsequently simulated in full detail with the 
CoSMoS system59. A total water level time-series with three-hour resolution were �rst computed at thousands 
of individual points along the coast every ~100 meters by assuming a linear superposition (simple adding, not 
accounting for non-linear interactions) of the primary storm-driven water levels at the shore, i.e. storm surge, sea 
level anomalies, and wave-run-up. Empirical models were used to estimate storm surge, sea level, and wave runup 
levels12,59. Annual, 20-year, and 100-year return period storms were then identi�ed from each of the 100-year long 
total water level time-series spanning the 21st century by identifying peak events at least 3 days apart and ranking 
these events. Space and time-varying swell waves (from the WWIII model) and downscaled atmospheric wind 
and pressure �elds associated with each identi�ed storm event were then used as boundary conditions to drive 
the full CoSMoS model system and simulate individual storms.

Two newly-developed, data-driven models were used to simulate long-term cli� retreat28 and sandy beach 
evolution27 at ~5000 cross-shore transects spaced every 100 m along the southern California coast. Coastal cli� 
retreat is projected using a multi-model ensemble that includes vertically-discretized cross-shore models78–80, 
as well as empirical and statistical models that scale wave forcing and SLR to time-averaged cli� edge retreat 
rates81–83. At each transect, the ensemble gives preference to models that show less sensitivity to variations in 
model parameters based on the standard deviation during Monte Carlo simulations, and then weights projec-
tion uncertainty proportionally with the di�erence between individual model results (i.e. how well the ensemble 
reaches a consensus)28. �e CoSMoS-COAST shoreline change model27 combines three process-based models to 
compute sandy beach change: (1) wave-driven longshore transport52, (2) cross-shore transport due to waves84, 
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and (3) cross-shore transport due to SLR85. Both the cli� and sandy shoreline change models use historical shore-
line positions, hindcast nearshore wave conditions (wave height, period, and direction), and an adaptive data 
assimilation scheme to calibrate a suite of equations and develop relationships between wave forcing parameters 
and geomorphic change at each model location. To drive both cli� retreat and shoreline model projections, con-
tinuous time-series of projected nearshore waves53 and water levels54 through the 21st century, combined with 
di�erent sea-level rise rates, are used through the year 2100. �is is the same total water level proxy that is used 
to identify storm events59. �e two models provide time-varying sandy shoreline (mean high water [MHW] line) 
and cli� positions (cli� edge) that are subsequently used to evolve cross-shore pro�les55 extracted from the origi-
nating high-resolution DEM; evolved pro�les are used in scenarios that incorporate future SLR and storms using 
full model physics of the CoSMoS �ood model described above. A summary of the coastal change results is shown 
in Supplementary Data and Supplementary Fig. 3.

�e suite of model projections includes �ood extent, depth, duration, uncertainty, water elevation, wave 
run-up, maximum wave height, maximum current velocity, and long-term shoreline change and blu� retreat. 
Uncertainty in the system is represented by a vertical o�set value calculated by combining the root-mean-square 
errors between modeled and measured total water levels (from tide gauges during historical storms), the accuracy 
of the elevation data used to develop the DEM (±18 cm), and vertical land motion as derived from Interferometric 
Synthetic Aperture Data86, GPS data, and/or statistical and physical wetland87 and tectonic models88 (variable per 
scenario). While models compared favorably to regional observation stations (rmsd and bias <6 cm)61 for tested 
conditions, model uncertainty is represented by a larger value (±50 cm) to address the limited number of tested 
observations compared to the size and complexity of the region. �is total system uncertainty in the CoSMoS 
framework is used to produce spatially-varying �ood potential for each scenario (maximum/minimum �ood 
extent given total uncertainty), providing amplifying information on potential vulnerability. More detailed infor-
mation on the CoSMoS methods can be found in these references27,28,50–61.

Physical exposure web tool. �e model results are freely available for download from a public server89; 
however, this static repository of 100 s of gigabytes of high-resolution data is ine�ective for public engagement and 
community use. To better communicate impacts to the variety of community stakeholders reliant on this project, 
physical exposure results from the 40 scenarios are served up on a public-facing, interactive web tool, Our Coast, 
Our Future (OCOF)23. �e OCOF web tool provides coastal managers and the general public a user-friendly 
means to visualize how future scenarios of coastal �ooding will impact local roads, property, businesses and crit-
ical utilities. Users can also export informational tables and reports detailing changes in �ood extent by scenario 
on a scale relevant to local planners. Because CoSMoS does not estimate when a scenario will occur, the OCOF 
tool provides users an interactive comparison of California state guidance and other best available estimates to 
consider when levels of SLR are expected to happen.

Societal exposure to flood hazards. Societal �ood exposure was estimated based on the geospatial analy-
sis of CoSMoS hazard zones (Supplementary Fig. 4) and various socioeconomic indicators (Supplementary Data). 
All data sources and supporting references are fully summarized here24,25. In short, residential population is based 
on counts in 2010 Census block data and employee locations and counts are from the 2012 Infogroup Employer 
Database. Total assessed parcel values, including improvements and land, were obtained from individual county 
tax assessor o�ces. Land cover comes from 30-m resolution data of the 2011 National Land Cover Database. 
Road data were obtained from the Homeland Security Infrastructure Program. Polygons (e.g. census block, parcel 
values) that partially overlap hazard zones were taken into account during analysis and �nal values were adjusted 
proportionately. Ranges in socioeconomic indicators due to modeling uncertainty are displayed both spatially 
and graphically in the web application, and summarized in the Supplementary Data. Exposure estimates are 
based on current socioeconomic data and not future projections18 due to the high amount of existing develop-
ment already in hazard zones along the California coastline and the possibility that future growth patterns may 
vary from historical trends as water levels rise in coming decades. Realistic projections of future urban growth 
would require local understanding of risk tolerance and carrying capacity for additional growth in hazard zones, 
which were considered outside the scope of this analysis.

Code availability. �e models and so�ware tools used to generate the results for this project are available 
upon request from the corresponding author.

Data Availability
�e model projections used in the production of this manuscript are available at the USGS Science Base website 
(https://doi.org/10.5066/F7T151Q4) and also served up and downloadable via the Our Coast, Our Future inter-
active web tool (https://www.ourcoastourfuture.org). �e socioeconomic projections are available and download-
able via the interactive Hazard Exposure Reporting and Analytics (HERA) web tool (https://www.usgs.gov/apps/
hera/). Any additional datasets generated during and/or analyzed during the current study are available from the 
corresponding author on reasonable request.
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