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Abstract

Motivation: Systems biology models are typically simulated using a single formalism such as ordinary

differential equations (ODE) or stochastic methods. However, more complex models require the coupling

of multiple formalisms since different biological concepts are better described using different methods,

e.g., stationary metabolism is often modeled using flux-balance analysis (FBA) whereas dynamic

changes of model components are better described via ODEs. The coupling of FBA and ODE frameworks

results in dynamic FBA models. A major challenge is how to describe such hybrid models coupling

multiple frameworks in a standardized way, so that they can be exchanged between tools and simulated

consistently and in a reproducible manner.

Results: This paper presents a scheme and implementation for encoding dynamic FBA models in the

Systems Biology Markup Language (SBML), thereby allowing to exchange multi-framework computational

models between software tools. The paper shows the feasibility of the approach using various example

models and demonstrates that different tools are able to simulate the hybrid models and agree on the

results. As part of this work, two independent implementations of a multi-framework simulation method

for dynamic FBA have been developed supporting such models: iBioSim and sbmlutils.

Availability: All materials and models are available from https://github.com/matthiaskoenig/dfba. The

tools used in this project are freely available: iBioSim at http://www.async.ece.utah.edu/ibiosim and

sbmlutils at https://github.com/matthiaskoenig/sbmlutils/.

Contact: myers@ece.utah.edu

1 Introduction

In systems biology, mathematical modeling has been widely used to

describe biological systems (Kitano, 2002). The resulting computational

models can be simulated and analyzed in silico and allow researchers

to make predictions which subsequently can be validated experimentally.

Furthermore, such models can provide insights in biological systems that

would be difficult to obtain in a wet lab. A key challenge, however, is

ensuring that these modeling efforts are reproducible and easily exchanged

between research groups such that and results can be validated and existing

models can be reused to build more complex models. To achieve these

goals, standard model representation formats for the model exchange,

such as the Systems Biology Markup Language (SBML) (Hucka et al.,

2003) or CellML (Hedley et al., 2001), have been established. Both

SBML and CellML have been successfully applied to the encoding of

models using a single modeling framework, but the support of multiple

framework adds new challenges. This paper addresses this problem by

developing a methodology and corresponding implementations to support

such hybrid modeling efforts, and it demonstrates the successful exchange

and reproducibility of such models between two simulation tools.

1.1 Multi-framework computational models

Various simulation and analysis methods have been developed in systems

biology, and depending on the biological question different methods are

preferred. Kinetic time-course simulation based on ordinary differential

equations (ODE) is often employed to observe the dynamics of the entities

in a model over time. Depending on the research question and biological

system, such simulations can be either deterministic or non-deterministic

(stochastic). Other simulation frameworks are boolean (Thomas, 1973;

Kauffman, 1969) models, logical models (Morris et al., 2010) and

constraint-based approaches (Bordbar et al., 2014), among others.

Metabolic networks, in particular, are often challenging to model

dynamically using ODE approaches because kinetic parameters needed

for ODE models are often unavailable (Varma and Palsson, 1994). Hence,

steady-state approaches that do not need kinetic information are employed

to model metabolism, so called flux balance analysis (FBA) (Savinell and

Palsson, 1992; Varma et al., 1993) based on constraint-based optimization
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assuming steady state. This method only requires the connectivity of

the reactions and metabolites along with the respective stoichiometry, an

objective function (e.g. cell growth), and additional constraints like flux

bounds. The idea is to constrain the model based on the stoichiometry of

the reactions and optimize the objective function while satisfying the flux

constraints. The advantages of using such method include its efficiency

and not requiring any kinetic information.

Biological research questions often require the coupling of different

model formalisms. One such recent example is the whole-cell model for

the Mycoplasma genitalium (Karr et al., 2012) that is encoded using a

mixture of boolean networks, stochastic processes, differential equations,

and FBA.

1.2 Dynamic flux balance analysis

One disadvantage of FBA is that it cannot express the dynamics of the

metabolites since it does not change amounts or concentrations of species,

but only provides information about the optimal flux distribution for the

given optimization problem. Due to this limitation, the field of dynamic

FBA (DFBA) (Varma and Palsson, 1994) has emerged, which couples the

stationary flux distribution resulting from FBA with the kinetic update of

the metabolites taken up or consumed by the FBA network, i.e., the FBA

submodel is coupled to a kinetic model (ODE) via a multi-framework

approach.

Besides the whole-cell model which uses DFBA as a core module,

many DFBA models have been constructed for different metabolic

pathways. DFBA has been applied in small-scale examples (Varma and

Palsson, 1994; Mahadevan et al., 2002; Luo et al., 2006), over medium-

size models (Pizarro et al., 2007; Lequeux et al., 2010; Meadows et al.,

2010), and up to genome-scale DFBA applications (Hanly and Henson,

2011; Hjersted et al., 2007). For a recent overview, see Table 1 in (Höffner

et al., 2013).

The coupling between FBA and kinetic model parts has hereby be

implemented via three main approaches, i.e., static optimization approach

(SOA), dynamic optimization approach (DOA), or direct approach

(DA) (Gomez et al., 2014). DOA approaches discretize the simulation

time and optimize simultaneously over the entire time period by solving

a nonlinear programming problem (NLP). The DA approach directly

includes the LP solver in the right-hand side of the ordinary differential

equations (ODEs). The SOA approach solves the LP at each time step

using a Euler forward method assuming constant fluxes over the time

step (Gomez et al., 2014). Most of the published DFBA models use

the SOA approach, which is relatively simple to implement and not as

computationally demanding (see methods algorithm).

1.3 Exchangeability & reproducibility of models

Despite the multitude of published DFBA models, currently no standard

for the exchange of such models exists. Existing models are hard-coded

in programming code, e.g., the whole-cell model in MATLAB. Hereby,

the mathematical models in their respective formalisms are embedded in

the script along with the connections between the kinetic and flux balance

parts of the models. As a consequence, it is not possible to exchange

existing DFBA models between different software tools. Thus, they cannot

be reproduced or validated. This is especially problematic in the case

of DFBA models because often multiple optima can exist for the FBA

model part (and the various time steps), and the resulting DFBA solutions

are not unique, but depend on the actual implementation, i.e., how an

implementation or solver selects one of the possible solutions. In addition

solutions can depend on the selected step size in SOA if the step size is

not small enough.

While it is possible to replicate the same scripts in different

programming languages, it is unpractical to do so as replication is error

prone, requires unnecessary work, needs conversions that can lead to

data loss, and most importantly does not solve the underlying problem of

exchangability of such models. For these reasons, script replication makes

achieving reproducibility difficult and often infeasible. The necessity of

an exchange format for DFBA resulted from efforts trying to encode and

reproduce the DFBA submodel of the whole-cell model using standards

during the whole-cell workshop (Waltemath et al., 2016).

1.4 Model standards

In order to achieve exchangeability and reproducibility of models,

standards for the encoding of models have been created. The de-facto

standard for systems biology models is SBML (Hucka et al., 2003). SBML

core elements are used to describe mathematical models of reaction-based

networks and provide the means to encode computational models based on

ODEs (deterministic and stochastic). SBML uses packages for extending

the functionality of the core elements. While SBML is used to encode

mathematical models of biological networks, there are different standards

for other purposes: the Simulation Experiment Description Markup

Language (SED-ML) is used for describing simulations (Waltemath

et al., 2011), the Systems Biology Graphical Notation (SBGN) is used

for describing visualizations (Le Novere et al., 2009), and COMBINE

Archives are used for exchanging collections of modeling files (Bergmann

et al., 2014). The main advantage of using these standards over hard-coding

models in code is the ability to exchange models between research groups

and reproduce results using various tools that support these standards.

In this work SBML core in combination with the hierarchical model

composition (comp) package (Smith et al., 2015) and the flux balance

constraints (fbc) package (Olivier and Bergmann, 2015) is used for

describing the multi-framework DFBA models. The comp package is

used to construct hierarchical models, providing the means to build built

models from submodels and define the interfaces between them. The fbc

package is used to encode the FBA submodel consisting of the metabolic

network, the flux bounds for the reactions, and an objective function,

allowing to perform FBA. In addition, SED-ML is used to describe how

each SBML model should be simulated, i.e., provide reproducible example

simulation experiments by encoding which simulation algorithm to use

and its corresponding parameters, as well as the defining the time course

simulations for the DFBA. COMBINE archives are used for the exchange

of the encoded models, simulation descriptions and reference solutions.

One of the challenges in current SBML models is the limitation on

the expression of models using different formalisms. Although there are

several tools that support ODE simulation and FBA, they all support

them independently. In order to overcome this challenge, this paper

introduces a scheme that allows the coupling of ODE and FBA models.

This paper demonstrates that this scheme provides exchangeability

and reproducibility by encoding and simulating DFBA models in both

iBioSim (Madsen et al., 2012) and sbmlutils (König, 2017).

2 Methods

2.1 Model encoding

The DFBA models presented in this paper were created in the proposed

scheme either using a graphical user interface in iBioSim or a script-

based approach in sbmlutils. For a given model, the TOP, FBA,

BOUNDS, and UPDATE submodels were packaged with respective

simulation files using SED-ML in COMBINE archives for the exchange

between tools. All models and simulation results are available from

https://github.com/matthiaskoenig/dfba.
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Fig. 1: Overview of the implemented SOA algorithm for DFBA. After

initialization of the model, the FBA and kinetic simulations are run in an

iterative manner until the simulation end point. In every step, FBA is used

to compute the reaction rates of the FBA network. Subsequently, based on

the computed FBA rates, the values of the species are updated dynamically.

In the SOA approach, FBA fluxes are assumed to be constant within a time

step. For a detailed description see the methods section.

2.2 Stationary optimization approach (SOA)

A stationary optimization approach for DFBA was implemented as

a simulation algorithm in iBioSim and sbmlutils following the

simulation scheme depicted in Figure 1.

The first step is the initialization of the model. All of the species and

parameters in the model are initialized, where each variable’s initial value

is computed. After the initialization step, the FBA submodel is executed.

During the FBA step, reaction fluxes are computed using the initial flux

bound values where the flux bounds for the reactions come from the

top-level using SBML comp replacements. In SBML, replacements of

parameters and species indicate the top-level entities are the same entity

as the one being replaced. Once the fluxes are computed, they are assigned

to parameters using assignment rules on the top-level. These parameters

are assigned reaction rates computed as functions of the fluxes.

After computing reaction fluxes, the update step is performed

concurrently with the dynamic step by computing the time-evolution of

every species in the UPDATE and KINETIC submodels. Species that affect

any flux bound in the FBA submodel are updated in the top-level. The new

bounds are used in the FBA submodel for the next time step. Simulation

time is incremented at the end. If the time limit is reached, then simulation

is complete. Otherwise, all of the steps are repeated.

The SOA simulation algorithm has been implemented in iBioSim

and sbmlutils. The iBioSim tool uses the structure of (Watanabe

and Myers, 2014) for simulation. The sbmlutils tool uses

roadrunner (Somogyi et al., 2015) for the kinetic simulation and

cobrapy (Ebrahim et al., 2013) to solve the FBA problem. Both iBioSim

and sbmlutils take an SBML file that describes a DFBA model and

a SED-ML file that describes the simulation experiment. In the proposed

approach, SED-ML is mainly used to indicate which simulation algorithm

to use, the time points in which tools should print out the values of

the variables, the initial time and the time limit. The SED-ML files

provide a minimal simulation experiment to check reproducibility between

implementations. The value of each time increment for SOA is defined as a

parameter with id dt in the SBML model, which can be overwritten by the

SED-ML file for the actual simulation. Ontology terms for the description

of DFBA simulation algorithms have been introduced in the Kinetic

Simulation Algorithm Ontology (KISAO) (Zhukova et al., 2011) and are

used in the SED-ML descriptions, i.e., KISAO:0000500 (SOA-DFBA).

2.3 Reproducibility between tools

In order to test interoperability based on the proposed scheme, models

were built in both the iBioSim and the sbmlutils tools. Models

built in iBioSim were then imported into sbmlutils and vice-versa

to check whether models could be interpreted by both tools consistently.

This was done in an iterative manner and resulting issues were solved by

clarifying the encoding scheme, e.g., by adding additional rules which

resolved ambiguities.

Reproducibility of DFBA models is challenging because there may

exist several possible outcomes that satisfy the objective function and

constraints of the FBA models. Depending on how a solver and

implementation selects one of the multiple optima different trajectories

can result from the DFBA simulation. The issue of multiple optima was

solved by guaranteeing uniqueness of the solution in every time step based

on Flux Variability Analysis (FVA) (Mahadevan and Schilling, 2003). FVA

gives the possible minimal and maximal fluxes for each reaction in each

step of the simulation. If all minimal fluxes are equal to all maximal fluxes

for a time point a solution is unique in the time point. If all time points

are unique the solution is unique. As a practical note: If the solution is not

unique, the addition of additional constraints to the FBA problem allows

to make the solution unique.

Reproducibility of the model simulations was tested by comparing

the numerical SOA results between the two tools for models with unique

solutions (see Supplementary Material S2). Results were assumed as

numerical identical if the absolute difference for every time point tk for

all dynamical FBA species in the model ck was smaller than the tolerance

ǫ = 1E−5, i.e.,

abs(ci(tk)sbmlutils − ci(tk)ibiosim) ≤ ǫ ∀ci, tk

In SOA-DFBA it is important that the time steps dt are small enough

so that the solution converges against the correct solution, and solutions

vary if selected step sizes are too large (e.g. changing the step size in the

toy_wholecellmodel from 1.0 to 0.1 resulted in differences in steady

state concentrations of up to 10%). Consequently, different step sizes were

tested for the models and step size of the simulations were selected, so that

smaller step sizes did not change the simulation results.

3 Results

The major result of this work is the creation of the first schema for encoding

DFBA in SBML, demonstrating multi-framework computational models

to be exchanged and reproduced between tools. In the following the schema

and its application to multiple DFBA models is presented.

3.1 Schema for dynamic flux balance analysis

This paper proposes for the first time a schema to encode hybrid models,

such as DFBA models, in SBML. The developed schema consisting of

rules, guidelines, and additional information is available as Supplementary
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Fig. 2: Overview of schema for encoding DFBA models in SBML. The

hierarchical SBML model is composed of a top-level model with four

submodels: FBA, BOUNDS, UPDATE, and KINETIC. The individual

submodels are connected via ports. The respective SBML packages used

are listed in the models, as well as the simulation framework used. The

BOUNDS submodel calculates the upper and lower flux bounds based on

metabolite availability. The FBA submodel computes the reaction fluxes

of the metabolic fbc model using the bounds as constraints. The UPDATE

submodel calculates the dynamic update of the dynamic metabolites

affected by the FBA model. The rates of change are herby functions of the

FBA fluxes. The KINETIC submodel includes all of the other processes in

the model, which may affect or be affected by entities in metabolism. The

top-level model ties together the different submodels using SBML comp

replacements and replacedBy constructs.

Material S1. The latest version of the document is available from

https://github.com/matthiaskoenig/dfba/. Proposals, errata, and updates to

the schema are managed via the respective issue tracker and releases.

In this section we provide a high-level overview over the underlying

concepts used in the schema, followed by application of the schema to

encode DFBA models.

The DFBA model is constructed hierarchically using the SBML comp

package, separating the hybrid model in different building blocks based on

the respective functionality and modeling frameworks (Figure 2). The top-

level model is hereby composed of four submodels: (i) a kinetic submodel

that computes flux bounds based on the dynamic metabolite availability

and ensures that the FBA problem is constrained by the available metabolite

resources (BOUNDS submodel); (ii) a FBA submodel that encodes

metabolism as a FBA problem (FBA submodel); and (iii) a kinetic

submodel that updates the amounts and concentrations of the dynamic

metabolites changed via the FBA submodel via consumption or production

(UPDATE submodel); (iv) an optional kinetic submodel that represents a

dynamic part with all kinetics other than the metabolic pathway, such

as DNA transcription, DNA translation, and protein degradation, among

others (KINETIC submodel). Alternatively, arbitrary kinetics can be part

of the top model.

The top-level model ties together the three different submodels using

SBML comp replacements and replacedBy constructs with the interface

between the submodels defined via comp ports (which define which model

components of the submodels can be connected, i.e, are exposed).

In order to describe the different formalisms of each submodel, the

Systems Biology Ontology (SBO) is used (Courtot et al., 2011). The SBO

defines controlled vocabulary terms used in the systems biology field. The

SBO terms are arranged in a taxonomic hierarchy using a tree structure.

This allows the grouping of terms that are related to one another. The

modeling formalisms of the individual submodels are described using

terms on the modeling framework branch, where FBA models are described

using the flux balance framework term, stochastic processes are described

using the non-spatial discrete framework term, and differential equations

are described using the non-spatial discrete framework term. Although

the terms for stochastic processes and differential equations can be used

for describing either stochastic or deterministic simulation methods, these

terms were selected because they are the ones that best describes these two

formalisms.

In addition to the modeling formalism other key components are

annotated in the submodels via SBO terms in the schema, e.g., the upper

and lower flux bounds and the exchange reactions in the FBA submodel

defining which metabolites can be consumed or produced in the FBA part

of the DFBA, or the dynamic species in the top model changed by the

FBA submodel. By the means of these annotations the interface between

the hybrid submodels can be clearly defined.

All of the interconnections between the submodels are encoded in

SBML rather than using an external approach like for instance via SED-

ML. The connections between model components are crucial information

of the model and should be part of the model encoding. SED-ML is only

used to encode which simulation to run with the model. As a consequence,

this schema requires only a single hierarchical SBML model and a single

SED-ML file.

3.2 Minimal Example (toy_wholecell)

In order to illustrate the proposed schema, a simplified example of a whole-

cell model was created with a model overview depicted in Figure 3. This

figure shows how the different submodels connect with each other in a

flat form. The model is available as COMBINE archive in Supplementary

Material S3, the Cytoscape visualization as Supplementary Material S4.

This model is constructed hierarchically where a top-level model is

created to instantiate different submodels (BOUNDS, UPDATE, and FBA)

and make the necessary connections between them. The figure illustrates

the structure of each submodel and how each submodel ties in with

each other in a flat version of the model once all of the connections are

established.

In the example the FBA submodel imports species A and convert it

via a linear chain of reactions to species C. The exchange reactions EX_A

and EX_C contain the rate of consumption and production of the respective

species. The TOP model contains assignment rules which assign the fluxes

to the parameters pEX_A and pEX_C, which are used by the UPDATE

model to update the dynamic species A and C via the update reactions

update_A and update_C. The BOUNDS model calculates the bounds

of all FBA exchange reactions, i.e., constraining by the availability of the

dynamic species, as well as bounds changed by kinetic expressions. In the

example the upper bound ub_R1 of reaction R1 is changed via a rate rule.

Additional kinetics are encoded in the TOP model, i.e., a kinetic conversion

of C to C (these could also be in a separate KINETIC submodel).

In order to validate the exchangability and reproducibility of the model,

simulations were performed using the simulation algorithm described in

Figure 1 with results depicted in Figure 4. Both implementations resulted in

numerically identical results (see 2.3). Importantly, our encoding schema

allowed to reproduce the numerical results even if the step sizes were not
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Fig. 3: Detailed schema of the minimal example model (toy_wholecell). The figure shows the components in the BOUNDS, FBA and UPDATE

submodels. Links between submodel components are based on ports which are connected elements via TOP model replacements (replacedElements and

replacedBy). The flattened SBML comp model (FLATTENED) shows the resolved connections between the different submodels after these replacements

have been performed. The flattened model can not be simulated because the separation of frameworks is lost in the flattening process. The network

visualization are available as interactive graphs in Cytoscape as Supplementary Material S4, which provide additional information and annotation of the

components. The figure was created with cy3sbml using the SBML models (König et al., 2012).
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(b) Simulation results with iBioSim

Fig. 4: DFBA Simulation results for the toy_wholecell model in two different tools. This demonstrates that models can be exchanged by different

tools using standards and the results can be reproduced when using the same simulation algorithm. Species A is converted to C via the FBA subnetwork

over time. C is converted to D via the kinetic parts in the top model. Species A is not consumed completely because the import of A in the FBA subnetwork

via R1 is shut down via a rate rule for the upper flux bound, and a steady state is reached. The model was simulated for 50[h] with a time step dt of 0.1[h].

yet small enough to have converged against the correct solution, thereby

allowing to test the effects of varying step sizes in a reproducible manner.

In addition to the presented minimal model, a second model of a

simplified DFBA glycolysis (toy_atp) is available in the supplement

(COMBINE archive in Supplementary Material S5, corresponding

Cytoscape visualization in Supplementary Material S6).

3.3 Diauxic growth in E. coli (diauxic_growth)

The next example is an encoding and reproduction of results from a

published DFBA model of diauxic growth of E. coli (Mahadevan et al.,

2002) consisting of four reactions between four metabolites, i.e., glucose

(Glcxt), oxygen (O2), acetate (Ac) and biomass (X). The model can
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grow either aerobically on acetate (v1), aerobically on glucose (v2 or v3)

or anaerobically convert glucose to acetate:

v1 : 39.43Ac + 35O2 → X

v2 : 9.46Glcxt+ 12.92O2 → X

v3 : 9.84Glcxt+ 12.73O2 → 1.24Ac +X

v4 : 19.23Glcxt → 12.12Ac +X

The kinetic part of the model is described by the following differential

equations:

dGlcxt

dt
= AGlcxtνX

dAc

dt
= AAcνX

dO2

dt
= AO2νX + kLa(0.21−O2)

dX

dt
= (v1 + v2 + v3 + v4)X

where AGlcxt, AAc , AO2 are the respective rows of each variable in the

stoichiometry matrix and kLa is the mass transfer coefficient of oxygen.

For a detailed description see (Mahadevan et al., 2002).

The model is available in Supplementary Material S7, the Cytoscape

visualization in Supplementary Material S8.

The results in Figure 5 depict an exponential growth phase using

glucose aerobically until running out of glucose, which at this point the cell

grows linearly due to oxygen. When both oxygen and glucose run out, the

cell growth stagnates. Experimental data from (Varma and Palsson, 1994)

is plotted alongside the simulation results. The model is able to capture

the behavior observed in the experimental data. The results are equivalent

to the models in (Mahadevan et al., 2002).

We hereby showed that our schema is able to encode published DFBA

models, resulting in a reproducible and exchangeable model representation

between tools.

3.4 E. coli core (ecoli)

To demonstrate the feasibility of the proposed schema and method for

real-world examples of DFBAs, a larger metabolic network for the

core metabolism of E. coli (Orth et al., 2010) was encoded in the

proposed schema and simulated as shown in Figure 6. The model is

available as COMBINE archive in Supplementary Material S9. The

FBA submodel was downloaded from BiGG (King et al., 2015) (core

metabolism of Escherichia coli str. K-12 substr. MG1655) and transformed

to an DFBA model in an automatic fashion using sbmlutils. BiGG

models encode the exchangeable species via annotated exchange reactions

which allows and automatic inference of the dynamic species. Only

additional information required to run a DFBA simulations are initial

concentrations for the species. The automatic encoding of larger scale

examples demonstrates the scalability of the proposed encoding approach.

While sbmlutils is able to find a solution for the model, iBioSim

cannot as it runs into an unfeasible solution in the middle of simulation.

This captures the well-known problem of DFBA with multiple solutions.

The FBA problem is not constrained enough to result in a unique solution

and depending on which solution the simulator picks, different solutions

and thereby trajectories arise. Despite the existence of multiple solutions,

tools and LP solver typically pick solutions deterministically. Hence,

single tools can reproduce their own results, but results are irreproducible

between different implementation. Without the use of standards, this

could never be demonstrated because variations in results could be due

to discrepancies in the model, and not in the tool.

4 Discussion

Modularity of models, the ability to encode multi-framework models, and

reproducibility of models is indispensable for encoding more complex

models in computational biology. In this work we presented such an

approach, which allows a clear separation of the different modeling

frameworks via comp submodels and defining the interfaces between the

submodels. To our knowledge, this paper proposes and implements for

the first time an exchangeable and reproducible multi-framework scheme.

This scheme for encoding DFBA models in a standard way has been

implemented in two different tools, demonstrating the exchangeability and

reproducibility of our approach on various examples models like diauxic

growth in E.coli. iBioSim and sbmlUtils are freely available for

download and offer the necessary infrastructure for anyone to develop

DFBA models using the proposed scheme.

Currently, the proposed approach supports the modeling of DFBA

models based on the SOA simulation algorithm. Hence, our approach

only covers a subset of DFBA algorithms and possible frameworks which

could be coupled.

Most DFBA models are stiff and small time steps are required for

stability, making the SOA approach computationally expensive. Another

disadvantage of the SOA approach is that it requires a sufficiently small

fixed time step to give accurate results. Future directions include the

exploration of adaptive time steps for executing the DFBA with SOA,

alternative DFBA methods, such as DOA or DA, and extending our scheme

to encode such models.

Our current is limited to the coupling of ODE and FBA frameworks.

Different types of hybrid model, such as a mixture of differential equations,

stochastic processes, and boolean models still need further study. The

proposed approach of decoupling frameworks via hierarchical model

composition could work similarly for other modeling frameworks like

boolean models.

So far, only small to medium-size DFBA models have been encoded

in our proposed approach. For future work, we will encode genome-

scale metabolic models. This would allow us to assess the scalability and

performance of the proposed approach.
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(a) This is the simulation results for the diauxic growth of E. Coli in sbmlutils.
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(b) This is the simulation results for the diauxic growth of E. Coli simulated iniBioSim.

Fig. 5: This plot shows the results for the model representing diauxic growth in E. coli. The model is able to reproduce the general behavior captured from

experiment data. There is an exponential cell growth while glucose is present in the model, but when the cell runs out of glucose, growth slows down

and is affected mostly by oxygen. However, when the cell runs out of glucose and oxygen, growth diminishes significantly. The model was simulated for

15[h] with a time step dt of 0.01[h].
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Fig. 6: DFBA simulation results for core metabolism of E. coli with

sbmlutils. The proposed approach can be used in larger models, such as

the E. coli model described in the paper. The model is growing aerobically

on glucose in the initial phase and reaches a steady state after oxygen is

consumed. The model was simulated for 3.5[h] with a time step dt of

0.01[h].

S2 Reproducibility results between sbmlutils and iBioSim

S3 toy_wholecell Minimal DFBA model COMBINE archive

S4 toy_wholecell Minimal DFBA model Cytoscape session file

S5 toy_atp Minimal glycolysis DFBA model COMBINE archive

S6 toy_atp Minimal glycolysis DFBA model Cytoscape session file

S7 diauxic Diauxic DFBA model COMBINE archive

S8 diauxic Diauxic DFBA model Cytoscape session file

S9 ecoli E.coli core DFBA model COMBINE archive
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