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Dynamic Force Identification 

for Beamlike Structures Using 

an Improved Dynamic 

Stiffness Method 

In this study a procedure of dynamic force identification for beamlike structures is 
developed based on an improved dynamic stiffness method. In this procedure, the 
entire structure is first divided into substructures according to the excitation locations 
and the measured response sites. Each substructure is then represented by an equiva­
lent element. The resulting model only retains the degree offreedom (DOF) associated 
with the excitations and the measured responses and the DOF corresponding to the 
boundaries of the structures. Because the technique partly bypasses the processes of 
modal parameter extraction, global matrix inversion, and model reduction, it can 
eliminate many of the approximations and errors that may be introduced during these 
processes. The principle of the method is described in detail and its efficiency is 
demonstrated via numerical simulations of three different structures. The sensitivity 
of the estimatedforce to random noise is discussed and the limitation of the technique 
is pointed out. © 1996 John Wiley & Sons, Inc. 

INTRODUCTION 

The identification of exciting forces using mea­

sured responses is not a new concept (see, e.g., 

Pilkey and Kalinowski, 1972). However, the 

problem has received considerable attention in 

recent years, because in many situations the di­

rect measurement of the excitation can be very 

difficult or even impossible. Many techniques for 

force identification have been developed. Among 

others, let us cite the sum of weighted accelera­

tion technique (Gregory et aI., 1986; Wang et al., 

1987), the deconvolution technique (Hillary and 

Ewins, 1984), and their engineering applications 

(Bateman et al., 1991; Carne et al., 1994). Using 

the wave propagation theory, Park and Park 

(1994) studied the identification of an arbitrary 

impact force, including its location and time his-
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tory. Almost all the force identification algorithms 

require the measurement of the responses to the 

unknown forces (displacements, velocities, ac­

celerations, or strains) at several locations on the 

structure and a model of the structure. While the 

responses may be easily obtained by direct mea­

surement using transducers, the establishment of 

the structure model becomes a key issue in the 

procedure of the force identification. There are 

three types of structure model that may be used 

for this purpose: the spatial model (mass, damp­

ing, and stiffness matrices), modal model (natural 

frequencies and mode shapes), and response 

model (or frequency response function matrix) 

(Ewins, 1988). If the modal model or the response 

model is used, the force identification process 

requires the inversion of the global matrix, which 

tends to be very ill conditioned. That is, very 
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small errors in measurements propagate into large 

errors in estimated forces, especially at the fre­

quencies close to resonance and antiresonance 

conditions (Starkey and Merrill, 1989). Progress 

has been made to overcome this difficulty, e.g., 

by the pseudoinverse technique (Fabunmi, 1985) 

or by the singular-value decomposition technique 

(Elliott et al., 1988). 

The use of the spatial model, usually estab­

lished by the finite element method (FEM), may 

offer significant advantages in some cases be­

cause it avoids any matrix inversion (Dobson and 

Rider, 1990). However, the FEM model often 

includes a large number of degrees of freedom 

(DOF), although most of them are not necessarily 

needed, especially those to which no forces are 

applied and those for which no responses are mea­

sured. To estimate the excitations, the FEM 

model has to be reduced by model reduction tech­

niques so that responses need only be measured 

at a limited number of sites. The reduction pro­

cess may introduce errors as pointed out by many 

researchers (i.e., Leung, 1978; Freed and Flani­

gan, 1990). 

Overcoming all the difficulties mentioned 

above is a hard task. However, we show in this 

article that some of the difficulties may be over­

come or partly overcome for one-dimensional 

(I-D) beamlike structures by using an improved 

dynamic stiffness method recently developed by 

the authors (Chen and Geradin, 1995; Geradin 

and Chen, 1995). 

METHOD PRINCIPLE 

Element Dynamic Stiffness Matrix (DSM) 

The exact DSM for some basic elements such as 

beam and shaft elements may be found in many 

studies, for instance in the work of Richards and 

Leung (1977), Leung (1985), and Yang and Pilkey 

(1992). As an example, consider a uniform beam 

shown in Fig. 1. The exact DSM for a damped 

beam was obtained by Leung (1985): 

Fl ZI Z2 Z4 -Zs XI 

MI Z2 Z3 Zs Z6 01 

=B (1) 
F2 Z4 Zs ZI -Z2 X2 

M2 -Zs Z6 -Z2 Z3 O2 

F, x, F, x, 

(il _____ E,l,m_,L _--,I t ) 
M, 8, M 2 8, 

FIGURE 1 A beam element. 

where B = EI/(l - cos aL cosh aL); Zl = a3 (cos 

aL sinh aL + sin aL cosh aL); Z2 = a2sin aL sinh 

aL; Z3 = a(sin aL cosh aL - cos aL sinh aL); 

Z4 = -a3(sin aL + sinh aL); Zs = a2(cos aL -

cosh aL); Z6 = a(sinh aL - sin aL); and a = 

«w2 - 2iow)pA/EI; with E being the Young's 

modulus, L the length, !the area moment ofiner­

tia, p the mass density, and A the cross-section 

area. The additional damping constant 0 is due 

to inertia. 

Element Transfer Matrix 

The element transfer matrix may be obtained ei­

ther by directly solving the differential equations 

of motion or by operating a transformation of the 

DSM. The second possibility is described below. 

Equation (1) may be rewritten in submatrix 
form as follows: 

where F[ = [Fl, Mdt, X[ = [Xl' Ol]t, Fr = [F2, 
M2]t, and Xr = [X2, 02]t. 

Equation (2) may be further modified to yield 

the following transfer matrix form: 

(3) 

with TIl = - DIz~IDII' T1z = DIz~I, TZI = -DzI + 
DZ2Dlz~IDrl' and TZ2 = -D22Dh~l. Note that the 

FE mass and stiffness matrices may be used to 

obtain the element transfer matrix as described 

by Dimarogonas (1975), but the transfer matrix 

obtained by this approach is not exact. 

Substructure Transfer Matrix 

The entire structure is divided into several sub­

structures. The number of the substructures de­

pends on the number of the excitations and the 

number of the responses. For example, let us 

suppose that the node numbers of the entire struc-
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ture be ordered from 1 to n, with node 1 being the 

left-hand node and node n the right-hand node. If 

the external force is applied to node i and the 

response is measured at node j (let i < j), then 

the entire structure may be divided into three 

substructures, with nodes I, i,j, and n being the 

boundary nodes of the substructures. 

Shown in Fig. 2 is a typical substructure that 

consists of Nk elastic supports, N m rigid masses, 

Nd disks, and Nb beam elements. There are not 

external forces applied or responses measured at 

the internal nodes. The global transfer matrix for 

the substructure is: 

where N, is the total number of elements of the 

substructure. 

Substructure DSM 

The global transfer matrix [T] of a substructure 

relates the forces and displacements at both ends 

of the substructure in the following way: 

where FI and XI are the force and displacement 

vectors at the left end of the substructure and F 

and X,. are the same quantities at the right end:' 

Equation (5) may be rewritten in the DSM form: 

with 

Dll = -TI21Tll, 

D12 = TI21 , 

D21 = -T21 + T22TI21 Til , 

D22 = - T22 TI21 , 

where [D] is the global DSM of the substructure 

whose coefficients are frequency dependent. 

Note that the global DSM ofthe substructure has 

the same dimension as the element DSM. 

Equation (6) tells us that the substructure 

shown in Fig. 2 is reduced to an equivalent ele­

ment in an exact manner. The internal coordi­

nates of the substructure are not used. 

Global DSM 

The global DSM for the entire structure can be 

assembled using the above DSMs of all substruc­

tures. After introducing the boundary conditions, 

the dimension of the global stiffness matrix can 

further be decreased. The unwanted DOF such 

as rotational DOF can be removed in an exact 

manner (Leung, 1978). 

The dynamic equilibrium equation in the fre­

quency domain is finally obtained: 

F(w) = [D,,,(w)]X(w) (7) 

where DR is the global DSM. 

U sing the matrix Dr;' the other frequency-de­

pendent matrices, model parameters, and dy­

namic responses may be obtained by the usual 

dynamic stiffness method (Leung and Fergusson, 

1993) or finite dynamic element method (Fergus­

son and Pilkey, 1994). 

__ ------__ ~ i+l !+-____ i+_2 ____ }-__ ~i+~4~ __ ~ i+6 

FIGURE 2 A substructure. 
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FIGURE 3 A 6-DOF lumped system. 

Dynamic Force Identification 

The dynamic force in the frequency domain may 

be directly estimated from Eq. (7). The corre­

sponding time history can be easily obtained by 

performing an inverse fast Fourier transform 

(IFFT) as follows: 

J(t) = IFFT([D/w)]X(w». (8) 

It is noted that the matrix DR(w) depends neither 

on the external forces nor on the responses. 

Therefore, once the frequency parameter I:::.J is 
determined for the IFFT, the matrix D / w) can be 

computed once for all and stored for subsequent 

identifications of different excitations. 

NUMERICAL EXAMPLES 

To demonstrate the efficiency of the procedure 

described above, three numerical examples are 

presented in this section. In each example, four 

different types of excitation forces are applied to 

the structures. The excitations are monohar­

monic, multi harmonic , impulsion, and harmonic 

with exponential envelope. The responses are 

first calculated by directly integrating the equa­

tions of motion using the Newmark method and 

the excitation forces are then recovered based on 

the principle described here. 

Example 1 

Consider the 6-DOF lumped system shown in Fig. 

3. It is assumed that an external force is applied 

at station 6 and that the response at the same 

point can be measured. Let us estimate the magni­

tude of the external force. 

Because the external force is applied to the 

right boundary, the system can be treated as one 

substructure. The global transfer matrix is: 

(9) 

where T~ and Tic are defined as 

(10) 

(11) 

with i = v=I. 
The global DSM can be obtained by rearranging 

the global transfer matrix Tusing Eq. (6). Intro­

ducing the boundary condition at the left end, the 

global DSM is reduced to a scalar function of the 

excitation frequency, dew). 

Figures 4 and 5 depict the comparison between 

the true forces and the estimated forces under the 

excitations mentioned above. In IFFT calcula­

tions, the number of the sampling points is N = 

4096 and the frequency step is I:::.J = 0.01 Hz. It 

is seen that the estimated force histories agree 

well with the true values. 

Example 2 

A nonuniform clamped beam shown in Fig. 6 is 

analyzed in this example. It is assumed that the 

beam is excited at its center by an external force. 

The beam is divided into two substructures, 

each of which consists of two beam elements. 

According to the principle of the procedure, the 

structure is equivalent to two elements. After in­

troducing the boundary conditions, the dynamic 

200,--~-~-~-_,--~-~-~-----, 

tim sec 
.200L--:-S -----::,----1"'0-----;'12::------,1:'-:4-----;'1S::---"'-'-'1:'::8-"""'-----;;20 

a): Mono-harmonic excitation 

200,---~-~-~-_,--~-~-~-----, 

tim sec 
.200L--:---:8--1C:-0-----;'12::------,1C:-4-----:'c1S::----'"-"'1"=S"""-----:!20 

b): Multi-harmonic excitation 

FIGURE 4 Estimated force and true force history for 

example 1: (--) true value and (- . - . -) estimated. 
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~ 0 ~=---~--~~--~-~----------~ 
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e 

time, sec 
-500,-L------::2----4c------:-e-----:8:""-''''--'''''''------710 

a): Impulse excitation 

.£ -50 

time sec 

2 4 e 8 10 
b): Exponentially varying harmonic excitation 

FIGURE 5 Estimated force and true force history for 

example 1: (--) true value and (- . - . -) estimated. 

equation has the form 

{ F} = [DII DI2]{X}, (12) 

M D21 D22 () 

where F and M are, respectively, the external 

force and the moment at the center of the beam 

and X and () are, respectively, the displacement 

and the rotation angle at the same node. 

Equation (12) can be further reduced by setting 

the moment M to zero. Finally we have: 

(13) 

Figures 7 and 8 show the estimated exciting forces 

under four types of excitations. For comparison, 

the true values are also depicted in the figures. 

The responses are first calculated by the New­

mark integration method based on an FEM (eight 

beam elements). In the IFFT, the number of sam­

pling points is N = 4096 with the frequency step 

!:J.f = 0.1 Hz. From these figures, it is seen that 

the present method can correctly identify the ex­

ternal forces. 

b=O.0255 m 
h=O.OO5 m 

F(t) 

1m 

b=O.0255 m 
h=O.007 m 

FIGURE 6 A nonuniform clamped beam. 

20r----~----,----~~------, 

_20L-___ ~ ____ __'__ ___ ~_t~im~e',J. s!';'e~c._ 

o 0.5 1 1.5 2 

_ 20 
<:: 
o 

! 
Z 0 
m 
e 
o 
~-20 

a): Mono-harmonic excitation 

time sec. 

0.5 1 1.5 2 
b): Multi-harmonic excitation 

FIGURE 7 Estimated force and true force history for 

example 2: (--) true value and (- . - . -) estimated. 

Example 3 

In the above two examples, the excitation and 

the response were colocated. It is not always the 

case in practice. In this example, we show that 

the developed procedure can also deal with the 

cases where the excitation and the responses are 

not colocated. 

Consider a lumped system with 30 DOFs [Fig. 

9(a)]. An external force is applied at station 20, 

while the associated response is measured at sta­

tion 10. The entire structure is therefore divided 

into three substructures, each having 10 DOFs. 

U sing the developed procedure, the original sys­

tem is reduced to a 2-DOFs system for a given 

frequency, as shown in Fig. 9(b). We have the 

15,-----r----__ ---____,-------, 

210 

~ ., 
Z 5 

~ .£ 0 L-___________________ ~ 

_50L-___ -'-____ --'--____ '--tlWim.."e'..JS>l<ec>e..---.J 

0.5 1 1.5 2 
a): Impulse excitation 

20,-----r---~---_r_--____,------, 

_20L-__ -'-___ ~ ___ ~ __ ---..JJ!!im!l!.e...J;slS!!ec"'-. ---.J 

o 0.2 0.4 o.e 0.8 
b): Exponentially varying harmonic excitation 

FIGURE 8 Estimated force and true force history for 

example 2: (--) true value and (- . - . -) estimated. 



188 Chen and Geradin 

~ ... 

mlO 

~IO 
(a) 

(b) 

FIGURE 9 (a) A lumped system with 30 DOFs and 

(b) reduced system with 2 DOFs. 

following relationships: 

(14) 

By setting FlO 

nally have 

o and solving Eq. (14), we fi-

(15) 

Figures 10 and II depict the calculated forces 
using Eq. (15). In the IFFT, the number of sam­

pling points is N = 4096 with the frequency step 

t::.J = 0.01 Hz. We see that the identified force 

histories agree well with the applied excitations. 

e­
.g 50 

~ 
z o· 

I -50 
IL 

SENSITIVITY ANALYSIS 

The responses and the DSMs used in the above 

examples are theoretically pure values. However, 

in the actual measurements, the noise is usually 

unavoidable. Therefore, it is necessary to analyze 

the sensitivity of the estimated force to the noise 

level. To this end, example 2 is reanalyzed. Three 

cases are considered. 

Case 1: Only Response Is Contaminated 

The calculated responses by Newmark direct in­

tegration are contaminated by adding ± 10% of 

normal random noise and then they are used as 
the inputs of the present method. Figure 12 de­

picts the comparison between estimated and true 

force histories. 

Case 2: Only DSM Is Contaminated 

The theoretical DSM is contamined by adding 

± 10% of random noise. The estimated forces are 

shown in Fig. 13. It is seen that the estimated 

forces agree well with the true values. 

Case 3: Response and DSM Are 
Contaminated Simultaneously 

In this case, ± 10% of random noise is added si­

multaneously to the calculated response and to 

the coefficients of the DSM. The identified forces 

are shown in Fig. 14. 

-100 "/' 

-150 L-----"'--------'_-----'-_-----'-_--L_----'-_--'-_--'--.!ti~m::...e,~se~c.C_...J 
10 10.5 11 11.5 12 12.5 13 13.5 14 14.5 15 

a): Mono-harmonic excitation 

e-l 50 

z 0 

I -50 
IL 

-100 

-150 L-----"'--------'_-----'-_-----'-_--L_----'-_--'-_-'--'"-'=~....J 
10 10.5 11 11.5 12 12.5 13 13.5 14 15 

b): Multi-hannonic excitation 

FIGURE 10 Estimated force and true force history for example 3: (--) true value and (- . - . -) esti­

mated. 
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120,------.------,------,------,------,------, 

0.5 1.5 
a): Impulse excitation 

c: 

i 
z 

~ 
.f -50 

-100 time sec. 

o 3 4 5 6 10 
b): Exponentially varying harmonic excitation 

FIGURE 11 Estimated force and true force history for example 3: (--) true value and (- . - . -) esti­
mated. 

From the above analysis, it is seen that the 

estimated force is not very sensitive to the noise 

inherent to the response and to the DSM. This is 

because the force identification developed here 

is not an inverse procedure, i.e., no global matrix 

inversion is necessary. 

DISCUSSION 

The identification method needs an FFT and an 

IFFT process to obtain the force histories in the 

time domain. Therefore, the signal processing pa­

rameters Ilt or Ilf and the number of sampling 

points N have to be selected carefully. The pa-

_ 20 
c: 

i 
Z 0 

~ 
o 
LL .20 

time, sec. 

o 0.5 1 1.5 2 
a): Multi-harmonic excitation 

15,--------,--------,-------~--------~ 

.50:---------::'-::--------~1--------~-'til!.!Jm""e -"s",ec~. --' 
0.5 1.5 2 

b): Impulse excitation 

FIGURE 12 True and estimated force history; re­

sponse is contaminated by ± 10% random noise: (--) 

true value and (- . - . -) estimated. 

rameter Ilt has a significant influence on the accu­

racy of the responses, while the parameter Ilf 

determines the accuracy of the DSM. If the fre­

quency contained in the response is high, a small 

Ilt is usually needed. In this case, the sampling 

number N must be large enough. 

The damping value has a direct influence on 

the accuracy of the DSM. In the calculations of 

both DSM and responses, the same damping 

value is used in the above numerical simulations. 

However, it is usually a difficult task to accurately 

identify the damping value. Therefore, if the mea­

sured response is used as an input, the damping 

value has to be determined experimentally before 

the calculation of the DSM. 

_ 20 
c: 

~ 
Z 0 

'if 

" LL .20 

time sec. 

o 0.5 1 1.5 2 
a): Multi·harmonic excitation 

15r--------,--------~------~--------, 

time. sec. 

0.5 1 1.5 2 
b): Impulse excitation 

FIGURE 13 True and estimated force history; dy­

namic stiffness matrix is contaminated by ± 10% ran­

dom noise: (--) true value and (- . - . -) estimated. 
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_ 20 

i 
Z 0 

~ 
o 

LL -20 

time. sec. 

o 0.5 1 1.5 2 
a): Multi-harmonic excitation 

15r-------~------~------~------_. 

time sec. 
-50:-------0,..,.5::--------1'-------1:-'-:.5:--"'"""'--"""'~2 

b): Impulse excitation 

FIGURE 14 True and estimated force history; both 
response and dynamic stiffness matrix are contami­
nated by ± 10% random noise: (---) true value and 
(- - - . -) estimated. 

To get the DSM of a substructure, the method 

developed here requires the inversion of a subma­

trix of the global transfer matrix [T 121 in Eq. (6)]. 

Because the global transfer matrix T has the same 

dimension as the element transfer matrix T e , with 

its maximal dimension being 12 x 12 for 1-D struc­

tures, the maximal dimension of the submatrix 

TI2 is 6 x 6. Obviously, the inversion of such a 

low dimension matrix will be much easier and 

more accurate than that of the global system ma­

trix that is usually higher in dimension if the FEM 

method is used. Note that in example 3 the dimen­

sion of TI2 is only 1 xl. 

It should be noted that the successive multipli­

cations of matrices in Eq. (4) may introduce nu­

merical instability when Ns is very large. Fortu­

nately, the number of the elements of the 

substructure Ns is usually much smaller than that 

of the original structure. This fact may be found 

in example 3 where the original system has 30 

DOFs while each substructure has only 10 DOFs. 

To apply the developed procedure one needs 

to specify the locations and the number of the 

excitation forces. In addition the method can only 

be used presently for I-D structures. 

CONCLUSIONS 

A procedure of force identification for beamlike 

structures (or more generally for I-D structures) 

is presented. According to the procedure, the 

structures can be modeled directly with the DOF 

at which external forces are applied and/or re-

sponses are measured. In this way, the force iden­

tification process becomes a straightforward 

problem. The processes of global matrix inver­

sions, modal parameter extractions, as well as 

model reductions are not necessary in the pro­

posed procedure. Therefore, the sensitivity of the 

estimated force to the noise level is lower and the 

solution is characterized by a good accuracy. The 

developed procedure can presently only be used 

for 1-D structures. The experimental validation 

of the method will be reported in a forthcoming ar­

ticle. 
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