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Dynami Fragmentation of Brittle Solids:A Multi{Sale ModelChristophe Denoual and Fran�ois HildNovember 15, 2005AbstratModeling dynami fragmentation of brittle materials usually implies to hoose be-tween a disrete desription of the number of fragments and a ontinuum approah ofdamage variables. A damage model that an be used in the whole range of loadings(from quasi-stati to dynami ones) is developed. The deterministi or probabilistinature of fragmentation is disussed. Qualitative and quantitative validations are givenby using a real-time visualization on�guration for analyzing the degradation kinetisduring impat and a moir�e tehnique to measure the strains in a erami tile duringimpat. Finally, a losed-form solution of the hange of the number of broken defetswith the applied stress gives a way of optimizing the mirostruture of eramis forarmor appliations.Keywords: Cerami materials, probability and statistis, impat testing.
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1 IntrodutionBilayered armors with eramis as front plate and steels as baking fae have been used forseveral years to improve the eÆieny of light or medium armors (den Reijer, 1991). The highhardness of erami materials favors projetile blunting and/or failure and spreads the kinetienergy on a large surfae of the dutile baking. The weight of the armor is then redued inomparison to an armor made of steel only. The response of a erami impated by a steelrod is strongly dependent upon the impator veloity. Low impat veloities (approximatelyless than 1000m/s) lead to degradations suh as raking prior to a signi�ant penetration.It follows that raking is the prevalent mehanism to predit the residual properties of theerami before penetration and to assess its multi-hit apability. Higher impat veloities(ranging from about 1000 to 3000m/s) usually lead to degradations in ompressive and ten-sile modes (Espinosa et al., 1992).Furthermore, the impator an penetrate the erami layer even though some partiu-lar on�nement onditions may prevent penetration (Bless et al., 1992; Hauver et al., 1994).Ultra-high veloities (greater than 3000m/s) lead to a fully fragmented erami whose behav-ior is loser to that of a uid rather than that of a solid material. Analytial models an beused to desribe the response of the material (Tate, 1967; 1969).The present paper is mostly onerned with the �rst impat regime where the mainmehanism is fragmentation of brittle materials, and spei�ally eramis used in light ar-mors. During the �rst miroseonds of impat, high stress waves are produed and lead topossible degradation in a ompressive mode in the immediate surroundings of the projetiletip and in tensile mode in a widely extended zone. The fragmentation in tension, whihextends over a larger zone than the degradation in a ompressive mode, is one of the mainmehanisms to identify (in terms of loation, kinetis and anisotropi behavior due to rak-ing) for numerial simulations of impats and penetration of projetiles. One an note thatdamage in ompression involves very di�erent mehanisms ompared to damage in tension.
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For example, raks propagating in mode II may lead to a di�erent kinetis than that in modeI. Frition at the rak fae has a signi�ant inuene on the damage desription (Espinosa etal., 1992; Halm and Dragon, 1998). Finally, the population of aws that lead to rak nule-ation may be di�erent in tension and in ompression. To avoid an overlapping of mehanismsthat would make the model validation deliate, only damage in tension is onsidered herein.In Setion 2, a damage model desribing the tensile fragmentation is derived. Afterthe presentation of a simpli�ed desription for the initial (i.e., undamaged) material, thefragmentation is analyzed as an extension of the brittle frature regime observed in quasi-stati loadings by onsidering random arrays of raks. A multi-sale approah is proposedto model fragmentation with no onstrains on the stress rate. In partiular, the transitionbetween single and multiple fragmentation is analyzed. It follows that the domain of validityof a ontinuum and loal approah is obtained. A so-alled \Edge-On-Impat" on�gurationis used in Setion 3 and allows for the observation of damage patterns and strain �elds duringimpat. Results of multi-sale simulations are disussed with respet to experimental data.Finally, a material optimization, whih makes use of a losed-form solution of the hange ofthe number of fragments with time or stress, is performed in Setion 4 to assess the ballistiperformane of four di�erent SiC grades.2 A Model for the Fragmentation of Brittle MaterialsThe present model is based on a redued set of hypotheses for the mirostruture desriptionbefore and during the hange of damage. Beause miroraking (whih leads to struturalfailure) is assumed to be aused by rak nuleation and growth, the �rst part of this study isdevoted to modeling the mirostruture of brittle materials prior to tensile degradation (x2.1).Craks are supposed to emanate from defets and relax the stresses in their surroundings(x2.2). A omplete desription of rak nuleation and propagation �nally leads to a damagedesription and kineti law (see x2.3 and x2.5). The transition between single and multiplefragmentation is disussed in x2.4. 3



2.1 Mirostruture of the Undamaged MaterialFor brittle materials, the analysis of failure during quasi-stati loadings an be used to de�nethe relevant features of the mirostruture in terms of aw density and failure stress distri-bution. The nuleation of a rak in brittle materials subjeted to quasi-stati tension is dueto (point) defets de�ned by a failure strength �f(x). When an equivalent stress �(x), e.g.,maximum prinipal stress, is greater than �f(x), a rak emanating from the defet leadsto the failure of the whole struture. The failure strength is a random funtion related tothe defet distribution and loation within the material. Therefore, the ultimate strength ofa erami speimen is not deterministi and a failure probability PF an be desribed by aWeibull law (1939)PF = 1� exp [��t(�F) Ze� ℄ with �t(�F) = �0 ��F�0 �m (1)where �t is the defet density, m the Weibull modulus, �0 the referene stress relative to areferene density �0, �F the failure stress (i.e., the maximum equivalent stress in the onsid-ered domain 
) and Ze� the e�etive volume, surfae or length (Davies, 1973). The onstant�0=�m0 is the so-alled Weibull sale parameter. In the following, when no speial mentionis made, the development is valid for any spae dimension n (i.e., 1, 2 or 3). Otherwise, itwill be learly stated for whih spae dimension the results are valid. It an be noted thatthe previous formulation (i.e., Eqn. (1)) enters the framework of a Poisson point proess ofintensity �t (Gulino and Phoenix, 1991; Jeulin, 1991). The mirostruture of the undamagedmaterial is therefore approximated by defets of density �t with random loations.Moreover, the mean failure stress �w and the orresponding standard deviation �sd aregiven by �w = �0(Ze��0) 1m ��1 + 1m� ; �2sd = �20(Ze��0) 2m ��1 + 2m�� �2w (2)where � is the Euler funtion of the seond kind. The relationships given in Eqn. (2) are usedto estimate the defet density �t[�(t)℄ by using quasi-stati tests even in the dynami range(Denoual and Riou, 1995): up to stress rates of 10 MPa ��s�1, the Weibull parameters of a
4



silion arbide erami are idential.
2.2 Simpli�ation of the Damaged MaterialIn the bulk of an impated erami, damage in tension is observed when the hoop stressindued by the radial motion is suÆiently large to generate frature in mode I initiating onthe mirodefets already mentioned in Setion 2.1. It will be assumed that the initial defetpopulation leading to damage and failure is idential when the material is subjeted to quasi-stati and dynami loading onditions (Denoual and Riou, 1995). This statement orrespondsto the assumption that a single defet (e.g., a void, a mirorak) breaks at a stress level thatis weakly dependent on the stress rate. However, the broken defet population is stronglydependent on the stress history. For very low stress rates, only the dominant defet of thewhole population breaks (i.e., the weakest link of a struture) and the Weibull law desribedin the previous setion applies. When dynami loadings are onsidered, a part (inreasingwith the stress rate) of the initial defet population is broken. This point will be desribedin Setions 2.3 and 2.4.Closed-form expressions for the e�etive properties of various rak patterns are pro-posed in the literature (see for example (Kahanov, 1994)). These solutions are obtained forquasi-stati loadings and when rak interations are onsidered, mostly periodi patterns areused. In the present study, the approximations needed for an analytial estimation of e�etiveelasti properties of the raked solid no longer hold. The rak veloity has the same orderof magnitude as the Rayleigh wave speed (Kanninen and Popelar, 1985; Freund, 1990) andstress equilibrium during damage hange is never ahieved.The onsidered rak pattern is made of penny-shaped raks (instead of retilinearraks) of random loations. It follows that periodi homogenization tehniques annot beused to desribe this type of dynami raking.The link between mirosopi and marosopi sales is obtained by stating that the
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Gibbs' energy on a marosopi sale is equal to the average spei� enthalpy on a mirosopisale 2�� = � : SD : � = 1Z Z
 �(x) : S : �(x) dx (3)where SD is the ompliane tensor of the damaged material (and S is that of an undamagedmaterial), � the mass density, 
 a representative zone of measure Z, `:' the ontration withrespet to two indies, �(x) the mirosopi stress at point x, and � the marosopi stressde�ned by � = 1Z Z
 �(x) dx: (4)The aim of this setion is to introdue all the mirosopi aspets of frature to desribe themirostruture of damaged material. A simpli�ed stress �eld is proposed in the followingsetion for a single rak and then extended to a random population of raks.2.2.1 Single CrakStress tensors are now expressed as vetors by using Voigt's notations and fourth order tensorsare redued to seond order ones. When a frature is initiated on a defet k loated at xk, thestress state around the propagating rak is a omplex funtion of time, rak veloity andstress wave elerity. For a rak of normal n = x1 submitted to a far �eld �0, the mirosopistress �eld �(x) at point x an be written as�(x) = h1�R(x)i �0 (5)where R(x) is a seond order tensor aounting for stress modi�ations (mainly stress relax-ation) around a rak.In the appropriate oordinate system, the stress applied to the rak an be simpli�edas a uniform normal stress �0n in addition to a uniform tangential loading �0t (i.e., modes Iand II). The quasi-stati solution of stress relaxation around a penny-shaped rak given byFabrikant (1990) is used as an approximation of the relaxed stress state during a dynamiloading. The relevant stress �elds are plotted in Fig. 1. One an observe that for a rak
6



normal aligned along diretion x1, and a far �eld stress �0n, only the stress �11(x) is relaxedover an important zone. For a pure tangential far �eld stress �0t in the (x1; x2) plane, onlythe omponent �12(x) is signi�antly relaxed. Even though the whole relaxation tensor anbe used, for the sake of simpliity, only the �rst and seond most relaxed stress �elds areonsidered in the following. Two relaxation omponents Rn and Rt are de�ned as�11(x) = [1�Rn(x)℄ �0n; (6)�12(x) = [1�Rt(x)℄ �0t : (7)A simpli�ation of the stress �eld around a rak is proposed by using Boolean funtions(Jeulin and Jeulin, 1981). An example of a Boolean representation of stress relaxation is givenin Fig. 2{a and {b. Inside the Boolean funtions 
ij(xk) assoiated to a defet of loationxk, the stress state is supposed to be ompletely relaxed whereas outside the far �eld stressis applied �ij(x) = 8>><>>: 0 if x 2 
ij(xk);�0ij otherwise: (8)In the appropriate oordinate system, only two Boolean funtions 
n(xk) = 
11(xk) and
t(xk) = 
12(xk) are used to desribe the stress relaxation for normal and tangential load-ings, respetively.It an be noted (see Eqns. (6), (7) and (8)) that the relaxation funtions Rij(x) orre-sponding to the `Boolean' stress �eld are also simpli�ed (i.e., Rij(x) = 1 when x 2 
ij(xk)and Rij(x) = 0 otherwise). The measure Zn and Zt of the relaxed (or obsured) zones 
n(xk)and 
t(xk) are estimated for eah stress omponents by assuming that the de�nition of themarosopi stress � (see Eqn. (4)) an be used for the real stress �eld and the `Boolean'stress �eld de�ned in Eqn. (8)�11 = 1Z Z
 �11(x) dx = �1� 1Z Z
Rn(x)dx� �0n= �1� ZnZ � �0n (9)
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and similarly �12 = �1� ZtZ � �0t (10)where Z is the measure of 
. A spae saling whih modi�es a length l into its dimensionlessounter-part l = l=a (where a the radius of the onsidered rak) is used and allows one toderive a new expression for the measure of the obsured zonesZn = Z
Rn(x) dx = an Z
Rn(x) dx = an Sn (11)and Zt = Z
Rt(x) dx = an Z
Rt(x) dx = an St (12)where 
 is a dimensionless zone, Sn and St are dimensionless shape parameters of the obsuredzone for normal and tangential far �eld stresses, respetively, and n is the spae dimension(n = 1 for a line, n = 2 for a shell, n = 3 for a volume).For sake of simpliity, it is assumed that raks in brittle solids rapidly propagate at aonstant veloity kC0 (C0 = qE=� where E is the Young's modulus of the virgin materialwith k a onstant dependent on the material properties (Kanninen and Popelar, 1985) or(Freund, 1990)). Therefore, Zn and Zt beomeZn = Sn [kC0(T � t)℄n ; Zt = St [kC0(T � t)℄n (13)where T is the present time and t the time to nuleation. It is worth mentioning that theshape parameters Sn and St may depend on the Poisson's ratio but they are independent oftime, i.e., the relaxed zones are self-similar. A numerial estimation of Sn and St is arriedout by using Fabrikant's solution and Eqns. (11) and (12). It follows that Sn = 3:74 andSt = 1:15 for � = 0:15 and n = 3.
2.2.2 Random Array of CraksTo model more omplex situations (i.e., non-periodi penny-shaped raks of various sizes,with random loations and propagating at high veloity), Boolean funtions are used. Various8



non-periodi patterns an be obtained by simple operations suh as dilution, superposition(see a review by Jeulin and Laurenge (1997)). For a random array of raks during a dynamiloading, stress �elds an be approximated by the unions 
[ij of the whole set of Booleanfuntions 
ij(xk), eah of them de�ned as the relaxed stress state around a single rak(Fig 2{ and {d) of random loation xk
[ij = [k 
ij(xk): (14)The measure Z[ij of 
[ij is expressed as (Jeulin and Jeulin, 1981; Serra, 1982; Denoual et al.,1997a) Z[ijZ = 1� exp f��t[�(t)℄Zij(t)g (15)where Zij(t) denotes the mean relaxed zone and �t[�(t)℄ the intensity of the Poisson point pro-ess (Eqn. (1)). The mean relaxed zone Zij(t) is alulated by averaging at time t the setionof the obsured zones Zij(t� �) for a nuleation at time � and with a density 1�t[�(t)℄ d�tdt [�(�)℄Zij(t)�t[�(t)℄ = Z t0 d�tdt [�(�)℄ Zij(t� �)d� (16)where Z11(t) = Zn(t) and Z12(t) = Zt(t). A simple proof of these results is given in Ap-pendix 1.The kinetis of damage is disussed in the following setion. Both damage kinetis anddesription will be de�ned by using the simpli�ed stress �eld desription.
2.3 Damage Kineti LawThe �rst approah dealing with stress relaxation has been proposed by Mott (1947) to modelthe fragmentation of a shell. Defets are assumed to be randomly loated on a irular line.When the hoop stress inreases, some of the defets break and relax the hoop stress. Beausethe following defets will break only in the non-relaxed (or non-obsured) zones, the inrementof broken defets is equal to the inrement of defets able to break multiplied by the fration
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of loaded material. No analytial solutions were proposed but the same hypotheses were usedin several models (see a review by Meyers (1994)). Another fragmentation model was pro-posed by Grady and Kipp (1980) and utilized for numerial alulations. The mirostruturewas also desribed through stress relaxation of spherial shape around penny-shaped raksnuleated on initial defets.To understand why a rak nuleates, one has to model the interation of nuleated de-fets and other defets that would nuleate. The spae loation of the defets is representedin a simple absissa of an x-y graph where the y-axis represents time (or stress) to failureof a given defet. In this graph, a shaded `one' represents the expansion of the obsurationzone with time due to nuleation and propagation of a rak. A setion of a one an be avolume, a surfae or a length, depending on the spae dimension n (see Fig. 3-a). Inside thiszone, the stress is dereasing and no new nuleation an our. An approximation of thiszone is given by 
[n (and 
[t ) i.e., the zone where the stress normal to the rak is dereasingis assumed to be equal to the Boolean zone where the stress is relaxed. The defets loatedoutside the shaded ones an nuleate and produe their own inreasing relaxation zone (e.g.,defets nos. 1, 2 and 3 of Fig. 3-a). Inside the ones, the defets that should have broken donot nuleate (e.g., defets nos. 4 and 5 of Fig. 3-a) sine they are shielded (or obsured).The total aw density �t an be split into two parts: �b (the broken aws) and �obs(the obsured aws). Furthermore, the distribution of total aws in a zone of measure Z isassumed to be modeled by a Poisson point proess of intensity �t[�(t)℄ in aordane withSetion 2.1 (Eqn. (1)). New raks will initiate only if the defet exists in the onsidered zoneand if it does not belong to the relaxed zone 
[nd�bdt [�(t)℄ = d�tdt [�(t)℄� "1� Z[n (t)Z # (17)with �b(0) = �t(0) = 0.For a very high stress rate, most of the initial defets nuleate raks before any signi�-ant hange of the obsured zones, i.e., d�b=dt � d�t=dt and Z[n (t)=Z � 0. Conversely, when10



a very low stress rate is applied, the obsured zone oupies the whole volume (Z[n (t)=Z � 1)after the �rst rak nuleation, i.e., the nuleation is stopped after the failure of the weakestdefet. The initial defet population desribed by �t is therefore used for both dynami frag-mentation and quasi{stati failure but the number of nuleated defets varies with respetto the stress rate. Another way of obtaining Eqn. (17) is given in Appendix 1 by using thehorizon of a defet. For a defet P, the horizon is de�ned as a spae-time zone in whih adefet always obsures P (Fig. 3-b).The fration of relaxed zones Z[n (t)=Z is a good approximation for a damage variableD de�ned in the framework of Continuum Damage Mehanis (Lemaitre, 1992), with D = 0for the virgin material and D = 1 for the fully damaged oneD = Z[nZ : (18)It is worth noting that the damage desription is not neessarily isotropi even though it isharaterized through a volume ratio. Sine the relaxation zones are relative to a rakingdiretion, an anisotropi damage desription is needed. The ase of multiple superimposedrak patterns is studied in Setion 2.5 where di�erent variables Di are used for eah diretioni of raking. For any stress rate, the kinetis of Di is given in di�erential form (aordingto lassial results of Continuum Damage Mehanis (Lemaitre, 1992), the hange of Di isstopped when d�i=dt � 0)dn�1dtn�1  11�Di dDidt ! = �t [�i(t)℄ n! S (kC0)n when d�idt > 0 and �i > 0 (19)where �i is the eigen stress assoiated to penny-shaped raks of normal xi and �t is thedensity of defets e�etively broken in the onsidered zone (n = 1; 2 or 3). The density �t istherefore of probabilisti nature and may depend on a given realization (i.e., one an have 2,0, 1, 5, et. defet(s) broken for di�erent �nite elements 
FE of volume VFE submitted to thesame presribed loading).When an in�nite volume is onsidered �t is equal to �t. For a �nite size ZFE of a given�nite element 
FE, the probabilisti density �t is approximated by the �rst defet able to11



break in addition with the density �t (see also (Benz and Asphaug, 1994)). The density �t iseither equal to zero (no broken defet), or equal to or greater than 1=ZFE, i.e., at least onedefet is broken in 
FE (see Fig. 4)ZFE �t[�i(t)℄ = 8>>><>>>: 0 if �i(t) � �k;max "ZFE�0  �i(t)�0 !m ; 1# otherwise. (20)The parameter �k is the failure stress of the �rst defet k able to break in 
FE. The failurestress is obtained by random seletion of a failure probability PF 2 ℄0; 1[ with Z = ZFE andis a funtion of the Weibull parameters (m; �0=�m0 ) and the mesh size ZFE (see Eqns. (1), (2)and (15)).2.4 Continuum vs. Disrete ApproahesWhen Continuum Damage Mehanis is used in numerial simulations, the medium is assumedto be ontinuum on the sale of a �nite element in whih numerous raks are expeted tonuleate. However, rak densities may strongly vary over the struture and the analysis offragmentation through a ontinuum modeling may be deliate. As an alternative, disreteelement modeling has been proposed (Camaho and Ortiz, 1996; Mastilovi and Krajinovi,1999) when the fragment size is greater than or equal to the size of a �nite element. Espinosaet al. (1998) have developed a ontinuum/disrete multi-sale model in whih the �ner saleis disrete and allows for the derivation of a ontinuum desription on a higher sale. Inthe present setion, harateristi sales are introdued and enable one to hoose betweenontinuum or disrete approahes.When dynami (and proportional) loadings are onsidered with a onstant stress rated�i=dt = _�, one an de�ne a dimensionless aw density (� = �=�), time (t = t=t), spaemeasure (Z = Z=Z) and stress (�i = �i=�) from the ondition (Denoual and Hild, 1998)� Z = 1 with � = �t( _�t) and Z = Zn(t) (21)where the subsript `' denotes harateristi quantities. A harateristi stress is de�ned by� = _�t. Equation (21) expresses the fat that the harateristi zone of measure Z ontains12



on average one aw that may break at the harateristi time t. By using Eqns. (1) and(21), the harateristi parameters are given byt = " �m0�0S(kC0)n _�m # 1m+n ; Z = "(�0kC0)mSm=n�0 _�m # nm+n ; � = " �m0 _�n�0S(kC0)n# 1m+n : (22)This saling is useful, in partiular, when losed-form expressions an be given for the nu-leated defet density, damage kinetis and ultimate strength (Denoual and Hild, 1998). Byusing Eqns. (1), (15), and (16) a losed-form solution an be derived for the di�erential equa-tion (17) in the ase of a onstant stress rate _� (see Setion 4). By using Eqns. (15), (16), (18)and by assuming that �t = �t, the hange of any of the damage parameters Di is deterministi(Denoual and Hild, 2000) Di = 1� exp "�m! n! �m+ni(m+ n)! # : (23)The applied stress �i is related to the loal (or e�etive) stress �i by �i = �i=(1�Di). Theultimate strength (d�i=d�i = 0), denoted by �max, is therefore expressed as�max� = "1e (m+ n� 1)!m! n! # 1m+n : (24)These losed-form solutions for quasi{stati (Eqn. (2)) and dynami loadings (Eqn. (24))an be validated by using Monte{Carlo simulations. In a ubi volume of 1.7mm3, a set ofaws of density �t[�(t)℄ is randomly loated. When the stress rate inreases (with a onstantstress rate _�), obsuration zones following the proess desribed in Setion 2.2.1 are modeled.The marosopi stress is obtained by averaging the mirosopi stress in the non-relaxedzones. The behavior of this `�nite volume' is not deterministi and numerous alulationshave to be performed when average values are sought (e.g., average marosopi ultimatestrength and standard deviation). Suh alulations are shown in Fig. 5 where the maro-sopi ultimate strength is plotted against the stress rate _�. It an be noted that the resultsobtained with the multi-sale model (Eqn. (19)) are very omparable (in terms of mean andstandard deviation) to those given by Monte-Carlo simulations (Denoual and Hild, 2000),with a CPU time divided by 3000. For a stress rate within [0 , 500 MPa ��s�1℄, the ultimatestrength is not modi�ed by the loading rate. Consequently, the quasi-stati Weibull solution(Eqn. (2)) applies. When _� inreases by approximately one order of magnitude, the ultimate13



tensile strength follows the `dynami' Weibull solution (24).During the single / multiple fragmentation transition, the di�erene between the dashedlines (Eqns. (2) and (24)) and the Monte-Carlo simulations does not exeed 10%. The stan-dard deviation signi�antly dereases in the ase of multiple fragmentation when the stressrate inreases. Furthermore, for S-SiC eramis, a stress rate up to 10 MPa ��s�1 has shownno stress rate e�et on the mean failure strength (Denoual and Riou, 1995). This observationis in good agreement with the result shown in Fig. 5.The losed-form solutions for quasi{stati (Eqn. (2)) or dynami regimes (Eqn. (24)) arenow used to determine when disrete or ontinuum approahes an be used. The transitionbetween single and multiple fragmentation an be estimated as the intersetion between theweakest link and the multiple fragmentation solutions (see Fig. 5)�max( _�) = �w: (25)The transition de�ned by Eqn. (25) leads to the following inequalities8>>>><>>>>: _�Zm+nmn < f Single fragmentation_�Zm+nmn � f Multiple fragmentation (26)with f = �0��1=m0 S1=nn kC0 "e m! n!(m + n� 1)!��m + 1m �m+n# 1n : (27)This transition does not only depend upon material (Weibull) parameters but also involves thesize Z of the onsidered element and the applied stress rate _�. The response of a large elementan be onsidered as `dynami' for low stress rates although the same material follows theweakest link hypothesis for the same loading applied on a smaller element. There is thereforeno intrinsi relationship between material parameters and harateristi sales to desribe thefragmentation of brittle materials. It is a ombination of material parameters, size and stressrate sine there is a ompetition between loal (inreasing) stress rate and stress relaxation
14



around raks. By using the harateristi spae measure Z, Eqn. (26) an be rewritten as8>>>>><>>>>>: ZZ( _�) < g(m) Single fragmentationZZ( _�) � g(m) Multiple fragmentation (28)with g(m) = "e m! n!(m+ n� 1)!��m+ 1m �m+n# mm+n : (29)The size Z an therefore be onsidered as the harateristi sale for whih a single / multiplefragmentation transition is observed. Furthermore, Fig. 5 shows that, when Z=Z � 1, theultimate strength satter is very small i.e., when the stress rate inreases, the harateristisale of the fragmented erami dereases and the stress estimated over Z beomes a goodapproximation of the average stress.Furthermore, a hypothesis of uniformity of the damage variables over the horizon (seeFig. 3) is needed in a loal (and ontinuum) approah. When the mesh size ZZE is smallerthan the horizon, two neighboring integration points have their horizons overlapping: a spaeloation may be inuened by two a priori independent sets of variables. To avoid suh asituation, the minimummesh size must be greater than or equal to the horizon. Equation (23)shows that Di(�i = 1) �= 0 and Di(�i = 2) �= 1 (i.e., most of the damage hange ours duringa time interval equal to t). During t, the measure of the horizon is limited by Zn(t) = Z.Therefore the minimum mesh size is Z. The size Z is dependent on the loading rate: thehigher the stress rate, the smaller the mesh size. This is onsistent with the general pratieof mesh re�ning when shok waves are suspeted to our. The harateristi size an be usedin FE omputations in whih the mesh size Z = ZFE has to be greater than or equal to Z touse a ontinuum (and deterministi) desription of damage (Eqn. (28)).The proposed saling allows one to determine whether a ontinuum or disrete approahan be used. In the single fragmentation regime, a disrete (and non-loal) method is a naturalway of dealing with failure. Conversely, in the multiple fragmentation regime, the satter
15



in terms of overall behavior and failure strength beomes small. In that ase, a lassialContinuum (and loal) Mehanis approah an be used. In the transition regime, disreteapproahes may no longer be needed while Continuum (Damage) Mehanis hypotheses arenot yet reasonable.2.5 Damage DesriptionThe aim of this setion is to estimate of the ompliane tensor SD of a damaged body. The aseof raks in one diretion is analyzed in Setion 2.5.1 and generalized thereafter to multiplerak patterns in Setion 2.5.2.2.5.1 Craks in One DiretionThe damage state an be desribed by using only one salar variable D1. Let the shapeparameter St be written as a fration � of SnSt = �Sn (30)with � � 0:31 for � = 0:15 and n = 3, see the numerial evaluation of St and Sn in Se-tion 2.2.1.It follows (see Eqns. (15), (16) and (18)) that1� ZtZ = (1�D1)� : (31)Consequently, there is a ompliane inrease for the 55 and 66 omponents of the omplianetensor
SD = 1E

26666666666666666664
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37777777777777777775(d1;:;:)
(32)
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where D1 is the damage variable due to raks in the diretion d1. It an be noted that arak in diretion d1 is surrounded by a zone Zt that relaxes the shear stresses �12(x) and�13(x).2.5.2 Craks in Multiple DiretionsWhen three orthogonal rak patterns are superimposed (i.e., the Boolean funtions an besuperimposed), the ompliane tensor SD is obtained by using Eqn. (3)
SD = 1E

26666666666666666664
11�D1 �� �� 0 0 0�� 11�D2 �� 0 0 0�� �� 11�D3 0 0 00 0 0 1+�(1�D2)�(1�D3)� 0 00 0 0 0 1+�(1�D3)�(1�D1)� 00 0 0 0 0 1+�(1�D1)�(1�D2)�

37777777777777777775(d1;d2;d3)
: (33)

The ompliane tensor SD is de�ned in the diretions of raking (d1, d2, d3). These diretionsassoiated to D1, D2 and D3 may hange at eah time step until D1 reahes a threshold valueDth = 0:01 (the e�et of the threshold value was found to be negligible in the simulations).Then, only the diretion d1 is loked, the other diretions follow the eigen diretions of �,with the onstraint to be perpendiular to d1. When D2 reahes the threshold value, thewhole diretions di are loked. It an be noted that the same type of result an be obtainedby using mathematial arguments on a seond order damage tensor. The only hange is thevalue of the power �: � = 12 (Cordebois and Sidoro�, 1982). Lastly, another desription ofthe stress �eld (e.g., relaxation funtion R(x) obtained by a numerial analysis instead ofusing Fabrikant's solution) would probably lead to yet another value of the onstant �.The model an handle superpositions of rak patterns in up to three perpendiulardiretions. This is espeially interesting when a omplete fragmentation of the material isexpeted due to the stress waves reeting on free surfaes. Suh an experiment with a post{mortem analysis (Denoual and Hild, 2000) also shows that the orientation of raks does not17



hange during impat, i.e., the fragments are reated by the superposition of an array ofstraight raks. The inability to deal with rapidly rotating prinipal diretions of stress ishowever a limitation of the model.
3 Comparison with Experiments on SiC CeramisOne the elasti properties and the Weibull parameters are known, the model has no otherparameters to tune. A speial emphasis will be put on silion arbide eramis. Sine silionarbide eramis an be obtained by di�erent proessing routes, the present study mainlyfouses on two SiC grades whose properties are listed in Table I. The �rst grade, referred toas S-SiC, was provided by C�eramique et Composites (Frane). The seond grade (SiC-B) hasbeen manufatured by CERCOM (USA). The S-SiC erami is naturally sintered (sinteringtemperature: 2000ÆC). The end produt is an �-SiC (6H hexagonal struture). The materialis not fully dense. No seondary phase an be observed but B4C inlusions are present (Riou,1996) beause boron was added to enhane di�usion during sintering. Transgranular failureis the dominant mehanism. On the other hand, SiC-B eramis are obtained by pressureassisted densi�ation. Aluminum is used to eliminate porosities (proessing temperature:2000ÆC, pressure: 15MPa). An alumina-rih seondary (glassy) phase is present (Forquin,2000). Beause of the lower strength of the seondary phase, the failure mode is predomi-nantly intergranular.Tensile raking an be observed during impat by using Edge On Impat (EOI) on-�gurations instead of a real on�guration where the degradation is `hidden' in the bulk of theerami. These on�gurations are developed by the Ernst-Mah-Institut (EMI) in Germany(Hornemann et al., 1984; Winkler et al., 1989; Stra�burger and Senf, 1994) and more reentlyby the Centre Tehnique d'Arueil (CTA) in Frane (Riou et al., 1996; 1998). It an be shownthat the same damage mehanism (i.e., damage in tension) is observed in EOI and in realimpat on�gurations (Denoual et al., 1996).18



For low impat veloities (< 500m/s) no damage in ompression ours in SiC eram-is (Denoual et al., 1997b) and the EOI on�guration an therefore be used to validate thedamage kineti laws for numerial simulations of the behavior of light armors.Figure 6{a (top) shows a stress rate map 4�s after impat with the orresponding dam-aged zone (bottom). When damage is generated, the stress rate is about 103MPa/�s. Onean see in Fig. 6 that this loading annot be modeled aurately by using either ontinuum ordisrete approahes, i.e., more than one defet breaks but the material annot be onsideredas ontinuum in a FE ell. It follows that the multi-sale model is used. It an be noted thatfor eah numerial simulation the set of random numbers is haraterized by an integer alledthe `seed' of the random generator (Press et al., 1992). A given probabilisti simulation isthen de�ned by this integer and an always be reprodued by using the same `seed'.
3.1 Real Time VisualizationReal time visualizations of damage have been performed with the SiC-B grade by using theEdge-on Impat on�guration developed by the EMI (Stra�burger et al., 1994). The veloityof a single rak has been measured (Riou et al., 1998) and is about 4800m/s. The value ofthe parameter k is thus equal to 0:4. A remark an be drawn on the shape of the damagedzone with respet to the impat veloity. With an impat of high veloity, the damage ishomogeneous in a irular zone in front of the projetile (see Fig. 7{b and {). Below a rit-ial value depending on the material properties, damage is loalized in thinner and thinnerorridors when the veloity dereases. Even though this loalization leads to larger fragments,it has been demonstrated (Denoual and Hild, 1998) that the transition between orridors andirular shapes of damage is not related to the single/multiple fragmentation transition. Amore detailed observation of the experimental result of Fig. 7{b shows that a orridor ontainsa high density of raks, orresponding to a high loal stress rate.
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The random stress to failure (Fig. 7{a) is alulated by using Eqns. (1) and (2) for aFE volume of 1mm3. For high stress rates (i.e., in front of the projetile and in the Hertz-likeone rak), many defets nuleate in a FE ell. For a veloity of 185m/s, failure of an ele-ment set, whih an be ompared to marosopi raks, an be observed in addition to theontinuous degradation generated at the edge of the projetile (see Fig. 7{b). However, thereare some diÆulties in handling marosopi raks. The failure of a FE ell is not alwaysfollowed by a rak generation and propagation, and when suh a rak is reated, there is atendeny to follow the diretion of the FE mesh. The desription of rak propagation maybe improved by onsidering the failure of interfaes between �nite elements instead of bulkfailure (Camaho and Ortiz, 1996; Espinosa et al., 1998; Mastilovi and Krajinovi, 1999).
3.2 Moir�e TehniqueA seond EOI on�guration provides quantitative strain measurements over a �eld of 32 �32mm2 during impat. Details on the moir�e photography set-up an be found in (Bertin-Mourot et al., 1997). The advantage of the moir�e measurement is that a quantitative ratherthan qualitative analysis an be performed between experiments and simulations. Figure 8{ais the fringe pattern approximately 2�s after impat.The omparison of numerial and experimental strains is given in Fig. 8{b. The straindiagram is plotted for a point M at a distane of 13mm from the surfae hit by the projetile(irular mark in Fig. 8-a). It an be noted that the radial strain reahes an important value(of the order of 0:8%) before any signi�ant hange of the hoop strain. This is onsistentwith a ylindrial stress wave in whih the tensile strain is indued by the radial motionof the material. The multi-sale model is used to give probabilisti numerial simulationsinstead of the deterministi simulations proposed with a ontinuum model. That is, numeroussimulations have to be performed when the average behavior is analyzed. Five hundredrealizations of the simulation presented in Setion 3.2 are performed with the multi-sale
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model (a CPU time of 4 minutes per realization is needed on an HP 715 workstation withthe �nite element pakage PamShok (1998)). The average and standard deviation of thehoop and radial strains are plotted in Fig. 8. The multi-sale model yields good preditionsof the strain levels. All the experimental measurements fall in the grey shaded zone, i.e., theexperiment may be ompared to one realization of the 500 numerial simulations. The useof an anisotropi model is neessary if one wants to aurately predit the strain levels. Anelasti omputation underestimates both radial and hoop strains. An isotropi damage modelwould have given even lower strain levels (Denoual et al., 1996).4 Towards Material OptimizationA �ne fragmentation of the erami leads to a loalized strain around the projetile tip. Theenergy needed for the penetration into an armor is thus redued in omparison to a oarsefragmentation where large fragments spread the strain within the volume and onsume energy(see (Woodward et al., 1994) and Fig. 9). Therefore, an optimization riterion assumed to berelevant for armor is that an inrease of fragment size (i.e., a derease of broken defet density)leads to an inrease of strutural strength. A losed-form solution for �b(t) (Eqn. (17)) isused with a onstant stress rate of 5MPa�ns�1 and a maximum tensile stress �max of 1GPa�max (�max) = � mm + n  m! n!(m + n)!!m+nm  " mm + n ; (m+ n)! �m+nmaxm! n! # (34)where [p; x℄ = R x0 tp�1 exp(�t) dt is the inomplete gamma funtion. When the maximumtensile stress is reahed, the kinetis of broken aw density is stopped (see Fig. 10{a). Thematerial parameters hosen to be optimized are the mean failure stress �w and the Weibullmodulus m. For eah ouple (�w; m), the Weibull parameter �0=�m0 is omputed by usingEqn. (2). The results are shown in Fig. 10{b where the broken defet density is plotted asa funtion of �w and m. One an observe a signi�ant inuene of the Weibull modulus onthe defet density: the higher m, the higher the broken aw density (i.e., a poor ballistiperformane). Moreover, it an be noted that an inrease of the average failure stress wouldnot improve the performane of the erami if the Weibull modulus inreases too.21



The SiC-B and S-SiC eramis shown in Fig. 10{b have di�erent mirostrutures, thelow porosity of SiC-B eramis leading to a high average failure stress with a redued sat-ter (i.e., a high Weibull modulus). However, the S-SiC grade has the oarser fragmentationleading to a better ballisti performane (Beylat and Cottenot, 1996). Finally, two othergrades of silion arbide alled SiC{HIP (Riou, 1996) and SiC{150 (Leroy, 1999) are plottedin Fig. 10{b. The SiC{HIP grade exhibits better ballisti performanes than the S{SiC grade(Beylat and Cottenot, 1996), as shown in Fig. 10{b. The SiC{150 grade, whih has a porosityof 10-14%, shows that a good material must have a low Weibull modulus, i.e., a large satterof failure stresses and a low porosity ontent, i.e., a high average failure stress.
5 SummaryA fragmentation model based on a mehanism of nuleation of aws and stress relaxationaround propagating raks is derived. By onstrution, this approah is non-loal and thehorizon of a defet onstitutes the key ingredient. When a onstant stress rate is applied, alosed-form solution for the number of nuleated defets is given. A damage kineti law isderived from the fragmentation model. The analysis of stress relaxation around the propagat-ing raks leads naturally to an anisotropi desription of damage. A di�erential equation isobtained for the kinetis of damage variables in order to be implemented into a FE ode. Theprobabilisti nature of this model will help in understanding the non-deterministi behaviorof strutures made of brittle materials and submitted to a wide range of loadings (from quasi-stati to dynami ones). This model is able to desribe a high density of raks of randomloation. It is therefore well suited for desribing degradations from the very early stages(i.e., nuleation of few raks) up to the onset of rak oalesene.Sine all the parameters are determined by analytial analyses or identi�ed throughquasi-stati (independent) tests, the model an be onsidered as fully preditive. The loal-22



ization of damage in orridors that appears for materials with high Weibull moduli and highfailure strength (e.g., the SiC{B grade) is well reprodued by the model. The strain historyduring impat is also predited, in partiular when the material seems to be intensively dam-aged (e.g., the S-SiC grade).The set of hypotheses shows that this model an only be used for damage in tension.Damage in ompression should lead to a very di�erent model even if the same kind of meh-anisms (i.e., aw nuleation, obsuration zones) are used. Moreover, when rapid rotatingstresses are onsidered, the resulting damage is obtained through the superposition of orthog-onal damage patterns instead of hanging the diretion of the rak propagation. This may beseen as a limitation of the model, as long as the di�erenes between superposition of damagepattern and rotating raks in terms of overall strutural response is proven.The transition zone for whih the number of nuleated aws is greater than but neverthe-less lose to one in a FE ell is well reprodued by the multi-sale model. The orrespondingbehavior, neither ontinuum (deterministi and loal) nor disrete (probabilisti and non-loal) is one of the major features of this model. Lastly, it is expeted that these modelsare appliable to other brittle materials (suh as rok, glass or onrete). Sine the numbersof parameters to identify is very limited and an be arried out under quasi-stati loadingonditions, the model an be tested on a large lass of brittle materials.6 AknowledgementsThis work was funded by DGA-DRET-STRDT and supervised by Dr. C.E. Cottenot at CTA.The authors wish to thank Dr. E. Stra�burger and Dr. H. Senf for providing the experimentaldata of Fig. 7. The authors wish also to thank A. Trame�on from ESI for his valuable helpin implementing the model in PamShok.
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8 Appendix 1The kinetis of nuleated aw density or damage variable an be obtained by using theonditions of non-relaxation for a given defet by examining the inverse problem (Denoual etal., 1997). It onsists in onsidering the past history of a defet that would break at a timeT . The defet will break if no defets exist in its horizon. For a given defet D, its horizonis de�ned as a spae-time zone in whih a defet will always obsure P (Fig. 3). Outside thehorizon a defet will never obsure P. Equation (17) beomesd�bdt (T ) = d�tdt (T )[1� Po(T )℄ with �b(0) = 0 and �t(0) = 0 (35)where 1 � Po is the probability that no defet exist in the horizon (Po = ZnZ ). The variablePo an be split into an in�nity of events de�ned by the probability �P (t) of �nding at t anew defet during a time step dt in a zone Zn(T � t). This probability inrement is writtenby using a Poisson point proess of intensity d�t=dt. Those independent events an be usedto derive the following expression for Po1� Po(T ) = �Tt (1��P (t))= �Tt exp "�d�tdt (t)�TZn(T � t)#� exp "� Z T0 d�tdt (t)Zn(T � t) dt# (36)where Zn(T � t) is the measure of the interation zone at t for a defet that would break atT . This ompletes the proof.
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Table I. Material properties of four SiC eramis.Parameters S{SiC℄ SiC{B[ SIC{HIP℄ SiC{150\Young's modulus E (GPa) 410 455 465 350Poisson's ratio � 0.15 0.16 0.15 0.25Density 3.15 3.20 3.18 2.76-2.89Porosity 1.8 % 0 NA 10-14 %Weibull modulus m 9.3 27 8.6 15Mean failure strength �w (MPa) 370 560 590 225E�etive volume Ze� (mm3) 1.7 1.5 1.2 1.4Number of samples 65 30 26 NAType of exural test 3-point 4-point 3-point 3-point℄: (Denoual and Riou, 1995)[: (Palika, 1995; Cho et al., 1994)\: (Leroy, 1999)
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Figure 2: Denoual and HildFigure 2: Example of simpli�ation for a omplex mirostruture ontaining penny-shapedraks submitted to a normal far �eld stress. The stress �eld around a single rak (a) istransformed into a Boolean funtion (b) on whih Boolean operations (i.e., union) an beperformed (d). This simpli�ation is used as a representation of omplex mirostrutures ()for whih e�etive elasti properties are deliate to obtain. For the sake of simpliity, onlythe stress �eld �11 is represented even if the method is applied on tensor �elds.
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Figure 5: Ultimate marosopi strength vs. stress rate predited by the multi-sale modeland Monte{Carlo simulations (500 realizations for eah points (Denoual and Hild, 2000)) foran S-SiC erami.
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Figure 7: Denoual and HildFigure 7: Numerial simulations of a SiC-B erami in an EOI on�guration (50� 100� 10elements of 1� 1� 1mm3).a{ Example of random failure stress �k for the �rst defet able to break in eah FE ell.b{ and { Tile upper part: simulations (multi-sale model), tile lower part: experiments.Damaged zones (D1 > 0:5 in the dark zones) for two impat veloities.
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Figure 8: a{ Typial example of moir�e fringes.b{ Strain hange given by a moir�e tehnique (dots) and by the multi-sale model (plain urve:average, grey bandwidth: � standard deviation).
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Figure 10: Denoual and HildFigure 10: a{ Stress history for material optimization. The dashed urve is any positivemonotonially dereasing funtion.b{ Broken aw density map as funtion of Weibull modulus m and average failure stress �w.The four grades of silion arbide are depited by rosses.
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