
Dynamic Functional Dependencies and Database Aging

VICTOR VIANU

University of Cahyornia. San Diego, La Jolla, Cal$ornia

Abstract. A simple extension of the relational model is introduced to study the effects of dynamic
constraints on database evolution. Both static and dynamic constraints are used in conjunction with
the model. The static constraints considered here are functional dependencies (FDs). The dynamic
constraints involve global updates and are restricted to certain analogs of FDs, called “dynamic” FDs.
The results concern the effect of the dynamic constraints on the static constraints satisfied by the
database in the course of time. The effect of the past history of the database on the static constraints is
investigated using the notions of age and age closure. The connection between the static constraints and
the potential future evolution of the database is briefly discussed using the notions of survivability and
survivability closure.

Categories and Subject Descriptors: H.2. I [Database Management]: Logical Design; H.2.3 [Database
Management]: Languages-data description languages

General Terms: Design, Management, Theory, Verification

Additional Key Words and Phrases: Aging, database schema, dynamic constraints, evolution, functional
dependency, relational database. static constraints

1. Introduction

One important aspect of understanding objects in the real world concerns the laws
that govern their evolution in time. Many database models capture this essential
semantic component by imposing “dynamic constraints” on how the database can
be changed [6, 9, 13, 191. Previous work on this topic has focused mainly on
expressing wide classes of dynamic constraints using a logic-based formalism [7, 8,
10, 16, 221. Missing from this predominantly descriptive approach has been an
investigation of the effects of dynamic constraints on database evolution. This
paper marks the beginning of such an effort. The purpose of the paper is to
introduce a simple, formal model for the evolution of databases in time, and to
use this model to study the effects on database evolution of a significant but
tractable type of dynamic constraint.

Our model is a simple extension of the relational model. A database is viewed
as a sequence of (relational) instances in time. Each new instance is obtained from
the previous one by updates, insertions, and deletions. The fact that tuples preserve

An extended abstract of this paper appeared in Proceedings ofthe ACM SIGACT-SIGMOD Symposium
on Principles oJDatahase Systems. ACM, New York, 1983, pp. 389-399, under the title “Dynamic
Constraints and Database Evolution.”

The author was supported in part by the National Science Foundation under grant MCS 79-25004.

Author’s address: Department of Electrical Engineering and Computer Science, MC-014, University of
California, San Diego, La Jolla, CA 92093.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association for
Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific permission.

0 1987 ACM 0004-5411/87/0100-0028 $00.75

Journal of the Association for Computing Machinery, Vol. 34, No. I, January 1987, pp. 28-59.

Dynamic Functional Dependencies and Database Aging 29

their identity through updates is formally expressed. Two types of constraints are
used in conjunction with database sequences: static and dynamic. The static
constraints (imposed on each instance in a sequence) are restricted here to func-
tional dependencies (FDs). The dynamic constraints (which connect each instance
in a sequence to its successor) are related to global updates, that is, updates affecting
several (or all) tuples in the database simultaneously. These constraints are restricted
to certain “dynamic” analogs of FDs. The types of static and dynamic constraints
chosen are motivated by their simplicity and frequent occurrence in real situations.
A wide variety of other constraints can also be used in conjunction with our model.

Our results focus primarily on inferring static constraints from knowledge about
the evolution of the database, as expressed by the dynamic constraints. The paper
is divided into seven sections, of which the first is the introduction and the second
is devoted to preliminary concepts. The formal description of the model and
constraints, and two motivating examples, are presented in Section 3. In Section 4
it is shown how to infer static constraints in the context of a single global update
satisfying given dynamic constraints. Section 5 concerns the notion of “age” (which
summarizes the past history of the database) and its connection with static con-
straints. The effect of age is described through the notion of “age closure” of the
static constraints. Two methods of computing age closure are presented. The
sequence of age closures is shown to converge to a constant, and an inference-rule-
based mechanism for computing the “limit” is exhibited. Section 6 is a summary
of results concerning the notion of “survivability” (which reflects the potential
future evolution of a database) and its effect on the static constraints. Finally,
Section 7 contains some conclusions and a discussion of future work.

2. Preliminaries

In this section we present some well-known concepts of the relational model, and
state a few basic facts used throughout the paper. Concepts occurring in just a few
places will be introduced when needed.

Let Attr and Dom be two infinite sets. Attr is a set of attributes, and Dom (called
the domain) is the set of values. (Dom is the domain for each attribute in Attr.)

Let U be a set of attributes. A tuple over U is a mapping from U to Dom. The
set of all tuples over U is denoted Tup(U). A relation or instance over U is a finite
subset of Tup(U). A family of instances over U is a set of instances over U.

In general, U, V, . . . , (2.4, v, . . .) denotes sets of attributes’ (tuples over those sets
of attributes). Usually, A, B, . . . are attributes, 1, 2, . . . values in Dom, and 1, J,
. . . instances. We adopt the usual convention of writing UV for the union U U V
and A for a set (A] of one element.

We use the classical representation for tuples and instances. Thus (a,, . . . , a,,)
stands for the tuple u over U = A,, - - - , A,, such that u(Ai) = ai for each i. And an
instance is represented by a table in which a column is associated with each attribute
and a row with each tuple.

We now recall the operation of projection of tuples, instances, and families of
instances.

Definition. Let U be a set of attributes and V G U. If u is a tuple over U, then
the projection of u onto V (denoted II,(u)) is the unique tuple v over V such
that v(A) = u(A) for each A in V. If I is an instance over U, then the projection

I Most sets of attributes considered in this paper are finite. Therefore, a set of attributes is assumed
finite unless otherwise specified.

30 VICTOR VIANU

ofl onto V is the instance IIv(l) = (IIV(u)] u E I) over K And if P- is a family
of instances over U, then the projection of 9 onto V is the family of instances
II&T) = (II,(Z) 1 I E 7) over V.

In the remainder of the section we focus on functional dependencies [3, 11, 14,
241, a concept of major concern to us in this paper.

Definition. A functional dependency (FD) over U is a formal expression X -+
Y where* X # 0, Y # 0, and XY C U. The set of all FDs over U is denoted by
FD(U). An FD schema is a pair (U, Z), where Z G n>(U). An instance I over U
satisfies X ---) Y (denoted I l= X + Y) if for each U, v E I, II,(u) = II,(v) implies
II,(u) = II,(v). Let L: be a set of FDs over U. The closure Z*” (or Z* when U is
understood) of Z is the set of all FDs f over U such that each instance satisfying Z
also satisfiesf: 2: is said to be closed if Z = Z*.

Closure is one of the central notions relating to FDs. It can be computed using
(one of several known) sets of sound and complete inference rules for FDs

13~4,241.
Let Z G FD(U). The set of all instances over U satisfying I; is denoted by

SAT(U, Z) (SAT(Z) whenever U is understood). This leads to the notion of an
“FD family” [181.

Definition. A family of instances over U is an FD family if it equals SAT(U, Z)
for some Z G FD(U).

The projection of a set of FDs will be used extensively in the paper. This
operation is defined next.

Definition. For each 2 C FD(U) and V C U, the projection of 2 onto V is the
set II &2) = Z fl FD(V) of FDs over I/.

The following is an immediate consequence of the definitions of projection and
closure.

PROPOSITION 2.1. For each Z G FD(U) and V G U, II&Z*) is closed.

Finally, we define the notion of “saturated” (or “closed”) sets of attributes
[3, 17, 241 and state a few basic facts about them.

Definition. Let Z G n>(U). A set of attributes X G U is saturated (or closed)
with respect to Z if Z C X for each Y + 2 E Z with Y G X. The saturation (or
closure) Satz(X) of X with respect to Z is the smallest set of attributes containing
X and saturated with respect to t;.

It is known that the saturation of a set of attributes always exists.
The following useful facts are immediate consequences of the definition of

Satz(X).

PROPOSITION 2.2. For each Z, I: ’ C FD(U) and X, Y C U,

(a) z* = (2 + Satz(Z) 12 !z u)*,
(b) Z G Z ’ implies Sa&(X) C Sa&(X),
(c) X G Y implies Sa&(X) G Satz(Y),
(d) XC Satz(X),
(e) Sat&Sat,(X)) = Sa&(X),

(f) Sa&(X) = Sat&X), where f = X + Sat-(X),

’ Other definitions of FDs allow empty left- or right-hand sides [4].

Dynamic Functional Dependencies and Database Aging

(g) Sat-(Sa&(X)) G SatzuzP(X),

31

(h) fir each A E U, A E Sa&(X) $X + A E Z*,
(i) X G Y G Sat#l) implies Satz(X) = Satx(Y).

The next proposition shows how SatZ(X) can be computed from X and Z
(see [24] for proof).

PROPOSITION 2.3. Let I: C FD(U) and X C U. For each A E Sa&(X) there exist
n r 0 and XC’), 0 5 i 5 n, such that X(O) = X, A E X(“), A 4 X”’ fir i < n, and
Pi+‘) = P u (B E U 1 there exists T + V E Z such that T C Xci) and B E V).

Using Proposition 2.3, we can easily obtain the following two useful results
(proofs omitted):

PROPOSITION 2.4. For each 2, Z’ G FD(U) and3 X G U,

(a) Sa&&X) = UizO (Sa& o Sa&,)‘(X),
(b) Satzuz,(X) = (Satz 0 Satz,)“(X)fir some n L 0,
(c) (Satx 0 Sa&,)‘(X) C (Sat2 0 Sats,)“‘(X)fir each i > 0.

PROPOSITION 2.5. For each ZZ C FD(U) and X + Y E Z* there exist n L 0,
XCi), Y(‘), Zti) C U (0 I i 5 n) such that X (0) = x, X(“) 1 y, y(o) = Z(“) = 0, and
z(i) c x(i), z(i) --, yCi+l) E 2 9 andX(i+l) = P) u Yci+‘)for each i < n.

3. The Model

In this section we present our “dynamic” model for the evolution of databases in
time. We then motivate and define the dynamic constraints used in conjunction
with the model and prove a few basic facts about them. In particular, we present
two extended examples (3.1 and 3.2) used to motivate the dynamic constraints and
to illustrate some of the main concepts of the paper.

As mentioned in the introduction to the paper, our model is a simple extension
of the relational model. Informally, a database is viewed as a sequence of instances
in time. Each instance of the database consists of a single relation.4 A change of
state is realized by updates, insertions, and deletions. (Updates consist of changing
some values of tuples already in the relation- however, tuples can be left unaltered
in an update. Insertions consist of inserting new tuples in the relation. Deletions
consist of removing tuples.)

The above is formalized by the fundamental notion of a “database sequence.”
Intuitively, a database sequence is a sequence of successive instances of the database,
together with “update mappings” from each “old” to each “new” instance. In order
to treat finite and infinite database sequences in a unified way, we shall affix to
them index sets S (sometimes unspecified), which are defined next.

Definition. Let N be the set of nonnegative integers. A subset S of N is initial
if either S =, N or S = (i] 0 5 i I n) for some n E N. For each initial subset
S of N, let So = S - max S if max S exists, and So = S otherwise. Thus, S = SO
iffS= N.

Using the above terminology, we are now able to formalize the notion of a
database sequence.

3 Satr is the function from 2” into 2” that maps X into Satr(X). SupposeSand g are functions. Then
(i) (So g)(x) = g(f(x-)), and (ii)fo is the identity mapping andf’ is defined inductively byy =f-’ o/
forall ie 1.
’ The model can be extended easily to multirelational databases.

32 VICTOR VIANU

Definition. A database sequence (DBS) over U is a sequence ((Ii, p/)JiEs, where
S is an initial subset of N, each Ii (i E S) is an instance over U, each pi (i E SO) is
a partial one-to-one mapping from 1; to lj+l, and pLmaxS = 0 if max S exists.

Semantically, a tuple is regarded as a representation of an object. Since a tuple
and its updated version represent the same object (but at two different moments
in time), each tuple preserves its identity in an update. This is formally captured
by the update mappings. Thus, for each tuple x in I;, pi(X) is the updated version
ofx in I;+,. (In particular, pi(x) = x if x is unchanged.) Also, each tuple in li not
in dom pi is deleted and each tuple in I;+, not in range pLi is an inserted tuple.5 (All
the remarks apply for i E SO.)

In our extension of the relational model, database sequences are the natural
analog of relations. While a relation represents just a “snapshot” of a database, a
DBS models, in addition, the evolution of a database in time. As in the case of
relations, DBSs alone capture little semantic information about the real-world
objects being modeled in the database. Just as in the case of relations, constraints
are used to incorporate additional semantics in the model. The constraints reflect
certain properties of real-world objects. Properties describing the object at each
moment in time are reflected by traditional “static” constraints (of relational
database theory) imposed on each instance in the DBS. Properties concerning the
evolution of the object in time are reflected by “dynamic” constraints, that is,
constraints showing how each instance in the DBS is connected to the others. Our
model, in conjunction with the static and dynamic constraints, enables us to study
certain phenomena that could not be investigated within the traditional framework
of relational database theory. The essential new element is the presence of dynamic
constraints (mentioned above), which restrict the evolution of databases (according
to certain semantic requirements). Understanding the effect of dynamic constraints
on database evolution is the primary concern in this paper.

In this first investigation we focus on database sequences described by certain
simple types of dynamic and static constraints. The static constraints (imposed on
each instance in the sequence) are restricted to functional dependencies. The
dynamic constraints (which relate each instance in the sequence to its successor)
are based on functional dependencies and are discussed shortly. First, however, we
present two examples that motivate our dynamic constraints and other related
concepts.

Example 3.1. Consider an “employee” database containing a relation EMP
with attributes ID#, NAME, SEX, AGE, RACE, MERIT, SAL.

The ID# uniquely identifies each employee; MERIT is an integer between 0 and
10 that reflects the performance of the employee, 10 being best,6 and SAL is the
salary. Since ID# is a key, the static constraint

(sl) ID# + NAME SEX AGE RACE MERIT SAL

must always hold. The policy of the company is to have an annual salary increase
on each July 1. At that time, the database is globally updated to reflect changes
in salary. When this occurs, the new values of certain attributes are related to the
old values of other attributes. For example, the old ID# of an employee determines

5 As is customary, domJand rangefdenote the domain and range of the mappingA respectively.
6 We assume that MERIT can be freely updated at any time.

Dynamic Functional Dependencies and Database Aging 33

the new ID#.’ For each attribute A, let k denote its old value and a its new

v$ue. T%n the above can be expressed by the “dynamic” functional dependency
ID# + ID#. In addition, no two employeess (with different ID#s)Leceive t&e same
new ID# as a result of an update. Thus, the dpamic-m ID# += ID# also
holds. (Two such dynamic FDs are abbreviated by ID# c-* ID#.) Similar arguments
can be made for NAME, SEX, RACE, and AGE. Thus, the following dynamic
FDs hold at each update:

(dl) 15, t* I^D# NA%E c* NA^ME, SEX c, SSX,
&E f* &E, AGE c-* AGE.

Let us look at two possible policies relating to salary increases. First, consider
the “equal opportunity” policy, where each new salary is determined solely by
merit in conjunction with the old salary. This is reflected in the database by the
satisfaction of the additional dynamic FD

(d2) MEiiiT S?&., + STL.

Next consider a “discriminatory” policy, where each salary is determined strictly
on the basis of sex, race, and age. Then instead of (d2), each update satisfies the
dynamic FD

(d3) SEX RACE ACE + !&.

Now let us look at the interaction between the static constraint (sl) and the
various sets of dynamic constraints (dl), (dl, d2), and (dl, d3). Suppose EMP
@ties (sl) and is updated according to (dl). Owing to the dynamic FDs ID *
ID, it is easily seen that (sl) is satisfied automatically by the new EMP. Also, it can
be seen that no static constraints in addition to {(sl)J* must hold. If EMP is
updated according to (d 1, d2)-the equal opportunity policy-the same situation
occurs. Now suppose EMP is updated according to (d 1, d3)-the discriminatory
policy. As earler, (sl) is preserved in the new EMP. In addition, however, the new
version of EMP must satisfy the static FD

(~2) SEX RACE AGE + SAL.

(T&is is because S% R$sE A@ + SEX &E ACE and SEX &E ACE -+
SAL hold. Then SEX RACE AGE + Sa holds by transitivity. A formal way to
compute the static FDs implied in an update is provided by “dynamic mappings,”
a mechanism introduced in Section 4.) In fact, each instance of the database must
now satisfy (~2) after at least one update has occurred. 0

Philosophically, there is an important difference between the nature of the
dynamic constraints reflected in (dl) and that of (d2) and (d3) (Example 3.1). The
first group, informally referred to as “intrinsic,” arises from the very nature of the
objects considered (employees) and is inseparable from our understanding of these
objects. (For example, an employee cannot change his race.) This is not the case
with the second group, called “extrinsic.” Indeed, (d2) and (d3) are the result of
certain outside variable factors, in this case human policy. Intuitively, intrinsic
dynamic constraints should not produce any additional static constraints, since
(assuming we have a complete understanding of the object) each such “conse-
quence” should have been anticipated in the first place. (However, certain static

’ It is conceivable that the value of ID# may occasionally change. For example, U.K. uses temporary
numbers for its foreign employees who do not have a social security number.

34 VICTOR VIANU

constraints can be preserved by updates. An example is provided by (dl), which
preserves (sl) but does not imply any new static FDs.) On the other hand,
“extrinsic” dynamic constraints can be expected to imply additional static con-
straints, which arise from the particular type of evolution imposed on the object.8
For example, (d3) implies the new static FD (~2).

In the simple example above, the static consequences are easy to anticipate. In
particular, they become apparent after a single update. This is not always the case,
as seen in the next example. (It is shown in Section 5 that it can take arbitrarily
long for all static consequences of the evolution to become present in the database.)

Example 3.2. Consider the following database, used by the Credit and Loans
Division of a bank. (For simplicity, many real-life details are omitted.) The database
contains a relation called CAMPAIGN, which is used as part of an annual campaign
to decide which loans and credit card offers are mailed out to each of the bank’s
customers. This is done according to a fixed policy, detailed below. The (relevant)
attributes are

ACCT#: Account number.
BAL: The value of BAL is 0 if the customer’s savings account balance is under

$2000 and 1 if it is over $2000.
MC, VISA, AMEX: Each domain is equal to (YES, NO}. The value is YES if the

customer has been offered a Master Charge card (MC), VISA card (VISA), or
American Express card (AMEX). The value is also YES when a tuple representing
a new customer is first inserted in the database, if the customer has the card
from his old bank. In all other cases, the value is NO.

CAR, RV, HOUSE: Each domain is equal to {YES, NO). The value is YES iff the
customer has been offered a car loan (CAR), an RV loan (RV), or a house loan
(HOUSE).

The database is updated annually, each time a mail campaign occurs.
Let us consider the static and dynamic FDs satisfied by the CAMPAIGN relation.

First note that the statie FD

(sl) ACCT# -+ BAL MC VISA AMEX CAR RV HOUSE

always holds, since ACCT# is a key. For the same reason, the dynamic FDs

(dl) AtiT# c, AC^CT#

always hold in any update.
Now let, us look at the bank’s policy with regard to the credit cards and loans

offered to customers, and at the dynamic FDs that are a consequence of this policy.

(1) The credit division has the following rules concerning credit cards.g

(a) A Master Charge card is offered to any customer with a yings aEount
balance of at least $2000. This induces the dynamic FDs BAL w MC.

(b) A VISA card is offered to each person who was offered a Master Charge
card last year (or became a customer then and alreadyJad an MC) and is
still a customer of the bank. Thus, the dynamic FDs MC c* VISA hold.

* In other words, specific evolutionary conditions may generate objects endowed with specific additional
qualities. Note that similar observations are made in [121.
9 Since the cost of making offers is very low, the bank is not concerned about superfluous offers (e.g.,
to persons who already have the credit card). The bank’s primary concern (and that reflected in the
outlined policy) is to make offers only to customers who meet its eligibility requirements.

Dynamic Functional Dependencies and Database Aging 35

(c) An American Express card is offered to each person who was offered a
VISA card last year (or became a customer then and already had aJISA)
and-is still a customer of the bank. Hence the dynamic FDs VISA t,
AMEX hold.

(2) The loans division has the following rules:

(a) A car loan is offered to all custome2 with aJalance of at least $2000. This
is reflected by the dynamic FDs BAL c, CAR.

(b) An RV loan is offered to all persons who were offered a car loaclast yeE
and are still customers of the bank. Thus, the dynamic FDs CAR c* RV
hold.

(c) A house loan is offered to all persons who were offeresRV loa% last year
and are still with the bank. Hence the dynamic FDs RV c* HOUSE hold.

Altogether, in addition to (dl) the following dynamic FDs hold:

(d2) BrLt, M^c h&+ VI/sA V?$A t* AM^EX,
BKL t, C& &R t, I$ R? t) HOU^SE.

Let us look at the effect of the set of dynamic FDs (dl, d2) on the static
constraints. In this example, the full static consequences of the dynamic constraints
become apparent in the course of three updates. Indeed, it can be verified that

(3) If CAMPAIGN satisfies (sl) and is updated once according to (dl, d2), then
(sl) is preserved in the new CAMPAIGN and the additional FDs

(~2) MC c-) CAR

hold.
(4) If CAMPAIGN satisfies (sl) and is updated twice according to (dl, d2), then

(sl) is preserved and the additional FDs

(~3) MC c, CAR and VISA c-* RV

hold.
(5) If CAMPAIGN satisfies (sl) and is updated three or more times according to

(dl, d2), then (sl) is preserved and the additional FDs

(~4) MC c, CAR, VISA c* RV, and AMEX w HOUSE

hold. Thus the above FDs always hold for customers who were with the bank
for at least 3 years after the credit and loan policies went into effect. (The
tuples representing these customers are said to have attained age 3 in the
database, i.e., were updated at least 3 times.) Cl

Note that in the above example, the dynamic FDs are “bidirectional” (of the
form X c, Y). However, “unidirectional” dynamic FDs are by no means uncom-
mon. For instance, suppose that the credit card policy in Example 3.2 is modified
so that a customer is offered a VISA card if he or she was offered an MC card last
year or if his or her savings account balance is at least $2000. Then each update
would satisfy 6% BTL + VIXA, but the dynamic FD VSA + M”c BXL would
not generally hold.

The previous examples exhibit certain dynamic constraints that occur frequently
in real situations. These constraints focus solely on global updates and are similar
in nature to functional dependencies. (They do not deal with individual tuple
updates, insertions, or deletions.) We shall formalize our dynamic constraints along

36 VICTOR VIANU

AB AB k B d h - -
0 1-l 0 0 1 1 0
1 l-1 1 1 1 1 1

P FIGURE 2

FIGURE 1

the same lines. First, though, we need the notions of an update and its associated
“action relation.”

Definition. Let U be a set of attributes. An update over U is a triple (Z, CL, J),
where Z and J are instances over U and 1~ is a one-to-one (total) mapping from
Zonto J.

If ((Zi, pi)Jies is a DBS over U, then (dompi, p;, rangew) is an update over
UforeachiE&.

Our dynamic constraints are defined using the “action relation” associated with
an update.” Intuitively, the action relation is formed by concatenating each tuple
in the “old” instance with its updated version. Before giving the formal definition,
we introduce some symbolism to denote the corresponding “versions” of the
attributes, one for the “old” values and another for the “new.”

Notation. For each attribute A, let k and 2 be new attributes. For each set U
of attributes, let fi = (k 1 A E U) and 0 = 12 1 A E U). For each tuple x
over U let i and 2 be the tuples over fi and 0, respectively, such that
i(k) = 3(/i) = x(A) for each A E U. Finally, for each Z C FD(U) let
2 = (k+ YlX+ YE Z) and 2 = (X+ YlX- YE Z).

Intuitively, k corresponds to the old value of A while a corresponds to the new
value, 5 and 2 are the “copies” of Z corresponding to the two versions of the
attributes, and i and 2 are “copies” of x.

Using this notation, we proceed with the definition of an action relation.

Definition. The action relation associated with an update (Z, cc, I’) is the

relation’ ’ ZpZ’ = 13 X PG) 1 x E I).

Example. Consider the update given in Figure 1. Its associated action relation
is given in Figure 2.

We are now ready to define our dynamic constraints, these being an analog of
functional dependencies to updates.

Definition. A dynamic functional dependency (DID) over U is an FD X + Y
over fro such that, for each A E Y, XA O c # 0 and XA rl fi # 0. The set of all
DFDs over U is denoted by DFD(U).

Informally, the above condition on FDs ,X + Y eve: 00 ensures that X + Y
does not imply any nontrivial FDs over U or over U. (These would not truly
be dynamic constraints.) For example, if U = ABC, then A + B is a DFD, while
k + Bi: is not.

“The notion of action relation discussed here is related to that considered in [22]. There, as in this
paper, the marked attributes of action relations are used to denote old and new values of attributes. In
[22] the emphasis is on showing how action relations can be used to express a large class of constraints
on updates. Here the focus is on a tractable constraint and an exploration of its properties.
” The symbol x denotes the cross-product of two tuples over disjoint domains.

Dynamic Functional Dependencies and Database Aging 37

The reader will note that DFDs are a natural extension of FDs, and that other
types of constraints (e.g., multivalued dependencies (MVDs), join dependencies
(JDs), embedded implication dependencies (EIDs), [21]) can be extended in a
similar manner.

We now show how to use DFDs as a constraint on updates.

Definition. An update (I, P, I’) satisfies a set A of DFDs, written (I, p, I’) l= A,
if the action relation ZpI’ satisfies A.

For example, the update in Figure 1 satisfies l? + a but not A + k.
Using the dynamic constraints on updates, we now place constraints on DBSs.

Valid DBSs are described by a set of static FDs (Z) and a set of dynamic FDs (A).
This leads to the notion of a “DFD schema.”

Definition. A DFD schema is a triple (U, 2, A), where U is a set of attributes,
2; is a set of FDs over U, and A is a set of DFDs over U.

We now have

Definition. Let (U, Z, A) be a DFD schema. A database sequence ((Zi, pi)JiEs
satisfies (Z, A) (denoted ((Ii, pi)]iES k (2, A)) if each 1i, i E S, satisfies Z, and each
update (dom pi, pi9 range pi), i E SO, satisfies A. The set of all DBSs over U satisfying
(2, A) is denoted by SAT(U, Z, A).

If f E FD(U) and d E DFD(U), then ((Ii, pi))iss l= f indicates that each
Zi satisfies f; similarly, ((Ii, pi))iES k d indicates that each update (dompi, pi,
range pi) satisfies d.

Remark. Consider an update (1, p, I’) over U. Since tuples do not repeat in a
relation, the action relation 1~1’ does not contain distinct tuples that agree on U
or on U. Consequently, eachvaction relation corresponding to an update over U
vacuously satisfies the DFDs U + U and U + fi. In a sense, these DFDs are trivial.
However, they clearly do not follow from the traditional inference rules for FDs.
In order to avoid problems arising from the “incompleteness” of the inference rules
within the class of action relations, each set of DFDs over U will henceforth be
assumed to contain the above two DFDs. 0

Since “bidirectional” FDs (such as U + U and U + U) occur frequently, the
following is used:

Notation. For each set of attributes U and ,X, Y,G U (X # 0, Y # 0), X ti Y
denotes the FDs X + Y and Y + X. The set (U t* U) is denoted by A”.

It turns out that arbitrary DFDs are sometimes troublesome to deal with
mathematically. A better behaved subclass of the DFDs, called “bipartite DFDs,”
is suitable for most real situations. (In particular, all the DFDs in Examples 3.1
and 3.2 are bipartite. So are the DFDs U * U of A,.) Intuitively, bipartite DFDs
are DFDs where “old” and “new” attributes do not mix on the same side. The
relation between DFDs and bipartite DFDs is similar to that between phrase-
structure grammars and context-free grammars: The first is appealing through its
generality, whereas the second is mathematically simpler but still powerful enough
to model most applications.

Definition. A DFD X + Y over U is a bipartite DFD (BDFD) if either X C fi
and Y C U or X C U and Y G 0. The set of all BDFDs over U is denoted
by BDFD(U). Finally, a BDFD schema is a DFD schema (U, 2, A) where
A C BDFD(U).

38 VICTOR VIANU

For instance, given U = ABC, A’& + e is a BDFD, whereas 2& += e is not.
Although most definitions in the paper are given for arbitrary DFDs, some of

the results in Sections 4-6 hold just for BDFDs.
Note that a restriction analogous to the “bipartite” restriction on DFDs can be

made on the dynamic extensions of other static constraints, for example, embedded
implicational dependencies [151.

In the remainder of the section we focus on two basic problems relating to DFD
schemas. The first concerns the logical closure of the constraints (2, A) of a DFD
schema (U, 2, A). The second concerns the equivalence of DFD schemas.

The logical closure of (2, A) is defined in a way similar to the closure of
traditional “static” constraints:

Definition. Let (17, 2, A) be a DFD schema. The closure (Z, A)* of (2, A)
relative to U is the pair (Z’, A’), where

Z’ = (fE FD(U)] for each DBS s over U, ifs l= (2, A), then s Ef),

and

A’ = (d E DFD(U)] for each DBS s over U, ifs l= (Z, A), then s l= d).

Thus, the closure (Z, A)* consists of all static and dynamic constraints that are
logically implied by (Z, A).

The next theorem (Theorem 3.4) shows how to compute (Z, A)*. First though,
we introduce some notation and state (without proof) a useful technical result
(Proposition 3.3).

Notation. For each X G UU, let x = (A 12 E X or 2 E Xl. For each set A of
FDs over tilir, let 7i = (X -+ P] X-+ YE A). For each tuple x over U(U), let x be
the tuple over U such that X(A) = x(&(x(A)) for each A E U. And for each instance
Iover U(O),let 7= (Z]xEI).

Thus the symbol - acts on sets of attributes as an operator that erases the
markers - and -. The symbol - on tuples yields the same value vector but over
the set of unmarked attributes.

PROPOSITION 3.3. Let U and V be sets of attributes. Let f be an attribute
isomorphism’2 from U onto V. Then

(1) fbr Z, Z’ G FD(U), Z C Z’ zflf(Z;) Gf(Z’), and
(2) for each relation R over U and Z C FD(U), R I= Z zflf (R) I= f (Z).

Note that the mapping defined from U onto U by f (A) = kl for each A E U is an
attribute isomorphism. So is the mapping defined from U onto U by f (A) = 2. In
simple cases such as these, Proposition 3.3 is used without explicitly defining J
However, f is specified in less obvious situations.

Finally, we need the following:

Notation. For each set F of FDs over UU, DID(F) denotes the set of all DFDs
in F.

‘* A mappingffrom U into Vis an atfribute isomorphism if it is one-to-one and onto. The isomorphism
Jis extended to sets of FDs, tuples, and relations over U as follows. For each Z C FD(U), f(Z) =
(f(X) -f(Y) 1 X - Y E Z). For each tuple u over U let f(u) be the tuple over V defined by f(u)
(f(A)) = z{(A) for each A E U. And for each relation R over U,f(R) = (f(u) 1 u E R).

Dynamic Functional Dependencies and Database Aging 39

We now have

THEOREM 3.4. For each DFD schema (U, Z, A),

,_I.,’ . (Z, A)* = (Z*, DFD((E U A U i)*)).

PROOF. Let (U, Z, A) be a DFD schema, 2’ = 2*, A’ = DFD(($ U A U e)*),
and (Z”, A”) = (2, A)*. Clearly, it suffices to show that

(i) Z’ G Z” and A’ G A”;
(ii) 2” C I;’ and A” C A’.

To see (i), let s = ((Ii, pi)]iEs be a DBS over 17 satisfying (2, A). Let i E S. Since
Ii I= Z, Ii E Z*. Thus s E Z*, SO Z’ = I;* C Z”. Let i E So. Since 1i E 2: (domri,
pi, range pi) R A and_ Ii+, I= F, (dompi)&rangepi) l= I: U A ,U 2. Hfnce
(dom pi)pi(range pi) l= (2 U A U Z)*, SO (dom pi)pi(range lli) R DFD((Z U A U Z)*).

Thus, s l= A’. Then A’ G A”, so (i) holds.
Consider (ii). LetfE I;” and let I be an instance over U satisfying 2. The DBS

(of length 1) s = {(I, 0)) satisfies (2, A). Hence s k=fby the definition of 8”. Thus
I l= f: It follows that each instance I over U satisfying 2 must sat49 J Hence
fE Z* = F’, and 2” G 2’. Let d E A*. Let R be a relation over UU satisfying
Z U A U 2. Let (Z, p, - - J) be the update defined by I = &(R), J = no(R), and
@ii(u)) = no(u) for each u E R. (The mapping ~1 is well defined and one to one
because R satisfies the DFDs fi c-, 0.) Since R l= 5 U A U 5, I l= 2 and J I= Z by
Proposition 3.3. Also, IpJ = R, SO (Z, CL, J) E A. Then the DBS s = ((Ii, ~i))o~ici,
where lo = Z, Jo = p, and I, = J, satisfies (Z, A). Hence, s l= d by the definition of
A”. Thus {Z, p, J) l=- d and R = ZpJ l= d. Consequent!y, each relation over 00
satisfying Z U A U Z must satisfy d. Therefore, d E (2 U A U Z)*. Since d is a
DFD, d E DFD((Z U A U Z)*) = A’. Hence, A” C A’, and (ii) holds. Cl

Finally, let us consider the equivalence of two DFD schemas. Formally, we have

Definition. Two DFD schemas (U, , I; ,, A,) and (U2, Z2, A,) are equivalent if

SA-UU,, 21, A,) = SA-UUz, Z2, A,).

We now have the following.

FACT 3.5. Two DFD schemas (U,, Z,, A,) and (U2, Z2, A,) are equivalent
lflU, = U2 and (Z,, A,)* = (X2, A2)*.

4. Dynamic Mappings

In Section 3 the relational model was extended to include dynamic constraints on
updates. It is of particular interest to understand the interaction between these
dynamic constraints and the traditional static constraints. In this section we look
at one aspect of this interaction by studying the dynamic mappings defined by sets
of dynamic constraints. The mappings describe the connection between the dy-
namic constraints satisfied by an update and the static constraints satisfied by the
“old” and “new” versions of an instance. (The four possible combinations of “old”
and “new” yield four different kinds of dynamic mappings.) After defining dynamic
mappings, we give some of their basic properties and exhibit a method for
computing them. (The method is based on an analogy between dynamic mappings
and logical implication, and is similar to closure.)

The notion of dynamic mappings is now formalized.

40 VICTOR VIANU

DeJinition. Let A be a set of DFDs over U. The following four mappings from
2FD(u) into 2FD(“) are the dynamic mappings associated with A:

(a) The old-new mapping on L\ associated with A is defined by on,(X) =
(X + Y E FD(V) 1 if Z l= Z and (I, p, I’) is an update over U satisfying A,
then I’ l= X+ Y.).

(b) The new-old mapping no a associated with A is defined by no,(E) =
(X + Y E FD(LT) 1 if I’ l= Z and (I, ~1, I’) is an update over U satisfying A,
then Zl==X+ Y).

(c) The old-old mapping oo A associated with A is defined by oo&?J =
(X + Y E FD(V) 1 if Z l= 2; and there exists an update (I, p, I’) over U satisfy-
ing A, then Z l= X + YJ.

(d) The new-new mapping nn, associated with A is defined by nna(z) =
(X + Y E FD(U) 1 if I’ l= L: and there exists an update (I, ~1, I’) satisfying A,
then I’ l=X+ Y).

Note that the dynamic mappings are analogous to logical implication. Indeed,
for each Z C FD(U), onJE) is the set of all FDs that must be satisfied by each
“new” instance I’ over U whenever the “old” instance Z satisfies Z and the update
(Z, p, Z’) SatiSfieS A. Similar remarks can be made about no& ooA, and nn&

We now present without proof some immediate (and useful) properties of
dynamic mappings.

PROPOSITION 4.1. Let A be a set of DFDs over U and xL\ be in (on&, no&, OOA,

nn,]. Then for each Z G FD(U), x~(Z) = x&Z*) and XL\(z) is a closed set of FDs.

The definitions of the dynamic mappings are not effective. For instance, how
would one compute on&t + B) for U = ABC and A = 12 -B k, k + 8, B + e’)
U Au? We now give one method for computing dynamic mappings:

PROPOSITION 4.2. Let A be a set of DFDs over U. Then for each set 2 of FDs
over U,

(a) on&Z) = llfi((k U A)*),

(b) no,(x) = &j(@ U A)*),

(c) ooA(Z) = II&i U A)*),

(d) nr@) = nir((2 U A)*).

PROOF. We shall only present the argument for (a) since the other cases

are similar. We first show that onA 6 IJfi((i U A)*). To see this, it is enough
to show that if R is a relation over UU which satisfies 5 U A, then &(R)
satisfies oa). Indeed, this implies that oa) C IIo((2 U A)*), whence

on@) C LIo((% U A)*) by Proposition 3.3.
Let R be as above. Let p be the one-to-one mapping from IID onto HO(R)

defined by @II(U)) = IIir(u) for each u E R. (The mapping is well defined because
R satisties’3 U + U. It is one to one because R satisfies ti + 0, and is onto from
the definition.)

Let Z = H&R) and I’ = &(R).&F be the one-to-one mapping (induced by
CL) from Z onto I’ defined by F(v) = CL(?) for each v in I. Then (Z, ji, I’) is an update,
ZFZ’ = R and, since R l= A, (I, j& Z’) l= A. This and the fact that Z l= Z imply that
I’ l= on&?). Thus, KQ(R) l= &@) by Proposition 3.3.

I3 Recall that fi + 0 and i! + c are assumed to belong to each given set of DFDs over U.

Dynamic Functional Dependencies and Database Aging

FIGURE 3

41

Consider the reverse inclusion, that is, IIo((5 U A)*) C on,(Z). Let I l= Z
and (1, p, I’) be an update over U that satisfies A. It suffices to show that
I’ l= IIc((k u A)*). Let R = 1~ I’. Then R I= 5 U A, so IIc(R) I= IIo((5 U A)*).
Since I’ = IIcR, I’ l= I&((% U A)*) by Proposition 3.3. 0

Let us now reconsider the earlier example, that is, U = ABC and A = (2 += k,
k += & & + c‘) U Au (Figure 3).14 Using Proposition 4.2,

noa((C+A)) = IIti(((c+A) U A)*) = (B-+AJ*,
ooA(0) = II&(0 U A)*) = 0*,

nn,(0) = IIfi((0 U A)*) = &(A*) = (A +B)*.

The following is a useful consequence of Proposition 4.2.

COROLLARY 4.3. Let A G DFD(U) and Z G FD(U). Then

(4 on&odW = m@),
(b) nnA(onAW = onA@),
(4 no&m(V) = noAG),
(4 ooA(noAW = noA@),
(4 mdm(z)) G nnA(%,

(f) noA(onA(Q) C ooA(2),
(g) 00A(00A(~)) = mo),
(4 nnA(nnAW = nnA(Q.

In some sense, the mappings noa and nnA can be viewed as symmetric to onA
and ooa, respectively. This is formalized in the next proposition.

Notation. Let U be a set of attributes and u the isomorphism from UU onto
fiU defined by a($ = k and a(k) = A for each A E U.

Note that

(*) I= u(X) for each X G I!? (I!?),
(**) II&u(A)) = a(IIo(A)) for each A G”Fl)(UU),

(***) u(A*) = (u(A))* for each A C FD(UU).

PROPOSITION 4.4 (SYMMETRY). For each A C DFD(U), noA = on,(A) and
nna = OO,(~).

I4 In order to simplify this and subsequent figures, the BDFDs 0 C, 0 in A0 are not represented.

42 VICTOR VIANU

PROOF. We only give the proof for n,oA = on,(,,,Vthe other case being similar.
I@ Z C FD(U). It is easily seen that Z U A = ~$2 U c(A)), whence (Z U A)* =

~((2 u u(A))*) by (***j above. Thus,

II& U A)*) = II&& U u(A))*))

= u(IIfi((k U u(A))*))

by (**) above. By Proposition 3.3,

I-I&i U A)*) = u(IIfi((% U u(A))*)).

Ah by (*I,

u(I-Io((% U u(A))*)) = II&i U u(A))*).

Since no&Z) = II&(@ U A)*) and on,,,,(Z) = IIfi((% U u(A))*) (by Proposition 4.2),
noA(z) = on,&). 0

As we shall see, the Symmetry Proposition permits us to obtain results about
noA or nn, from corresponding results about onA and ooa, respectively.

The following example shows that the minimum size of a cover for on@) can
be very large compared with the sizes of 2 and A. Specifically, the example shows
that, for each positive n, there exist sets Z,, of FDs and A,, of BDFDs such that
1 Z, 1 = 1, 1 A,, 1 = y1+ 1, and the minimum size of a cover for on&(&) is 2”. The
example has several consequences. First, it shows that there is no algorithm for
computing a cover of on,\(z) in time polynomial in the sizes of Z and A. (However,
it can be shown that there is an algorithm for computing a minimum-size cover C
of on&Z) in time polynomial in the sizes of Z, A, and C. Thus, if on@) has a
“small” cover, then such a cover can be computed efficiently.) On the positive side,
the example shows that for some sets Z’ of static FDs there exists sets A of dynamic
FDs that preserve Z’ and are much easier to check than Z’, since they contain
drastically fewer constraints. (Indeed, consider the example, and let ZL be a
minimum-size cover of on&Z,,); clearly, A, preserves Zi and the size of Z,‘, is 2”,
whereas the size of A,, is only 2n + 1.) Thus, this shows that the use of dynamic
constraints can dramatically increase the efficiency of constraint checking.

Example. Let

U, = (Ai IO I i I 2n),
zn = (A0 - - - An-1 +Azn),
A, = (zJ;+kimdn I 0 5 i < 2n) U (kl,, +kzn] U Au,.

(Figure 4 represents 5, and A,.)
Clearly, the following is a minimum-size cover for on&(&), and its Size iS

2”: (A,Ai, ’ a . Ain-, +A~,,IO~ij<2n,i~=jmodn,O~j<nJ.

5. Age in a Database

As already mentioned, it is of particular interest to study the interaction between
the dynamic and the static constraints satisfied by a database. In this section we
look at how information about the past of the database can be used to infer static
constraints satisfied by the current state. A fundamental notion here is that of age.

Dynamic Functional Dependencies and Database Aging 43

*
-42” . l .*

a.4

A.

A-,

A

A2.4

1

‘42.

FIGURE 4

(A tuple has age k if it has been updated k times.) In order to understand the effect
of age on static constraints, we define the notion of age closure of the static
constraints. Two methods for computing age closure are then exhibited. _Following
this, we show that the sequence of age closures “converges” to a constant 2. Finally,
we give some properties describing 5 and the convergence process, and present a
simple inference-rule-based mechanism for computing 2. As in the previous
section, most results are proved for dynamic constraints restricted to BDFDs.

Owing to the nature of our dynamic constraints, it is useful to consider first
databases where only updates are allowed. (Databases where insertions and dele-
tions are allowed are discussed later in this section). The formalism for this is now
presented.

Definition. A DBS ((I;, ~;)J;G is stable if damp; = Z; and range pi = Zi+l for
each iE SO.

Since damp; = Z;, no deletions are permitted in a stable DBS. Since rangepi =
Z,,, , no insertions are permitted. Thus, only updates are allowed in a stable DBS.

We start by looking at how the history of the database can be used to infer
satisfaction of static constraints in the current state. The relevant information is
the age of a tuple in the current state, that is, the number of updates to which a
tuple has been subjected since having been inserted in the database. This is
formalized for stable DBSs as follows:‘5

Definition. Let s = ((Zi, pLi)liES be a stable DBS and u a tuple in Zk, k E S. The
occurrence of u in Z, has age k in s.

We simply say that a tuple has age k whenever it is clear which occurrence of
the tuple we are referring to.

Clearly, the notion of age becomes irrelevant if each identity update of a valid
instance of the database satisfies A. (An identity update is an update (I, ~1, I’),
where p(x) = x for each x E I.) Indeed, any instance of the database could then
become arbitrarily “old” simply by staying unchanged. It can be shown that, given
a DFD schema (U, Z, A), each identity update of a valid instance satisfies A iff
a G Z* (recall that the operator - erases the markers - and ^).

Consider a database satisfying (Z, A). As was seen from Examples 3.1 and 3.2, if
tuples attain a certain age in the database, then the set of such tuples must

I5 The notion will be defined for arbitrary DBSs later in this section.

44 VICTOR VIANU

sometimes satisfy static constraints in addition to Z*. Thus, we can talk about the
closure of Z in the context of age information.

Definition. For each DFD schema (U, Z, A) and k in N, the age-k closure of Z
under A is the set Z$ = (f E n>(U) 1 if T is a set of tuples of age k in some stable
DBS in SAT@, A) then Ti=f).

Thus, Zf is the set of all FDs satisfied by each set of tuples whose age is k in
some stable DBS in SAT@, A).

We write Z:k instead of Z$ whenever A is understood.
It is easy to see that the definition is equivalent to the following:

Definition. For each DFD schema (U, Z, A) and k in N, Z;i” = (f E FD(U) 1 if
{(Zi, pi))0sisk is a stable DBS in SAT@, A) then I, I= f).

The two definitions will be used interchangeably, as convenient.
The above definitions do not provide an effective way of computing age-k

closure. Our next two results show how this can be done. The first (more theoretical
in nature) leads to the second (more practical).r6

The first method of computing age-k closure is analogous to Proposition 4.2 and
requires introducing the notions of action attributes, action constraints, and action
relation associated with database sequences. In order to do this, we need some
notation for the versions of the attributes and constraints corresponding to each
instance in the database sequence.

Notation. Let i be a nonnegative integer. For each attribute A, let A’ be a
new attribute. Let J be the attribute isomorphism defined by J(A) A= A’ for
eachA. Let U’=J(U)LZi=J(Z),andAi= (J(X)+j+,(Y)lX-, YE A) U

1 f;+,(X) +A(Y) 1 d + Y E A). For each tuple x over U, let xi = J(x). Finally, for
each instance I over U, let I’ = (xi 1 x E I) =5(I).

Intuitively, A’ is the version of attribute A corresponding to the ith instance in a
database sequence. Similarly, Z’ is a ‘copy’ of the static constraints Z, corresponding
to the ith instance, and A’ is the version of A that relates the ith instance to the
(i + 1)th. Finally, xi is a copy of a tuple x over U corresponding to the marked
attributes U’. The value vector of xi is the same as the value vector of x.

We are now ready to define action attributes, action constraints and action
relations. The first two are determined by a BDFD schema (U, Z, A) and a database
sequence. The third depends on the database sequence alone.

Definition. Let (U, &‘A) be a BDFD schema and s = ((Ii, p;)]iES a stable DBS
in SAT(U, 2;, A).

(a) The set of action attributes associated with (U, 2, A) and s is” US = Ui,s U’.
(b) The set of action constraints associated with (U, 2, A) and s is” Ps = Uies Z’

Uies,, A’.
(c) The action relation associated with s is R, = (x0 w W,&(~O~ . . . 0 &(x))“” I x

E 101.

Intuitively, the action relation is obtained by concatenating, in order, all succes-
sive versions of a tuple occurring in the database sequence. If the database sequence
is infinite, there are infinitely many attributes involved.

I6 The first result, proven here for simplicity just for BDFDs, remains true for DFDs. The second result
holds only for BDFDs.
“In order to simplify the notation, we use U, and r, to denote action attributes and constraints,
although these also depend on (ZJ, Z, A).

Dynamic Functional Dependencies and Database Aging 45

AB AB AB - - -
0 O-0 O-PO 1
1 1-1 O+l 1

&jjj++(jj
B0 Sl’ B2

FIGURE 5 FIGURE 6

A0 B” A’ B’ A2 B2
0 0 0 0 0 1
1 1 1 0 1 1

FIGURE 7

To illustrate the definition, let U = AB, Z = {A + B), A = (& --, 2) U Au, and
s be the stable DBS of length 3 in SAT(U, Z, A), shown in Figure 5.

The set of action attributes associated with (U, Z, A) and s is U, = U’U’ U2. The
set of action constraints is Ps = Z” U 2’ U 2’ U A0 U A’ = (A0 -+ B”, A’ + B’,
A2 + B2 B” +- B’ A”Bo t, A’B’, B’ + B2, A’B’ c* A2B2) and is represented in
Figure 6.’

9

Finally, the action relation associated with s is represented in Figure 7.
Clearly, the action attributes and action constraints are the same for all (U, 2,

A) and stable DBSs of fixed length. It will sometimes be convenient to refer to
these action attributes and constraints. We therefore introduce the following:

Notation. For each BDFD schema (U, Z, A) and k 2 0, let U(k) = UFzo U’ and
I’(Z, A, k) = U;c,, 2’ U U;Z-j Ai.

Thus U(K) is the set of action attributes and I’@, A, k) the set of action
constraints associated with all (U, 2, A) and stable DBSs of length k + 1 over U.

Before turning to the first result of the section, we need one more piece of
notation.

Notation. LetsESAT(U,Z,A).ForeachXCU,letx=(AEUlA’EX
forsomeiESJ.Foreachsetr~FD(U,)letTi=(X~PIX--*YEr).Andfor
-each tuple x over U’, i E S, let 2 be the tuple over U such that X(A) = x(A’)
for each A E U.

As in our earlier notation, the symbol - acts on marked sets of attributes as an
operator that erases the markers. The symbol - on tuples over U’ yields the same
value vector but over the unmarked set of attributes U.

We now present the analog of Proposition 4.2 for age-k closure.

PROPOSITION 5.1. For each BDFD schema (U, 2, A) and each k 1 0, 2% =
IL&W, A, W*).

PROOF. We first show that

(1) Z;% C J&,W(Z, A, k))*).

To see this, it is enough to prove that

(2) if R is relation over U(k) that satisfies I’(& A, k), then II&R) I= (Z,$)?

Indeed, this implies that (Zf)k C II&(I’(Z, A, k))*), whence Zt G

II&(I’(Z, A, k))*) by Proposition 3.3.
Let R be as in (2). For each i, 0 5 i 5 k, let li = II&R). For each i,

0 5 i < k, let pi be the one-to-one mapping defined from li onto Ii+, by

46 VICTOR VIANU
- -

p;(II,(u)) = &1+1(u) for each u E R. (Indeed, pi is well defined because
R l= u’ + Ui+‘, and it is one-to-one because R @ U’+’ + U’.) Finally, let ,.&k = 0.
Thus, ((Zip pi)}&isk is a stable DBS of length k + 1 over U. TO prove (2), it is
enough to show that

(3) ((Zip pi))Osisk I= (z, A).

Indeed, then Zk l= I;;. But Zk = &+(R), so Q,+(R) ti (z,“)k by Proposition 3.3.
Let i be an integer, 0 I i 5 k. Since RI= r(Z, A, k), &I(R) I= IYLy((I’(2, A, k))*).

Thus, Z i = II&R) l= II&(I’(z, A, k))*), by Proposition 3.3. NOW

Z’ G II&I’(Z, A, k))
G ~dU’(~, A, k))*),

so

Z !i I-I,i((I’(Z, A, k))*)

by Proposition 3.3. Thus, Zi l= Z.
To complete the proof of (3) it remains to show that (Zi, pi, Zi+l) l= A for each i,

0 5 i < k. Thus let i be an integer, 0 5 i < k. Since R I= I’(& A, k),

II,yi,yi+I(R) I= IIuq,~+~((r(Z, A, k))*).

Now

Ai C IIuqy+l(I’(2, A, k))
C IL,w+W(& A, k))*),

so &I~,P+I(R) t= A’. Let f be the attribute isomorphism from U’U’+’ onto fi.8
defined byf(A’) = k andf(A’+‘) = 2 for each A E U. Thenf(IIUiui+I(R)) b=f(Ai)
by Proposition 3.3. From the definition of A’, it is easily seen thatf(A’) = A. Also,
~(~uJ.Y+I(R 1) = Z;piZi+ 1. Thus ZipiZi+I l= A, SO (Zi, pi, Zi+l) E A and the proof Of (3)
is complete.

Consider the reverse implication of (I), that is,

(4) JM(W, A, k))*) G Z;.

To see this, let s = ((Zi, pi)]O=isk E SAT(U, Z, A). Then R,, the action relation
associated with s, is over U(k) and R, l= I’(& A, k). Thus, IIUk(Rs) I= II+((I’(Z, A,
k))*). Since 4 = II&Rs), Zk l= II&(I’(& A, k))*) by Proposition 3.3. Hence
II,k((r(z, A, k))*) G 2;. Cl

Although Proposition 5.1 provides an effective way of computing age-k closure,
it is not one that would be very appealing in practice. Indeed, it is usually of
interest to compute all” of the Z 2. This involves an unknown, arbitrarily large
number of attributes. Furthermore, the fact that ZP, i < k, may have been previously
computed is of no use in computing 2:. Our next theorem yields a more practical
way for computing age-k closure for BDFDs by establishing a recurrence relation
between 2: and zt+,. In order to obtain this result, we need some technical lemmas
and definitions.

Definition. Let V and W be disjoint sets of attributes. A set A of FDs over VW
is bipartite with respect to V and W if for each X + Y E A, either X C V and
YC WorXG Wand YC V.

In particular, if A G BDFD(U), then A is bipartite with respect to U and 0.

” It is shown later in the section that this is a finite process.

Dynamic Functional Dependencies and Database Aging 47

LEMMA 5.2. Let V and W be disjoint, nonempty sets of attributes. Let 81 C
FD(V), & G FD(W) and let A G FD(VW) be bipartite with respect to V and W.
Then ‘9

II,&& U A U &)*) = [Z, U II’@, U A)*)]*.

PROOF. Since E2 C II&(& U A U ZZ)*) and II&(& U A)*) G II&(& U A U

22)*),

[Z, U l-I,@, U A)*)]* C II’@, U A U Z,)*).

To see the reverse inclusion, let X + YE II&(& U A U &)*). We shall prove that

(*) X-* YE [Z, U IL+@, U A)*)]*.

By Proposition 2.5 there exist n 2 0, X(j), Y(j), Zti) G VW, 0 I i 5 n, such that
x”” = x, y(O) = (21, X(n) > y, 2”” = 0, Z(j) G Xc;), zti) + yci+‘) E L:, U A U ;r2,
and ,J?+‘) = X(i)Y(i+‘) for each i, 0 I i < n. Before verifying (*) it is necessary to
show that

(**) II,&%?“) + II&Y(“) E (2, U A)* whenever II&!?“) # 0, 0 I i I n.

The proof of (**) is by induction on i. For i = 0, X(O) = X C W, so II&!?“‘) =
0. Suppose the statement is true for i, i L 0. Consider X(‘+“. If IIY(X(~+‘)) = 0, we
are done. Suppose not. Now Xci+‘) = X(i)Y(i+‘), where Zti’ + Yti+‘) E L:’ U A U I;2

and 2”’ G Xci). Three cases arise:

(a) Z”) + Yci+‘) E Z2. Then II, = TI&3?+‘)) Since II&X(“) + II.(X(“) E
(Z, u A)* (by the induction hypothesis) and IIw(X’““) > II&!?“), II&!?“‘)
+ II&?‘+“) E (Z, U A)*.

(b) 2”’ + Yci+‘) E Z, . Then Zci) c II&?‘)) and II&!?“) = II&!?“) U Y (i+‘).

Hence, II &l?“) + II ‘(X ti+“) E zf. also, II,@?~+“) = II&V”) and II&X(“)
4 II,. E (Z’ U A)* (by the induction hypothesis). Thus, II&!?+‘)) --,
II,@?‘+“) E (2, U A)*.

lc) z(i) ---, y(i+l) E A. Since A is bipartite, there are two possibilities. Suppose
Z”’ C V and Y ci+‘) G W. Then II’@?“‘) = II’@“). Since II’@?“) +
II@‘(“) E (Z, u A)* (by the induction hypothesis) and II’.&?‘)) G II’.&?‘),
II,,(X’~+‘)) + II&V(“) E (2’ U A)*. Thus, II&?+“) + IIv(X(‘+“) E (z;’ U

A)*. Now suppose Z V) C Wand Yci+” - . C V Then Z(j) G II&(“) so II&l?“)
+ Y v+‘) E A*. By the induction hypothesis, II&?“) + IIV(Xci’) k (2’ U A)*.
Thus, II,(Xci’) + II@?“) U Yci+‘) E (2, U A)*. Since IIw(J?‘)) 2 II&!?“)
and n,,($“‘)) = n&l’(‘)) lJ Y (i+‘), II&Y(‘“)) + II&?““) E (Zl U A)*.

In each of (a) (b) and (c) II (X@+“) W + IIV(,Vi+‘)) E (I;, U A)*. Thus, the
induction is extended and the’proof of (**) is complete.

Letij,O=j~k,O~i,<i2<... < ik < n, be those indices for which Z(b) +
Y’G+‘) E z2. We prove (*) by induction on k.

Suppose k = 0. Then each Zti) + Y v+” is in Z’ U A, so (X + Y) = (X(O) + x’“‘)
isin(Z,UA)*.SinceX-,YEFD(IV),X + YE IIw((Z, U A)*) G [Z2 U l-Iw((Z,
u A)*)]*. Now suppose k > 0 and (*) is true for each j, j < k. Then X(O) -+
II’,@?) satisfies the induction hypothesis and hence X(O) + II w(X(~)) E [X2 U
II&Z, U A)*)]* Also Zcik’ + Ycik+” E z2 , Zcik) C IIw@$)) and IIw(Xcik+‘)) =
n,,(pk)) u yCik;l) (since pk+l) = X(k)y(ik+l) and y(ik+l) c W). Hence, nw(xh))

+ rI,(,%?+“) E 2;. Thus, X0’ --, II&%’ (‘k+‘)) E [& U IIw((Z’ U A)*)]*. By (**),

I9 To be more precise, II,j(JZ, U A U &)*‘vw)) = [ZZ U II&Z, U A)*(““‘))]*“‘.

48 VICTOR VIANU

either II.(X(‘~“)) = 0 or II&!?“‘) + II&!?+‘,) E (Z, U A)*. In either case,
&.(x(;k+‘)) + x ok+” E (2, U A)*. Since Zci’ + Y(‘+‘) E Z’ U A for ik < i 5 n,
X(h+‘) + A?‘) E (Z, U A)*. Hence, IIw(X (‘k+“) + X@) E (I;, U A)*. It follows that
II,,(X(i~+“) + II,,(X”“) E II&(& U A)*). Thus, X”’ + II,+@?‘,) E [& U b((2’

U A)*)]*. Since Y G Wand Y G Xc”‘, Y G II&!?“‘). Hence (X + Y) = (Xc’, + Y)
E [Z, U II,.((Z, U A)*)]*. 0

From Lemma 5.2 (with V = ir, W = fi, and V = 0, W = 0) and Proposition
4.2, we get

LEMMA 5.3. Let Z,, & G FD(U) and A G BDFD(U). Then

(a) IIfi((5, U A U %)*) = [I% U II&(@' U A)*)]*

@2 u 6a1*,
(6) &((I& U A U %)*) : [fk, U II&% U A)*)]*

= [El u n&z&*.

In our next lemma (as well as in Theorem 5.5) we consider sets of attributes and
constraints that have a structure similar to action attributes and constraints
associated with database sequences. (The lemma is easily proved using Lemma 5.2.
The proof is omitted here but can be found in [25].) Specifically, we have

Definition. An action sequence is a sequence {(VC”, ZZ(“, A(‘& with the
following properties:

(a) S is an initial subset of N,
(b) 1 V(i))iEs is a family of nonempty, pairwise disjoint sets of attributes;
(c) EC’) C FD(Vi)) for each i E S;
(cl) A(‘) C FD(V(i’V(i+“) and A(‘) is bipartite with respect to I’(‘) and I’(i+‘) for each

iESo;
(e) AomXS = 0 if max S exists.

LEMMA 5.4. Let ((V”‘, Z (i), A(i)))0aia2 be an action sequence of length 3. Then

(a) IIvw((LZ(o) U A(') U Z(') U A(') U Zc2))*) = IIv~2~[(IIv~~~((~(0) U A”’ U Z(I))*) U A”’

u 2(2))*],
(6) n,~o,((Z’~’ u A(‘) U Z(‘) U A(‘) U Xc2))*) = l&~o,[(I;(~) U A(‘) U II,w((Zc” U A”’ U

22))*))*].

We are now ready to prove our second result on computing age-k closure. As
mentioned earlier, the theorem establishes a recurrence relation between Zp and
FL.

THEOREM 5.5. Let (U, Z, A) be a BDFD schema. Then 2,” = 2*, and

2f!+, = [ZP U onA(Z = [Z U onA(Z

for each i 2 0.

PROOF. Clearly, Z $ = Z*. We prove the recurrence relation directly, first for
i = 0, and then for i > 0.

Suppose i = 0. By Proposition 5.1,

Z:: = II&?(& A, I))*) = II,‘((Z” U A0 U Z’)*).

Next, note that IIU’((Zo U A0 U Z’)*) = II&@ U A U Z)*). (Indeed, let f
be the attribute isomorphism from U’U’ onto fro defined by f(A”) = A

Dynamic Functional Dependencies and Database Aging 49

and f(A ‘) = a for each A E U. Then f((ZZ” U A0 U Z’)*) = (3 U A U e)* and
f(IIu~((ZO U A0 U Z’)*)) = IIfi((% U A U lit)*). Hence,

f(II,l((I;’ U A0 U Z’)*)) = II&(2 U A U k)*).

From the definition of - it is seen that

f(I-I,((Z” U A0 U El)*)) = II,l((Z’ U A0 U El)*).

Then

Z: = I-I&t U A U f;)*)

= (Z U on&E))* by Lemma 5.3 and Proposition 3.3
= (I$ U on&%))*
= (2 U on&$))*.

Now suppose i > 0. Consider the action sequence ((I’@), Z(j), A(‘)))gciS2, where

(1) ~(0) = uo,j<iuj, ~(1) = ui, T/(Z) = u;+l;

(2) Z(O) = I’@ A i - I), ~(1) = -&i), x:(2) = -&+I;
(3) A(o) = A’-lya;d A(‘, = A’.

By Proposition 5.1,

Zf+, = II,i+l((I’(Z, A, i + I))*)

= &,2)((z(0) U A(O) IJ Et’) lJ A”) IJ xc2))*)

by (2) and (3)
= &/w[(&w((~(~) U A(O) U z(l))*) U A”’ u 9’)*],

by Lemma 5.4 and Proposition 3.3

= II,J+I[(II,I((I’(Z, A, i))*) U A’ U Z’+‘)*]

by (l)-(3)
= &,,+~[((zf)’ U A’ U I;‘+‘)*]

= [Z’+’ U &,r+l(((Zf)’ U A’)*)]*

= [Z U on&Z?)]*

Thus,

since &((I’(& A, i))*) = (Zf)‘,
by Proposition 5.1 and Proposition 3.3
by Lemma 5.2 and Proposition 3.3

by Proposition 4.2.

2Zf?+, = [Z U oriS(Z
C [Zf U ona(Z since L: G 24

c Zfil since ZP C ZRl and on&:) G 2%‘.

Hence, Zj!+, = [Z U on&Z?)]* = [Z: U onJZP)]*. Cl

We continue our study of age in databases by looking at the sequence (Z,$M of
successive age-k closures of Z under A. It is shown next that age-k closures become
constant after k has reached a certain value. Furthermore, the convergence is
“rapid,” in the sense that the consecutive age-k closures must increase at each step
before reaching the “limit” 5.

THEOREM 5.6. For each BDFD schema (U, Z, A), there exist an integer
&(Z, A) 2 0 and 3” G FD(U) (or 2 when A is understood), such that Llf $ I;f+,
if0 I k < &Z, A) and Zg = 5” if k 2 &2, A).

50

FIGURE 8

VICTOR VIANU

PROOF. Since FD(U) is finite and X& G Z f+, C FD(U) for each k 2 0, there
exists i 2 0 such that 2: = Z?+, .

%A,.

Let &2, A) be the minimum such I, and let 2 =
By the minimality of R(Z, A), 2,” s Z?+, for each k, 0 I kc k(Z, A). From

Theorem 5.5, it immediately follows that Z,” = 2 for each k, k 2 &Z, A). Cl

Note that, in Example 3.1, & (s,), (di , &)) = 1 and 1%;) = (s, , s2J*. In Example
3.2, &SI I, VI, d& = 3 and (‘%I = (SI, sd*.

In a sense, one can say that a (stable) database becomes “mature” at age
&(2, A). Indeed, no additional static constraints are acquired past that age as a
result of getting “older.” Clearly, &Z, A) is bounded by the number of FDs over
U not in T*. However, there is no uniform bound for &Z, A). Indeed, it is shown
next that k(Z, A) can be any integer. Thus, it can take arbitrarily long for a database
to become mature.

PROPOSITION 5.7.
that &Z, A) = n.

For each n L 0 there exists a BDFD schema (U, Z, A) such

PROOF. Suppose n is an arbitrary positive integer. Let U = (Ai] 0 I i 5 n), Z =
0 and A = {a,, --, k,) U (k, + j;+, 10 5 i < n). (A is represented in Figure 8.) It is
easily seen (using Theorem 5.5) that 2: = 0* and Z: = [Zj U or@:)]* =
[ok(Q91* = (A0 + AI) *. A simple induction on i shows that Zp = (A,, + &Al
. . . Ai)* for all i, 0 5 i 5 n. Finally, on,(Z$) = Z,“, so Z$+:,, = [2,” U on&Z,“)]* =
[Z,” U Z$]* = Zi. Thus, 2: $ Zf+, for each j, 0 I j < n, and Zi = Xi+,. By
Theorem 5.6, n = k(2, A). Cl

The set of static constraints satisfied by a mature database is 5 (which may, in
general, be larger than Z*). The satisfaction of some constraints in addition to 8*
may itself be of use. Also, the set on,(2) of static constraints is preserved by a valid
update (i.e., an update satisfying A) of a mature database. In particular, the set of
constraints on@) fl Z is “inherited” through a valid update. Thus fewer constraints
need be checked in order to make sure the new instance satisfies Z. The best one
can expect is that on,(%) 2 2, in which case all of 2 is preserved. The worst is
when on,(%) n Z = [a*, in which case none of the static constraints are preserved
through a valid update. Most cases fall somewhere between these extremes. The
following illustrates several possible situations.

Examples

(a) on,@) 2 2.
(2 and A

Let U = AB, Z = (A + B), and A = 12 4 k, & + Al U A”
- Au are shown in Figure 9). It is easily seen that &2, A) = 0, 5 =

(A + B)*, and on,(%) = (A + BJ* = Z*. In this case, all of Z is preserved through
a valid update.

{A
(b) on&) # 0, but on@) rl Z = 0.
+ k, & + C) U Av (5 and A -

Let U = ABC, Z = (A += BJ, and A =
Au are shown in Figure 10). It is easily

Dynamic Functional Dependencies and Database Aging

B

I .
.-. B

FIGURE 9 FIGURE 10 FIGURE I1

seen that k(Z, A) = 1, 5 = (A + B, A + C)*, and on,($) = (A + C)*. Thus,
each set of tuples of age 1 satisfies the FD A + C in addition to 2. However, none
of the static constraints in q are preserved through valid updates.

(c)Z$%and0*Jon@O~GZ. LetU=ABCDE,Z=(A+B,D+E),
andA=(ri~k,B-,C,C-,B)UA~(I:andA-ALiareshowninFigurell).
It is easily verified that k(Z, A) = 1, 2 = (A + B, D + E, A + C)* and on,@) =
(A-+B,A+CJ *. Thus each set of tuples of age 1 satisfies the constraint A + C
in addition to 2. Also, a valid update preserves the static constraint A + B (but
not D + E) in 2, provided that the tuples being updated have attained age 1 in
the database. Cl

In the remainder of this section we focus primarily on the “limit” 5 of a sequence
of age-k closures. We first prove a few useful properties. Then we give a simple
inference-rule-based mechanism for computing, in a straightforward manner, 2
and on,@) from Z and A.

We first provide a useful characterization of 2 which does not involve the notion
of age closure. Indeed, we show that 5 is the smallest (with respect to inclusion)
closed set of FDs containing Z and closed under on,. First though, we prove that
such a set exists.

LEMMA 5.8. For each BDFD schema (U, Z, A), there exists a unique minimal
(with respect to inclusion) closed set Z ’ of FDs over U such that Z C Z ’ and on,@ ‘)
c 2’.

PROOF. Let ??? = (T C FD(U) 12 C I’, P closed, oni\ C I’]. Since FD(U) E
g, %? is not empty. Let Z ’ = f--h.,, I’. Clearly, Z C 2 ‘. Furthermore, for each
r E if?:, on,(Z ‘) C oni\ G I since 2 ’ C I. Hence, on&Y ‘) E fir,, I? = I: ‘. Also,
Z ’ is minimal since Z ’ G I for each I? E E Since I: ’ is an intersection of closed
sets, it is closed. Obviously, Z ’ is unique with respect to these properties. 0

PROPOSITION 5.9. For each BDFD schema (U, Z, A), 5 is the smallest closed
set of FDs containing Z and closed under onA.

PROOF. Let Z ’ be the smallest closed set of FDs containing Z and closed under
on,. By Lemma 5.8, 2; ’ exists. It suffices to show that Z ’ = 2. Clearly, 2’ Z 2.
Also,

on@) = m(Z&,,,,)

G qp. A)+,

$A,

by Theorem 5.5
= by Theorem 5.6
= 2, ’ by Theorem 5.6 again.

Since Z G 5 and on,(%) G 5, Z ’ G 5.

52 VICTOR VIANU

To prove the reverse inclusion, we shall show that

(*) 2:d C Z’ for each k 2 0.

Since 2 = Z& Aj, (*) implies that 2 C Z’. The proof that Z$ C Z’ for each
k 2 0 is by induction. For k = 0, 2,” = Z* c Z ’ by the definition of t: ‘. Suppose
Zf,ZZ’,krO.Then

Et+, = [lilt U on@&)]* by Theorem 5.5
C [Z’ U on@‘)]* by the induction hypothesis

c Z’, since on&Z ‘) C Z ’ and (Z ‘)* = Z ‘.

Thus Z$+, C L: ‘, and the induction is extended. Cl

We now present our inference-rule-based mechanism for computing 2 and
on&, which is, in some sense, sound and complete. The rules, which involve
action attributes (i.e., attributes marked with ” and ‘), consist of any sound and
complete set of inference rules for FDs, together with one extra rule. The additional
rule allows us to infer the FD k + Y over the ““” attributes from the corresponding
FD 2 -+ ? over the “*” attributes. This is formalized in the following:

Definition. The following is called a G-rule:

ForeachX, Ys U,ift+ Y,thenk+ Y.

Let 9 be a sound and complete set of inference rules for FDs over 00. Let 32
be a new set of inference rules consisting of 9, together with the &rule. Clearly,
the closure of a set F of FDs with respect to & is independent of the choice of 9.

Notation. For each F c FD(ofr), let F+ denote the closure of F with respect
to 92.

The computation of 5 from I: and A is outlined below.

Algorithm AGE-CLOSURE.
Input: Z&-A.
output: z.

(1) SetF=%UAU%.
(2) Compute F+;
(3) Select all FDs over 0 that are in F+;
(4) Remove all A markers.

The output of Algorithm AGE-CLOSURE is the set IIo((5 U A U 2)‘). Theo-
rem 5.13 shows that this is equal to 2, thus proving the correctness of the algorithm.

The computation of on,(%) from Z and A is similar:

Algorithm ON.
Input: Z, A
Output: on@).

(1) SetF=5UA;
(2) Compute F+;
(3) Select all FDs over i? which are in F+;
(4) Remove all A markers.

The output of Algorithm ON is the set of FDs IIo((5 U A)‘). Theorem 5.13
shows that this is equal to on,@).

Before proving Theorem 5.13, we need some notation and three technical results.

Notation. Let * denote the mapping from 2FD(iiir) into 2FD’irii) defined by *(F)
= F* for each F c FD(00). Let t denote the mapping from FD(ci?) into 2FDc’ti

Dynamic Functional Dependencies and Database Aging 53

defined by t(f) = (f; k rf Y] iff=,$+ Y, and t(f) = (f) otherwise. Extend
t to a mapping from 2FD’UU) into 2FD’UU) by t(F) = UJeF t(f).

It is easily seen (by induction on the length of derivations of FDs from F using
the inference rules in 32) that F+ = U/,0 (t 0 *)‘(F), for each F C FD(00).

Our first technical lemma is

LEMMA 5.10. Let &, & !G FD(U) and A C BDFD(U). Then o&(Z, U no&))
G (22 U on&%))*.

PROOF. Clearly,

on@1 U mO2))

= &((I& U noa(Z2) U A)*) by Proposition 4.2

= lTo((5l U IIfi((22 U A)*) U A)*) by Propositions 4.3 and 3.3

G II&, U A U %)*)

= (22 U on&W)* by Lemma 5.3 and Proposition 3.3.

Thus, on&Z, U noA(Z2)) G (Z2 U on&Z,))*. Cl

We proceed with the second technical lemma.

LEMMA 5.11. Let F G FD(o@ be closed with respect to +. Then I-IO(F) C
WF).

PROOF. Let FU IIc(F). Then there exist X, Y G U such that f= X + Y and
2 + Y E F. Since F+ = F, k + Y E F by the &rule. Hence, k -+ Y E &(F) and
f=X-+Y=k--+ j%&(F). Cl

Finally, the third technical lemma is

LEMMA 5.12. Let L, R G FD(U), A G BDFD(U), and F = t U A u k For
each i 2 0 let Hi = (t 0 *)‘(F), Ri = IIc(Hi), and Li = IIc(Hi). Then

Ri+l = (Ri U onJRi U Li))* and Li+l = (Li U Ri U no,,(R;))*.

PROOF. Let Ai = Hi - (ii U I?;) for each i L 0. Thus, Ai consists of all FDs in
Hi that are not in FD(I$) or in FD(0). We first prove the following statements for
each i I 0:

(*) If Ai G (t; U A U A;)*, then H;+, = (i; U l?; U A U I?,)*.

(**) Ai G (L; U A U ii)*.

Consider (*). Let i > 0 and suppose Ai G (ii U A U Ri)*. Then

Hi+, = (t 0 *)(Hi)
= (t(L, U Ai U I?i))*

=(LiUl?iU AiUl?i)*

= (2, U I?/ U (Zi U A U Ai)* U Ri)* since Ai C (ii U A U Ai)* and A G Ai

=(LiURiUAUki)*.

This establishes (*).
The proof of (**) is by induction on i. Suppose i = 0. Then HO = F =

i U A U i?. Thus, A,, = A, Lo = L, and R0 = R, so (**) holds. Suppose i 2 0

54 VICTOR VIANU

and Ai c (t; U A U k;)*. Then

&+I G Hi+,
=(iiUR;UAU&)* by induction and (*)
G (i;,, U A U ri;+,)* since Li U Ri c IIc(H;+,) = Li+l

and Ri c IIc(H;+,) = ii+,.

Hence, the induction is extended and (**) is proved.
By (*) and (**), we have

(***) Hi+, = (L; U ii U A U ff;)*

Let i L 0. Then

for each i 2: 0.

= IIc((Li U k, U A U I&)*) by (***)

= (R; U onA(Li U Ri))* by Lemma 5.3 and Proposition 3.3.

Finally,

= I&; U ki U A U I?;)*) by (***)

= (Li U Ri U noJR,))* by Lemma 5.3 and Proposition 3.3. 0

We are now ready to show that 5 and on@) are computed by Algorithm AGE-
CLOSURE and Algorithm ON, respectively, as mentioned earlier.

THEOREM 5.13. For each BDFD schema (U, Z, A),

(a) 5 = IIo((i U A U %)+),

(b) on,(2) = II&Z U A)+).

PROOF. We just prove (a), since (b) is similar. Consider

5 G II& U A U 5)‘).

By Proposition 5.9, it is enough to show that Z c IIfi((5 U A U 2)‘) and

on,(IIc((Z U A U Z)‘)) G II&(2 U A U 3)‘).

The first of the two last inclusions is obvious. For the second inclusion, note first
that, by Lemma 5.11,

Hence,

II&i U A U 2)‘) G &((i U A U E)+).

on,(IIfi((k U A U 2)‘)) C on,(IIfi((5 U A U 5)‘))

= IIfi((IIfi((5 U A U 2)‘) U A)*) by Proposition 4.2,

G II@ U A U 2)‘).

It follows that

lf C IIfi((5 U A U 2)‘).

Dynamic Functional Dependencies and Database Aging 55

The reverse inclusion involves a proof by induction. As was remarked just prior
to Lemma 5.10,

(2 U A U 5)+ = ,yO (t 0 *)i(k U A U 2).
‘>

Hence,

II&t U A U it)+) = ,yO IIfi((t 0 *)i(k U A U 2)).

To complete the proof of (a), it is thus sufficient to prove that

(*) IIc((t 0 *)i@ U A U i)) G 2, for each i L 0.

LetHi=(t o)(* i 5 U A U 2), Li = IIc(H;), and R; = IIc(Hi). In order to show
(*) we establish the following statement:

(**) For each i I 0,

(1) R;C%
(2) L; G (2 U no&))*.

Note that (1) of (**) is the same as (*). We use induction on i. For i = 0, R. = Z
and Lo = Z. Hence, (**) holds. Now suppose (**) is true for i 2 0. By Lemma 5.12
(with L = R = Z),

&+I
= (Ri U onj(Ri U Li))*
G (5 u on,(2 U (5 U no&))*))* by the induction hypothesis for (I) and (2)
= (5 U on,((% U no@))*))*
= (2 U onA(5 U noa(ZZ)))* by Proposition 4.1
G (2 U (2 U on&))*)* by Lemma 5.10
= (5 U on&))*
= 5, since on@) C 2 by Proposition 5.9.

Thus, the induction is extended for (I). Consider (2). By Lemma 5.12 (with
L = R = Z),

Li+l = (Li U Ri U noi\(R

G ((5 U node))* u (5 u noA(? by the induction hypothesis for (**)
= (2 U no.@))*.

Thus, the induction is also extended for (2), and (**) is established. In particular,
(*) is proved, and the argument for (a) is complete. Cl

Remark. Let T9 be the set of inference rules consisting of 9, together with the
two rules

foreachX, YG U,ifX+Y,thenk+Y,

and

foreachX, YC u,ifR+ Y,thenX+ Y.

Using Theorem 5.13, it can be easily verified that 5 is the closure of Z: U A
under the set of inference rules T9 (with target domain FD(U)). Similarly, on,(z)
is the closure of Z: U A under T9 (with target domain FD(U)). Thus we might

56 VICTOR VIANU

intuitively say that the set of inference rules T9 (with target domain FD(U)) is
sound and complete.

The following two methods are now available for computing 5:

(1) Compute the age closure 24 for each i, 1 5 i I k(Z, A), using the recurrence
relation between successive age-k closures (Theorems 5.5 and 5.6).

(2) Compute 5 directly from YE and A, using Theorem 5.13.

For the purpose of comparing (1) and (2), consider the forest where Z is the set
of roots and on,(f) the set of children of J Intuitively speaking, computing 2
according to (1) results in a breadth-first traversal of the forest. On the other hand,
(2) not only permits a simulation of (1) but also allows a variety of alternative
computing strategies. For example, (2) allows depth-first traversals of the forest,
some of which are more efficient in certain cases.

We conclude the section by showing how the notion of age extends to arbitrary
database sequences. As in the case of stable databases, the age of a tuple is the
number of updates to which the tuple has been subjected since having been first
inserted in the database. Formally, we have

Definition. Let s = ((I;, P;))~~s be a DBS and u a tuple in 4, j E S. The
occurrence of u in Ij is said to have age k in s if there exist ~0, . . . , uk such that

(a) uk = zf,

(b) un E Jj-~+n, Ornsk;

(C) Pj-k+n(&) = %+I 3 Osn<k;
(d) ifj - k - 1 2 0, then ~0 4 range pj-k-1.

In the special case of stable databases, the above reduces to our previous
definition. (Observe that if two tuple occurrences have the same age in a stable
DBS s, then they must belong to a common instance of the sequence s. This is not
the case for arbitrary DBSs.)

There is a straightforward connection between age in arbitrary databases and age
in stable databases. Indeed, from our definitions, we easily obtain (proof omitted)

PROPOSITION 5.14. Let (U, Z, A) be a BDFD schema and T a set of tuples over
U. For each k r 0, the following are equivalent:

(a) There exists a DBS s E SAT(U, Z, A) such that all tuples in T occur in a
common instance of s and (the occurrences) have age k in s.

(b) There exists a stable DBS s E SAT(U, Z, A) such that each tuple in T has age
k in s.

It is now apparent how to extend our results on age closure to arbitrary databases.
Indeed, from Proposition 5.14 we have (proof omitted)

THEOREM 5.15. For each BDFD schema (U, 2, A) and k 2 0, I;$ is the set
of all f E FD(U) satisfied by each set T of tuples over U for which there exists a
DBS E SAT(U, Z, A) such that all tuples in T occur in a common instance of s
and (the occurrences) have age k in s.

In other words, ZZR is the set of all FDs satisfied by each subinstance of a database
satisfying (Z, A), whose tuples have age k in the database. Thus, static constraints
can be inferred from the evolution of the database even when insertions and
deletions are allowed. In certain cases we can only infer satisfaction of static
constraints by a subinstance I of the current state J (e.g., newly inserted tuples in

Dynamic Functional Dependencies and Database Aging 57

J may invalidate certain static constraints that must be satisfied by older tuples in
I). Substantial advantages can still be derived in the latter case. For instance,
suppose we know (from age information) that Z satisfies the FDf; and we have to
check that J = Z U L satistiesf: Clearly, the fact that Z kffacilitates checking that
J Lf: The improvement in performance depends on the sizes of J and L and on
the specific algorithm used to test satisfaction of FDs. For instance, suppose J
contains n tuples and L contains g(n) tuples. Also, suppose that the algorithm used
to test satisfaction of FDs is based on the “naive” method of checking that each set
of two tuples in the instance satistiesJ: Then it can easily be seen, that checking
directly, whether J l= f takes O(n*) comparisons. On the other hand, checking
whether J l= f; when it is known that Z E f; takes O(n g(n)) comparisons. This
improvement is considerable if the number g(n) of “young” tuples in L is small
relative to the size n of the database. For example, if g(n) 5 logn, then the
improvement is from O(n’) to O(nlogn).

6. Survivability in a Database

In Section 5 we saw how to use knowledge about the history of a database to gain
information about the current state. In this section we summarize several results
of [25] concerning the connection between the current state and thefuture evolution
of the database. The relevant concept here is that of “survivability” in a database.
Informally, a set T of tuples over U has survivability k if the tuples can be validly
updated together k times. In the case in which k = co, T is said to be potentially
immortal.

As in the case of age, in order for a set of tuples to have survivability k in a
database, it is sometimes necessary that the set of such tuples satisfy static con-
straints in addition to Z*. This leads to the notion of survivability-k closure of L:
under A, denoted Zi\,. This notion is symmetric to that of age (for k finite). The
symmetry is formalized by the following result:*’

PROPOSITION 6.1. For each BDFD schema (U, Z, A) and each k 2 0, Z % =
zp.

In view of the above result, we can use most of our results on age-k closure
to obtain analogous results on survivability-k closure (for k finite). (In particular,

the limit of the sequence (Z?k)k,,o is denoted by $“.) These results can be found
in [25].

The most notable breach in the past-future symmetry arises from the fact that,
although we assume that any database has a start in time, there is no reason to
assume it will not go on forever. Hence there is no analog of potential immortality
(or survivability 00) for age. Most of the results concerning survivability focus,
therefore, on potential immortality. We first look at the relation between the
survivability-cr, closure (Z L\-) and the survivability-k closures, for k finite.

We obtain the following “convergence” result:

THEOREM 6.2. For each BDFD schema (U, Z, A),

z!, = u ze/, = 9.
I20

Given a valid instance Z of a database, it is sometimes of interest to know
whether Z can be validly updated a given k number of times. (In fact, it may often

” Recall that 0 was defined prior to the Symmetry Proposition (4.4).

58 VICTOR VIANU

be reasonable to require that I be potentially immortal, i.e., k = 00.) Satisfaction of
Z& by I is a necessary condition in order that I have survivability k. However, it
is not a sufficient condition (an example is provided in [25]). The question arises
whether it is even decidable if an instance has survivability k in a database. For k
finite the problem is clearly decidable. We show that the problem is also decidable
for k = 00 by exhibiting a connection between finite survivability and potential
immortality.

THEOREM 6.3. Let (U, Z, A) be a BDFD schema and I an instance over U. Zf I
has survivability (2 I” 1r12, then I is potentially immortal.) .

In [25], a characterization is given of the BDFD schemas (U, Z, A) for which
every (valid) instance of the database is potentially immortal.

Finally, the combined effect of age and survivability on the static constraints of
a database is investigated. The main result is, intuitively, that the combined effect
of age and survivability is “additive.”

7. Conclusions

In this paper, a simple model (database sequences) was presented for the evolution
of databases in time. This model was then used to study the effect on database
evolution of a certain type of dynamic constraint (DFDs). The interaction between
DFDs and FDs was investigated using the notion of age closure.

Clearly, this paper is just a first step in studying the effect of dynamic constraints
on database evolution. Future investigations can involve either our “dynamic”
framework, or extensions of our model and constraints. Several important questions
can be addressed within the present framework, in addition to those already
discussed. For instance, how do DFDs interact with join dependencies [2]? What
can be said about the usual normal forms in the presence of dynamic FDs? And,
how should this affect database design?

Both the model and constraints can be extended in several directions. Just as
FDs give rise to DFDs, so each type 6 of static constraint gives rise to a dynamic
analog da. Our dynamic constraints on updates can be augmented with constraints
on insertions, deletions, and individual tuple updates. Constraints involving more
than two consecutive instances of the database and dynamic constraints that change
in time can be considered. Also, dynamic constraints that involve nonrelational
database models (e.g., the IF0 Model [11) or are model independent (in the spirit
of Spyratos [23]) can be defined, etc. Questions analogous to those raised in this
paper can be asked about any of the above extensions, and new questions are likely
to arise. Clearly, much work remains to be done.

ACKNOWLEDGMENTS. I am grateful to my advisor, Seymour Ginsburg, for provid-
ing guidance and support while I wrote my Ph.D. dissertation, on which this paper
is based. Special thanks to Richard Hull for numerous discussions and very useful
suggestions related to the dissertation and this paper.

REFERENCES

1. ABITEBOUL, S., AND HULL, R. IFO: A formal semantic database model. Tech. Rep. TR-84-304,
Dept. of Computer Science, Univ. of Southern California, Apr. 1984.

2. AHO, A. V., BEERI, C., AND ULLMAN, J. D. The theory of joins in relational databases. ACM
Trans. Database Syst. 4, 3 (Sept. 1979) 297-3 14.

3. ARMSTRONG, V. W. Dependency structures of database relationships. In Proceedings of IFIP ‘74.
North-Holland, Amsterdam, 1974, pp. 580-583.

Dynamic Functional Dependencies and Database Aging 59

4. BEERI, C., FAGIN, R., AND HOWARD, J. H. A complete axiomatization for functional and multi-
valued dependencies in database relations. In Proceedings of the ACM SIGMOD International
Conference on the Management of Data (Toronto, Ont., Canada, Aug. 3-5). ACM, New York,
1977, pp. 47-61.

5. BEERI, C., DOWD, M., FAGIN, R., AND STAT-MAN, R. On the structure of Armstrong relations for
functional dependencies. IBM Res. Rep. RJ290. IBM, San Jose, Calif., Sept. 1980.

6. BRODIE, M. On modelling behavioral semantics of databases. In Proceedings ofthe 7th Interna-
tional Conference on Very Large Data Bases. ACM, New York, 198 I, pp. 32-42.

7. CASANOVA, M. A., AND FLIRTADO, A. L. A family of temporal languages for the description of
transition constraints. In Advances in Database Theory, vol. 2, H. Gallaire, J. Minker, and J.-M.
Nicolas, Eds. Plenum Press, New York, 1985.

8. CASTILHO, I. M. V., CASANOVA, M. A., AND FURTADO, A. L. A temporal framework for database
specifications. In Proceedings of the 8th International Conference on Very Large Data Bases. ACM,
New York, 1982, pp. 280-29 I.

9. CERI, S., PELAGATTI, G., AND BRACCHI, G. Structured methodology for designing static and
dynamic aspects of database applications. If: Syst. 6, I (I 98 I), 3 l-45.

10. CLIFFORD, J., AND WARREN, D. S. Formai semantics for time in databases. ACM Trans. Database
Syst. 8,2 (June 1983), 214-254.

I 1. CODD, E. F. Further normalization of the database relational model. In Courunt Computer Science
CO.Symposiu 6: Database Systems, Prentice-Hall, Englewood Cliffs, N.J., 197 I, pp. 33-64.

12. DARWIN, C. The Evolution of Species, P. F. Collier & Son, New York, 1902.
13. DE ANTONELLIS, V., AND ZONTA, B. Modelling events in database applications design. In Pro-

ceedings of the 7th International Conference on Very Large Data Bases. ACM, New York, 198 I,
pp. 23-31.

14. FAGIN, R. Functional dependencies in a relational database and propositional logic. IBM J. Res.
Dev. 21,6 (Nov. 1977) 534-544.

15. FAGIN, R. Horn clauses and database dependencies. J. ACM 29,4 (Oct. 1982), 952-985.
16. GALLAIRE, H. Impacts of logic on databases. In Proceedings of the 7th International Conjkence

on Very Large Data Buses. ACM, New York, 198 I, pp. 248-259.
17. GINSBURG, S., AND HULL, R. Characterizations for functional dependency and Boyce-Codd

normal form families. .I. Theoret. Comput. Sci. 26, 3 (1983), 243-286.
18. GINSBURG, S., AND ZAIDDAN, S. M. Properties of functional dependency families. J. ACM 29,

3 (July 1982) 678-698.
19. HAMMER, M., AND MCLEOD, D. J. Semantic integrity in a relational data base system. In

Proceedings of the 1st International Conference on Very Large Data Bases. ACM, New York, 1975.
20. HULL, R. Finitely specifiable implicational dependency families. J. ACM 31, 2 (Apr. 1984)

2 I O-226.
2 I. MAIER, D. The Theory of Relational Databases. Computer Science Press, Rockville, Md., 1983.
22. NICOLAS, J. M., AND YAZDANIAN, N. Integrity checking in deductive databases. In Logic and

Dufubuses, H. Gallaire and J. Minker, Eds. Plenum Press, New York, 1978.
23. SPYRATOS, N. An operational approach to data bases. In Proceedings of the ACM Symposium on

Principles of Database Systems. ACM, New York, 1982, pp. 2 12-220.
24. ULLMAN, J. Principles of Database Systems. Computer Science Press, Rockville, Md., 1980.
25. VIANU, V. Dynamic constraints and database evolution. Ph.D. dissertation. Dept. of Computer

Science, Univ. of Southern California, Jan. 1983.

RECEIVED NOVEMBER 1983; REVISED JUNE 1985; ACCEPTED JUNE 1986

Journal of the Association for Computing Machinery, Vol. 34, No. I. January 1987.

