
 

  
Abstract—In this paper, we investigate how generators’ ramp 

rate constraints may influence generators’ equilibrium strategy 
formulation. In the market model, generators’ ramp rate 
constraints are explicitly represented. In order to fully 
characterize the inter-temporal nature of the ramp rate 
constraints, a dynamic game model is presented. The subgame 
perfect Nash equilibrium is adopted as the solution of the game 
and the backward induction procedure is designed. Due to the 
inter-temporal nature of the ramp rate constraints, the subgame 
perfect Nash equilibrium strategy should be a Markov strategy. 
This, in turn, suggests that the subgame perfect Nash equilibrium 
of the proposed game should be characterized as the Markov 
perfect equilibrium. Finally, two examples including a simple 
discrete strategy example and a numerical illustration of 
applying the proposed approach are presented.  
 

Index Terms—Electricity markets, ramp rate constraints, 
dynamic game theory, subgame perfect Nash equilibrium, 
Markov perfect equilibrium. 

I.  INTRODUCTION 
ECENTLY, the electricity industry is being restructured 
around the world. As restructuring continues, many 

studies have been performed considering the unique 
characteristics of electricity as well as electricity market 
economics.  

Among many physical characteristics of electricity, much 
research has focused on understanding the roles of 
transmission networks in a deregulated electricity industry. 
Borenstein et al. studied the competitive effects of a 
transmission line that connects two electricity markets [1]. 
They showed that there may be no direct relationship between 
the competitive effect of a transmission line and the actual line 
flow on the line. Moreover, with a sufficiently large capacity 
line, the full benefits of competition can be achieved even in 
cases where the equilibrium line flow is zero. For sufficiently 
large line capacity, the market outcome is equivalent to the 
case where the markets are merged; that is, where there is 
unlimited capacity between the markets. Their work also 
included an empirical analysis of the California electricity 
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market modeled as a duopoly. Willems studied a very similar 
market model to that of Borenstein et al. and investigated the 
role of the network operator for promoting competition among 
the generators [2]. Quick and Carey applied the “dominant 
firm price-leadership model” to assess market power in 
Colorado’s electricity industry and showed that strategies exist 
to reduce market power [3]. Leautier studied regulatory 
contracts for the operators of transmission networks and 
proposed a regulatory contract that induces network operators 
to “optimally” expand the grid [4]. Stoft investigated market 
power issues when the generators serve a demand with 
capacity constrained transmission lines [5]. He considered the 
effect on market power of financial transmission rights (FTRs) 
and the resulting distribution of the congestion rent. Cho 
investigated the competitive equilibrium in electricity markets 
over a network with finite capacity [6]. He suggested a tool to 
check whether an equilibrium is efficient. He also examined 
markets for firm transmission rights in a market with a 
specific structure. 

Considering many studies on the transmission network 
constraints, generation unit’s physical constraints have been 
less studied in the context of markets. Baldick and Hogan 
applied a supply function equilibrium model to analyze 
electricity markets with capacity constrained generators [7]. 
Arroyo and Conejo described a market clearing tool which 
considers generator’s minimum up and down time constraints 
[8].  

One of the important constraints that considerably affect 
generators’ economic production is the ramp rate constraint. 
Wang and Shahidehpour proposed an algorithm to solve unit 
commitment problems considering the ramp rate constraint in 
the vertically integrated industry environment [9]. Lee et al. 
presented a price-based ramp rate model [10]. However, they 
did not consider generators’ strategic interaction in the market. 
Shrestha et al. studied the ramp rate constraint in deregulated 
markets [12]. Even though they addressed generators’ 
strategic dispatch decision, they did not consider strategic 
interaction. 

In this paper, a dynamic game model is proposed in order 
to consider generators’ strategic interaction with the ramp rate 
constraints. The solution of the game is obtained based on the 
subgame perfect Nash equilibrium concept [11, 13]. Backward 
induction approach is adopted for characterizing the subgame 
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perfect Nash equilibrium of the game. After equilibrium 
analysis, the inter-temporal nature of the ramp rate constraints 
shows that the equilibrium strategy should be a Markov 
strategy. That is, the subgame perfect Nash equilibrium is 
characterized by the Markov perfect equilibrium [13]. As an 
illustration, a simple numerical example is presented.  

This paper is organized as follows. Section II describes the 
electricity market model with explicit representation of the 
ramp rate constraints. In section III, a dynamic game model is 
presented and the market equilibrium is analyzed. Section IV 
presents a simple numerical illustration of the approach. 
Finally, the conclusion is provided in Section V. 

II.  ELECTRICITY MARKET MODEL 
We consider a series of electricity spot markets of which 

time index is denoted by { }Tt ,,2,1∈ . There are N 
generators in the market and the production cost 
function ++ ℜ→ℜ:iC of generator i, where { }Ni ,,2,1∈ , is 
of a quadratic form: 

( ) iiiiiii cqbqaqC ++= 2

2
1 ,         (1) 

where iq  is generator i’s production, and ,, ii ba  and ic  are 
parameters. Demand in the market at time t is assumed to be 
characterized by an inverse-demand function denoted by Pt : 
ℜ+→ ℜ+ and is represented by an affine curve with a negative 
slope: 

( ) tqtqtP βα +−= , where αt, βt ∈ ℜ+.    (2) 
Let qi,0 denote the initial production quantity of generator i. 

Let, also, ∆qiu and ∆qid denote generator i’s ramp up rate and 
ramp down rate for the interval between two consecutive time 
indices, respectively. Then, generator i’s ramp rate constraints 
are written as: 

{ } iuqtiqtiqidqtiqTt ∆+−≤≤∆−−∈∀ 1,,1,,,,2,1 ,(3) 

where qi,t is generator i’s production quantity at time t. 

III.  MARKET EQUILIBRIUM ANALYSIS 

A.  Game Model 
In the game model, generators compete against each other 

by choosing their production quantities (Cournot assumption). 
Generators’ ramp rate constraints described in (3) are inter-
temporal constraints in nature and, therefore, we apply a 
dynamic game theory in order to fully characterize generators’ 
strategic interaction in the markets. Fig. 1 shows the extensive 
form representation of the dynamic game for the electricity 
market considered in this paper.  

 

Fig. 1. Extensive form for the electricity market 
 
In this game model, there is a static game embedded in the 

whole dynamic game at each time t. That is, at each t, 
generators compete against each other to serve demand at that 
time by ‘simultaneously’ choosing their production quantities.  

One of the popular solution concepts in dynamic game 
theory is the subgame perfect Nash equilibrium. In this paper, 
the market equilibrium is defined by the subgame perfect 
Nash equilibrium. In order for every subgame characterization, 
we define generator i’s payoff function ti,Π  for the subgame 
from time t to T: 

 ∑
=

=Π
T

t
iti

τ
τπ ,, ,             (4) 

where ti,π  denotes generator i’s profit from the spot market at 
time t.  

B.  Equilibrium Analysis 
One way to characterize a subgame perfect Nash 

equilibrium is backward induction. Backward induction is 
applied for equilibrium analysis in this paper. The first step of 
this approach is analyzing the last node subgames at time T.  

At time T, generator i’s subgame payoff function is its 
profit Ti,π  at time T and the profit is defined as: 

( )TiiTiT

N

j
TjTTi qCqq ,,

1
,, −













+−= ∑

=

βαπ .   (5) 

Due to the ramp rate constraint, the possible production 
choice Tiq ,  is restricted according to generator i’s production 

quantity 1, −Tiq  at the previous time T-1. More generally, the 
ramp rate constraint at time { }Tt ,,2,1∈  is expressed as: 

tititi
qqq ,,,

≤≤ ,             (6) 

where ( )idtiti
qqq ∆−= −1,,

,0max , and iutiti qqq ∆+= −1,, . 

Due to the ramp rate constraint, there are three cases for 
characterizing the best response BR

Tiq ,  of generator i for the 

subgame at time T. Since Ti,π  is a concave function and 
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q ,

,

∂
∂π

 is an increasing function with respect to Tiq , , the best 

response BR
Tiq ,  is expressed as: 
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 (7) 
The third row of (7) is derived by the first-order necessary 

condition for optimality: 

0,,
1

,
,

, =−−−+−=
∂
∂ ∑

=
iTiiTiTT

N

j
TjT

Ti

Ti bqaqq
q

αβα
π

.  (8) 

The Nash equilibrium strategy profile 
[ ]Nash

TN
Nash
T

Nash
T qqq ,,1 ,,=  for the spot market at time T is 

determined by simultaneously solving (7) for all generators. 
Moreover, the Nash equilibrium payoff profile 

[ ]Nash
TN

Nash
T

Nash
T ,,1 ,, ΠΠ=Π  for the subgame at time T is 

obtained using the determined equilibrium strategy profile 
Nash
Tq . An important observation is that the equilibrium 

strategy profile Nash
Tq  for the subgame at time T would be a 

function of the production quantity profile 
[ ]1,1,11 ,, −−− = TNTT qqq  at the previous time T-1. This holds 

in general for the subgame from time t to T. That is, the 
equilibrium strategy profile Nash

tq  for the subgame from time 
t to T would be a function of the production quantity profile 

[ ]1,1,11 ,, −−− = tNtt qqq  at time t-1.  
This explicitly shows the nature of the inter-temporal 

dynamics of the ramp rate constraints. Since the ramp rate 
constraints restrict generators’ production quantities at only 
two consecutive times, the subgame perfect equilibrium 
strategy should be a Markov strategy. That is, the subgame 
equilibrium strategy profile Nash

tq is only dependent on the 
previous production profile 1−tq , but not on the production 
profiles before time t-1, 21 ,, −tqq :  

( ) ( )111 ,, −− = t
Nash
tt

Nash
t qqqqq .        (9) 

This, in turn, suggests that the subgame perfect equilibrium 
of the proposed model should be Markov perfect equilibrium 
[13].  

Now, consider we have the solution for the subgame from 
time t to T. Then, the subgame equilibrium strategy profile 

Nash
tq 1−  is obtained by simultaneously solving: 

{ }
( )Nash

tNti
Nash
tt

q

Nash
ti qqqq

Ni

ti

1,1,1,111, ,,,,maxarg

,,,1

1,

−−−−− Π=

∈∀

−

,  (10) 

where ( )Nash
tN

Nash
ttititi qq ,,11,1,1, ,,−−− Π+=Π π . Since we have 

determined the equilibrium for the subgame at time T, by 
using the backward induction procedure, the Markov perfect 
Nash equilibrium strategy profile Nashq  can be obtained as: 

 ( ) ( )[ ]Nash
TN

Nash
N

Nash
T

NashNash qqqqq ,1,,11,1 ,,,,,,= .  (11) 
The Markov perfect equilibrium path can also be obtained 

by determining the actual equilibrium outputs sequentially 
from the initial production profile [ ]0,0,10 ,, Nqqq = .  

IV.  EXAMPLES 
In order to show the validity of the proposed approach, two 

examples are shown. The first example is a discrete strategy 
game example and mainly aimed to provide an illustration. 
The second example is a numerical example using a simple 
market model is considered.  

A.  Discrete Strategy Game Example 
In order to illustrate how the equilibrium strategy can be 

specified in a simpler way due to the Markov property, we 
present a discrete strategy game example. Suppose that there 
are two strategic generators competing to each other. Three 
consecutive spot markets at t = 1, 2, 3 are considered with a 
given initial result ( )0,20,1 ,qq  the market at t = 0. At each spot 
market, generator i, i = 1, 2, determines one of two choices: 
ramping up up

iR  and down down
iR . We assume that, at each 

spot market, the ramping up and down rate of each generator i 
are the same and denoted by iq∆ . Following the Cournot 
game framework, the strategy of generator i at market t is 
defined as generator i’s output quantity tiq , . Fig. 2 shows the 
extensive form representation of the game. 

 

 
Fig. 2. Extensive form representation of the game 

 
Let us consider generator 1’s Nash equilibrium strategy 

Nashq 3,1  in the market at t = 3. Without considering the Markov 

property, there will be 16 equilibrium strategies for Nashq 3,1 , 
16,

3,1
1,

3,1 ,, NashNash qq , as in the final stage game shown in Fig. 2, 

and Nashq 3,1  can be represented as (12): 
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On the other hand, if we utilize the Markov property, then 
there will be only 9 equilibrium strategies for Nashq 3,1 , 

9,
3,1

1,
3,1 ,, MarMar qq , which are Markov perfect equilibrium 

strategies. Using the Markov perfect equilibrium concept, 
Nashq 3,1  is represented as (13): 






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





∆+=∆+=

=∆−=

∆−=∆−=
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,0,22,210,12,1
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1,

3,1

3,1

qqqqqqifq

qqqqqifq

qqqqqqifq

q

Mar

Mar

Mar

Nash (13) 

As shown in this example, even though we considered only 
3 markets and 2 discrete strategies for each player at each 
market, the number of equilibrium strategies in the final stage 
game reduced considerably. For more realistic cases with 
large number of stages and with continuous strategy spaces, 
consideration of the Marko property would significantly 
simplify equilibrium strategy representation.  

B.  Numerical Example 
We consider two stage game with t = 1,2, and the market at 

t = 0 is assumed to be previously cleared. The market clearing 
result at t = 0 is given as an initial condition as the intial 
production quantity profile [ ]25.0,25.00 =q . 

There are two generators with the same cost function: 

( ) 2,1,
2
1 2 =+= iqqqC iiii .         (14) 

The ramp rates for two generators are: 

.05.0
,1.0

22

11

=∆=∆
=∆=∆

du

du

qq
qq

            (15) 

The considered time horizon is set to 2, that is, { }2,1∈t . 
The inverse demand functions are: 

( )
( ) .2

,42

2

1

+−=
+−=

qqP
qqP

              (16) 

Following the backward induction procedures, first 
consider the subgame at t = 2. The equilibrium strategies for 
the subgame are determined as: 
















−

−
<+

−
>−

=

otherwise
q

q
qifq

q
qifq

q
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3
1
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q
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qifq
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.    (18) 

Considering all the feasible values of [ ]1,21,11 ,qqq = , the 
equilibrium strategy profile for the subgame is obtained as: 

[ ]25.0,25.02 =Nashq .            (19) 
Note that (17) is not a value but a function with a constant 

value. The equilibrium payoff profile for the subgame is also 
determined as: 

[ ]0938.0,0938.02 =Π Nash .          (20) 
Now, consider the subgame from t = 1 to t = 2. The payoff 

profile for this subgame is: 
[ ]
[ ]0938.0,0938.0

,

1,21,1

1,21,11

++=

ΠΠ=Π

ππ
.       (21) 

By finding Nash equilibrium for this subgame considering 
the initial production quantity profile, the Markov perfect 
Nash equilibrium strategy profile is obtained as: 

( ) ( )[ ]
( ) ( )[ ]25.0,3.0,25.0,35.0

,,,, 2,21,22,11,1

=
= NashNashNashNashNash qqqqq

.    (22) 

V.  CONCLUSIONS 
This paper proposed a game theoretic approach for 

studying generators’ strategic interaction in the deregulated 
electricity markets considering generators’ ramp rate 
constraints. In this paper, a dynamic game model has been 
proposed in order to consider generators’ strategic interaction 
with the ramp rate constraints. The subgame perfect Nash 
equilibrium has been adopted as the solution of the game. 
Backward induction approach has been applied to determining 
the subgame perfect Nash equilibrium of the game. The inter-
temporal nature of the ramp rate restricts the subgame perfect 
equilibrium strategy to be a Markov strategy. This, in turn, 
characterizes the subgame perfect Nash equilibrium of the 
proposed game as the Markov perfect equilibrium. Finally, as 
an illustration, we presented two examples including a simple 
discrete strategy example and a numerical example. 
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