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Introduction

It has been argued that the Bretton Woods system (of pegged
but adjustable exchange rates) set up after World War II was designed
specifically to prevent.the manipulation of exchange rates in pursuit
of national macroeconomic objectives (see R.Cooper); so it is perhaps
no cecincidence that the ending of pegged rates has\led to the
re—emergence of theories and policies involving such "manipulation".
Before the ar, when inflation was low and unemployment high in the
major industrialised nations, this involved "competitive depreciation"
as countries tried to gain employment; in the late 1970's and early

1980's, however, countries like the UK and the US have embarked on

policies of competitive appreciatian in order to cut inflation,

regarded as the first priority. Sharp movements in exchange rates,
however, constitute a threat to orderly trade and stimulate protect-

ionism, as Bergsten (1981) arqgues ,

In this paper a framework for analysing the behaviour of
rational policy makers in open economies with floating exchange rates
is developed and applied to a relatively simple economic model. Such
a framework should prove helpful in assessing (or constructing) plans
for reforming current international monetary arrangements (as contained
in the evidence and reports of the Treasury and Civil Service Committee

on this topic, for example).

In the proposed framework, policy makers optimise in an

environment with three main characteristics. First the economies

are interdependent, so policy actions in any one country have significant

impacts on other economies, second the economic processes are assumed to be



dynamic, so any optimisation involves plans over time, and third there is

forward-looking behaviour on the part of private agents whose expectations

of policy actiomns influence the effects of pclicy itself.

To characterise the behaviour of policy makers in an interdepen-
dent world, Koichi Hamada has applied ideas from gamg theory, specifically
the notion of Nash behaviour and Stackelberg leadership, see for exzample
his 1974 paper - Hamada's analysis is typically conducted in a static
framework but, Py using appropriate results from dynamic games, the same
jideas can be applied to dynamic economies, as we show. (See also Buiter

(1983) for a discussion of &ynamic games and econcmic policy).

For the most part in what follows policy makers are assumed to
take each others policy "paths" as given when choosing their own action
(the Nash agsumption) . But, given the way in which they influence the
expectations held by private agents, it appears that these policy makers
are in the position of Stackelberg leaders vis a vis the private sector:
specifically they can take into account the reaction of the private

markets to policy announcements in choosing policy itself.

As is shown by the necessary conditions for the optimal open-
loop behaviour of é Stackelberg leader, the policy is time inconsistent,
as discussed in Kyland and Prescott (1977). . And so too, for essentially
the same reason, is optimal econcmic policy in an economy with perfect
foresight, calvo (1978) (cf. Driffill (1982) for a discussion of
monetary policy under floating rates). The fact that in the presence
of forward looking behaviour optimal economic policy is time inconsistent
immediately implies, however, that it cannot be cbtained by using
dynamic programming techbniques. The latter are based on Bellman's
Principle of Optimality, so they are restricted to examining only

time consistent policies which can be expressed in feedback form.

Pontryagin's maximum principle, however, provides an open-loop solution



path which constitutes the optimal policy (although, when time incon-
sistent it cannot be meaningfully expressed in feedback form). For
present purposes therefore the maximum principle is preferable, and by
assuming an infinite time horizon provides analytically tractable sol-
utions for optimum policy. The very fact that such solutions do not
cbey the Principle of Optimality must, however, raise some doubts about
their credibility, so we investigate related time consistent policies

on each occasion |

This paper is organised as follows, In Section 1 there is
a brief review of the basic results of policy optimisation using the
maximum principle for a single controller in an environment where
there are no forward looking expectations influencing private behaviour,
The open-loop optimal policy solutions are calculated (for the infinite

time case) and shown to be time consistent.

In Section 2 the exercise is repeated in an N-country environ-
ment where each policy maker takes the policy path of the N-1 others
as given in designing his/her own policy, sc the system constitutes an
N-person open—loop-Nash non zero-sum game., The solution paths (if
they exist) are shown to be time consistent but are Pareto inferior to
a centralised policy which is also calculated. In Section 3 the
time inconsistent optimal solution of the cpen loop Stackelberg game
is describedsas are two closely related time consistent policy paths.
The first cf these is the"perfect cheating"solution where the leader
changes the game by so using his freedom to make credible announcements
as to deliberately mislead the follower; the second is the one where
the leader "loses his leadership position" - and the game reverts to an

open loop Nash solution. These game theoretic ideas are then used



to discuss optimal policy for a single policy maker in a general dynamic
linear model with forward looking behaviour in Section 4 (and the con~

trast with the results of Section 1 is drawn).

As an Annex to Section 4 is an application to fiscal policy
design in a small open economy with floating rates (Annex I)f The
effects on the roots of the system of applying time-inconsistent optimal
policy are shown analytically, c¢.f. Livesey (1980), as are the conse-
quences of "perfect cheating" and of "losing leadership”. Numerical
results obtained using "Saddlepoint" (Austin and Buiter (1982)) are
also presented. The assumption of an infinite horizon helps to make

the analysis more tractable than the finite time case examined by

Driffill (1982).

In Section 5 the N-player open-loop Nash econcmic "game" of
Section 2 is extended to include forward-looking behaviour by private
agents. Optimal behaviour, on the assumption that policy makers act
in Nash fashion towards each other but act as leaders vis a vis private
agents, is derived and is seen to be neither time inconsistent nor Pareto
optimal. Centralised, Pareto optimal policy, also calculated, is not

time consistent either.

As an Annex to this section, the example eariier used is extended
to cover two interdependent economies with a flcating exchange rate (Annex
2)f The formal characterisation of optimal time-~consistent Nash policy
requires a high order differential equation; but the assumption that the
two countries share a common economic structure (cf. Aocki (1981)) together
with numerical solutions obtained using "Saddlepoint" make the analysis

reasonably accessible.

In conclusion, some of the implications of the proposed frame-

work are drawn out, and various further developments briefly ocutlined.



(1) A Review of policy optimisation with a single controller and
a quadratic criterion.

Consider an economic system described by the linear state

equation
(1.1) Dx = Ax + Bu

where the state variables are represented by the vector x and the
control variables by the wvector u. In what follows all such vectors
are implicitely time-indexed, so that x = x(t); and the operator D

indicates differentiation with respect to time.

The policy maker is assumed to select a path for u by
minimising a quadratic cost function
. T
(1.2) Vv = J {(x" (s)gx(s) + u (s)Ru(s)lds

0

where Q and R are symmetric matrices (positive semi-definite and
positive definite respectively) representing the preferences of the
peclicy maker, and the superscript T denotes transposition. The
assumption of an infinite horizon is made for analytical convenience
(as explained below) and the solution may be obtained by applying
Pontryagin's "maximum principle" (see for example Intriligator (1971,

Chapter 14) or Wiberg (1971, Chapter 10).

The "Hamiltonian"™ relevant for this minimisation problem is



(1.3) H = %XTQX + lz‘uTRu + pT(Ax + Bu)

where the vector p denotes the costate variables (or "shadow prices")
attached to the state variables by the-policy maker at each point in the

plan. The necessary conditions for optimisation may be written

E):4
du

(1.4) Ru + BTp

f
@)

;S
Ix

(1.5) ox + ATp

i
g

JH

(1.6) 35- Ax + Bu = Dx , i.e. the model of (l.1) above.

Equation (1.4) implies that the policy instruments are related to the costate

variables as

(1.7) u =-R Bp

and, on substituting this into equation (1.6), one bbtains the "adjocint
system” describing the dynamic behaviour of both the state and costate

variables under optimal control:

[Dx

HI
X

(1.8)

Dp

If there are n state variables, equation (1.8) is a system
of 2n linear homogeneous differential equations, which will have a unique
solution given 2n “boundary" conditions. The first n of these are

typically provided by the "predetermined" initial values of the state

vector, x(td) = xdi the remaining n conditions are given by the "trans-
versality" condition which, assuming controllability for the infinite time

problem considered here, ensures that the solution depends only on the stable

roots. Note that the adjoint system has a saddle point structure, indeed the



roots appear in pairs of opposite sign see Wiberg (1981, p.215), for

example,

The dynamic adjustment of this system can be analysed easily
with the aid of the usual camonical transformation. Iet the column

eigenvectors of M be denoted by the matrix C so that

(1.10) MC cA

where A 1is a diagonal matrix of eigenvalues. Then the variables x
and p can in general be: expressed as functions of canonical variables

Z  (each associated with a single root) as follows:

(1.11) S ®
p a1 a2 B
where
[Diz A .
(1.12) sl | ® S
A
Dzu o Z

and zs, zdl denote the <cancnical wvariables associated with the stable

and unstable roots respectivaly.

As the transversality condition requires that Z = 0, this
u
implies x = Cl‘zs or zs = Clzlx. Hence the open loop dynamics of the

state variables under control are found from the initial condition

x(to) = X and the equation

1

A X.

(1.13) Dx Cll scll



which together imply

A (-t )
_ s e -1
(1.14) x = Clle : Cll x(to).

Since the transversality also requires

-1

(L.15) . p = Cles = C21Cll b'e

the open loop dynamics of the shadow prices are

A(e=t) )
(1.16) p = C21e cll x(to)

and the optimal path planned for the instruments of policy is, given
(1L.7) above, consequently
ar, ARl Thee .

; - s
(1L.17) u R B czle 11 (o}

It is easy to confirm that such a plan is "time consistent"

i.e. satisfies Bellman's Principle of Optimality which asserts .

"an optimal policy has the property that
whatever the initial state and decision
igontrol] are, the remaining decisions
must constitute an optimal policy with
regard tc the state resulting from the
first decision". Bellman (1957).

Let us denote by a prefix to the state variable the date at which
the open loop plan was formed and include explicitly the time index.
Then we find that reoptimising at tl given the initial condition
x(tl) (achieved by following the optimal plan formed at to) yields

0
an optimal plan



S

= £ =
. x(t} Clle Cll - x(tl) or t tl

1 o]

_ A (e=t ) -1
= Clle s 0 Cll x(to)
"i.e. the optimal plan found at £t is simply a continuation of the plan
found at t_ providedthe system was at & x(tl). Hence that

0
portion of the original plan from tl, onwards constitutes an optimal

trajectory in its own right.

The same logic applies to the shadow prices and controls

8O0 for a time consistent plan

‘p(t) = p(t) , u(t) =, u(w) , for t, > t_.
tl tO tl o) 1 o]
i.e. the shift of "origin" for optimisation from to to tl leaves

the planned values for costate. and policy variables unaffected.

Since the plan of equations (1.15) and (1.16) is time consistent,

so tlx(t) = tox(t), t > tl, as long as x(tl) = to

some extraneous displacement were to occur so that, for example,

x(tl), But if

x(tl) = x(tI)+ § then the optimal policy would not be to continue

%o

with the original plan. Instead the new plan would be based on shadow

prices which differ from & p(t) since
o]

A (t-t,)
) = coe® ol xw+ s
tlp = bt 11 tox' 1

A (t—tl) c

. P(t) +C e ® 1

Ils , 2t
o 21

1



10.

which implies, given (1.7)

A (t,-t))
_ -1.7T s 2 10 -1 >
tlu(t) = tou(t) -R B czle cll §, t = t,

Thus the controls follow the original open loop trajectory

chosen at tO modified by an "innovation contingent response", starting

at the time of the displacément and decaying ultimately to zero.



1l1.

(2) Decentralised control: an N-courntry "Nash" differential game

Given a dynamic system with the state equation

where the ug denote the instrument(s) under the control of country i,

one could characterise the behaviour of the system under decentralised

optimal control as follows.

Let the ith country minimise a cost functional of the form

vi =2 oT(s) .x(s) + T uT(S)R..u. (s))ds
1 j=1 1337

e A

where the weighting matrices are symmetric and satisfy Qi z o, Rii > 0,

R Zop i#jlilj=llN'

ij
Sr . . .th
Defining the Hamiltonian for the i country as
. N N
(2.2) gt = T Q. x+ L u? R,.,u + p?(Ax + I B,u)
1 j=1 J 1J 3 1 j=1 J3

th
where p; are the shadow prices relevant to the i country, the
necessary conditions for cost minimisation become
i T -1 T
(2.3) —— =R, u, +B,p, =0+« u =-R . B, p
aui ii'i ivi i ii i1 %%
and (assuming that each country fails to realise that the other countries

are also altering their controls in response to the environment)



12,

ami T
(2.4) Dp, = = 3—==-Q;X-A'p,

After substitution of the optimised values of the instruments,
the dynamics of the system under decentralised control will for this "open

loop" Nash game be

R ] ™3 - I e ] [T
(2.5) .D,xi A Jl -JN X <

D -Q -aT o)

Py 1 e Pl . 8 |21
=M
. . .

DPN _QN' 0] ee. =A Py Py

_ -1T )
where Ji = BiRiiBi , 1i=1,...N.  (See Basar and Olsder (1981, Ch.6.))

Agsuming, as before, the dymamics of the system under such control should
be restricted to the stable manifold, and that the state variables are
predetermined at to, the open loop path for the state variables from
x(to) = x_ 1is given by

o

(2.6) bx = C,. AC

where the C and As are now defined with respect to the matrix

11’
MN shown above in equation (2.5).

The "control rules" in operation must be of the form

i _ _-1_.T _ -1 T -1
Rt UooT Rys By P T Ry By Cer,1 G
where C refers to the appropriate block of the column eigenvectors

i+1,1
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associated with As.

Note that despite the number of dynamic equations in the decen-
tralised system, the number of distinct roots in (2.5) can only be
thrice the number of state variables, since the dynmamics of the state
variables can be reduced to a second order differential equation in the
state variables, and all the Py have the same block, —AT, on the

—

diagonal adding a further N roots.

Pareto optimal policies may be derived by assuﬁing a single

controller and assigning weights to the individual countries cost

functionals. The problem is then to minimise
1 N T v N T
V= = I wXx(s) Q. x{s) + I u . (s)R,.u.(s)ds
2 .4 T 1 J i3 3
’J--—,l. =1
tO

by chcice of paths for the u, .

Given the Hamiltonian

N N N
(2.8) H = %- z wi(xTQ,x + I u?Ri.u ) + pT(Ax + I Biu_)
i=1 * j=1 3433 i=1

the necessary conditions are

N
(I w R )u =-BP
=1 77
or
T
R,u, = - Bip
*_ ¢
(2.9) u, = =R, L B’.rp
i i i
and
N
oH _ T
(2.10) Dp = el E wiQix A'p
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so the the system under "centraliged" control would be

= - . N - ™ "
: Dx A & 7, X
(2.11) i=1 °

Dp ) § w.Q —AT P

. i%®i

L i=1 J |

- *~1 T .
where J, = B,R, "B, i=1,...,N as before.

i i’y i

The dynamic behaviour of the state variables is thus given by x(to) = X

and

-1

(2.12) Dx = C 1 As Cll X,

1

for Cll .and As defined by the adjoint system (2.11). The contrcl rule

is then given by =

(2.13) * w, = -R;"lsf Coy cﬁ X.

"In a system such as that under discussion, where there is no
long-run inconsistency of targets (so each country can ultimately reach
zero cost equilibrium) it is nevertheless true that the Nash-decentralised
control will be inefficient relative to centralised control (which is
Pareto-optimal). While one may in principle be able to solve for Pareto

efficient policy, however, it is not obvious how such policies would be

implemented and politically sustained.

As the optimal sclutions for both the decentralised open-loop
Nash game and for the centralised controller are "time consistent® in
the sense defined in Section 1, they too could have been calculated by

dynanic programming methods rather than by using the maximum principle.



15.

(3) The time inconsistency of optimal policy in a two-person
Stackelberg di-fferential game

In Section 1 the unique solution for the optimal control problem
for a single controller was obtained with the aid of initial conditions
for all the state variables, whose starting values were -all predetermined, .
By contrast the initial values for the co-state variables were deter-
mined by the "transversality" requirement that they lay on the stable

manifold of an adjoint system with a saddlepoint structure.

It is not unusual in economics, however, to find that the state

equations themselves have a saddle point structure, and that some of the

state variables are determined by the restriction that they lie on the stable
manifold of such a system (cf. the "rational expectations" models of
floating exchange rates to be found in Dornbusch (1976), Buiter and

Miller (1981) and Driffill(1982), for example). Since the application

of control changes the dynamics of the system, as shown in Section 1,

it must -in general change the initial values of those state variables

which are determined in this way. For such models therefore it is in-
appropriate to assume that the entire vector x is pre-determined at

time t as has been done in Sections 1 and 2 above.

Ovl

the initial values of

In considering how to proceed where/some of the state variables
are determined endogenously to the control problem, it is illuminating firgt
to consider in some detail the procedures used for analysing a two-person
dynamic game with a Stackelberg leader, because the follower's behaviour
is characterised by a saddle point structure. Specifically we will
examine the open-loop solution of an infinite-horizon differential game
with a Stackelberg leader, before returning to the general problem of

control with "forward-looking" variables.



i6.

A two-person Stackelberg Differential Game

For a Stackelberg game between two players with a linear struc-—

ture, the state equation is

(3.1) Dx = Ax + Blul + B2u2

where the poclicy variables of the leader are represented by Uy and

those of the follower by U, The follower is assumed to minimise the

cost function

o

(3.2) V2 =12'- (x(s.)TQ x(s) + uy (S)R 1% (s) + u (s)R PR (s))ds

%o

where the weighting matrices are symmetric and satisfy Q2 2o,

Ry z o, R,, > 0, subject to (3.1) and the given value of the leaders

announced path for ul from time to orwards. The Hamiltonian for

the follower is thus

2 u, + B_ u )

1
-7(x92x+uR u+uR )+p2(Ax+Bll 2

1721 1 2 T22 %2

with corresponding first-order conditions

-1_7T
(3.3) u, = —R22 B2 P,
2
JH - _ _ AT
(3.4) Dp2 = 3z = sz A p2.

where the follower's costate variable Py implicitly depends on the

leader's policy.
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The leader calculates his optimal path for wu, taking into

1

account the behaviour just ascribed to the follower by minimising

o0
1 T T ‘ T
== : + :
(3.5) Vi =53 J (x (s)le(s) fu (S)Rllu(S) + u2(S)R12u2(s))ds
t0
where the - weighting matrices are symmetrical and satisfy Ql 20,

Rll >0, Rl2 > 0, subject to the follower's first order conditions

(3.6) Dx = Ax + 13l u, + 132 u,
and
(3.7) Dp, = -Q, x = AT P

2 2 2

Since the control solution for the follower has a "saddle-
point" structure, it is evident that the leader is faced by a set of
state variables (in equations (3.6) and (3.7)) whose initial conditions
are not all independent of his activity. Specifically p2(to) will

vary with the leader's policy.

For the leader the relevant Hamiltonian may be written

1 1,.T T ' T
( = =
(3.8) H 2(x Ql X + ul Rll u, + P J

12 Bp!

T «T _ AT
+pl(Ax+B\u 2(sz Apz).

79 - J2 p2) + P



where * is the costate which the leader attaches to the follower'g
P3

. - -1 T - -1 T
costate variable, where J2 = 13.2 R22 B2 and u2 = Bll 32 P, leads
: T T -1 -1 _T T
R » bei i = .
to u2 12 u2 eing written as p2 32 R22 R12 R22 32 PZ _p2 le p2

The first crder conditions for the leader are thus

(3.9) u, = =R B

T
= - . * -
(3.10) Dp, Ql x + szpz A P,
* - * e
(3.11) Dp2 Ap2 + J2 Py le p,-

So, cocllecting results, we obtain in matrix form (c.f. Simaan
and Cruz (1973)) the necessary conditions for the open loop Stackelberg

solution with player 1 acting as leader

Dx | ™ o -3 -3, [x] . ]
(3.12)
Dp* _ 0 A _ . I "
2| = Ja J12 P3 Mo |P3
Dp -9, o, -A
1 1 2 ¢} Py =3
Dp -Q o) 0 —AT P p
2] |72 ] LF2 | P2
where J. = B. R.Y BY , i=1,2
1 1 11 1
-1 1T
and 3, B, R0 R, R22 B,

with x(to) given, pg (to) = 0 and the transversality condition that
the system be restricted to the stable manifold. Notice that with Py

and P, free to adjust so as to satisfy the transversality conditicns,



19.

the leader will set pg(to) =0 at the time of initial optimisation;
‘as p§ is the shadow price of Pyr SO doing reduces the "costs" the

leader sees associated with P, to a minimum.

The dynamics of adjustment of x and pE under such conditions

will be described by

(3.13) - [bx -1 X
= A C
- €11 % “n .
P2 P%
~ A (0] Jl J2 . X
- C C
21 11 -
o A o I P™)
Where Cll are the stable column eigenvectors of M
€12

with the phase diagram of a stable node such as that shown in Figure la.

For the case when x 1is a scalar, equation (3.13) has a phase
portrait with a stable node such as that shown in Figure la. As the
leader is trying to minimise the costs of x being away from zero, one
would expect the eigenvector associated with the (absolutely) larger
stable root to lie close to the horizontal axis as shown - but not to
coincide with the x axis except in degenerate cases. Various traj-
ectories satisfying the differential equations and the transversality
condition are shown converging to the origin, sud the unique optimal
trajectory associated with the initial condition x(to) = X is shown

o

starting with _pz(to) = 0.



19a.

Eigenvector associated
with ‘small’' root

Eigenvector assoc-
iated with ‘large'

)X

(b)

7t

FIGURE 1. The time inconsistency of optimal policy in an
open loop Stackelberg game.




As is evident from the phase portrait, this optimal path is not
"time consistent". For if we consider the leader "reoptimising" at

some later date tl > to when the state variable pursuing a determin-
istic path has reached x(tl), then his decision must be to reset

o}
pz(tl) = 0, which would lead to a new trajectory starting from point

R in Figure la.

20,

Resetting 95 to zero represents a change in the plan for future

path for uy originally announced by the leader, as is illustrated in

Figure 1lb, where the path for uy announced at to is shown labelled

as . u,. In this scalar example this is proporticnal to py as
o]
u; = Rzi BTpl, so with a change of units the same path represents

p; as well) . At time tl. the announced path shifts to (and

u
tl 1
this will be associated with a shift in Py at time tl for the reason

just given).

As p*(t,) # _ p*(t,) = O, the optimal plan formulated at
t "2 71 tl 1
to with the aid of the maximum principle is not time consistent, and we
would not therefore expect to be able to determine: it by using dynamic
programming methods based on Bellman's Principle of Optimality. A nece-~
ssary condition for Bellman's principle to apply in this context avpears
to be that p*2(t) =0 for all t > to, and we now consider when this

time consistency constraint may be satisfied.

One optimal solution to the Stackelberg game which (if it
exists) is time consistent is where the leader can carry out a policy
of "perfect cheating" see Hamalainen (1981). It is assumed that the

(o]

leader may announce any control path a, which need not correspond

to path actually chosen for u, . Since the leader has, in virtue



of such announcements, a "costless" way of affecting the followers

behaviou¥: (by manipulating p.,)} the perfect cheating solution inwlves
: 2

setting p*2(to) =0 and Dp§ = 0, which from equation (3.1ll) above
impli J -J =0 or B,R .. BT =8, r RoBT so the
implies J,P; = v10P; °r By Ry By Py T By Ryy RppfpP py

shadow prices of the follower are linked to the shadow prices of the
leader.
The dynamic behaviour of the state variables and the shadow
prices under such a policy,also known in the literature as a "team
Basar and Olsder (1980)
optimal solution"/can be cbtained by simply setting equation (3.11) to
zero and dropping equation (3.4) - because the follower is "cheated"

into choosing those controls for u, which suit the leader.

5 This
changes the time inconsistent system (3.12) to the lower-order time

consistent system shown as

(3.14) Dx A ;Jl —J2
T
pp,| = |-9, - o
o | . I 12
or alternatively
(3.15) D A -3 +3,7 L, %
. x 2 Y1292
= T
where J, = B, RT} B? i=1,2.
1 1 11 1
_ .l -1 T
Jig T By Ryy Ryp Ry By
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The existence and uniqueness of such a solution to a Stackel-
berg game is discussed in Basar and Oslder (1980). The necessary
requirement discussed there (that the pair (A, (Bl, B2)) is stabil-
izable) appears to rule out the anomalous situatiomnr where the follower
has control variables "which do not affect the state variable, and
thereby cannot be detected by the leader" Basar and Olsder (1982,

p.331).

An alternative approach which also avoids the problem of time
inconsistency suggested to us by W.Buiter is to consider circumstances
where the need for P; does not arise at all, so that one simply
deletes the 2nd row and 2nd column of 2.2. On doing this one finds
that the resulting system is that of the open loop Nash game examined
in the previous section! If the leader "loses his leadership role",
because for example his announcements cease to be credible, the solution

will become time consistent (though the game will alsoc have changed its

character) .

In our subsequent treatment of the problem of policy design in
an economy with forward-locking behaviour, both of the time consistent
solutions referred to here, the "perfect cheating" proposed by Hamalailen
and the "loss of leadership" suggested by Buiter will be used again,
though the latter is typically labelled "Nash Policy" since the government
becomes a Nash player rather than a Stackelberg leader. (The problem of
time inconsistency would not arise if a single policy maker were to choose
all instruments so as to minimise the weighted sum of the leader's and
follower's costs; these Pareto optimal solutions are not investigated

below as the cost functions of the follower are not typically available).
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4, Optimal cantrol of an economy with forward looking behaviour

Having considered the issues to be faced by a Stackelberg
leader in a dynamic game, we examine the problem for the policy A
maker in an economy with a saddle point dynamic structure. This
involves some modification of the results of Section 1 as the state

vector now includes some variables which are not historically pre-

determined but are free to "jump" (to satisfy transversality conditions).

The state variables which are not predetermined are typic-
ally “forw;rd looking" prices which depend on the (expected) future
path of the system, and there is a direct parallel between such
variables and the shadow prices in an optimal control problem.
Consider for example the equation describing the behaviour of these
prices in the saddle point models of investment of Blanchard (1981)
Summer5(1981) and Hayashi (1982). The financial arbitrage equation

between shares and other short-term financial assets is essentially:

<|g
.

4ia
i
D

where v 1is the (real) value of a share
d is the real dividend paid on the share

p is the instantaneous real rate of interest
available elsewhere.

It is evident that such an equation is quite likely to introduce
an unstable root as it implies Dv = pv-d, though one cannot of

course say anything definite until the mechanisms determining p
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and d had been spelled out (as in the references).

It will be cbserved that such an arbitrage equation is
almost identical to the first-order condition for the costate
variable (shadow price) in a Scalar case where there is a constant

discount factor p in the criterion, namely

H
X
Dp-pp=-H or R 4+ X - ,
P p = o =
where p is the costate variable
p 1is the discount factor
. OH . . _ .
Hx : 35 where x is the state variable.

In this paper there is no discount factor in the criterion
fmammbthammWismwnmbﬁammmmm.

- *
In Annex 1 below we present a specific economic

model containing a financial arbitrage equation (between domestic
and foreign financial assetsz in an open economy) and possessing a
saddlepoint structure. Zere however, we apply the results just
obtained for the Stackelberg game to the problem of policy design
in a general linear model with a saddlepcint structure and some
state variables not predetermined but free to "jump". The number
of the latter, to be interpreted as "forward locking" prices (just
like costate variables), is less than or equal to thz number of

unstable roots.

* Not included in this copy: available on request
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Assume the economic system with a saddle point structure

is linear with a minimal state space representation

(4.1) Dx = Ax + Bu
X
where x = is the state vector (with X being predeter-
x
2
mined at to and x2 "Jump" variables which are free to adjust at

the time of optimisation) and u is the vector of policy instruments
to be chosen. Let the single policy maker minimise the quadratic

cost functional

o 1 (% o

4.2y v o= 3 I (x” (s)Qx(s) + u'(s)Ru(s))ds
tO

by appropriate choice of wu. The differential equations for the

‘adjoint system of state and cocstate variables, p, described in

Section 1 still apply so

(4‘3) bx A -J ‘-_
Dp| ~-¢  -al |p
-1.T 1 A, .
where J = BR B and p = partitioned conformably with x.
D
2

The assumption made in Section 1, that the entire state
vector is predetermined is, however, no longer appropriate. Instead,
at to we take X4 to be predetermined "given by history" together

with p, (costates for x2) "given by optimality" - as discussed
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as before the "predetermined"™ variables came first, thus

—I—)x; ,—Al -J12
A oey | ey Ay
bpy 9 Ay
] B I S P
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It is convenient, therefore, to reorder the system so that

where A ,Q and J are partitioned to conform with x and p.

The path to be followed by

X, and P,

from their initial

conditions can be described as a function of the stable eigenvalues

and their associated eigenvectors in the usual way, so

(4.5) Dxxl—
-1
» = As €11
P2~
- .
C A
where MC = 11 lé] s
a1 czzJ
i.e.

C denotes the column eigenvectors cf M above.

The remaining

variables are linearly related to these by the expression

(4.6) P 1 |¥
1 _ ¢ o "1 |1

. 21 711
[T2 2
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Apart from the reordering of the variables all is as in
Section 1. The crucial question is of course the value at time tO
toc be assigned to Pys the shadow prices of the "jump" variables,
Xy From our consideration of the Stackelberg game it will come
as no surprise that the cost minimising value for P, is zero.

As Driffily (1982, p.8) argues, such state variables

"can initially take on any value. They
are not constrained by their past history.
Since a costate variable indicates the
(contribution) to the maximised value of
the maximaniof a marginal change in the
starting point of the state variable,
freedom to choose any starting point
implies the marginal value of a change
must be zero".

While xz(to) is historically predetermined, therefore, PZ(tO) = 0,
Note, however, that in general p2 will cease to be zero once the

system-under-contrcl proceeds from the initial conditions established

at to.

The optimal solution to the minimisation problem may be

expressed in explicit 'open loop' form as

4.7) X -
to 1 As(t to)

where the subscripts on the projected values of Xy and P, indicate

the date at which the plan was formed. This plan is not time consistent
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however, however, because at a later date the optimal policy on
the same criterion will not be to continue with the programme

(t X0 ¢ PZ) shown in equation (4,7).

0 (0

Faced with reoptimisation at some later date tl > tO'

the policymaker will proceed by resetting Py to zero, so

Pz(tl) = 0. The new programme will therefore be
(4.8) L X x(t,)
L5 A (t-t,) 1
=c.,e® L -
= 11 11 o
tl 2

This will clearly involve a change in the path planned for Py it

will also involve a change in the other jump variables as

(4.9)

p x(t,) x(t.) | p
) L A (t-t,) 'to L A (e=-t ) & tol
- s 1 -1 s (0] -
= C..e C. #C e -1 =

21 1l 21 c
£ %o 0 11 o] «
-1 2

Since the optimal policy of (4.7) is not time consistent,
it cannot be calculated using the standard techniques of dynamic
programming,as Kydland and Prescott (1977) pointed out. Dynamic
programming methods are based upon Bellman's Principle of Optimality
which, as we have seen, means that only time consistent policies are
considered. The open loop policy calculated using Pontryagin's Maximum
Principle minimises the criterion function for a given initial condition
(vhich is why we refer to it as optimal) even though it fails in this

case to satisfy Bellman's Principle of Optimality.
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Though the optimal plan is expressed as a time inconsistent

open loop, this does not prevent a response to extraneous disturbances

to the state wvector so long as the response does not undermine the

credibility of theinitial trajectory. The optimal innovation contingent

response which is associated with the trajector of equation (4.7) is simply

‘described. Let x(tl) = ¢ x(tl) + § where § is the disturbance,

o
then the optimal policy thereafter will be

@10 Toa EACIAR
A (t-t.)
= ces Lt
p. (£) 1 . . (£.)
£. P2 2%
1
ox, (t) S
to s As(t-tl) 1
- - >
tC® 1 A
o o

i.e. it will be the original plan plus an "innovation contingent response”
which is itself optimal, given the constraint that t:lpz(tl) = t‘92(1:1).

In responding to the disturbance, the policy maker is constraingd only

to take actions justified by the innovation itself; and clearly the

second term in the last expression is an optimal response to such a

disturbance from a position of equilibrium.

The "innovation contingent response" for P, and X, is thus
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(4.11) tlpl(t) - topl(t) A o
- e s(t—tl)c—l
21 11
x,(t) = _ x_(t) 70
[t;2 ty 2 ]

and the movement of the controls can be calculated from (1.7)

(4.6) and (4.11).

As was the case for the Stackelberg game, we can construct
a time consistent policy if we alter the basic assumptions made so far
and assume instead that the policy maker is able to delude the forward
looking markets so that Py is always set to zero (and the equations
describing the evolution of the forward looking markets are "inoper-
ative"). Setting p, = Dp2 = 0 for the adjoint system ( 4.4) yields

the dynamic equations for such a perfect cheating solution namely

(4.12) E)xl— [_-All -, ALl (%
D -0 a7l -
P1| = 11 11 22 [P
(0] - -A T . X
9] a1 Riz Q2] %2

which can of course be reduced by substitution for X, so as to yield

where Xy is predetermined and Py is given by the transversality

-1
requirement for this control problem, i.e. P, = C21Cll 3 where C
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is the column eigenwectorvassociated with the stable roots of Mpc'

It is evident that this perfect cheating solution is time consistent,

since it involves an open loop path only in terms of Xq1 and it must
involve a smaller cost to the policy maker than the time inconsistent

solution earlier considered as the policy maker now has one less con-

straint (the equation for Dx2 has been dropped) .

As the ecoromic example in Annex 1 shows, the policy maker is
assumed to have the power to mislead the forward-looking markets by
announcing a path for u (say & uq) which bears no relation to the

0

planned path g 9 It is unlikely that the policy maker would in
o]

the circumstances retain credibility; he may indeed lose all power to
influence market expectations. In this case the policy maker "loses
his leadership" and the situation reverts to one in which the policy
makers takes the paths for the x, variables as given in minimising

his criterion.

To describe the system under this "Nash" policy assumption

one simply deletes the row and column for P, in equation (4.4).
Thus p, is eliminated from the system, (but the equation for Dx,
is retained as the policy maker has lost the power to mislead the

market) so

(4.14) Dxl All _Jll Al2 xl xl
D Q A .
Pl = 11 11 Q2| (P1] =wm Py
NP
.l | 21 T Paz] [Pz Pal
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As only X will be predetermined (with Py and X, "Jjumping" so
as to remain on the stable manifold of the system with the transition
matrix MNP) the solution will be time consistent.

These three solutions (the no-cheating time inconsistent
optimal peolicy, "perfect cheating" and "Nash policy") are illustrated
with a simple example of policy design in a small open economy under

floating exchange rates in Annex 1.
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5. Decentralised control = an 'N country Nash differential game
- with forward looking variables '

We have considered how the standard time consistent results
of optimal control in Section 1 can be modified to provide time-
inconsistent optimal solutions for ecomomic models with a saddle point
structure arising from forward-looking variables {(whose initial values
were not historically predetermined). It is fairly straightforward
to make analogous modifications to the results for the N;country open
“loop Mash game in Section 2 so as to allow for such forward looking
variables there too. Even though the policy makers take each
other's pelicy actions as predetermined, the optimal policies
chosen will nevertheless be time inconsistent as the policy makers

act as leaders vis a vis the financial markets.
The results cbtained are then applied to a two country
version of the open econcmy model for which time inconsistent optimal

policies have already been derived see Annex 2.

5(a) Modificaticons to the open-loop Nash results of Section 2

It is easiest to begin by considering how Pareto optimal
policy is to be determined if the state vector is partitioned into
Xqs variables predetermined at to, and X, "jump" variables.
For Pareto-optimal policy there will only be cne set of costates p,

which are partitioned conformably. The dynamics of the system under

centralised control, appearing earlier as equation (2.11), is now shown in
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partitioned form at the top of Table A.

Before defining the eigenvectors which characterise the
dynamics of the solution it is convenient, as before, to reorder
the system soc as to put first the variables ST (which are

predetermined at t

o and set equal to zero at t, respectively),

and this reordered system appears in the middle panel of Table A,

where the composition of matrix M is- shown in detail.

The open loop optimal solution formed at to will then

simply be

(3.1) x, (o)
-1
C
11 o
and
(5.2) pl . X
N = Ca i
2 2
Celka cll are the column eigenvectors of the stable roots of
€1
MPO Such a solution is evidently time inconsistent. (Time

cunsistent paths can be constructed, either for the'“perfect cheating”
case (where the national policy makers all collude to delude the fin-
ancial markets) or for the"Nash policy" case where the policy makers

collude but collectively fail to lead the financial markets; but this

is not done here).



We come finally to the “time inconsistent optimal™ (but not
Pareto optimal) policy which arises when decision-making is decentral-
ised and each country takes the open loop path of the other's policy
as predeteremined, but nevertheless acts as a leader vis a vis the
financial markets. When there are N countries and N-1 forward
locking exchange rates, as in the economic example which follows,

this is a game with N chiefs and N-1 Indians!

Once again it is necessary to partition x into X and
X501 and also the shadow prices attached tc these state variables by
each of the separate policy makers. The coefficients of the partit-

ioned system of this decentralised Nash game appear at the bottom of

Table A, (cf. equation 2.5 above).

To obtain the paths for optimal (non cooperative) behaviour

under the present assumptions, the system is reordered to

Dx, F‘1

1 . 1

(5.3) DRyl = Mpy P
N

1 1

Dp; p)

SN N

P1 Py

P2 21




and the optimal time inconsistent policy expressed as

I x; ';l (O)—
%
pl A (-t ) e
t P2l s o -1 )
f5.4) 0 = c:Ll e cll
N
o) (o]
t 52
Lo ] _

on the assumption that all policy makers optimise at time to, where
the cll is the top block of the column eigenvector associated with
the stable roots of N&)N in equation (5.3). As for time consistent
policy paths, we can neglect "perfect cheating" as the policy makers
cannot all succeed given their conflicting interests. If, however,
all policy makers were to take the path for the finapcial asset prices
as given, as well as the actions of other policy makers, (what we have
called "Nash policy" vis-a-vis the financial markets), then the time
consistentoptimal policy is obtained by simply omitting the rows and
columns rélating to the Dp; on P; in panel (iii) of Table A so

as to vyield

E”‘1 X

DX2 X2
(5.5) . = MNP

Dp; ]

36.



TABLE A

Dynamic adjustment under Pareto-optimal and Decentralised

- policy -

Pareto-optimal Contrcl (in partitioned formj

(i)

(ii)

T i
where x, p, A, A, Q, J

=

, and the index showing

i=1

superscript.

Decentralised Control (in

Ay

A1

i
“Iw, Q4

i
“Iw; Q59

—_

All

i
“Iw, Q50

i
“Iw,Q),

Ao

(1ii)

i i1 R
i i
By LIy CITo0 1%
i T T
—Zw.Q -a -a p
i%12 12 L 1
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“WWiQ TRy TRaz | P2
i i .
-y, TEg B2 Xy
T T i
oY Ay TIwiQoo1 1%
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i

partitioned form)

212 11
A2 a1
Qiz -Afl
Qéz "Rl
'Qﬁz ©
'92§ °

LY

are conformably partitioned,

the policy maker appears as a

'Jlﬁx Jlgv
'J2T 75
(0] (0]

0 )

-t -A
11 12
fAzf 'Aézj
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so the behaviour of X, under such conditions is simply

A (e=t ) -1

(5.6) xl(t) = Cll e Cll xl(O)

which is time consistent.

These various solutions are illustrated with an economic
*

example in Annex 2,

* Not included in this copy: available on request
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Conclusions

The presence of forward-looking, rational-expectations
behaviour means that cost-minimising macroeconomic policy is time
inconsistent in the small open economy and also for both centralised
and decentralised policy in an interdependent world. In such circum—-
stances, some have argued for "pre-committment™ to an open lecop
policy with no feedback; but it is easy to show that an open loop
path for policy can with advantage be complemented by innovation

contingent feedback, and the nature of this feedback was investigated.

Such innovation-contingent responses are designed to awvoid
the temptation to renege on past committments; but given departures
from +he open loop path, there are undeniably temptations to "cheat®.
How great this temptation is depends very much on the parameters.

In our specific example, zero weight on the current balance meant

that the exchange rate would, under a policy of "perfect cheating",

be treated as a costless control variable and moved wherever and
whenever necessary to attain the output target; but with the current
balance being weighted half as much as output, the perfect cheating

policy hardly differed from time inconsistent optimal policy!

Given the temptation to cheat, it might be argued that

there should be no policy variation, with instruments set so as to

achieve targets in the long run but not depending in any way upon
the current state of the system. This policy certainly avoids the
temptation to cheat, but it appears to be a socially inefficient way

of doing so. It was found in our example that if the policy-makers
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were to adopt a time consistent approach, by simply eschewing their
. Stackelberg leadership position vis a vis the foreign exchange
markets, this provided dynamics fairly similar to those available
from the optimal policy, while both differed substantially from

the dynamics with no policy variation.

Our example of a small open economy implied that it would
be a great mistake for an individual policy maker to forego stabil-
isation policy "because optimal policy is time inconsistent in an
open economy with floating rates", If the "first best" policy of
an announced open-loop plus innovation contingent feedback (cf.
Buiter (1980)) is rejected because it is time inconsistent, "second
best" feedback strategies which approximate such a policy may never-

theless be available and should be considered.

On the assumption that the system was "controllable", the
many country case exhibited the inefficiency of mutual Nash behaviour
in forming policy,together with the time-inconsistency of leadership
vis a vis private markets. The conditions under which such systems
are indeed cohtrollahle are, in our view, one topic which merits
further attention, as optimal decentralised behaviour is in itself

no guarantee of controllability.

The potential gains from "co-ordination" were examined (with
given country weights) using the maximum principle (where the value
of the minimised criterion is easily represented analytically and
calculated numerically); but an alternative approach to the design

of international policy would be to elevate one of the countries
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to the role of being a policy leader. Indeed some economists,

C.P.Kindelberger in particular, have arqued that the problems
experienced by the international monetary system (both before the
Second World War and after the Vietnam War) are the result of the
failure of one country so to act. To analyse a two-level Stackel-
berg game (with the policy leader dominating other policy makers,
and both affecting private expectations) would be a second useful
extension of the framework proposed here, which can be handled by

an elaboration of the same techniques.

A third extension to the techniques employed here would be

to apply closed-loop Nash and Stackelberg games, rather than the

open-loop forms used above, see Basar and Olsder (1982).

Even without these three ex£ensions, we would hope that the
above account has demonstrated both the usefulness of dynamic games
as a vehicle for analysing important issues of policy formation in
open economies, and the elegance of the maximum principle in
computing time inconsistent optimal policy in the presence of

forward looking behaviour,
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