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Abstract

We develop a framework for the analysis of dynamic oligopolies
with persistant sources of asymmetric information that enables ap-
plied analysis of situations of empirical importance that have been
difficult to deal with. The framework generates policies which are
“relatively” easy for agents to use while still being optimal in a mean-
ingful sense, and is amenable to empirical research in that its equilib-
rium conditions can be tested and equilibrium policies are relatively
ease to compute. We conclude with an example that endogenizes the
maintenance decisions of electricity generators when the costs states
of the generators are private information.
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1 Introduction

This paper develops a framework for the analysis of dynamic oligopolies with
persistant sources of asymmetric information which can be used in a vari-
ety of situations which are both of empirical importance and have not been
adequately dealt with in prior applied work. These situations include; com-
petition between producers when there is a producer attribute which is un-
known to its competitors and serially correlated over time, investment games
where the outcome of the investment is unobserved, or repeated auctions for
primary products (e.g. timber) where the capacity available to process the
quantity acquired by the auction is private information. Less obviously, but
probably more empirically important, the framework also allows us to ana-
lyze markets in which the decisions of both producers and consumers have
dynamic implications, but consumers make decisions with different informa-
tion sets then producers do. As discussed below, this enables applied analysis
of dyanmics in durable, experience, storeable, and network good industries.

In building the framework we have two goals. First we want a frame-
work which generates policies which are “relatively” easy for agents to use
while still being optimal in some meaningful sense of the word. In particular
the framework should not require the specification and updating of play-
ers’ beliefs about their opponents types, as in Perfect Bayesian equilibrium,
and should not require agents to retain information that it is impractical for
them to acquire. Second we want the framework to be useable by empirical
researchers; so its conditions should be defined in terms of observable mag-
nitudes and it should generate policies which can be computed with relative
ease (even when there are many underlying variables which impact on the
returns to different choices). The twin goals of ease of use to agents and
ease of analysis by the applied research work out, perhaps not surprisingly,
to have strong complimentarities.

To accomplish these tasks we extend the framework in Ericson and Pakes
(1995) to allow for asymmetric information.! Each agent’s returns in a given
period are determined by all agents’ “payoff relevant” state variables and
their actions. The payoff relevant random variables of producers would typi-
cally include indexes of their cost function, qualities of the goods they market,
etc., while in a durable good market those of consumers would include their

ndeed our assumptions nest the generalizations to Ericson and Pakes (1995) reviewed
in Doraszelski and Pakes(2008).



current holdings of various goods and the household’s own demographic char-
acteristics. Neither a player’s “payoff relevant” state variables nor its actions
are necessarily observed by other agents. Thus producers might not know
either the cost positions or the details of supplier contacts of their competi-
tors, and in the durable goods example neither consumers nor producers need
know the entire distribution of holdings crossed with household characteris-
tics (even though this will determine the distribution of future demand and
prices).

The fact that not all state variables are observed by all agents and that
the unobserved states may be correlated over time implies that variables
that are not currently payoff relevant but are related to the unobserved past
states of other agents will help predict other agent’s behavior. Consequenly
they will help predict the returns from a given agent’s current actions. So
in addition to payoff relevant state variables agents have “informationally
relevant” state variables. For example, in many markets past prices will be
known to agents and will contain information on likely future prices.

The “types” of the agents, which are defined by their state variables, are
only partially observed by other agents and evolve over time. In the durable
goods example, the joint distribution of household holdings and characteris-
tics will evolve with household purchases, and the distribution of producer
costs and goods marketed will evolve with the outcomes of investment deci-
sions. As a result each agent continually changes its perceptions of the likely
returns from its own possible actions?.

Recall that we wanted our equilibrium concept to be testable. This, in
itself, rules out basing these perceptions on Bayesian posteriors, as these
posteriors are not observed. Instead we assume that the agents use the out-
comes they experienced in past periods that had conditions similar to the
conditions the agent is currently faced with to form an estimate of expected
returns from the actions they can currently take. Agent’s act so as to max-
imize the discounted value of future returns implied by these expectations.
So in the durable goods example a consumer will know its own demographics
and may have kept track of past prices, while the firms might know past
sales and prices. Each agent would then choose the action that maximized
its estimate of the expected discounted value of its returns conditional on

2Dynamic games with asymmetric information have not been used extensively to date,
a fact which attests (at least in part) to their complexity. Notable exceptions are Athey
and Bagwell, 2008, and Cole and Kochelakota (2001).



the information at its disposal. We base our equilibrium conditions on the
consistency of each agents’ estimates with the expectation of the outcomes
generated by the agents’ decisions.

More formally we define a state of the game to be the information sets
of all of the players (each information set contains both public and private
information). An Experience Based Equilibrium (hereafter, EBE) for our
game is a triple which satisfies three conditions. The triple consists of; (i)
a subset of the set of possible states, (ii) a vector of strategies defined for
every possible information set of each agent, and (iii) a vector of values for
every state that provides each agent’s expected discounted value of net cash
flow conditional on the possible actions that agent can take at that state.
The conditions we impose on this triple are as follows. The first condition is
that the equilibrium policies insure that once we visit a state in our subset
we stay within that subset in all future periods, visiting each point in that
subset repeatedly; i.e. the subset of states is a recurrent class of the Markov
process generated by the equilibrium strategies. The second condition is
that the strategies are optimal given the evaluations of outcomes. The final
condition is that optimal behavior given these evaluations actually generates
expected discounted value of future net cash flows that are consistent with
these evaluations in the recurrent subset of states.

The conditions defining an EBE do not restrict the players perceptions
of the value of outcomes from non-equilibrium strategies. This is consistent
with our focus on equilibrium conditions that use information that could be
learned from the outcomes of equilibrium play, as without further restric-
tions neither the players nor researchers would have access to the experi-
ence which would be required to obtain consistent estimates of the outcomes
from non-equilibrium strategies. Consequently the EBE conditions, in and
of themselves, do not restrict agents’ behavior; any profile of strategies can
be rationalized as EBE. There are two approaches to choosing restrictions
on the value of outcomes from non-equilibrium strategies, and they will be
appropriate in different applied problems. One approach is to impose further
conditions on the equilibrium concept, an alternative which we explore by
introducing a restricted EBE. A restricted EBE imposes conditions on the
outcome of all feasible strategies from points in the recurrent class. In a
restricted EBE any outcome from a feasible strategy that is in the recurrent
class is consistent with the expected discounted value of future net cash that
would be generated from equilibrium play from that outcome. We provide
familiar examples of models used in applied work in which the players can
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construct consistent estimates of all the values required to satisfy the equilib-
rium conditions of a restricted EBE from knowledge of the primitives of the
game and the outcomes from equilibrium play. Alternatively (or addition-
ally), if data is available on either equilibrium play and/or on the outcomes
from that play, then that data and assumptions on the primitives of the game
will suffice to restrict non-equilibrium play.

We show that a restricted EBE that is consistent with a given set of
primitives can be computed using a simple (reinforcement) learning algo-
rithm. Moreover the equilibrium conditions are testable, and the testing
procedure does not require computation of posterior distributions. Neither
the iterative procedure which defines the computational algorithm nor the
test of the equilibrium conditions have computational burdens which increase
at a particular rate as we increase the number of variables which impact on
returns; i.e. neither is subject to a curse of dimensionality. At least in prin-
cipal this should lead to an ability to analyze models which contain many
more state variables, and hence are likely to be much more realistic, then
could be computed using standard Markov Perfect equilibrium concepts?®.

One could view our reinforcement learning algorithm as a description of
how players’ learn the implications of their actions in a changing environment.
This provides an alternative reason for interest in the output of the algorithm.
However the learning rule would not, by iteself, restrict behavior without
either repeated play or prior information on initial conditions. Also the
fact that the equilibrium policies from our model can be learned from past
outcomes accentuates the fact that those policies are most likely to provide an
adequate approximation to the evolution of a game in which it is reasonable
to assume that agent’s perceptions of the likely returns to their actions can
be learned from the outcomes of previous play. Since the states of the game
evolve over time and the possible outcomes from each action differ by state,
if agents are to learn to evaluate these outcomes from prior play the game

3For alternative computational procedures see the review in Doraszelski and Pakes,
2008. Pakes and McGuire,2001, show that reinforcement learning has significanat com-
putational advanatages when applied to full information dynamic games, a fact which
has been used in several applied papers; e.g. Goettler, Parlour, and Rajan, 2005, and
Berestenau and Ellickson, 2006. Goettler, Parlour, and Rajan, 2008, use it to approxi-
mate optimal behavior in finance applications. We show that a similar algorithm can be
used in games with asymmetric information and provide a test of the equilibrum condi-
tions which is not subject to a curse of dimensionality. The test in the original Pakes and
McGuire article was subject to such a curse and it made their algorithm impractical for
large problems.



needs to be confined to a finite space.

When all the state variables are observed by all the agents our equilibrium
notion is similar to, but weaker than, the familiar notion of Markov Perfect
equilibrium as used in Maskin and Tirole (1988, 2001). This because we only
require that the evaluations of outcomes used to form strategies be consistent
with competitors’ play when that play results in outcomes that are in the
recurrent subset of points, and hence are observed repeatedly. We allow for
feasible outcomes that are not in the recurrent class, but the conditions we
place on the evaluations of those outcomes are weaker; they need only satsify
inequalities which insure that they are not observed repeatedly. In this sense
our notion of equilibrium is akin to the notion of Self Confirming equilibrium,
as defined by Fudenberg and Levine (1993) (though our application is to
dynamic games). An implication of using the weaker equilibrium conditions
is that we might admit more equilibria than the Markov Perfect concept
would. The restrictions used in the restricted EBE reduce the number of
equilibria.

The original Maskin and Tirole (1988) article and the framework for
the analysis of dynamic oligopolies in Ericson and Pakes (1995) layed the
groundwork for the applied analysis of dynamic oligopolies with symmetric
information. This generated large empirical and numerical literatures on an
assortment of applied problems (see Benkard, 2004, or Gowrisankaran and
Town, 1997, for empirical examples and Doraszelski and Markovich, 2006,
or Besanko Doraszelski Kryukov and Satterthwaite, 2010 for examples of
numerical analysis). None of these models have allowed for asymmetric in-
formation. Our hope is that the introduction of asymmetric information in
conjunction with our equilibrium concept helps the analysis in two ways. It
enables the applied researcher to use more realistic behavioral assumptions
and hence provide a better approximation to actual behavior, and it simpli-
fies the process of analyzing such equilibria by reducing its computational
burden.

As noted this approach comes with its own costs. First it is most likely
to provide an adequate approximation to behavior in situations for which
there is a relevant history to learn from. Second our equilibrium conditions
enhance the possiblity for multiple equilibria over more standard notions of
equilibria. With additional assumptions one might be able to select out the
appropriate equilibria from data on the industry of interest, but there will
remain the problem of chosing the equilibria for counterfactual analysis.

To illustrate we conclude with an example that endogenizes the mainte-
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nance decisions of electricity generators. We take an admittedly simplified
set of primitives and compute and compare equilibria based on alternative
institutional constraints. These include; asymmetric information equilibria
where there are no bounds on agents memory, asymmetric information equi-
libria where there are such bounds, symmetric information equilibria, and
the solutions to the social planner problem in two environments; one with
more capacity relative to demand than the other. We show that in this en-
vironment the extent of excess capacity relative to demand has economically
significant effects on equilibrium outcomes.

The next section describes the primitives of the game. Section 2 provides
a definition of, and sufficient conditions for, our notion of an Experience
Based Equilibrium. Section 3 provides an algorithm to compute and test for
this equilibrium, and section 4 contains our example.

2 Dynamic Oligopolies with Asymmetric In-
formation.

We extend the framework in Ericson and Pakes (1995) to allow for asymmet-
ric information.* In each period there are n, potentially active firms, and we
assume that with probability one n, <7 < oo (for every t). Each firm has
payoff relevant characteristics. Typically these will be characteristics of the
products marketed by the firm or determinants of their costs. The profits
of each firm in every period are determined by; their payoff relevant random
variables, a subset of the actions of all the firms, and a set of variables which
are common to all agents and account for common movements in factor costs
and demand conditions, say d € D where D is a finite set. For simplicity we
assume that d; is observable and evolves as an exogenous first order Markov
process.

The payoff relevant characteristics of firm ¢ , which will be denoted by
w; € €;, take values on a finite set of points for all i. There will be two
types of actions; actions that will be observed by the firm’s competitors my,

4Indeed our assumptions nest the generalizations to Ericson and Pakes (1995), and
the amendments to it introduced in Doraszelski and Satterthwaite (2010), and reviewed in
Doraszelski and Pakes(2008). The latter paper also provide more details on the underlying
model.



and those that are unobserved m}'. For simplicity we assume that both take
values on a finite state space, so m; = (m?, m¥) € M;.> Notice that, also for
simplicity, we limit ourselves to the case where an agent’s actions are either
known only to itself (they are “private”information), or to all agents (they
are “public”information). For example in an investment game the prices the
firm sets are typically observed, but the investments a firm makes in the
development of its products may not be. Though both controls could affect
current profits and/or the probability distribution of payoff relevant random
variables, they need not. A firm might simply decide to disclose information
or send a signal of some other form.
Letting ¢ index firms, realized profits for firm ¢ in period t are given by

W(wi,t, Wity My, M4 ¢, dt)» (1)

where m(-) © xP,€Q; Xy M; x D — R. w;; evolves over time and its
conditional distribution may depend on the actions of all competitors, that
is

P, =1 P,(.| myym_;,w); (m;;m_;) € XI M;, weQ} (2)

Some examples will illustrate the usefulness of this structure.

A familiar special case occurs when the probabiliy distribution of w; 11,
or P,(.| m;;m_;,w), does not depend on the actions of a firm’s competitors,
or m_;. Then we have a “capital accumulation” game. For example in the
original Ericson and Pakes (1995) model, m had two components, price and
investment, and w consisted of characteristics of the firm’s product and/or
its cost function that the firm was investing to improve. Their w;;1; =
Wit + Mg — diy, where 1;;, was a random outcome of the firm’s investment
whose distribution was determined by P, (-|m;,w;¢), and d; was determined
by aggregate costs or demand conditions.

Now consider a sequence of timber auctions with capacity constraints
for processing the harvested timber. Each period there is a new lot up for
auction, firms submits bids (a component of our m;), and the firm that
submits the highest bid wins. The quantity of timber on the lot auctionned
may be unknown at the time of the auction but is revealed to the firm that

5As in Ericson and Pakes (1995), we could have derived the assumption that  and M
are bounded sets from more primitive conditions. Also the original version of this paper
(which is available on request) included both continuous and discrete controls, where
investment was the continuous control. It was not observed by agent’s oponents and
affected the game only through its impact on the transition probabilities for w.



wins the lot. The firm’s state (our w;) is the amount of unharvested timber on
the lots the firm owns. Each period each firm decides how much to bid on the
current auction (our first component of m;) and how much of its unharvested
capacity to harvest (a second component of m; which is constrained to be
less than w;). The timber that is harvested and processed is sold on an
international market which has a price which evolves exogenously (our {d,}
process), and revenues equal the amount of harvested timber times this price.
Then the firm’s stock of unharvested timber in ¢ + 1, our w; 41 is w;; minus
the harvest during period ¢ plus the amount on lots for which the firm won
the auction. The latter, the amount won at auction, depends on m_;,, i.e.
the bids of the other firms, as well as on m, ;.

Finaly consider a market for durable goods. Here we must explicitly
consider both consumers and producers. Consumers are differentiated by
the type and vintage of the good they own and their characteristics, which
jointly define their w;, and possibly by information they have access to which
might help predict future prices and product qualities. Each period the
consumer decides whether or not to buy a new vintage and if so which one (a
consumer’s m;); a choice which is a determinant of the evolution of their w;.
Producers determine the price of the product marketed and the amount to
invest in improving their product’s quality (the components of the producer’s
m;). These decisions are a function of current product quality and its own
past sales (both components of the firm’s w;), as well as other variables which
effect the firm’s perceptions about demand conditions. Since the price of a
firm’s competitors will be a determinant of the firm’s sales, this is another
example where the evolution of the firm’s w; ;11 depends on m_;, as well as
on m; .

The information set of each player at period ¢ is, in principal, the his-
tory of variables that the player has observed up to that period. We restrict
ourselves to a class of games in which each agent’s strategies are a mapping
from a subset of these variables, in particular from the variables that are
observed by the agent and are either “payoft” or “informationally” relevant,
where these two terms are defined as follows. The ”payoff relevant” variables
are defined, as in Maskin and Tirole (2001), to be those variables that are
not current controls and affect the current profits of at least one of the firms.
In terms of equation (1), all components of (w; ¢, w—_;+,d;) that are observed
are payoff relevant. Observable variables that are not payoff relevant will be
informationally relevant if and only if either; (i) even if no other agent’s strat-
egy depend upon the variable player ¢ can improve its expected discounted
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value of net cash flows by conditioning on it, or (ii) even if player i’s strat-
egy does not condition on the variable there is at least one player ;3 whose
strategy will depend on the variable. For example, say all players know w;;—;
but player 7 does not know w;;. Then even if player j does not condition its
strategy on wj;_1, since w;;_1 can contain information on the distribution of
the payoff relevant w;, which, in turn, will affect m;,(-) through its impact
on m; ., player ¢ will generally be able to gain by conditioning its strategy on
that variable.%

As above we limit ourselves to the case where information is either known
only to a single agent (it is “private”), or to all agents (it is “public”). The
publicly observed component will be denoted by &, € Q(), while the privately
observed component will be z;; € Q(z). For example w;, 1 may or may
not be known to agent i at time ¢; if it is known w;; 1 € &, otherwise
wji—1 € zjp. Since the agent’s information at the time actions are taken
consists of J;; = (&, zit) € Ji, we assume strategies are functions of J; 4, i.e.

m(J@t) Y I M.

Notice that if w;; is private information and affects the profits of firm ¢ then
we will typically have m;; € z;;.

We use our examples to illustrate. We can embed asymetric information
into the original Ericson and Pakes (1995) model by assuming that w;; has a
product quality and a cost component. Typically quality would be publically
observed, but the cost would not be and so becomes part of the firm’s private
information. Current and past prices are also part of public information set
and contain information on the firms’ likely costs, while investment may be
public or private. In the timber auction example, the stock of unharvested
timber is private information, but the winning bids (and possibly all bids), the
published characteristics of the lots auctioned, and the marketed quantities
of lumber, are public information. In the durable good example the public
information is the history of prices, but we need to differentiate between
the private information of consumers and that of producers. The private
information of consumers consists of the vintage and type of the good it owns
and its own characteristics, while the firm’s private information includes the
quantities it sold in prior periods and typically additional information whose
contents will depend on the appropriate institutional structure.

6Note that these defintions will imply that an equilibrium in our restricted strategy
space will also be an equilibrium in the general history dependent strategy space.
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Throughout we only consider games where both #Q(£) and #(z) are
finite. This will require us to impose restrictions on the structure of infor-
mationally relevant random variables, and we come back to a discussion of
situations in which these restrictions are appropriate below. To see why we
require these restrictions, recall that we want to let agents base decisions
on past experience. For the experience to provide an accurate indication of
the outcomes of policies we will need a visit a particular state repeatedly; a
condition we can only insure when there is a finite state space.

3 Experience Based Equilibrium.

This section is in two parts. We first consider our basic equilibrium notion
and then consider further restrictions on equilibrium conditions that will
sometimes be appropriate.

For simplicity we assume all decisions are made simultaneously so there
is no subgame that occurs within a period. In particular we assume that at
the beginning of each period there is a realization of random variables and
players update their information sets. Then the players decide simultaneously
on their policies. The extension to multiple decisions nodes within a period
is straightforward.

Let s combine the information sets of all agents active in a particular
period, that is s = (Ji,...,J,) when each J; has the same public com-
ponent . We will say that J; = (z;,¢) is a component of s if it con-
tains the information set of one of the firms whose information is com-
bined in s. We can write s more compactly as s = (z1,...,2,,§). So
S={s:zeQx"EeQf), for 0 < n < n} lists the possible states
of the world.

Firms’ strategies in any period are a function of their information sets, so
they are a function of a component of that period’s s. From equation (2) the
strategies of the firms determine the distribution of each firm’s information
set in the next period, and hence together the firms’ strategies determine the
distribution of the next period’s s. As a result any set of strategies for all
agents at each s € S, together with an initial condition, defines a Markov
process on S.

We have assumed that S is a finite set. As a result each possible sample
path of any such Markov process will, in finite time, wander into a subset
of the states in S, say R C S, and once in R will stay within it forever.
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R could equal & but typically will not, as the strategies the agents choose
will often ensure that some states will not be visited repeatedly, a point we
return to below’. R is referred to as a recurrent class of the Markov process
as each point in R will be visited repeatedly.

Note that this implies that the empirical distribution of next period’s
state given any current s € R will eventually converge to a distribution, and
this distribtuion can be constructed from acutal outcomes. This will also be
true of the relevant marginal distributions, for example the joint distribution
of the J; components of s that belong to different firms, or that belong to
the same firm in adjacent time periods. We use a superscript e to designate
these limiting empirical distributions, so p°(J!|J;) for J; C s € R provides
the limit of the empirical frequency that firm i’s next period information set
is J! conditional on its current infromation being J; € R and so on®.

We now turn to our notion of Experience Based Equilibrium. It is based
on the notion that at equlibrium players expected value of the outcomes from
their strategies at states which are visited repeatedly are consistent with the
actual distribution of outcomes at those states. Accordingly the equilibrium
conditions are designed to ensure that at such states; (i) strategies are optimal
given participants’ evaluations, and (ii) that these evaluations are consistent
with the empirical distribution of outcomes and the primitives of the model.

Notice that this implies that our equilibrium conditions could, at least in
principle, be consistently tested’. To obtain a consistent test of a condition
at a point we must, at least potentially, observe that point repeatedly. So we
could only consistently test for conditions at points in a recurrent class. As
we shall see this implies that our conditions are weaker than “traditional”
equilibrium conditions. We come back to these issues, and their relationship
to past work, after we provide our definition of equilibrium.

"Freedman, 1983, provides a precise and elegant explanation of the properties of Markov
chains used here. Though there may be more than one recurrent class associated with any
set of policies, if a sample path enters a particular R, a point, s, will be visited infinitely
often if and only if s € R.

8Formally the empirical distribution of transitions in R will converge to a Markov
transition matrix, say p©T = {p°(s'|s) : (s',s) € R?}. Similarly the empirical distribution
of visits on R will converge to an invariant measure, say p®! = {p°(s) : s € R}. Both
p>T and p*>! are indexed by a set of policies and a particular choice of a recurrent class
associated with those policies. Marginal distributions for components of s are derived from
these objects.

9We say “in principle” here because this presumes that the researcher doing the testing
can access the union of the information sets available to the agents that played the game.
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Definition: Experience Based Equilibrium. An Experience Based
Equilibrium consists of

e A subset R C S;
e Strategies m*(J;) for every J; which is a component of any s € S;

e Expected discounted value of current and future net cash flow condi-
tional on the decision m;, say W(m;|J;), for each m; € M, and every
J; which is a component of any s € S,

such that

C1l: R is a recurrent class. The Markov process generated by any
initial condition sy € R, and the transition kernel generated by {m*}, has R
as a recurrent class (so, with probability one, any subgame starting from an
s € R will generate sample paths that are within R forever).

C2: Optimality of strategies on R. For every J; which is a component
of an s € R, strategies are optimal given W (-), that is m*(.J;) solves

and

C3: Consistency of values on R. Take every J; which is a component
of an s € R. Then

W (" ()| i) = w8 (m* (), Ji) + By W (" (J)IT)pe (J; 1)

where

B (m* (), J;) = Zm (wi,m*(Ji),w_i,m*(J_i), dt>pe(J_i|JZ-),

{peuﬂJon}J, nd {5112 %} PSNE)



Note that the evaluations {W(m;|J;)} need not be correct for J; not a
component of an s € R. Nor do we require correctness of the evaluations for
the W (m;|J;)’s associated with points in R but at policies which differ from
those in m}. The only conditions on these evaluations are that chosing an
m; # m; would lead to a perceived evaluation which is less than that from
the optimal policy (this is insured by condition C2). On the other hand
the fact that our equilibrium conditions are limited to conditions on points
that are played repeatedly implies that agents are able to learn the values of
the outcomes from equilibrium play, and we provide an algorithm that would
allow them to form consistent estimates of those outcomes below. Further
comments on our equilibrium notion follow.

Beliefs on types. Note also that our conditions are not formulated in
terms of beliefs about either the play or the “types” of opponents. There
are three reasons for this to be appealing. First, as beliefs are not observed,
they can not be directly tested. Second, as we will show presently, it implies
that we can compute equilibria without ever explicitly calculating posterior
distributions. Finaly (and relatedly) we will show that an implication of the
equilibrium conditions is that agent’s can chose optimal strategies based on
the agent’s own observable experience; indeed the agents need not even know
all the primitive parameters of the game they are playing.

Relationship to Self Confirming Equilibria. Experience Based Equi-
libria, though formulated for dynamic games, is akin to the notion of Self
Confirming Equilibria (Fudenberg and Levine,1993), that has been used in
other contexts'!. Self Confirming Equilibria weaken the standard Nash equi-
librium conditions. It requires that each player has beliefs about opponents’
actions and that the player’s actions are best responses to those beliefs. How-
ever the players’ beliefs need only be correct along the equilibrium path. This
insures that no players observes actions which contradicts its beliefs. Our
equilibrium conditions explicitly introduce the evaluations that the agents
use to determine the optimality of their actions. They are similar to the con-
ditions of Self Confirming Equilibria in that the most they insure is that these

19T he fact that our conditions do not apply to points outside of R or to m; # m; implies
that the conditional probabilities in equation (3) are well defined.

HSee also Dekel, Fudenberg and Levine (2004) for an anlysis of self confirming equilib-
rium in games with asymmetric information.
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evaluations are consistent with the opponents actions along the equilibrium
path. However we distinguish between states that are repeated infinitely
often and those that are not, and we do not require the evaluations which
determine actions at transitory states to be consistent with the play of a
firm’s opponents.

Boundary Points. It is useful to introduce a distinction made by Pakes
and McGuire (2001). They partition the points in R into interior and bound-
ary points. Points in R at which there are feasible (though inoptimal) strate-
gies which can lead to a point outside of R are labelled boundary points. In-
terior points are points that can only transit to other points in 'R no matter
which of the feasible policies are chosen (equilibrium or not). At boundary
points there are actions which lead to outcomes which can not be consistently
evaluated by the information generated by equilibrium play.

Restricting the equilibrium. Our experience based equilibrium notion
does not restrict perceptions of returns from actions m # m* for J; C s € R.
There are at least two ways to impose such restrictions. One is to impose
further conditions on the definition of equilibrium; an alternative we explore
in the next subsection.

Alternatively (or additionally) if data is available we could use it to im-
pose further restrictions. I.e. if we observe or can estimate a subset of either
{W ()} or {m*(-)} we can restrict the analysis to be consistent with their
values. For example if we were able to determine all the {W(-)} associated
with a point (say through observations on sample paths of profits and knowl-
edge of the primitives of the problem), we could determine m* at that point
(at least generically). Conversely if we observed m*(-) at a point we can use
it to restrict equilibrium perceptions, the {W(-)}, at that point; a fact which
can be used for estimation. We note also that the computational algorithm
we are about to introduce can be directed to compute an equilibria that is
consistent with whatever data is observed. On the other hand were we to
change a primitive of the model we could not single out the equlibria that is
likely to result without further assumptions (though one could analyze likely
counterfactual outcomes if one is willing to assume a learning rule and an
initial condition; see Lee and Pakes,2009).
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Multiplicity. Notice that Bayesian Perfect equilibria will satisfy our equi-
librium conditions, and typically there will be a multiplicity of such equilibria.
Since our experience based equilibrium notion does not restrict perceptions
of returns from actions not played repeatedly, it will admit an even greater
multiplicity of equilibria. There are at least two ways to select out a subset of
these equilibria. One is to impose further conditions on the definition of equi-
librium; an alternative which we explore in the next section. As explained
their, this requires a game form which enables agents to acquire information
on outcomes from non-equilibrium play.

Alternatively (or additionally) if data is available we could use it to re-
strict the set of equilibria. I.e. if we observe or can estimate a subset of either
{W ()} or {m*(-)} we can restrict any subsequent analysis to be consistent
with their values. In particular since there are (generically) unique equilib-
rium strategies associated with any given equilibrium {W(-)}, if we were able
to determine the {W¥(-)} associated with a point (say through observations
on sample paths of profits) we could determine m] at that point, and con-
versely if we know m; at a point we can restrict equilibrium {W(-)} at that
point. Similarly we can direct the computational algorithm we are about to
introduce to compute an equilibria that is consistent with whatever data is
observed. On the other hand were we to change a primitive of the model we
could not single out the equlibria that is likely to result without further as-
sumptions (though one could analyze likely counterfactual outcomes if one is
willing to assume a learning rule and an initial condition; see Lee and Pakes,
2009).

3.1 Restricted Experience Based Equilibria.

Our condition C3 only requires correct evaluations of outcomes from equi-

*

librium actions that are observed repeatedly; i.e. for W (m;|J;) at m; = m]
and J; C s € R. There are circumstances when imposing restrictions on
equilibrim evaluations of actions off the equilibrium path for states that are
observed repeatedly, that is at m; # m! for J; C s € R, might be natural,
and this subsection explores them.

Barring compensating errors, for agents to have correct evaluations of
outcomes from an m; # m! they will need to know; (i) expected profits
and the distribution of future states that result from playing m;, and (ii)
the continuation values from the states that have positive probability when

m,; is chosen. Whether or not agents can obtain the information required
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to compute expected profits and the distribution of future states when an
m; # m is played depends on the details of the game, and we discuss this
further below. For now we assume that they can, and consider what this
implies for restricting the evaluations of outcomes from non-optimal actions.

Consider strengthening the condition C3 to make it apply to all m; € M;
at any J; C s € R. Then, at equilibrium, all outcomes that are in the
recurrent class are evaluated in a way that would be consistent with the
expected discounted value of returns that the action would yield were all
agents (including itself) to continue playing their equilibrium strategies; and
this regardless of whether the action that generated the outcome was an
equilibrium action. As in an unrestricted EBE outcomes that are not in
the recurrent class are evaluated by perceptions which are not required to
be consistent with any observed outcome'?. As a result the restricted EBE
insures that in equilibrium when agents are at interior points they evalute
all feasible actions in a way that is consistent with expected returns given
equilibrium play. However at boundary points only those actions whose
outcomes are in the recurrent class with probability one are evaluated in
this manner.

Definition: Restricted Experience Based Equilibrium. Let 7 (m;, J;)
be expected profits and {p(J;|J;,m;)} be the distribution of .J', both con-
ditional on (m;, J;) and m*,. A restricted EBE requires, in addition to C1
and C2, that

W (mi | i) = % (mg, Ji) + B W (m*(J;)|J;)p(J; | Ji, m;) (4)

for all m; € M; and J; C s € R.

We show how to compute and test for a restricted EBE in section 3. We now
point out one of the implications of this definition and then consider situa-
tions which enable agents to acquire the information required to consistently
evaluate W(m;|J;), for m; # mJ, and J; C s € R.

I2We note that there are cases where it would be natural to require outcomes not in
the recurrent class to be consistent with publically available information on primitives.
For example even if a firm never exited from a particular state the agent might know its
selloff value (or a bound on that value), and then it would be reasonable to require that
the action of exiting be evaluated in a way that is consistent with that information. It is
straightforward to impose such constraints on the computational algorithm introduced in
the next section.
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Note that in some cases this equilibrium concept imposes a strong restric-
tion on how agent’s react to non-equilibrium play by their competitors. To see
this recall that the outcome is J! = (£’ z!), where £’ contains new public, and
2l new private, information. Competitors observe ¢ and £. Were an agent
to play an m; # m} it may generate a & which is not in the support of the
distribution of & generated by (£, m})'3. Then if we impose the restrictions
in equation (4) we impose constraints on the agent’s evaluations of outcomes
of actions which the agent’s competitors would see as inconsistent with their
experience from previous play. For the agent to believe such estimates are
correct, the agent would have to believe that the competitor’s play would not
change were the competitor to observe an action off the equilibrium path.
An alternative would be to assume that, in equilibrium, agents only need to
have correct evaluations for the outcomes of actions that competitor’s could
see as consistent with equilibrium play; i.e. actions which generate a support
for ¢ which is contained in the support & conditional on (£, m?). Then we
would only restrict equilibrium beliefs about outcomes from actions that no
agent perceives as inconsistent with equilibrium play. We do not pursue this
further here, but one could modify the computational algorithm introduced
in section 3 to accomdoate this definition of a restricted EBE rather than
the one in equation (4).

As noted for agents to be able to evaluate actions in a manner consistent
with the restricted EBE they must know 7% (m;, J;) and {p(J;|.J;, m;)} g for
m; # m; at all J; C s € R. We now consider situations in which these
objects can be computed from the information generated by equilibrium play
and /or knowledge of the primitives of the problem!'*. The reader who is not
interested in these details can proceed directly to the next section.

We consider a case where 7 (m;, J;) can be consistently estimated!®, and

13 As an example consider the case where m; is observable. Then were the agent to play
m; # mf, m; would be in & and, provided there does not exist a J, = (&, 2;) such that
m* (&, Z;) = m;, the support of & given (&, m;) will differ from that given (&, m?).

“Note that even if agents can access the required information, to evaluate actions in
the way assumed in a restricted EBE they will have to incur the cost of storing additional
information and making additional computations; a cost we return to in the context of
the computational algorithm discussed in the next section.

5Whether or not 7F(m; # mj,J;) can be consistently estimated depends on the
specifics of the problem, but it frequently can be. For a simple example consider an
investment game where the profit function is additively separable in the cost of invest-
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investigate situations in which the agent can calculate W (m;|.J;), Vm; € M.
To compute W (my|.J;) the agent has to be able to evaluate p(J;|J;, m;) =
p(&|zl, Ji,mi)p(2i|Ji, my;), YJ! in the support of (m;, J;), m; € M; and J; C
s € R. When the required probabilities can be evaluated, the W(m|J;)
calculated need only be “correct” if the support of {p(J;|J;,m;)} is in the
recurrent class.

Consider a capital accumulation game in which the investment compo-
nent of m;, say my,; is not observed but the pricing component, say mp; is
observed, and assume prices are set before the outcome of the current in-
vestments is known. If z; represent costs which is private information then
p(&'|J;,m;) = p(&'|Ji,mp;). Assume also that {z} evolves as a controled
Markov process, so that p(z}|.J;, m;) = p(#}|z;,my;), and is known from the
primitives of the cost reducing process. Since costs are not observed and
are a determinant of prices, past prices are informationally relevant (they
contain information on current costs).

In this model p(J}|J;, m;) = p(&'|Ji, mp;)p(z|zi, my;). Since & is set by
the firm’s decision on mp; and p(z}|z;, my;) is known, the agent will always be
able to evalute W(m;|.J;),Vm; € M;. If mp; = mp,; then these evaluations
will be correct if the support z; given (z;,my;) is in the support of (z;, mj;),
since then all J' with positive probability will be in the recurrent class. If
the support condition is met but mp; # mp,; then W(my;, mp; # mp,|J;)
will be correct if there is a (2;,&) C s € R with the property that the optimal
price at that point is mp;, i.e. mp,(%,€) = mp;*°.

3.2 The Finite State Space Condition.

Our framework is restricted to finite state games. We now consider this re-
striction in more detail. We have already assumed that there was: (i) an
upper bound to the number of firms simultaneously active, and (ii) each
firm’s physical states (our w) could only take on a finite set of values. These

ment or m;, so that 7% (my, J;) = 7¥(ms, J;) + mi — m,. If profits are not additively
separable in m; but m; is observed then it suffices that agents be able to compute profits
as a function of (J;, m;,m_;), as in the computational example below and in differentiated
product markets in which the source of assymetric information is costs, equilibrium is
Nash in prices, and agents know the demand function. In auctions the agent can compute
78 (m;, J;) if the agent can learn the distribution of the winning bid.

16Tf the agents did not know the form of the underlying controlled Markov process a
priori, it may be estimable using the data generated by the equilibrium process.
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restrictions ensure that the payoff relevant random variables are finite di-
mensional, but they do not guarantee this for the informationally relevant
random variables, so optimal strategies could still depend on an infinite his-
tory!”. We can insure that the informationally relevant random variables are
finite dimensional either; (i) through restrictions on the form of the game, or
(ii) by imposing constraints on the cognitive abilities of the decision makers.

One example of a game form which can result in a finite dimensional
space for the informationally relevant state variables is when there is periodic
simultaneous revelation of all variables which are payoff relevant to all agents.
Claim 1 of Appendix 1 shows that in this case an equilibrium with strategies
restricted to depend on only a finite history is an equilibrium to the game
with unrestricted strategies. Claim 2 of Appendix 1 shows that there is
indeed a restricted EBE for the game with periodic revelation of information.
The numerical analysis in section 4 includes an example in which regulation
generates such a structure. Periodic revelation of all information can also
result from situations in which private information can seep out of firms (say
through labor mobility) and will periodically do so for all firms at the same
time, and/or when the equilibrium has one state which is visited repeatedly
at which the states of all players are revealed.

There are other game forms which insure finiteness. One example is when
the institutional structure insures that each agent only has access to a finite
history. For example consider a sequence of internet auctions, say one every
period, for different units of a particular product. Potential bidders enter the
auction site randomly and can only bid at finite increments. Their valuation
of the object is private information, and the only additional information
they observe are the sequence of prices that the product sold at while the
bidder was on-line. If, with probability one, no bidder remains on the site
for more than L auctions, prices more than L auctions in the past are not in
any bidder’s information set, and hence can not effect bids.'® Alternatively
a combination of assumptions on the functional forms for the primitives of
the problem and the form of the interactions in the market that yield finite
dimensional sufficient statistics for all unknown variables could also generate
our finite state space condition.

17The conditions would however insure finiteness in a game with asymmetric information
where the sources of asymmetric information are distributed independently over time (as
in Bajari, Benkard and Levin, 2007, or Pakes Ostrovsky and Berry, 2007).

BFormally this example requires an extension of our framework to allows for state
variables that are known to two or more, but not to all, agents.
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A different way to ensure finiteness is through bounded cognitive abilities,
say through a direct bound on memory (e.g., agents can not remember what
occured more than a finite number of periods prior), or through bounds on
complexity, or perceptions. There are a number of reasons why such a restric-
tion may be appealing to empirical researchers. First it might be thought to
be a realistic approximation to the actual institutions in the market. Second
in most applications the available data is truncated so the researcher does not
have too long a history to condition on. Moreover in any given application
one could investigate the extent to which policies and/or outcomes depended
on particular variables either empirically or computationally.

To illustrate our computational example computes equilibria to finite
state games generated by both types of assumptions. One of the questions we
address their is whether the different assumptions we use to obtain finiteness,
all of which seem a priori reasonable, generate equilibria with noticeably dif-
ferent policies.

4 An Algorithm for Computing an EBE.

This section shows that we can use a reinforcement learning algorithm to
compute an EBE. As a result our equilibria can be motivated as the outcome
of a learning process. In the reinforcement learning algorithm players form
expectations on the value that is likely to result from the different actions
available to them and choose their actions optimally given those expecta-
tions. From a given state those actions, together with realizations of random
variables whose distributions are determined by them, lead to a current profit
and a new state. Players use this profit together with their expectations of
the value they assign to the new state to update their expectation of the
continuation values from the starting state. They then proceed to chose an
optimal policy for the new state, a policy which maximizes its expectations
of the values from that state. This process continues iteratively.

Note that the players’ evaluations at any iteration need not be correct.
However we would expect that if policies converge and we visit a point repeat-
edly we will eventually learn the correct continuation value of the outcomes
from the policies at that point. Our computational mimic of this process in-
cludes a test of whether our equilibrium conditions, conditions which ensure
that continuation evaluations are in fact consistent with subsequent play, are
satisfied. We note that since our algorithm is a simple reinforcement learning
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algorithm, an alternative approach would have been to view the algorithm
itself as the way players learn the values needed to choose their policies, and
justify the output of the algorithm in that way. A reader who subscribes to
the latter approach may be less interested in the testing subsection!?.

We begin with the iterative algorithm for an EBE, then note the modifica-
tions required for a restricted EBE, and then move on to the test statistic for
both equilibrium concepts. A discussion of the properties of the algorithm,
together with its relationship to the previous literature and additional details
that can make implementation easier, is deferred until Appendix 2.

The algorithm consists of an iterative procedure and subroutines for cal-
culating initial values and profits. We begin with the iterative procedure.
Each iteration, indexed by k, starts with a location which is a state of the
game (the information sets of the players) say L* = [JF,..., Jk(k)], and the

n
objects in memory, say M* = {M"*(J) : J € J}. The iteration updates
both these objects. We start with the updates for an unrestricted EBE, and
then come back to how the iterative procedure is modified when computing
a restricted EBE. The rule for when to stop the iterations consists of a test
of whether the equilibrium conditions defined in the last section are satisfied,
and we describe the test immediately after presenting the iterative scheme.

Memory. The elements of M*(J) specify the objects in memory at iter-
ation k for information set J, and hence the memory requirements of the
algorithm. Often there will be more than one way to structure the memory
with different ways having different advantages. Here we focus on a simple
structure which will always be available (though not necessarily always be
efficient); alternatives are considered in Appendix 2.

M*(J;) contains

e a counter, h*(J;), which keeps track of the number of times we have
visited J; prior to iteration k, and if h*(J;) > 0 it contains

[} Wk(mZ]JZ) for m; € M“Z = 1, coe, N

If h*(J;) = 0 there is nothing in memory at location .J;. If we require
W (-|J;) at a J; at which h*(J;) = 0 we have an initiation procedure which

190n the other hand, there are several issues that arise were one to take the learning
approach as an approximation to behavior, among them; the question of whether (and
how) an agent can learn from the experience of other agents, and how much information
an agent gains about its value in a particular state from experience in related states.
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sets Wk(m;|J;) = WO (my|J;). Appendix 2 considers choices of {W°(-)}. For
now we simply note that high initial values tend to ensure that all policies
will be explored.

Policies and Random Draws for Iteration k. For each JF which is a
component of L¥ call up W¥(-|JF) from memory and choose m*(J¥) to

Maz e, W*(m|JF).

With this {m*(JF)} use equation (1) to calculate the realization of profits
for each active agent at iteration k (if d is random, then the algorithm has
to take a random draw on it before calculating profits). These same policies,
{m*(J¥)}, are then substituted into the conditioning sets for the distributions
of the next period’s state variables (the distributions in equation 2 for payoff
relevant random variables and the update of informationally relevant state
variables if the action causes such an update), and they, in conjunction with
the information in memory at L*, determine a distribution for future states
(for {JF'}). A pseudo random number generator is then used to obtain a
draw on the next period’s payoff relevant states.

Updating. Use (JZ-"“‘, m*(JF), wkt, dk“) to obtain the updated location of
the algorithm

k1 [ 7k+1 k41
L¥ =[J; ,...,Jn(k+1)].

To update the W it is helpful to define a “perceived realization” of the value

of play at iteration k (i.e. the perceived value after profits and the random

draws are realized), or

V(IR = m(wF o, mEmP d¥) + mazpen, WE(m|JFT. (5)

() —1

To calculate V**1(J¥) we need to first find and call up the information in

. n .
memory at locations {JF™}:*+*.20 Once these locations are found we keep a

pointer to them, as we will return to them in the next iteration.

20The burden of the search for these states depends on how the memory is structured,
and the efficiency of the alternative possiblities depend on the properties of the problem
analyzed. As a result we come back to this question when discussing our example.
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For the intuition behind the update for W*(:|.J¥) note that were we to
substitute the equilibrium W*(-|J*™) and 77(-|.JF) for the W¥(-|.J¥) and
7% (+|JF) in equation (5) above and use equilibrium policies to calculate expec-
tations, then W*(-|JF) would be the expectation of V*(-|JF). Consequently
we treat VFT1(JF) as a random draw from the integral determining W*(-|J¥)
and update the value of W¥(-|JF) as we do an average, for example

b
W (JF)

VERE) + YWEmEIRL(6)
where mF is the policy perceived to be optimaal for agent i at iteration k.
This makes W#(JF) the simple average of the V"(JI) over the iterations at
which J = JF. Though use of this simple average will satisfy Robbins and
Monroe’s (1951) convergence conditions, we will typically be able to improve
the precision of our estimates of the W (-) by using a weighting scheme which
downweights the early values of V" (-) as they are estimated with more error
than the later values.?!

Completing The Iteration. We now replace the W¥(-|JF) in memory at
location JF with W*+L(.|J}) (for i = 1,...,n;) and use the pointers obtained
above to find the information stored in memory at L**!. This completes the
iteration as we are now ready to compute policies for the next iteration. The
iterative process is periodically stopped to run a test of whether the policies
and values the algorithm outputs are equilbirium policies and values. We
come back to that test presently.

Updating when computing a restricted EBE. The algorithm just de-
scribed only updates W*(m;|.J;) for m; = m¥, the policy that is optimal given
iteration k’s evaluations. So this algorithm is unlikely to provide correct eval-
uations of outcomes from actions off the equilibrium path, and a restricted
EBE requires correct evaluations of some of those outcomes (the outcomes

210ne simple, and surprisingly effective, way of doing so is to restart the algorithm
using as starting values the values outputted from the first several million draws. The
Robbins and Monroe, 1951, article is often considered to have initiated the stochastic
approximation literature of which reinforcement learning is a special case. Their conditions
on the weighting function are that the sum of the weights of each point visited infinitely
often must increase without bound while the sum of the weights squarred must remain
bounded.
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in R). To compute a restricted EBE we modify this algorithm to update
all the {W*(m|JF)}mem,, i-e. the continuation values for all possible actions
from a state whenever that state is reached. This insures that whenever a
non-equilibrium action has a possible outcome which is in the recurrent class
it will be evaluated correctly provided all recurrent class points are evaluated
correctly.

To update W¥(m;|JF) when m; # m¥ we take a random draw from the
distribution of outcomes conditional on that m;, use it and the random draws
from the competing agent’s optimal policies to form what the perceived value
realization would have been had the agent implemented policy m; # m}
(substitute m; for m¥ in the defintion V**1(J¥) in equation 5), and use
it to form W+t (m |Jf) (as in equation 6). The rest of the algorithm is as
above; in particular we update the location using the draws from the optimal
policy. Note that the algorithm to compute a restricted EBE is significanlty
more computationally burdensome then that for the unrestricted EBE (the
computational burden at each point goes up by a factor of x;* #M,;/ny),
and is likely to also increase the memory requirements.

4.1 Testing Whether the Output of the Algorithm Con-
stitues an EBE or a Restricted EBE.

Assume we have a W vector in memory at some iteration of the algorithm, say
Wk =W, and we want to test whether W generates an EBE on a recurrent
subset of §. To perform the test we need to check our equilibrium conditions
and this requires: (i) a candidate for a recurrent subset determined by W,
say R(W), and checks for both (i) the optimality of policies and (iii) the
consistency of W, on R(W).

To obtain a candidate for R(W), start at any s° and use the policies
implied by W to simulate a sample path {sj}j:{h. Let R(Ji, J2,-) be the
set of states visited at least once between j = J; and j = J,. Provided Ji,
Jo, and J; — Jo grow large, R will become a recurrent class of the process
generated by . In practice to determine whether any finite (J1, J2) are large
enough, one generates a second sample path starting at J, and continuing
for another J, — J; iterations. We then check to see that the set of points
visited on the second sample path are the same as those in R(Jy, Ja, -).

The second equilibrium condition specifies that the policies must be op-
timal given W. This is satisfied by construction as we chose the policies that
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maximize W (m;|J;) at each J;.

To check the third equilibrium condtion we have to check for the consis-
tency of W with outcomes from the policies generated by W on the points
in R. Formally we have to check for the equality in

W(mi| i) = ®(m, J;) + 8 W(m* () T)p (] J:).
J;

In principle we could check this by direct summation for the points in R.
However this is computationally burdensome, and the burden increases ex-
ponentially with the number of possible states (generating a curse of di-
mensionality). So proceeding in this way would limit the types of empirical
problems that could be analyzed.

A far less burdensome alternative, and one that does not involve a curse
of dimensionality, is to use simulated sample paths for the test. To do this
we start at an s € R and forward simulate. Each time we visit a state
we compute perceived values, the V¥+1(.) in equation (5), for each J; at
that state, and keep track of the average and the sample variance of those
simulated perceived values across visits to the same state, say

{(W e ()11)), (W (m (7)10) ) }

J;iCs,s€ER

An estimate of the mean square error of i(-) as an estimate of W (-) can be
computed as i.e. (fi(-) —W)2 The difference between this mean square error
and the sampling variance, or 62(W (m*(J;)|J;)), is an unbiased estimate of
the bias squarred of ji(-) as an estimate of W(-). We base our test of the
third EBE condition on these bias estimates.

More formally if we let E(-) take expectations over simulated random
draws, [ index information sets, and do all computations as percentages for
each VT/Z() value, the expectation of our estimate of the percentage mean

square of i(W;) as an estimate of W is

MSE, = E[MSE)] = E(%Z_WI)Q - (7)
E(ﬂ(Wz) —V;i[ﬂ(m)]y N <EWWV%] - Wz)? — o2 4 (Bias)?

Let (MSE,, 02, (Bias,)?) be the average of (MSE;, o2, (Bias;)?) over the
information sets (the ) of the agents active at state s, and 62 be the analogous
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average of 62(W;)/W2. Then since 62 is an unbiased estimate of o2, the law
of large numbers insures that an average of the 62 at different s converges
to the same average of o2. Let hy be the number of times we visit point s.
We use as our test statistic, say 7, an hg weighted average the difference
between the estimates of the mean square and that of the variance, and if —

indicates (almost sure) covergence, the argument above implies that
T=Y hMSE,~)» ho?— Y hBias,), (8)

a weighted average of the sum of squares of the percentage bias. If T is

sufficiently small we stop the algorithm; otherwise we continue 22.

Testing for a restricted EBE. Our test for a restricted EBE is similar
except that in the restricted case we simulate the mean and the variance
of outcomes for every m; € M, for each information set I, say (fim, i, &72,”,[),
for each J; C s and s € R. We then use the analogue of equation (7) to
derive estimates of {M :S’Elm} and average over m; € M, to obtain new
estimates of (MSE;, 5?). The test statistic is obtained by substituting these
new estimates into the formula for 7 in equation (8) above, and will be

labeled Tg.

5 Example: Maintenance Decisions
in An Electricity Market.

The restructuring of electricity markets has focused attention on the design of
markets for electricity generation. One issue in this literature is whether the
market design would allow generators to make super-normal profits during
periods of high demand. In particular the worry is that the twin facts that
currently electricity is not storable and has extremely inelastic demand might
lead to sharp price increases in periods of high demand (for a review of the
literature on price hikes and an empirical analysis of their sources in Califor-
nia during the summer of 2000, see Borenstein, Bushnell, and Wolak, 2002).
The analysis of the sources of price increases during periods of high demand

*Formally T is an L?(Pgr) norm in the percentage bias, where Pr is the invariant
measure associated with (R, W). Appendix 2 comments on alternative possible testing
procedures, some of which may be more powerful than the test provided here.
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typically conditions on whether or not generators are bid into or withheld
from the market, though some of the literature have tried to incorporate the
possiblity of “forced”, in constrast to “scheduled”, outages (see Borenstein,
et.al, 2002). Scheduled outages are largely for maintenance and maintenance
decisions are difficult to incorporate into an equilibrium analysis because, as
many authors have noted, they are endogenous.?

Since the benefits from incuring maintenance costs today depend on the
returns from bidding the generator in the future, and the latter depend on
what the firms’ competitors bid at future dates, an equilibrium framework
for analyzing maintenance decisions requires a dynamic game with strategic
interaction. To the best of our knowledge maintenance decisions of electric
utilities have not been analyzed within such a framework to date. Here
we provide the details of a simple example that endogenizes maintenance
decisions and then compute a restricted EBE for that example.

Overview of the Model. In our model the level of costs of a generator
evolve on a discrete space in a non-decreasing random way until a mainte-
nance decision is made. In the full information model each firm knows the
current cost state of its own generators as well as those of its competitors.
In the model with asymmetric information the firm knows the cost position
of its own generators, but not those of its competitors.

In any given period firms can hold their generators off the market. Whether
they do so is public information. They can, but need not, use the period they
are shut down to do maintenance. If they do maitenance the cost level of the
generator reverts to a base state (to be designated as the zero state). If they
do not do maintenance the cost state of the generator is unchanged. In the
asymmetric information model whether a firm maintains a generator that is
not bid into the market is private information.

If they bid the generator into the market, they submit a supply function
and compete in the market. If the generator is bid in and operated its costs
are incremented by a stochastic shock. There is a regulatory rule which
insures that the firms do maintenance on each of their generators at least
once every six periods.

23There has, however, been an extensive empirical literature on when firms do mainte-
nance (see, for e.g. Harvey, Hogan and Schatzki, 2004, and the literature reviewed their).
Of particular interest are empirical investigations of the co-ordination of maintenance
decsions, see, for e.g., Patrick and Wolak, 1997.
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For simplicity we assume that if a firm submits a bid function for produc-
ing electricity from a given generator, it always submits the same function
(so in the asymmetric information environment the only cost signals sent by
the firm is whether it bids in each of its generators). We do, however, allow
for heterogeneity in both cost and bidding functions across generators. In
particular we allow for one firm which owns only big generators, Firm B, and
one firm which only owns small generators, Firm S. Doing maintenance on
a large generator and then starting it up is more costly than doing mainte-
nance on a small generator and starting it up, but once operating the large
generator operates at a lower marginal cost. The demand function facing the
industry distinguishes between the five days of the work week and the two
day weekend, with demand higher in the work week.

In the full information case the firm’s strategy are a function of; the cost
positions of its own generators, those of its competitors, and the day of the
week. In the asymmetric information case the firm does not know the cost
position of its competitor’s generators, though it does realize that its com-
petitors’ strategy will depend on those costs. As a result any variable which
helps predict the costs of a competitors’ generators will be informationally
relevant.

In the asymmetric information model Firm B’s perceptions of the cost
states of Firm S’s generators will depend on the last time each of Firm S’s
generators shut down. So the time of the last shutdown decision on each
of Firm S’s generators are informationally relevant for Firm B. Firm S’s
last shutdown and maintenance decisions depended on what it thought Firm
B’s cost states were at the time those decisions were made, and hence on
the timing of Firm B’s prior shutdown decisions. Consequently Firm B’s
last shutdown decisions will generally be informationally relevant for itself.
As noted in the theory section, without further restrictions this recurrence
relationship between one firm’s actions at a point in time and the prior actions
of the firm’s competitors at that time can make the entire past history of
shutdown decisions of both firms informationally relevant. Below we consider
alternative restrictions each of which have the effect of truncating the relevant
past history in a different way.

Social Planner and Full Information Problem. To facilitate efficiency
comparisons we also present the results generated by the same primitives
when; (i) maintenance decisions are made by a social planner that knows
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the cost states of all generators, and (ii) a duopoly in which both firms
have access to the cost states of all generators (their own as well as their
competitors, our “full information” problem). The planner maximizes the
sum of the discounted value of consumer surplus and net cash flows to the
firms. However since we want to compare maintenance decisions holding
other aspects of the environment constant, when the planner decides to bid
a generator into the market, we constrain it to use the same bidding functions
used in the competitive environments.

Since the social planner problem is a single agent problem, we compute it
using a standard contraction mapping. The equilibrium concept for the full
information duopoly is a Markov Perfect and an equilibrium can be computed
for it using techniques analogous to those used for the asymetric information
duopoly (see Pakes and McGuire, 2001).

5.1 Details and Parameterization of The Model.

Table 1: Primitives Which Differ Among Firms.

Parameter Firm B Firm S

Number of Generators 2 3
Range of w 0-4 0-4
Marginal Cost Constant (w = (0, 1,2,3))* | (20,60,80,100) | (50,100,130,170)
Maximum Capacity at Constant MC 25 15
Costs of Maintenance 5,000 2,000

* At w = 4 the generator must shut down.

Firm B has two generators at its disposal. Each of them can produce
up to 25 megawatts of electricity at a constant marginal cost which depends
on their cost state (mep(w)) and can produce higher levels of electricity at
increasing marginal cost. Firm S has three generators at its disposal each of
which can produce 15 megawatts of electricity at a constant marginal cost
which depends on their cost state (mcg(w)) and higher levels at increasing
marginal cost. So the marginal cost function of a generator of type k € {B, S’}
is as follows:
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MCy(w) = meg(w) q <qy
= mep(w) +Bg—T.) 7>7

where g5 = 25 and gg = 15 and the slope parameter § = 10. For a given
w and level of production, firm B’s generator’s marginal cost is smaller than
those of firm S at any cost state, but the cost of maintaining and restarting
firm B’s generators is two and a half times that of firm S’s generators (see
table 1).

The firms bid just prior to the production period and they know the cost
of their own generators before they bid. If a generator is bid, it bids a supply
curve which is identical to its highest marginal cost at which it can operate.
The market supply curve is obtained by the horizontal summation of the
individual supply curves. For the parameter values indicated in table 1, if
firm B bids in N, number of generators and firm S bids in Ny number of
generators, the resultant market supply curve is:

0 » < 100
25N, + (B2 N, 100 < p < 170
MS o b 6 b < p
Q (Nba Ns) - p—100 p—170
25N, + (E52) N, + 15N, + (B5)N, 170 < p < 600,

and supply is infinitely elastic at p = 600. The 600 dollar price cap is meant
to mimic the ability of the independent system operator to import electricity
when local market prices are too high.

The market maker runs a uniform price auction; it horizontally sums the
generators’ bid functions and intersects the resultant aggregate supply curve
with the demand curve. This determines the price per megawatt hour and
the quantities the two firms are told to produce. The market maker then
allocates production across generators in accordance with the bid functions
and the equilibrium price.

The demand curve is log-linear

log(Q)MP = Dy — alog(p),

with a price elasticity of @« = .3. In our base case the intercept term
Dij—weekday = 7 and Dy—yeckenda = 6.25. We later compare this to a case
where demand is lower, Dj—yeekday = 9-3 and Dy = weekend = 5.05, as we
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found different behavioral patterns when the ratio of production capacity to
demand was higher.

As noted if the generator does maintenance then it can be operated in the
next period at the low cost base state (w = 0). If the generator is shutdown
but does not do maintenance its cost state does not change during the period.
If the generatoris operated the state of the generator stochastically decays.
Formally if w; j, € Q= {0,1,...,4} is the cost state of firm i’s j generator
and it is operated in period ¢, then

Wijt+1 = Wit = ity
where 7, ;, € {0, 1} with each outcome having probability .5.

The information at the firm’s disposal when it makes its shutdown and
maintenance decisions, say .J;;, always includes the vector of states of its
own generators, say w;; = {w;j;J = 1...n;} € Q% and the day of the
week (denoted by d € D). In the full information model it also includes
the cost states of its competitors’ generators. In the asymmetric information
case firms’ do not know their competitors’ cost states and so keep in memory
public information sources which may help them predict their competitors’
actions. The specification for the public information used differs for the
different asymmetric information models we run, so we come back to it when
we introduce those models.

The strategy of firm i € {S.B} is a choice of

m; = [ml,i, .. .mni’i] : Jz — (0, 1,2) i = Mi7

where m = 0 indicates the generator is shutdown and not doing mainte-
nance, m = 1 indicates the generator is shutdown and doing maintence, and
m = 2 indicates the firm bids the generator into the market. The cost of
maintenance is denoted by ¢m;, and if the firm bids into the market the bid
function is the highest marginal cost curve for that type of generator. We
imposed the constraint that the firm must do maintenance on a generator
whose w =4

If p(my 4, may, d;) is the market clearing price while y; ;+(mp, Mgy, dy) is
the output alocated by the market maker to the j** generator of the i** firm,
the firm’s profits (m;(-)) are

Uy (mB,umS,t;dtawi,t) :p(mB,tamS,tadt) E yi,j,t(mB,tamS,tvdt)
J
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- Z [[{mi,j,t = 2}C(Wi,j,t7 yz‘,j,t(mB,ta ms,, dt)) — [{mz’,j,t = 1}ij,i )
J

where; I{-} is the indicator function which is one if the condition inside
the brackets is satisfied and zero elsewhere, c(w; s, vi;¢(-)) is the cost of
producting output y; ;; at a generator whose cost state is given by w; ;, and
cmy; is the cost of maintenance (our “investment”).

5.2 Alternative Informational Assumptions for the As-
symmetric Information Model.

We have just described the primtives and the payoff relevant random variables
of the models we compute. We now consider the different information sets
that we allow the firm to condition on in those models. As noted the public
information that is informationally relevant could, in principal, include all
past shutdown decisions of all generators; those owned by the firm as well as
those owned by the firms’ competitors. In order to apply our framework we
have to insure that the state space is finite. We present the‘ results from three
different assumptions on the information structure of the Asl model, each of
which have the effect of insuring finiteness. In addition we compare these
results to both a full information model in which all generator’s states are
public information, and to those generated by a social planner that maximizes
the sum of discounted consumer and producer surplus.

All three asymmetric information (henceforth, Asl) models that we com-
pute assume (w;s, di) € Jit. The only factor that differentiates the three
is the public information kept in memory to help the firm assess the likely
outcomes of its actions. In one case there is periodic full revelation of infor-
mation; it is assumed that a regulator inspects all generators every T' periods
and announces the states of all generators just before period T+ 1. In this
case we know that if one agent uses strategies that depend only on the infor-
mation it has accumulated since the states of all generators were revealed, the
other agent can do no better than doing so also. We computed the equilibria
for this model for T' = 3,4,5,6 to see the sensitivity of the results to the
choice of T. The other two cases restrict the memory used in the first case;
in one a firm partitions the history it uses more finely than in the other. In
these cases it may well be that the agents would have profitable deviations
if we allowed them to condition their strategies on more information.
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The public information kept in memory in the three asymmetric informa-
tion models is as follows.

1. In the model with periodic full revelation of information the public
information is the state of all generators at the last date information
was revealed, and the shutdown decisions of all generators since that
date (since full revelation occurs every T periods, no more than T
periods of shutdown decisions are ever kept in memory).

2. In finite history ”s” the public information is just the shutdown deci-

sions made in each of the last T" periods on each generator.

3. In finite history ”7” the public information is only the time since the

last shutdown decision of each generator.

The information kept in memory in each period in the third model is
a function of that in the second; so a comparison of the results from these
two models provides an indication on whether the extra information kept in
memory in the second model has any impact on behavior. The first model,
the model with full revelation every six periods, is the only model whose
equilibrium is insured to be an equilibrium to the game where agents can
condition their actions on the indefinite past. I.e. there may be unexploited
profit opportunties when employing the equilibrium strategies of the last two
models. On the other hand the cardinality of the state space in the model
with periodic full revelation of information is an order of magnitude larger
than in either of the other two models.?*

5.3 Computational Details.

We compute a restricted EBE using the algorithm provided in section 3. The
full information (henceforth “FI”) equilibrium is computed using analogous
reinforcement learning algorithms (see Pakes and McGuire, 2001), and the
social planner is computed using a standard iterative technqgiue (as it is a
contraction mapping with a small state space). This section describes two

24However their is no necessary relationship between the size of the recurrent classes
in the alternative models, and as a result no necessary relationship between either the
computational burdens or the memory requirements of those models. The memory re-
quirements and computational burdens generated by the different assumptions have to be
analyzed numerically.
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model-specific details needed for the computation; (i) starting values for the
W(-|-)’s and the 7¥(-|-), and (ii) the information storage procedures.

To insure experimentation with alternative strategies we used starting
values which, for profits, were guaranteed to be higher than their true equi-
librium values, and for continuation values, that we were quite sure would
be higher. Our intitial values for expected profits are the actual profits the
agent would receive were its competitor not bidding at all, or

mE’kZO(mz‘, Ji) = mi(mi,m—; = 0,d, w;).

For the intial condition for the expected discounted values of outcomes given
different strategies we assumed that the profits were the other competitor
not producing at all could be obtained forever with zero maintenance costs
and no depreciation, that is

mi, m_; = 0,d, wi)
1-p

The memory was structured first by public information, and then for each
given public information node, by the private information of each agent. We
used a tree structure to order the public information and a hash table to
allocate the private information conditional on the public information. To
keep the memory manageable, every fifty million iterations we performed a
“clean up” operation which dropped all those points which were not visited
at all in the last ten million iterations.

WA= (i 1)) = T

5.4 Computational Properties of the Results.

The results reported below are from runs in which we ran the model 500
million iterations and then printed out test statistics for each firm. The test
statistics gave us an R? ~ 1 (to five significant digits; for e.g. for T=5, the
R? was .9995 and .9996 for firm B and S respectively)®.

Table 2 considers the sensitivity of the output from the Asl model with
full revelation every T periods to the choice of T. As we increase T  the
difference in these variables’ values becomes progressively smaller, with the
difference between 7' = 6 and 7" = 5 not large enough to impact any of our

25As a check of our programs we also checked to see that our results from the program
that computed the restricted EBE model also consituted an equilibrium for the program
that ran the unrestricted EBE model, which it did.
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conclusions. Consequently we focus on the T' = 5 case for all the rest of our
calculations.

Table 2: Periodic Full Revelation With Different T.

| [T=3 [ T=1] 7570

Summary Statistics.

Consumer Surplus (x107%) 58,000+ | 550 | 572 | 581 580
Profit B (x107?) 393 | 389 | 384 | 383
Profit S (x1073) 334 | 324 322 324
Maintenance Cost B (x1073) 259 | 21.6 | 202 | 194
Maintenance Cost S (x1073) 121 11.8 | 11.8| 11.8
Production Cost B (x1073) 230.2 | 235.3 | 235.1 | 234.3
Production Cost S (x1073) 230.4 | 226.9 | 228.1 | 229.2

Next we asked how well we approximate the Asl model with periodic full
revelation with our AsI models with restricted state spaces. Table 3 compares
summary statistics from the full revelation model to models in which all a
firm remembers about its competitors is; (i) whether or not the competitors’
generators were bid into the market in each of the last 5 periods (the finite
history s information sturcture), or (ii) the last time each of its competitors’
generators was shutdown (our finite history 7 model). The table shows that
the finite history 7 information stucture does not approximate the periodic
full revelation model well, but the finite history s structure does much better.
Indeed it would be hard to tell the difference from this and the periodic full
revelation model with the kind of data sets we usually have. We use the
output from the model with periodic full revelation in our analysis of results
in the next subsection, but if we were to compute models with larger state
spaces the finite history s model would become increasingly attractive.

We are interested in the models with the restricted information structures
because they generate smaller state spaces and hence are likely to impose
less of a computational burden both on the researcher, and perhaps more
importantly, on the agents actual decision making process. For both these
reasons the restricted information structures may be more suitable for applied
work. Table 4 provides the sizes of the recurrent classes and compute times
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Table 3: Three Asymmetric Information Models (T=5).

Finite History | Periodic

T H s Revelation
Summary Statistics.
Consumer Surplus (x1073) 58,000+ | 270 580 581.5
Profit B (x10~%) 414 | 384.7 384.5
Profit S (x107%) 439 | 3235 322.8
Maintenance Cost B (x1073) 28.5 20.0 20.2
Maintenance Cost S (x1073) 18.0 11.7 11.8
Production Cost B (x1073) 226.8 | 2355 235.1
Production Cost S (x1073) 254.6 | 228.4 228.1

for these models (including the test time)?%. We note that the compute times
for the Asl models are the compute times for the restricted EBE. If one were
to suffice with the weaker notion of an (unrestricted) EBE, the compute time
would go down dramatically (e.g.; its compute time per 100 million iterations
for the periodic full revelation model when T=5 was just under two hours).

The first thing to notice from the table is that the compute time per 100
million iterations increases with the size of the recurrent class, though at a
decreasing rate. The size of the recurrent class for the finite history 7 model
is only 5% of that for the periodic full revelation model, and apparently
this is not a rich enough partition of the state space to provide an adequate
approximation. The size of the recurrent class from the finite history s model
that does approximate quite well is about 42% of that of the periodic full
revelation model. The relative simplicity of the FI model is reflected in its
much smaller recurrent class. As a result it computes much quicker than any
of the other models.

Finaly to figure out compute times one needs to know how the test statis-
tic behaves as we increase the number of iterations. To insure that the R?
statistic was above .99 we needed as much as 200 million iterations, and in

26 All computations in this paper were run on the Odyssey cluster supported by the FAS
Science Division Research Computing Group at Harvard University. For a description of
the machine used see http//rc.fas.havard.edu. However the memory requirements for all
runs was well within one GB, so the runs could be done on a laptop.
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Table 4. Computational Comparisons.

Asl; Finite | Asl; Finite | Asl; Full Full

Hist. 7 Hist. m Revel. Info.

Compute Times per 100 Million Iterations (hours; includes test).

Hours \ 3:04 | 11.08 |  17:14 | 1:05
H Cardinality of Recurrent Class. H

Firm B (x10°) 5650 38,202 67,258 3,553

Firm S (x10°) 5519 47,304 | 137,489 3,553

all our runs the R? flattened out between 250 and 350 million iterations at
values which were 1 to at least four significant digits.

5.5 The Economics of the Alternative Environments.

The output of the algorithm includes; strategies, quantities produced and
prices by day of the week, realized costs (both operational and maintenance),
profits, and consumer welfare. We start with a comparison of the base case
AsI model with the base case Social Planner (the second and third columns
in Table 5).

Strategies. Panel A of Table 5 is rather striking. The Social planner never
shuts down without doing maintenance, and does more matintenance on both
its big and its small generators than do the Asl competitors. During the
week, when demand is high, the planner operates both its large generators
and its small generators at almost full capacity. On average it typically does
maintenance on one, and sometimes on both, large generators on Sunday
ensuring that those generators are at a low cost state when going into the
work week. The planner typically does maintenance on one small generator
on Saturday and another on Sunday, and if it requires more maintenance of
small generators than that it will maintain two small generators on Saturday.

The Asl equilibrium generates about 30% more shutdown of large gener-
ators and 25% more shutdown of small generators than the social planner,
but actually does about 30% less maintenance on both types of generators
than does the social planner. I.e. about half the time generators are not
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operating in the Asl equilibrium they are shut down without doing mainte-
nance. The shutdown decision results in higher prices for the firm’s oper-
ating generator(s). The number of generators operated on weekends by the
Asl equilibrium is about the same as the social planner operates, so the Asl
equilibrium is operating less generators than the social planner on the high
demand weekdays (though it still operates more generators on weekdays than
on weekends).

The social planner does more maintenance than the Asl equilibrium gen-
erates, and almost all its maintenace is done during the low demand week-
ends. This enables the planner to operate more generators on the high de-
mand weekdays, pushing down price on those days and adding to consumer
surplus. The social planner internalizes this increase in consumer surplus,
while the firms operating in the Asl equilibrium would not.

Costs. The fact that the social planner does more maintenance, and that
the planner can optimize maintenance jointly over the large and small genera-
tors, results in much lower production costs for the planner than is generated
by the Asl equilibrium. Indeed the planner has lower total (maintenance plus
production) costs per unit quantity. This despite the fact that our model has
increasing costs, and the social planner produces more quantity (particularly
on the high demand weekdays).

Prices and Quantities. Recall that we model an electricity market with
relatively inelastic demand. So the fact that the planner produces about 2%
more output than the Asl equilibrium on weekdays causes the planners’ prices
to be about 10% lower on those days. This implies that the Asl equilibrium
produces a larger difference in prices between weekdays and weekends than
does the social planner. However even the social planner’s weekday prices
are 20% higher than weekend prices; i.e. prices “spike” on high demand
days. Apparently we need to change the institutional setting to get the price
discrepancy between weekdays and weekends to under 20%.

Consumer Surplus and Profits (Table 6). It is not a surprise that
the planner gnerates higher total surplus than does the Asl equilibrium,
but it is somewhat surprising that the planner also generates more profits.
This is largely because the planner does more maintenace than either of the
duopolies, and this reduces total costs.
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Asl versus FI Equilibria: Base Case and “Excess” Capacity. The
comparison of the Asl equilibrium to the FI equilibrium strategies depends
on the extent of generating capacity relative to demand. In the base case the
FT equlibrium generates less shutdown and more maintenance than does the
Asl, but when there is more capacity relative to demand the Asl equilibrium
does less shutdown and more maintenance.

The differences are most noticeable in the comparative behavior of the
firms during weekends. In the base case the Asl equilibrium generates no-
ticeably less operation of both large and small generators during the weekend
than does the FI equilibrium. The weekend shutdowns in the Asl equilibrium
enables the firms to signal that their generators will be bid in on the week-
days to follow, and in the base case weekday prices are over 20% higher than
weekend prices. There are no signalling incentives in the FI equilibrium and
in that equilibrium more output is produced on weekends. When we increase
capacity relative to demand the difference between weekday and weekend
prices drops dramatically (to 5.4% in the Asl and 1% in the FI equilibrium)
and now both firms operate more on weekends in the Asl equilibrium than
in the FI equilibrium (only slightly more for firm B, but noticeable more for
firm S).

The second noticeable change when we add capacity relative to demand is
that the average cost (maintenance plus production cost divided by quantity)
is quite a bit lower when there is relatively more capacity. In both capacity
environments the average cost in the Asl equilibrium is similar to that in the
FI equilibrium, but average costs falls by over 30% when the ratio of capacity
to demand increases. Of course firms would have to weigh any reduction in
average costs against the cost of installing the capacity before engagng in
capacity expanding investments, and we can not compute the private value
of capacity expansion without a more complicated dynamic model than the
model used here.

Moving to table 6, we see that the differences in consumer and total
surplus between the Asl and the FI equilibrium in always small and differs in
sign in the two environments. The major difference between the environment
with more capacity relative to demand is that with a higher capacity to
demand ratio we see a large increase in consumer surplus and a large (but
smaller in absolute value) decrease in producer surplus. As a result total
surplus is noticeably larger when the ratio of capacity to demand is higher.
This is largely a consequence of prices falling when the ratio of capacity to
demand increases, particularly weekday prices. Indeed it seems that one way
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to decrease the weekend /weekday price differential is to increase the ratio of
capacity to demand.

6 Concluding Remark

We have presented a simple framework for analyzing finite state dynamic
games with asymmetric information. It consists of a set of equilbrium condi-
tions which, at least in principal, are empirically testable, and an algorithm
capable of computing policies which satisfy those conditions for a given set of
primitives. Its advantages are twofold. First by chosing alternative informa-
tion structures we can approximate behavior by agents in complex institu-
tional settings without requiring those agents to have unrealistically excessive
information retention and computational abilities. Second the algorithm we
use for analyzing the equilibria is relatively efficient in that it does not re-
quire; storage and updating of posterior distributions, explicit integration
over possible future states to determine continuation values, or storage and
updating of information at all possible points in the state space. The hope
is that this will enable us to approximate behavior and analyze outcomes in
markets which have been difficult to deal with to date. This includes markets
with dynamic consumers as well as dynamic producers, and markets where
accounting for persistent sources of asymmetric information is crucial to the
analysis of ourcomes.
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Appendix 1: Claims for Periodic Revelation.

Claim 1 Periodic Revelation. If for any initial s, € R there is a T < oo
and a random T (whose distribution may depend on s;) which is less than
or equal to T™ with probability one, such that all payoff relevant random
variables are revealed at t + T, then if we construct an equilibrium to a game
whose strategies are restricted to not depend on information revealed more
than T periods prior to t, it is an equilibrium to a game in which strategies
are unrestricted functions of the entire history of the game. Moreover there
will be optimal strategies for this game which, with probability one, only take
distinct values on a finite state space, so #|R| is finite. @

Sketch of Proof. Let h;, denote the entire history of variables observed by
agent ¢ by time ¢, and J;; denote that history truncated at the last point
in time when all information was revealed. Let (W*(-|.J;),m*(J;),p°(+]J,))
be EBE (or restricted EBE) valuations, strategies, and resulting probability
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distributions when agents condition both their play and their evaluations on
J; (so they satisfy C1,C2,C3 of section 2). Fix J; = J;;. what we much
show is that

(W1 ie), m* (i)

satisfy C'1, C2, C3 if the agents’ condition their expectations on h; ;.
For this it suffices that if the '« strategies are played then for every
possible (J/, J_;),

pe(JZ~,|JZ'7t) = P’I"(Ji/|hi7t), and pe(J_i|JZ-,t) = PT(J_iVLi,t).

If this is the case strategies which satisfy the optimality conditions with
respect to {W*(-|.J;+)} will satisfy the the optimality comditions with respect
to {W(-|hit)}, where it is understood that the latter equal the expected
discounted value of net cash flows conditional on all history.

We prove the second equality by induction (the proof of the first is simi-
lar and simpler). For the intial condition of the inductive argument use the
period in which all information is revealed. Then p®(J_;|J;) puts probabil-
ity one at J_; = J_;; as does Pr(J_;|h;). For the inductive step, assume
Pr(J_is|hit,) = p°(J-ilJis,). What we must show is that if agents use the
* policies then the distribution of J_; 4,41 conditional on h; 4,11 depends only
on Jjto+1-

Let a bar over a set of variables indicate its complement in U,J; ; for any
t, and

i = Jitgr1 NI g1 N Jigy, while € = MiJiep1 N iy

so that p; is the new private, and € is the new public, information in J; 4,41.
We assume that

(A1)  P(ulhiy) = P(pilJig,miy) and  P(e| U; hiy) = Ple| U; Jiy, Uimig)

so that the distribution of the new private and public information depend
only on agents’ policies and the information in U;J;;. The fact that (Al)
allows the distribution of € to depend on policies generates the possiblity of
sending signals or revealing information on events that have occured since
all information was revealed. What (A1) rules out is models where the in-
tepretation of those signals depends on information that occured prior to the

period when all states were revealed.
Since for any events (A, B,C), Pr(A|B,C) = Pr(A, B|C)/Pr(B/C)
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Pr(ﬂ—ia Hi, €, J—i,to |hi7t0)
Pr(p, €|hig,) '

From (A1) and the * policies, the numerator in this expression can be rewrt-
ten as

Pr(in,to+1|hi,to+1) = PT(M—i; €, J—i,to‘,ui; €, h—i,to) =

Pr(p—;, ti, €, J_ito|hire) = Pr(p—i, tti, €, J—i10|Uidi1g, Ui (Jii0) ) Pr(J—ito | Pito )

and from the hypothesis of the inductive arguement Pr(J_; 1, |hi+,) = p(J—ite|Jity)-
A similar calculation for the denominator concludes the proof. &

Claim 2 There exists a restricted EBE if there is periodic revela-
tion of information. &

Sketch of a Proof. In our existence proof we consider only games for which
there is a periodic revelation of all private information. That is, games in
which every 7 periods all private information is revealed. Note that at that
period J;; = & and it contains only the payoff relevant variables w for all
the firms. Our proof will follow Maskin and Tirole (2001) that showed the
existence of MPE for complete information dynamic game with finite action
space with the proper adjustments. Their proof established first that there
is a MPE in the finite period game and then used the fact that the game
is continuous at infinity to establish the existence of MPE in the infinite
horizon game (see Fudenberg and Levine (1983)).

To prove existence we must allow for behavioral strategies. In our main
setup we consider only pure strategies as we believe that this is the right
framework for empirical analysis but in order to guarantee the existence of
restricted EBE we extend our framework and allow for mixing as well. Hav-
ing behavioral strategies will not change much our setting and our equilib-
rium conditions. Each firm will still have the evaluation W (m|J;) according
to which it determines its optimal actions and our consistency requirement
would be the same. We will just allow the firm to mix but we do not need
to have a valuation for such the mixed strategy but only for the actions m
themselves. Note also that whenever the firm mix between different ms’ these
ms’ should have the same valuations.?”

27Clearly whever the firm mixes all the m’s in the support of such a mix are chosen with
positive probability in the equilibrium play and all resultant outcomes are in the recurrent
class.
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Our concept of restricted EBE is relevant for an infinite game. We define
a cycle as a game that starts at a particular initial conditions wg, which is the
list of all payoff relevant random variables in that period, and is being played
for 7 periods. A 1-cycle game would be an infinite game that starts with the
initial conditions wy being played for one cycle and then starts all over with
the same initial condition wy and continue to repeat itself. We construct a
"T cycle game” in the same manner. A game that starts at a particular
wo being played for T' cycles (or for T't periods) and then starts over with
the same initial conditions wg and continues to repeat itself in this manner.
Our approach would be to establish a restricted EBE for this 7" cycle game
and then let 7" — oo and show that the limit would be a restricted EBE
equilibrium for our dynamic game.

Consider now a 1l-cycle game that starts at a particular wy. This is a
finite game and it has a PBE (see Kreps and Wilson, 1982). That is for
this game we can define (possibly mixed) strategies m*(.J;+,wy) and beliefs
B*(2_;¢|Jit,wo) which are probability distributions over z_;; (the types of
the other players at period ¢, t = 1, ..., 7) that specifies the beliefs of player
i regarding the types of other players.?® The conditions that are satisfied
are that m*(J;;,wp) is optimal given B*(z_;4|J;s,wo) and that the beliefs
are consistent with strategies whenever possible. We can now use this PBE
to construct a restricted EBE for our 1-cycle game. The strategies would
be the same strategies as in PBE and the construction of W (m|.J;+,wp) is
straightforward given the equilibrium strategies. Such a constrcution can
be done for every wy. In a similar way we can construct a restricted EBE
for the T cycle game; i.e., constructing the values W(m |J; s, wo,T') and the
strategies m(J; ¢, wo, T) where t € {1,...,T7} (as afterwards the game will
replicate itself). Claim 1 implies that we need only ensure that .J;; includes
the values of the payoff relevant random variables at the beginning of the
cycle, and all observable variables since that time. Both W(m |J;4,wo,T)
and m(J; ¢, wo,T") depend on T which defines the number of cycles we are
having before restarting the game.

The last stage is to establish existence of restricted EBE for the infinite
horizon game. Lets look at the values and the strategies only of the first
cycle (the first 7 periods). Lets define by m'(J; ;,wo, T') as the restricted EBE
strategies of the first cycle (the first 7 periods) when the game is a ”T cycle

ZNote that wp is formally part of J;, but we write it separately here to indicate the
starting point of any cycle.
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game” and when the starting point is wy. There is an equilibrium in which
these strategies are identical for every first cycle in the T cycle game. We
now let T'— oo and examine the strategies m'(J; ;,wo, T'). We can construct
a converging sequence (subsequence if needed) such that m'(J;;,wo, T) —
m>(J;+, wp). We can construct such a converging sequence for every possible
wp and define the strategies m™(.J; ;) for the infinite game. We now claim that
m>(J;+) together with the valuation W (m/|.J;;) that it generates constitute
a restricted EBE.

To do that we will follow similar arguments as in Fudenberg and Levine
(1983). First note that that for every 7" there is a sufficiently large 7" such
that if we look at a 1" cycle game where T" > T then m(J; 4, wp,T") would
be sufficiently close to m>(J; ¢, wp) for t < T"r. That is, the strategies of the
first 7" cycles converge to m™(J;;,wp) as T — oo (note that we can view
each of the first 7" cycles as the first cycle). Assume now that m>(.J;+) (to-
gether with W (m|J;;)) is not a restricted EBE for the infinite game. Then
there is a player 7 and an information set J;; such that there is a strategy
m’ such that m' =; m>(J;,), that is, W(m/|J;,) > W (m>(J],)|J},) (this
is with a slight abuse of notation such that W(m’|.J;;) would be the ex-
pected evaluation when player i plays the (possibly mixed) strategy m’).
We now claim that if W(m' [Jj,) > W(m>(J;,)|J;,) then there is a T
and restricted EBE for the T cycle game that starts at wy such that at
the first cycle we have W(m/|J];,wo, T') > W(m(J;;,wo, T)|J} ;,w, T) which
contradicts the fact that m(J;,wo,T) is the equilibrium play for the T
cycle game. This inequality exists because W (m/|.Jj,,wo,T) (respectively
W(m(Jj;,wo, T)|J;;,w,T) ) can be as close as we wish to W (m'|J] ;) (respec-
tively W (m®>(J;,)|J;;)) when we let T" be sufficiently large (and using the
continuity at infinity).

Appendix 2: Algorithmic Details.

We begin with a brief review of the properties of the algorithm, and then
move to some notes on how one might usefully amend the algorithm to be
more effecient when different primitives are appropriate.

The advantages of using a stochastic algorithm to compute equilibria in
full information games relative to standard iterative technqiues like those
used in Pakes and McGuire (1994) were explored by Pakes and McGuire
(2001). These advanatages are even larger in asymetric information games
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that use the EBE equilibrium conditions. This because those conditions
do not require us to form beliefs about player’s types, and the stochastic
algorithm neither computes posterior beliefs nor tests for their consistency
with the actual distribution of types.

Pakes and McGuire (2001) noted that, at least formally, their stochastic
algorithm does away with all aspects of the curse of dimensionality but that in
computing their test statistic. Accordingly as they increased the dimension of
the state space in their examples the computation of the test statistic quickly
became the dominant computational burden. We circumvent this problem
by substituting simulation for explicit integration in the construction of the
test statistic, thereby eliminating the curse of dimensionality entirely.

However as is typical in algorithms designed to compute equilibria for
(nonzero sum) dynamic games, there is no guarantee that our algorithm
will converge to equilibrium values and policies; that is all we can do is
test whether the algorithm outputs equilibrium values, we can not guarantee
convergence to an equilibrium a priori. Moreover there may be more than
one equilibria which is consistent with a given set of primitives. There are,
however, both choices in implementation, and amendments to the algorithm,
that will influence which equilibrium is computed.

One choice is that for the initial evaluations i.e. our W° High initial
values are likely to encourage experimentation and lead to an equilbria in
which players have explored many alternatives. An alternative way of insur-
ing experimentation is to amend the algorithm as follows. Instead of having
agents chose the “greedy” policy at each iteration, that is the policy that
maximizes W¥, use choice procedure which has an exogenous probability of
chosing each possible action at each early iteration, but let that probability
go to zero for all but the greedy policy as the number of iterations grows
large. Though both these procedures will insure experimentation, they will
also tend to result in longer computational times.

As noted in a particular applied context one may be more interested in
directing the algorithm to compute an equilibrium which is consistent with
observed data, say by introducing a penalty function which penalizes de-
viations from the exogenous information available, then in computing an
equilibria which insures experimentation. Relatedly note that since our es-
timates of the W are sample averages, and will be more accurate at a given
location the more times we visit that location. If one is particularly inter-
ested in policies and values at a given point, for example at a point that is
consistent with the current data on a given industry, one can increase the ac-
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curacy of the relevant estimates by restarting the algorithm repeatedly from
that point.

Both the structure of memory provided and the test given in the text are
always available, but that memory structure need not be computationally
efficient, and the test need not be the most powerful test. A brief discussion
of alternative memory structures and testing procedures follows.

Alternative Memory Structures. It is useful to work with the distribu-
tion of the increment in w between two periods, i.e. defining 7y = w1 —wy,
we work with

Py =1 B[ miyym_y,w); (mi,m_;) € M, w € Q},

where P, is derived from the family of distributions in equation (2).

We begin with the case where m is observed by the agent’s competitors.
Then we could hold in memory either estimates of W (m|J;) or estimates
of W(n,m|J;). If the latter we would chose m at iteration k£ to maximize
> WE(n, m|J;)p(n|m, m*7! w). The tradeoff here is clear. By holding es-
timates of W (n,m) instead of estimates of W(m) in memory, we increase
both memory requirements and the number of summations we need to do at
each iteration. However we are likely to decrease the number of iterations
needed until convergence, as explicit use of the primitive p(n|-) allows us to
integrate out the variance induced by 7 conditional (m, J;) rather than re-
lying on averaging the simulation draws to do so. The W (n, m|J;) memory
structure is particulary easy to use when the probability of 1 conditional on
m; is independent of m_; (i.e. in capital accumulation games), and we used
it in our electric utility example.

When m is unobservable there is an even simpler memory structure that
can be used in capital accumulation games. We can then hold in memory esti-
mates of W (n|.J;) and chose m at iteration k to maximize ) W¥(n|J)p(nlm, w)
(we can not do this when m is observable because then m is a signal and
will have an effect on next period’s state that is independent of 7). Then the
memory requirements may be larger when we hold estimates of W (m|.J;) in
memory relative to holding estimates of W (n|J;), and will be if the cardinal-
ity of the choice set (of M) is greater than the cardinality of the the support
of the family P,. Notice that the model that holds estimates of W (n|J;)
in memory is a natural way of dealing with continuous controls (continuous
m) whose values are unobserved by competitors, and that we may well have
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some controls observed and some unobserved in which case hybrids of the
structures introduced above would be possible. As for computational bur-
den, the model that holds estimates of W (n|.J;) in memory has the advantage
that it explicitly integrates out over the uncertainty in 7 and hence should
require less iterations until convergence.

Alternative Testing Procedures. Several aspects of the test provided
in the text can be varied. First the test provided in the text insures that
the W outputted by the algorithm is consistent with the distribution of
current profits and the discounted evaluations of the next period’s state. We
could have considered a test based on the distribution of discounted profits
over 7 periods and the discounted evaluation of states reached in the 7t*
period. We chose 7 = 1 because it generates the stochastic analogue of the
test traditionally used in iterative procedures to determine whether we have
converged to a fixed point. It may well be that a different 7 provides a
more discerning test, and with our testing algorithm it is not computational
burdensome to increase 7.

Second we used an informal stopping rule, stopping the algorithm when
the norm of the bias in the estimates of {IWW(-)} was sufficiently small. Instead
we could have used a formal statistical test of the null hypothesis that there
was no bias (i.e. test the null H° : 7 = 0). Notice that if we did proceed
in this way we could, by increasing the number of simulation draws, increase
the power of any given alternative to one. This suggests that we would want
to formalize the tradeoff between size, power, and the number of simulation
draws, and explicitly incorporate allowance for imprecision in the computer’s
calculations. These are tasks we leave to future research.
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Table 5: Quantities and Costs.

H Base Case H Excess Capacity H
| Planner | AsI | FI || AsI | FI
Panel A: Strategies.
Firm B: Shutdown and Maintenance.
Shutdown Percentage 14.52 | 19.96 | 12.31 || 41.97 43.75
Maintenance Percentage 14.52 | 10.1 | 109 | 6.47 6.25
Firm S: Shutdwon and Maintenance.
Shutdown Percentage 16.85 | 21.48 | 20.74 | 53.1 56.4
Maintenance Percentge 16.85 | 9.83 | 991 | 5.22 4.84
Firm B: Operating Generators by Day of the Week.
Saturday 1,41 1.08 | 1.72 | 1.03 1.0
Sunday 88| 1.21| 1.65| 1.03 1.0
Weekday Ave. 1.93 ] 1.78 | 1.78 | 1.03 1.0
Firm S: Operating Generators by Day of the Week.
Saturday 1.55 | 1,56 | 2.03 || 1.21 0.48
Sunday 1.89 | 1.75| 1.86 | 1.20 0.44
Weekday Ave. 280 | 2.64| 255 1.25 1.44
Panel B: Costs.
Maintenance Cost B (x107?) 291 20.2 2195 | 129 12.5
Maintenance Cost S (x107?) 202 | 11.8| 11.9 6.3 5.8
Production Cost B (x1073) 211.1 | 235.1 | 2404 || 48.3 48.4
Production Cost S (x1073) 174.8 | 228.1 | 2159 || 13.6 11.8
Total Cost/Quantity 0.389 | 0.452 | 0.444 | .290 282
Panel C: Quantities and Prices.
Average Quantity Wkend 93.5| 92.0| 98.6 | 33.6 33.1
Average Price Wkend 303 325 260 168 175.6
Average Quantity Wkday 185.7 | 181.8 | 181.2 || 42.50 42.43
Average Price Wkday 374 | 401 411 177 177
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Table 6: Consumer Surplus and Profits.

H H Base Case H Excess Capacity H
H H Planner | Asl | FI H Asl | FI H
| Cons. Surplus (x10~%) 58,000+ | 662 [ 581.5 ] 59 [ 1,316 | 1,311 ]
Total Profits (Firm B+S) (x107%) [ 716.2 [ 707.3 [ 706.7 ]| 58.1 61.9
Firm B Profits (x107) 385.3 | 384.5 | 388.1 | 53.2 54.5
Firm S Profits (x10~°) 331.0 | 322.9 [ 3188 | 4.9 7.4
| Total Surplus (x10~%) 590,000+ [ 378.1[288.9[301.4 [ 1374 1,373 |
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