Dynamic Generation of Machined Surfaces
Part 1: Description of a Random
Excitation System

by G.M. Zhang and S.G. Kapoor

TECHNICAL
RESEARCH
REPORT

Supported by the

National Science Foundation

Engineering Research Center
Program (NSFD CD 8803012),
Industry and the Universily

TR 90-36



Dynamic Generation of Machined Surfaces
Part 1: Description of a Random Excitation System

G. M. Zhang, Assistant Professor
Mechanical Engineering Department and Systems Research Center

University of Maryland
College Park, MD 20742

S. G. Kapoor, Associate Professor
Department of Mechanical and Industrial Engineering
University of Illinois at Urbana-Champaign
Urbana, Hlinois 61801

Abstract

With increasing emphasis on the adaptive control for the purpose of quality and pro-
ductivity improvement, it becomes necessary to develop models which can correlate the
surface finish parameters with the machining conditions as well as workpiece material
characteristics. This paper presents a study that leads to the development of a model for
the dynamic generation of three-dimensional texture of machined surfaces. In Part 1,
the mathematical formulation of the random excitation system which is responsible for
the random portion of a surface profile is developed. It is assumed that the random
excitation system originates from the nonhomogeneous distribution of microhardness of
workpiece material. Machining tests are also performed to verify the validity of such a
model development. In Part 2, a procedure for the construction of three-dimensional
topography will be developed and the relationship between the machining conditions
and the surface finish parameters will be established.

1 Introduction

It is well known that the roughness profile of a cut surface contains periodic components
[1-4]. The geometry of cutting action, namely, the tool geometry and cutting parameters are
commonly presumed to be the main factors relating to the formation of the deterministic
portion of the surface profile. Under ideal conditions, the roughness profile is formed by the
repetition of the tool tip profile at intervals of feed (per revolution) and it is easy to correlate
the roughness indices such as R, and RMS values with the cutting parameters [5,6]. On

the other hand, workpiece material properties, tool vibration, metal shearing during the



chip formation, etc., interact in a complex manner and their effects are dealt with as the
random portion of roughness profile. Evaluation of the random or stochastic components
of the surface profile still remains to be done. More recently, researchers have tried to
establish quantitative relations between the surface finish and the cutting parameters of
depth of cut, feed, and cutting speed using the methods like wavelength decomposition
of surface roughness [7] and the constant-R, contour map [8]. Unfortunately, no positive
results on such quantitative relations have been reported and the randomness observed in
any roughness profiles is explained qualitatively.

The purpose of these two-part papers is to develop a model which is capable of con-
structing the three-dimensional texture of machined surfaces with both deterministic and
stochastic components in it. In this study, an assumption has been made that the stochastic
or random components of a surface profile could come from the tool vibratory motion caused
by the random excitation. This random excitation in turn originates from the force varia-
tion caused by the nonhomogeneous distribution of microhardness present in the workpiece
material being machined [11].

In part 1, a mathematical model is developed to describe the phenomenon of random
excitation. The model formulation is based on the sample variance theory [9,10], which
relates the random excitation phenomenon to factors such as the microhardness, size, and
shape of the microstructures present in the workpiece material, as well as the three cutting
parameters, namely, the depth of cut, feed, and cutting speed. As a result, the developed
mathematical model provides a means to quantitatively evaluate how the microstructures
of the workpiece material and the three cutting parameters are related to the random tool
motion. Cutting tests are also carried out to confirm the validity of the developed model. In
part 2, a procedure will be developed to construct the surface topography using the results
of the random excitation model and the geometric action of cutting tool. The implications
of the present research are far reaching as it can benefit both the manufacturing engineers

in generating surfaces with prescribed or desired characteristics related to part function and



the design engineers in specifying properties of workpiece materials and proper dimensional

tolerances which can be achieved on the shop floor.

2 Random Excitation System

2.1 Excitation Source

Figure 1 presents a pictorial view of a possible excitation source which causes the random
tool motion druing machining. Figure 1a is a micrograph of ferrite and pearlite structures
present in mild carbon steel at room temperature [12]. Figure 1b indicates that the cutting
edge experiences different microstructural portions during time intervals Aty and At,. Due
to the fact that the pearlite structure is harder than the ferrite structure, the generated
cutting force varies both dynamically and randomly. In the present work, a concept of
random excitation system is introduced to model this mechanism which causes the tool to
randomly vibrate. This random excitation system is directly related to (1) the existence
of a nonhomogeneous microstructural distribution; and (2) the cutting process because it
instantly feeds various microstructural portions to the cutting edge during machining, just
like taking samples from the nonhomogeneous microstructural distribution. In fact, the
sample size is determined by the three cutting parameters of depth of cut (d), feed (f), and

cutting speed (v). The larger the three cutting parameter values, the larger the sample size.
2.2 Issues Related to the Random Excitation System

In the process of developing the random excitation system model, two issues need to be
addressed. The first issue deals with the characteristics of microstructural distribution
present in the material being cut. The second issue is related to the cutting process, or the
sampling process, as explained in section 2.1.

The microhardness distribution involves important factors such as the hardness of in-
dividual microstructures or the microhardness, and the geometric shape and size of the

microstructures. For example, if the difference of microhardness between two microstruc-



tures is significant, the cutting force variation induced by this hardness variation would
also be significant. The microstructures having small sizes with spherical shapes tend to be
homogeneous in any nature. On the other hand, the microstructures having large sizes with
irregular shapes often display certain degrees of nonhomogeneity in the physical property
of microhardness.

The sampling process involves important factors such as the sample volume (i.e., the
sample size) and its geometric shape. The importance of sample volume in assessing the
degree of nonhomogeneity is evident. For example, large sample volumes could average out
the possible influence caused by the differences in the size and shape of the microstructures.
On the other hand, too small a sample volume could result into a significant degree of

nonhomogeneity regarding the microstructural contents within sample.
2.3 Sample Shape and Three Cutting Parameters

In order to further clarify the concept that the cutting process can be viewed as a sampling
process in the model development of random excitation system, the relation between the
geometric sample shape and the three cutting parameters of depth of cut, feed, and cutting
speed for a single point cutting process is explained.

Figure 2 presents a boring machining process. The removed chip volume during one
revolution of the workpiece can be thought of as a volumetric sum of a series of samples
identical in geometric shape passing through the shear zone. The geometric shape of each
sample shown in Fig. 2 is a parallelepiped. Tts cross-sectional area is equal to a product of
depth of cut and feed. As feed or/and depth of cut increase, the sample volume increases
accordingly. In addition, for a large slenderness ratio, which is the ratio of depth of cut to
feed [13}], a narrow chip cross-section is created, leading to a narrow-shaped sample volume.
This usually causes an increase of hardness variation among the samples, a phenomenon
which will be explained later in this paper.

The parameter of cutting speed, or spindle speed for a given workpiece diameter D,



is related to the number of samples to be taken during one revolution of the workpiece.
As illustrated in Fig. 2, one dimension of sample is given by 7D /ns; where parameter ng
represents the number of samples to be selected during one revolution of the workpiece. A
large number of samples, or a large ng,, allows frequent drop-downs and jump-ups in the
magnitude of the cutting force. The frequency of such down-ward to jump-up or jump-up
to down-ward during one revolution of the workpiece is is given by %+. Due to this fact, the

highest frequency fqs in the cutting force variation which can be described by the random

excitation model is given by

ng N
fmaw - '5"66 (1)

where N =spindle speed, rpm.

3 Mathematical Formulation of the Random Excitation Sys-
tem

As discussed in the previous sections, the random tool motion is due to the presence of the
nonhomogeneous distribution of microhardness. The cutting process, viewed as a sampling
process, is directly related to the origination of the random excitation system. The three
cutting parameters of depth of cut, feed and cutting speed determine the sample shape
and size. The mathematical formulation of this random excitation system consists of the

following three stages.
3.1 Nonhomogeneous Distribution of Microhardness

A statistical approach is proposed to formulate the nonhomogeneous distribution of micro-
hardness. A representative part is chosen from the workpiece material. The microstructural
constituents as well as their microhardness values are experimentally identified, say H; for
i=1,2,--+,n where n represents the number of measurement locations on the chosen part.
Based on these data, the three statistics, namely, mean i, variance o2, and the correlation

coefficient function p(r), are calculated using the standard statistical formulas. Note that



parameter r of the correlation coefficient function represents the distance in space between
tth and #/th measurement locations. These three statistics provide quantitative information
on the size, the shape, and the segregation of microstructures and depict the microhardness
distribution present in the material being machined. They also form a basis for quantifying
the effect of the micro-constituent scale on the bulk properties of hardness of the material

being machined.
3.2 Sampling Process and Parameter Estimation

As shown in Fig. 2, the geometric shape of each sample is a parallelepiped being 7D /n,
long and a cross-sectional area equal to a product of depth of cut and feed. Due to the
nonhomogeniety, each sample holds its distinct ratio of microstructures in it. Therefore,
the mean of sample hardness or the sample hardness mean, u;, is different from sample to
sample. The sample hardness mean u,; for the j** sample can be obtained as
1 &

Haj = 3 ; H; ()
where N; = number of locations within a sample (a subset of measurement locations, n),
and j = 1,2,-++,n,

The mean hardness values of all samples (ps1, ts2,+ -+, Msn,) Would be equal if the mi-
crostructures in the material were ideally uniformly distributed (in a micro-scale). However,
this never is the case in practice. As a result, the sample hardness mean, p,, differs from
sample to sample. In fact, this variation reveals, from a micro-base analysis, the main source
of the random excitation phenomenon observed during machining. When the cutting tool
is cutting a sample (a portion of the circumference of the workpiece being cut) with a smali
value of mean hardness, the magnitude of the cutting force drops. On the other hand, the
cutting force jumps up when the cutting tool is meeting a sample with a large value of
mean hardness. Because the variation in the mean hardness value from sample to sample

is of random nature, the dynamic variation of the cutting force during machining is also



of random nature. The larger the mean hardness value variation, the stronger the random
excitation system present during machining.

Since the sample hardness mean p, - the key parameter of the random excitation system,
is a random variable, it is best dealt with statistically. Based on the central limit theorem
in statistics, the distribution of the sample hardness mean, or the u, distribution, can be
approximated by a normal distribution because each sample contains a large number of
sample attributes. Accordingly, the two parameters fi; and o2 of the normal distribution
representing the random excitation model can be quantitatively evaluated from the sample
hardness mean values, u,; for j = 1,2,---,n,.

It can be shown that the mean of the sample mean distribution is equal to the mean of
its population distribution, i.e., i; = p,. However, estimating the variance of the sample
hardness mean distribution, or the sample mean variance, using the standard statistical
formulas, is not practical because such an evaluation would require the subgrouping of the
identified locations of microstructures into individual samples. Whenever the geometric
sample shape changes, say a change of feed, a re-subgrouping process is needed to evaluate
the sample mean variance under the new geometric sample shape. Therefore, this procedure
to evaluate o2 would be extremely tedious if applied in practice. Furthermore, the main
drawback of this procedure is that a quantitative relationship between the sample mean
variance and the geometric sample shape, namely, the three cutting parameters cannot be
easily established.

Estimation of the Variance of Sample Hardness Mean Distribution

The sample mean variance theory is employed to establish the quantitative relation between
the sample mean variance and the geometric sample shape. The theory itself stemmed from
the need to characterize the composition uniformity of a chemical mixing process, a similar
process of taking random samples from the population distribution and evaluating the sam-
ple mean values afterwards. The theory offers a mathematical approach to quantitatively

evaluate the sample mean variance based on the knowledge of the mean, the variance, and



the correlation coefficient function of the population distribution, from which the random
samples are being taken.

According to this approach, a concept of the geometric sample shape function W(r) is
first introduced to quantitatively describe the influence of the geometric characteristics of
a sample drawn from the population on the evaluation of the sample mean variance. As
explained in the APPENDIX, the geometric sample shape function is defined as a volume

integral, and is given as follows:

1 .
W(r)= vl | W*(z,r)dv (3)

where vol = sample volume.

The integrand W*(z,7) in Eq.(3) is the volume fractional function which will be equal
to 1.0 if the entire area of a shell constructed at location z with a radius r lies inside the
sample as illustrated in Fig. A1l. On the other hand, it will be equal to zero if none of the
constructed shell is contained by the sample shape. It will be in the range from 0 to 1 if
only part of the constructed shell is contained by the sample shape.

By knowing the population variance o2, the correlation coefficient function p(r), and
the geometric sample shape function W(r) for a given geometric sample shape, without the
subgrouping process, the corresponding sample mean variance o2 can be predicted using

s

the following equation (its derivation is given in APPENDIX).

2 roo
o 4may Ny

p Op(r)l/[/(r)r2dr = 471'02(f y v) /rzo p(rYW (r)ridr (4)

vol J,—

Note that Eq.(4) consists of two parts. One part is the integral, {2, p(r)W(r)ridr,
and the other is the constant term calculation, 4—:}'513—, or 4%02(%). For a given workpiece
material under different cutting parameter settings, the constant term decreases as any of
the three cutting parameters increases. This is due to an increase of parameter vol appearing
in the denominator which is given by in%’i. The integral term always increases as any of

the three cutting parameters increases because the geometric sample shape function W(r)



always increases (sometimes very slightly) and at the same time the correlation coefficient
function p(r) remains unchanged as long as the workpiece material is unchanged. Therefore,
the magnitude of the sample mean variance o2 is a compromise between these two terms. In

s

fact, Eq.(4) serves as a mathematical model to predict values of the sample mean variance

under different cutting parameter settings.
3.3 A Model for Random Excitation System

The random excitation system can be mathematically described by a normal distribution
as shown in Fig. 3. The mean level Ty is directly related to the mean level of the dynamic
cutting force. For those samples on the left side of fi; shown in Fig. 3 (their mean hardness
values are less than [i;), magnitudes of the dynamic cutting force induced by those samples
during machining are smaller than the mean level of the dynamic cutting force, and vice
versa. Because the sample mean hardness value u,; varies about 7y randomly, the gener-
ated dynamic cutting force also varies about the mean level of the dynamic cutting force
randomly.

The variance of the normal distribution o2 represents the variation level of the dynamic
cutting force about its mean level. The larger the variance o2, the more significant the p,
variation level as well as the variation level of the dynamic cutting force. As the variance o2
decreases, the p, variation level decreases accordingly. When the variance o2 approaches to
zero, indicating that all sample mean hardness values are equal to each other, the random
excitation system diminishes. This resembles a special case of machining operation where
the workpiece material has a uniform microstructural distribution, causing the generated
cutting force to be at a certain constant level. Therefore, the two parameters, iy and o2, of

the normal distribution fully describe the characteristics of the random excitation system.



4 A Case Study

A turning operation to machine SAE 1015 low carbon steel material is studied to demon-
strate the procedure of formulating the random excitation system. Basically, there are three

steps to estimate fi; and o2 of the normal distribution.

1. Microstructural Analysis to identify the locations and hardness values of microstruc-

tures in a representative part taken from the SAE 1015 material to be machined.

2. Evaluation of the mean y, (deriving the estimate of parameter 1), the variance o2,

and the correlation coefficient function of the microhardness distribution p(r).

3. Evaluation of the sample mean variance o2,

Step 1. Modern technology of microstructural analysis makes it possible to accurately
identify the locations and hardness values of microstructures in the material. In this case
study, a specimen was made from the SAE 1015 material to be machined. After the surface
treatments such as polishing and etching, the specimen was placed under a microscope. A
computer-based system of automated measurement of fiber orientation was used to identify
the locations of ferrite and pearlite structure over the chosen representative part of the
specimen surface (a 3.6 x 3.75 mm? area). Within this area, 480 x 500 data points (240,000
data points) were collected from scanning the image under the microscope in 0.0075 mm
intervals. Figure 4 shows two images produced under the microscope, before and after the
digitized scanning and the contrast enhancement. The black areas represent locations of
pearlite structures and the white areas represent locations of ferrite structures. Among the
240,000 data, it was found that 87,120 data represented the pearlite structure and 152,880
data represented the ferrite structure. This indicates that the pearlite structures occupied
36.3 % and the ferrite structures occupied 63.7 % of the representative part.

The microhardness values of the ferrite and pearlite structures were measured using a

Vicker machine. Ten positions of typical ferrite and pearlite structures were selected on
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the specimen surface. A diamond pyramid was pressed into each of them and the resulting
Vicker Hardness Number (VIN) measurement was recorded. Table 1 lists the measured
VHN values for the ferrite and the pearlite structures, respectively. The average values were
calculated from the measured data and taken as the microhardness values of the ferrite and
pearlite structures under investigation. Table 1 also lists the equivalent values in Brinell
Hardness Number (BHN) for the ferrite and pearlite structures. For the pearlite structure,
its microhardness value was 240 (BHN), and for the ferrite structure 61 (BHN).

Step 2. Based on Eqs.(2) and (3), the mean and variance values of the microhardness
distribution of the workpiece material are calculated as f; = 126 BHN and o2 = 7409
BHN?.

The evaluated correlation coefficient function p(r) is plotted in Fig. 5. The set of dot-

lines is a linear approximation of the obtained correlation coefficient function, giving by

1.00 — 0.20r 0<r<3
0.40 - 0.05(r—3) 4<r<8

p(r)=4 015-0.01(r—8) 9<r<13 (5)
0.10 - %2(r—13) 14<r <60
0 61<r

where r = distance in terms of the number of the basic interval (0.0075 mm) used in the
digitizing data process.

Step 3. The calculated numerical values of the geometric sample shape function W(r)
as a function of the distance parameter r (multiples of the scanning interval) under different
cutting parameter settings are plotted in Figures 6a, 6b, and 6c. Each corresponds to specific
cutting parameter settings. The four curves in Fig. 6a represent the four geometric sample
shape functions for the four feed settings while depth of cut and spindle speed (workpiece
diameter = 50 mm) are fixed at 0.5 mm and 600 rpm, respectively. Table 2 provides the
numerical values used for plotting the four geometric sample shape functions associated
with the four feed settings. It is evident that when the cutting parameter of feed increases,
this geometric sample shape function increases significantly because of a significant increase

of the volume fractional function W*(z,r) in Eq. (3). On the other hand, as indicated in
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Fig. 6¢, the geometric sample shape function changes little as the spindle speed increases.
In fact, there appears to be only a single curve because the change of this function is so
small that the existing differences among the four geometric sample shape functions under
the four different spindle speeds can hardly be displayed by the current scale used in Fig. 6c.

Knowing 62, p(r), and W(r), the sample mean variance o2 are evaluated based on Eq.(4).
Figure 7 presents the evaluated sample mean variance o2 as a function of feed, depth of
cut, and spindle speed, respectively. The curve with the slowest decaying rate represents
the sample mean variance 2 under different feed settings while depth of cut and spindle
speed are fixed at 0.5 mm and 600 rpm, respectively. The increase of feed has two effects
on the evaluation of the sample mean variance o2. The first effect is to increase the sample
volume, as illustrated in Fig. 2. A large sample volume usually averages out the influence
due to the nonhomogeneous distribution of microstructures. The second effect is to increase
the dimension of sample related to feed, as illustrated in Fig. Al. As this dimensional size
approaches the dimensional size related to depth of cut, the volume fractional function
W*(z,r) increases. The combination of these two effects gives rise to the slow decaying rate
of the sample mean variance o2 as feed increases, especially in a small feed range. This fact
is also evidenced by examining Eq. (4). The decrease in the constant term as feed increases
is somehow balanced by an increase in the integral term. This result suggests that under
small feeds, the random excitation system plays an important role in the determination of
tool random vibratory motion during machining. The curve with the fastest decaying rate
in Fig. 7 represents the sample mean variance o2 under different spindle speed settings while
depth of cut and feed are fixed at 0.5 mm and 0.10 mm/rev, respectively. Increasing the
spindle speed setting has the same effect on the sample volume as does increasing the feed
setting. However, it has the least effect on the evaluation of the volume fractional function
W*(z,r) because the dimension of sample related to cutting speed is usually the largest
among the three dimensions. Thus, the decrease in the constant term in Eq.(4) dominates

the evaluation of the sample mean variance o2, showing a rapidly decaying rate in Fig. 7.
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This further implies that the variation level of the random excitation system decays quickly
as cutting speed increases.

In Fig. 7, the ratio of %g—, which is the normalized sample mean variance, is also listed
and labeled. This ratio has been given a special technical name intensity of segregation. It
is a quantitative index describing the degree of segregation under a given cutting parameter
setting. The intensity of segregation would have a value of zero when the microstructural
characteristics of each sample assumed to be taken along the circumference of the workpiece
has no significant difference from the statistical point of view. As indicated in Fig. 7, the
intensity of segregation is relatively strong (0.0231 - 0.0238) when the selected feed is small
(0.10 mm/rev to 0.20 mm/rev) indicating that the random excitation system is rather
powerful for this case. It weakens when the selected feed reaches to a value of about 0.35

mm/rev.

5 Experimental Work

Boring machining tests were carried out as shown in Fig. 8. The workpiece material was low
carbon steel SAE 1015. To facilitate the profile measurements, the outer surface instead of
the inner surface was machined. Roughness profiles of the machined surfaces were traced by
a TALYSURF-10 profilometer. Skidless measurements were taken to eliminate the influence
of such factors as cut-off and skid in the assessment of average roughness R,.

Table 3 lists, in the first row, the measured R, values of the machined surfaces under
the cutting conditions where only the cutting parameter of feed varied (depth of cut = 0.50
mm and spindle speed = 600 rpm). Each of the measured R, values is decomposed into
deterministic and stochastic portions. The numerical values of the deterministic portion,

listed in the second row, were calculated based on the geometry and the formula proposed

by Boothroyd [6]
_ 0.0321/2

Ra R

0% (um) (6)
where f = feed (mm/rev) and R = tool nose radius (mm).
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The difference between the measured R, value and its theoretical R, value for a specific
cutting parameter setting is assumed to represent the part of the profile height variation
contributed by the random excitation during machining. This difference is listed in the
third row marked as a Random R, value. The three curves in Fig. 9 represent the data in
the three rows, respectively. The solid curve representing the Random R, value decreases as
the feed increases. This decreasing pattern is very similar to the curve pattern shown in Fig.
7 where the sample mean variance o2 decreases as feed increases. This similarity confirms
the validity of using the sample mean variance as an index to quantitatively represent the
existence of a random excitation system present during machining. As illustrated in Fig. 9,
the measured R, value, when f = 0.25 mm/rev was used, is closer to the theoretical R, curve
than others. This indicates that a good prediction of the R, value of a machined surface
based on Eq.(6), can be made only when the selected feed is relatively large. When the
selected feed is relatively small, the random R, value is usually, as indicated in Fig. 7, twice
or three times as high as the predicted R, value. Under such circumstances, the prediction
based on Eq. (6) is meaningless due to the additional surface irregularities introduced by a
rather powerful random excitation system present during machining.

The present approach may also shed some light on the results of Miller, et al. [8], who
observed the poor prediction of the R, values at a low spindle speed. Figure 10 shows
the contour plot of constant R, values. The dashed line marked as 3.8 um represents the
calculated R, value from Eq.(6). The curve in solid line also marked as 3.8 um represents
the contour associated with the measured R, values equal to 3.8 pm. Two lines with
arrows on them show the distance between the prediction line from Eq. (6) and the 3.8
pm - contour under different cutting conditions. This distance decreases as cutting speed
increases because the strength of the random excitation system decreases as cutting speed
increases. However, this distance never disappears, or the theoretical prediction line always
serves as an asymptote due to the presence of the random excitation system, a physical

phenomenon which is unavoidable. This points out the limitation on achievable surface
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finishing quality regarding the surface irregularities produced during machining. Control of

the microstructural characteristics of part material plays an important role in this regard.
6 Conclusions

1. A statistical approach is employed to study the mechanism of random excitation phe-
nomena observed during machining. The nonhomogeneous distribution of microhard-
ness present in the material has been considered a major random excitation source
which affects the formation of surface irregularities. A normal distribution model is
used to represent the random excitation system with mean and variance as its two

parameters characterizing the average and variation levels of the random excitation

system.

2. A procedure has been developed to compute the two model parameters in terms of the
the three cutting parameters, the correlation coefficient function, and the geometric
sample shape function. The correlation coefficient function characterizes the size,
shape, and segregation of the microstructure. The geometric sample shape function
directly relates the cutting geometry to the microstructure distribution. These two
functions make possible a quantitative representation of the random excitation system

present during machining.

3. Results of the theoretical relationship between the strength of the random excitation
system in terms of the sample variance and the three cutting parameters of depth
of cut, feed, and spindle speed (or cutting speed) has been verified through surface
roughness measurements. At low values of feed and cutting speed, the effect of random
excitation is more significant than the effect at higher values of feed and cutting speed.

These findings are in agreement with the theoretical results.

In summary, the present research has provided an insight about how the basic character-

istics of the microstructures of the part material being cut relate to the dynamic generation
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of surface irregularities during machining. A procedure will be developed in Part 2 of this
paper to construct the texture of machined surfaces with both the deterministic component
caused by the tool geometrical motion and the stochastic component due to tool random

vibration based on the model developed in this paper.
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Appendix

Derivation of the Sample Mean Variance o Estimation

Consider a mixture of two substances, A and B . Let their concentrations at the i** point
be H; and G;. The mean and variance of the concentration of substance A in the mixture

with total volume TV can be found as

1
He = 737 [, Hidv (A1)
0z = E[(H; - pa)’] (A2)

If samples with identical geometric shape and size are taken from the mixture, the

average concentration of substance A in an individual sample is given by

1
s = — H;dv (A3)

- ’UOI vol

where H; = concentration of substance A at point ¢, and
vol = volume of the sample taken.
The sample mean pu, is a random variable. Based on the central limit theorem in
statistics, its distribution is of the normal nature. The mean and variance of this normal

distribution are given by
Ps = Elpts] = pla (A 4)
1 /
02 = E[(tsj — #a)’] = El—3 / ; I(ﬂsk ~ Ha)(fsl — pa)dv dv] (AS)

If the number of identically shaped samples taken from the mixture is M, the expectation

sign in Eq.(A5) can be replaced by a summation sign.

1M '
2 . L ~ _
s — M Z vol? ~/vol /;Ol(l‘sk Na)(/‘sl ,ua)d'v dv (A 6)

Introducing the correlation coefficient function p{r), Eq.(A6) can be simplified as - .

. .
2 _ O, !
7, = /vol /WI o(r)dv dv AT
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By defining a spherical shell of radius r with a thickness dr, and centered at location k

(Fig. A1), the inner integral in Eq.(A7) can be written as

/uoz p(r)dv’ = /T:) p(r)W*(z,r)dnrdr (A 8)

where W*(z,r) is the volume fractional function. The numerical range of this function

is between zero and unity. Substituting Eq.(A8) in Eq.(A7) derives the following.

2 00
02 = 2% [ sy [ we,ryvldr (A9)
0

1)Ol r= ’UO[ vol

The terms within the square brackets in Eq.(A9) are related to the sample geometry
only. Define this part as the sample shape function W(z,r) because it can be integrated
with respect to the sample volume separately.

W(z,r)= 'v_loi/ lW*(:z:,r)dv (A 10)

By substituting Eq.(A10) into Eq.(A9), the formula to evaluate the sample mean vari-

ance is given by, which is the same formula as Eq.(4) in the text.

2
4dro;
vol

/r:oo p(T)W(T)rsz = 47r0'3( fr:;'v) /,.:) P(T)W(T)'rzd'r (A 11)

o=
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Table 1: Measured Microhardness Values of Ferrite and Pearlite Structures
(Loading: 100 kgs and Diamond Pyramid: 136 degrees)

Location No. | Ferrite | Pearlite

1 66.3 254

2 67.0 243

3 66.5 249

4 68.6 238

5 67.0 251

6 67.8 240

7 66.5 253

8 68.0 247

9 67.5 243

10 66.8 246

Average 67.2 246
in VHN

Equivalent 61.0 240
in BHN




Table 2: Calculated W(z,r) Values for the Four Different Feed Settings

Distance Feed
r (mm/rev)

x 0.0075 mm | 0.10 0.20 0.30 0.40
0 1.00 1.00 1.00 1.00

1 091 094 096 0.96
2 0.87 092 094 0.94
3 0.83 090 091 0.93
4 0.78 0.86 0.89 0.91
5 0.75 0.84 0.87 0.90
6 0.71 0.81 0.86 0.87
8 0.65 0.77 0.82 0.84

10 0.58 0.73 "0.78 0.81
14 045 065 0.71 0.75
18 0.31 057 066 0.70
25 0.18 0.41 0.53 0.61
30 0.12 0.32 0.46 0.53
40 0.07 0.17 0.30 0.36
50 0.05 0.11 0.20 0.27
60 0.04 0.08 0.14 0.22




Table 3: Measured Ra Values and their Decompositions

Feed Settings | 0.10 | 0.15 | 0.20 | 0.25
(mm/rev)

Measured R, | 2.30 | 2.80 | 2.85 | 3.15

(pm)

Theoretical R, | 0.40{ 0.90 | 1.61 | 2.51
(pm)

Random R, |1.90|1.70|1.24 | 0.64
(um)
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Fig. 2 Geometric Shape and Size of Samples Assumed During Machining
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Fig. 3 Normal Distribution Model of the Random Excitation System



(a) After Digitation and Before Contrast Enhancement

(b) After Contrast Enhancement

Fig. 4 Sample Images before and after Contrast Enhancement
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Fig. 5 Correlation Coefficient Function and its Approximate Form
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Fig. 6 Plot of Geometric Sample Shape Function
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Fig. 7 Plot of Sample Variance Estimation
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Fig. 8 Experimental Setup for Boring Machining Tests



R, Values {(um)

Measured R,
Tool Nose Radius: 0.8 mm
Workpiece Material: Low

¢ Carbon Steel
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Fig. 9 Decomposition of Surface Roughness Index Ra value
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Fig. 10 Experimental Results Provided by Miller [7]



Depth of Cut

I

W (x,1) = Volume of the shell lying inside the sample
4r 3 3 -
-r ]

3 [(r+dr)

Fig. Al Definition of the Volume Fraction Function W*(z,r)



BHN =

VHN =

vol =
W(r) =
W*(z,r) =

Ha

Aty =

NOMENCLATURE

surface roughness index, um

Brinell hardness number

diameter of the workpiece being machined, mm

depth of cut, mm

feed, mm/rev

highest cutting force frequency component of interest
microhardness value at the i** location

index for the order of locations within the sample

index for the order of samples taken along the circumference
number of locations taken on the chosen representative part
number of locations taken within a sample

number of samples taken along the circumference per one revolution
distance in terms of the number of the basic interval used in digitizing
spindle speed, rpm

machining time during one revolution of workpiece, sec
Vicker hardness number

cutting speed, m/min

sample volume

geometric sample shape function

volume fractional function

mean of the population distribution of hardness,

or mean of the sample hardness means, BHN

sample hardness mean, BIf N

mean of the sample hardness means, BHN

variance of the sample hardness means, BH N2

machining time needed to cut the lower part, sec

machining time needed to cut the upper part, sec

correlation coefficient function of the microhardness distribution



