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ABSTRACT Predicting traffic speed accurately is a very challenging task of the intelligent traffic system
(ITS), due to the complex and dynamic spatial-temporal dependencies from both temporal and spatial
aspects. There not only exits short-term local neighboring fluctuation and long-term global trend in temporal
aspect, but also local and global correlations in spatial aspect. Most existing work focus on the local spatial-
temporal dependencies, ignoring the global dynamic spatial-temporal corrections, which is comparably
critical for traffic speed prediction. To address this problem, we propose a novel Dynamic Global-Local
Spatial-Temporal Network(DGLSTNet) for traffic speed prediction, which consists of multiple spatial-
temporal module considering the local and global information simultaneously from both temporal and
spatial perspective. Each temporal module applies stacked dilated convolution block to exploit multi-scale
local temporal information. Moreover, we empoly a global temporal attention block to capture global
dependencies of temporal domain in an attention mechanism. In each spatial module, we not only learn
the local but also focus on dynamic global spatial information learned by dymamic graph learning block.
Combining the feature results from local and global perspective, the capability and expressiveness of traffic
predicting model is improved. Experiment results on two real-world traffic datasets have demonstrated
that our proposed model can effectively capture the comprehensive spatial-temporal dependencies and can
achieve state-of-the-art prediction performance compared with the existing works.

INDEX TERMS traffic speed prediction, spatial-temporal network, graph convolutional network, dynamic
graph learning.

I. INTRODUCTION
Predicting large-scale network-wide traffic becomes increas-
ingly popular in the intelligent transportation systems due to
its application and research significance. The development
of an accurate and robust forecasting of multi-scale traffic
conditions is a key consideration as it leads to many useful
applications, such as designing and upgrading highway net-
works, improving traffic safety, reducing traffic congestion.
Long-term traffic prediction is highly challenging due to the
constantly changing nature of many impacting factors from
both temporal and spatial aspects. There are two mainly
issues should be considered in traffic prediction: (1) there
exits short-term local neighboring fluctuation and long-term
global trend in temporal aspect and traffic conditions are
different at various times (i.e. morning peak, noon). (2) the

saptial dependence is often found to exist in a wider range
of the traffic networks, for instance, congestion can not only
effect the neighboring regions but also reachable far distant
regions. In other words, the spatial correlations over different
regions are also both local and global. Moreover, since traffic
is constantly evolving, the spatial corrections are not static
but change over time. In summary, the local and global
correlations exits from both temporal and spatial aspects in
traffic systems. And therefore the approprite explicit local
and global spatial-temporal modeling is great necessary and
is the key to better prediction accuracy.

In the modern traffic forecasting systems, deep learning
based works have received attention because they can model
complex non-linear spatio-temporal information and achieve
best results at present. A seemingly natural way is assuming

VOLUME 4, 2016 1



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3038380, IEEE Access

D.Feng et al.:Dynamic Global-Local Spatial-Temporal Network for Traffic Speed Prediction

city-wide traffic as a image [1] or grid [2], where each
unit states the traffic condition of the corresponding region.
Efforts [3] have been conducted to apply convolution neural
network (CNN) to extract spatial correlation on traffic net-
work since CNN exhibits superior capability for processing
Euclidean-structured data. To make full use of the spatial
and temporal dependence, the method of combining CNN
and recurrent neural network (RNN) is proposed as the
basic frame. Although the spatial-temporal features of the
traffic data can be extracted by these models [4]–[6], their
limitations are that the input must be standard 2D or 3D grid
data, whereas the real-world traffic networks are irregular and
complex topological structures. Current trends in modeling
spatial dependency highlight the need for taking advantage
of topological structure. Fortunately, in recent years, graph
convolution network (GCN) [7], [8], which is accomplished
in capturing structural feature of irregular graph, provides
a good solution for traffic forecasting tasks. Substantial re-
searches adopt GCN to model spatial dependencies, while the
temporal dependencies among historical states are preserved
by 1D convolution [9], [10] or RNN [11]–[14]. Although,
introducing GCN have alleviated difficulties in traffic fore-
casting to some extent, from a careful review, there still
remain two important problems neglected in current GCN-
based approachs: (1) many existing methods only consider
localized spatial dependencies but igore the global ones,
which leads to inadequacy in capturing relevant information
from distant links. Even though the global spatial dependen-
cies are considered [15], the global adjacency matrix only
be calculated once without considering the changing spatial
correlations over time. (2) RNNs or 1D convolution based
methods can not capture global temporal dependencies, since
the receptive field of RNNs or 1D convolution is limited.

In light of preceding analysis, we argue that considering
dynamic global and local spatial-temporal correlations simul-
taneously could enhance the capacity and expressiveness of
traffic modeling. Consequently, in this paper we propose a
novel dynamic global-local spatial-temporal network called
DGLSTNet to predict traffic speed, which consists several
spatial-temporal module (STM) considering the local and
global information simultaneously from both temporal and
spatial perspective. The main contributions of this paper are
as follows:

• We develop a dynamic temporal module which con-
siders the short-term local neighboring and the long-
term global trend dependencies. It consists of a global
temporal attention block(GTAB) and a stacked dilated
convolution block (SDCB), where the former is used
to extract whole-range global temproal features in an
attention mechanism and the latter is used to capture the
multi-scale local temporal features. In this way, dynamic
temporal dependencies can be captured effectively.

• We design a dynamic spatial module which consid-
ers local spatial dependencies and global ones si-
multaneously. Especially, a dynamic graph learning

block(DGLB) is introduced for learning the dynamic
topological correction in a global way. By integrating
the pre-defined and the adaptively learned global adja-
cency matrices into graph convolution operation to cap-
ture both local and global spatial dependencies simul-
taneously, the capacity and expressiveness of capturing
saptial dependencies are enhanced.

• We conduct extensive experiments on two real-world
traffic datasets, METR-LA and PEMS-BAY, and the
proposed model achieves the state-of-the-art results.

II. RELATED WORKS
Traffic Prediction has been extensively studied in past few
decades. Early statistical methods [16], [17] and traditional
machine learning methods [18]–[21], mainly employ shallow
machine learning for a single observation node or few nodes,
which can not model the non-linear temporal correlations of
traffic data effectively and neglect the spatial dependency.
Recent advances in deep learning [22], [23] make it possible
to model the complicated spatial-temporal dependency in
traffic forecasting. To model spatial dependency, some at-
tempts [1], [2] are assuming city-wide traffic as a regular grid
structures(e.g.,images and videos), where each pixel states
the traffic condition of the corresponding region. Then, Con-
volutional Neural Network (CNN) [3] or Recurrent Neural
Network (RNN) [24]–[26] and the combination of CNN and
RNN [4]–[6] are utilized for traffic forecasting. However, the
main limitation of the above models is that CNN can only
capture the spatial dependency of regular grid structures but
do not work for data points with irregular topologies. There-
fore, they fail to make an effective use of the topological
structure of the traffic network to capture complex spatial
correlations.

To bridge the above gap, a series of studies has generalized
traditional convolution to model arbitrary graphs on spectral
or spatial domain [27]. The introduction of graph convolu-
tion network (GCN) boosts the latest rapid development of
graph-structured data learning. In traffic forecasting, many
researchers [9]–[14] have applied GCN to capture more com-
plex saptial dependencies. Li at al. [11] proposed Diffusion
Convolutional Recurrent Neural Network (DCRNN), which
replaces the fully-connected layers in Gated Recurrent Units
(GRU) by the diffusion graph convolution operator. The dif-
fusion convolution performs graph convolution on the given
graph and its inverse to consider both inflow and outflow
relationships. Yu et al. [9] proposed an Spatial-Temporal
GCN (ST-GCN) , which applied GCN to capture the spatial
dependency and employed CNN on time axis to capture
the temporal dependency leading to much computationally
efficient than RNN. Guo at al. [28] proposed a novel at-
tention based spatial-temporal graph convolutional network
(ASTGCN) to capture the dynamic local spatial correlations,
which adjust the adjacency matrices by the attention score.
But, all these approaches assuming that spatial correlations
only existing connected or very close nodes are essentially
local method, which do not consider the dynamic non-local
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spatial correlations between nodes on traffic networks. After-
ward, GMAN [29] proposes an multi-head attention-based
encoder-decoder architecture to capture dynamically non-
local spatial correlations. Owing to calculate spatial attention
score from all nodes and temporal attention score from all
time steps , the time and memory consumption of GMAN
is inevitably heavy. Although the schemes mentioned above
have improved the accuracy of traffic prediction, they still fail
to capture the global and local spatial-temporal dependencies
simultaneously in the traffic network.

To overcome the shortcomings mentioned above, Graph
Wavenet [10] developed a novel adaptive dependency matrix
by computing the similarity of node embeddings to cap-
ture non-local the hidden spatial dependency in the data.
STSeq2Seq [15] utilizes seq2seq architecture which cou-
ples a convolutional encoder and a recurrent decoder with
attention mechanism for traffic predictions . In STSeq2Seq
encoder, patten-aware adjacency matrices is construcetd and
applied to GCN to model the non-local spatial correlations
dynamically. The two models have proved the necessary to
consider the global and local spatial-temporal dependencies
simultaneously. However, both non-local adjacency matrices
of the two model only be calculated once at the beginning
of each model by softmax function, which results in dense
fully connected adjacency matrices and introduce lots of
noise into spatial correlations. Such dynamic global spatial
information derived from GraphWavenet and STSeq2Seq is
relatively weak and less effective. In this paper, we propose
dymamic graph learning concept which is quite efficient to
address these shortcomings.

III. MATERIALS AND METHODS
A. PROBLEM DEFINITION
Given the historical traffic data fromN correlated traffic sen-
sors located on a road network, the task of traffic predicting
is to forecast the future traffic of the road network. Traffic
predicting can be formulated as a graph modeling problem
since the traffic flows are restricted on road networks, which
is abstracted as graphs. Following previous studies, we define
the N correlated traffic sensors as a weighted directed graph
G = (V, E , A), where V is the set of N nodes(roads or
sensors) on the road network, E is a set of edges representing
the connectivity among nodes, and A ∈ RN×N is a pre-
defined weighted adjacency matrix representing the nodes’
proximities (usually measured by road network distance be-
tween any pair of nodes or topological adjacency). Denote the
traffic flow observed on G as a graph signal X ∈ RP×N×D,
where P represents the number of historical time steps, D
is the feature dimension of each node (e.g.,speed,volume),
in which Xt represents the features of nodes of G at time
step t. Given a graph G, then the traffic forecasting problem
is formed as learning a function f(·) that maps P historical
graph signals to future Q graph signals:

[
X(t−P+1):t,G

] f−→
[
X(t+1):(t+Q)

]
(1)

where X(t−P+1):t ∈ RP×N×D and X(t+1):(t+Q) ∈
RQ×N×D

B. MODEL OVERVIEW
The overall framework of proposed model is illustrated in
Figure 1. Our proposed DGLSTNet consists of a temporal
embedding module to encoder the temporal information of
input data, L-stacked saptial-temporal module(STM) and an
output module. A STM is composed of a temporal sub-
module and a spatial sub-module, which is constructed to
capture dynamic temporal and spatial dependencies respec-
tively. Each temporal sub-module contains a global temporal
attention block and stacked dilated convolution block, where
the former is used to extract the while-range global temporal
features in an attention mechanism and the latter is used to
extract multi-scale local temporal features by dilated con-
volution, shown in Figure 1(bottom left). Each spatial sub-
module firstly constructe a dynamic graph learning block
(DGLB) for global spatial correlations learning , and then
integrate the static graph with the dynamic graph learned by
DGLB into the hybird dynamic-static GCN block to cap-
ture both local and global spatial features, shown in Figure
1(bottom right). In addition, residual connections [30] is in-
troduced in each sub-module to stabilize the learning process
when it goes deep. To faciliate the residual connection, all
modules produce the same dimensions F of outputs. Skip
connections are added after each temporal module, which
utilizes standard convolutions to standardize information that
jumps to the output module to have the same sequence
length. Finally, the output module consists of two standard
convolution layers, which project the summary of each skip
connection to the desired predicted data Y ∈ RQ×N×D. In
more detail, the core components of our model are illustrated
in the following.

C. TEMPORAL EMBEDDING
Following [29], we also adopt a temporal embedding module
to encoder every time step into a vector. Specifically, in this
paper, the sample rate of data is 5-minute interval, and 288
snapshots per day. We encoder the day-of-week and time-of-
day of each time step into edayweek ∈ R7 and etimeday ∈
R228 using one-hot coding, and concatenate them into a
vector etemp ∈ R228+7. Next, we apply a two-layer fully-
connected neural network M to transform the time features
of P historical time steps to a embedding matrices Xemb ∈
RP×F , which contains the necessary temporal information
to help the model capturing the spatial-temporal information.
We add the temporal embedding matrix Xemb to the tensor
Xconv ∈ RP×N×F encodered by a 1 × 1 convolution with
broadcast operation to obtain the new representations X

′
as

initial input of the first STM :

Xemb = M(edayweek||etimeday)

X
′

= Xconv +Xemb

(2)
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FIGURE 1: The architecture of DGLSTNet.

D. DYNAMIC TEMPORAL SUB-MODULE
The traffic conditions have complex non-linear relationship
between different time steps. To capture the short-term local
neighboring and the long-term global trend dependencies,
we propose a dynamic temporal module which is composed
of a global temporal attention block (GTAB) and a stacked
dilated convolution block (SDCB), as shown in the left part
of Figure 2. Given the feature maps Ẑ ∈ RT×N×F as input
of temporal module , where T is the length of temporal
dimension of the current STM. In GTAB, we utilize a multi-
head temporal attention mechanism to get a global represen-
tation Zg ∈ RT×N×F , and then add Zg to Z to get more
effective representations Z

′
of the temporal domain. Then,

SDCB utilizes dilated convolutions which have exponentially
growing receptive field with few layers to extract multi-
scale local temporal correlations Z ∈ RT

′
×N×F , where

T
′

= T −R+ 1 and R is the receptive field of SDCB.
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FIGURE 2: Pipeline of the dynamic temporal module.

1) Global Temporal Attention Block (GTAB)
Traditional temporal convolution layer can only capture tem-
poral features between local time steps, being this limited
by the fixed kernel size, so the global temporal correlations
are not captured effectively. In this block, we design a global
temporal attention block, that can directly attend to features
across time steps without any restriction to extract global
temporal features.

Dense Synthesizer [31] is used as the attention kernel
in each attention head, which learns the attention weights
directly and accelerates both the training and inference speed
drastically. Following a self-attention strategy, we use multi-
head mechanism to capture several independent diverse rep-
resentation. As shown in right flow of Figure 2, each Dense
Synthesizer operates on an input zu ∈ RT×N×F

′

, where u is
the number of heads and F ′ is the dimensions of each head.
The attention weights of the u-th head eu ∈ RN×T×T are
generated by feeding zu to a function f(·) with two hidden
layers :

eu = f(zu) = W2(σ(W1zu + b1)) + b2 (3)

where W1 ∈ RF
′
×T , W2 ∈ RT×T , b1 ∈ RF

′

, b2 ∈ RT
are learnable parameters, and σ(·) is the ReLU activation
function. The element evu(i, j) in the tensor eu represent the
correlation between time step i and time step j of the v-
th node. After the normalizing attention scores via softmax
function is obtained, the output features of each head headu
can be computed as follow :

headu = Softmax(eu)zuWu (4)

where Wu ∈ RF
′
×F

′

. Finally, we concatenate the output of
each head and project them by a learnable linear transforma-
tion Wo ∈ RuF

′
×F :

4 VOLUME 4, 2016



This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI
10.1109/ACCESS.2020.3038380, IEEE Access

D.Feng et al.: Dynamic Global-Local Spatial-Temporal Network for Traffic Speed Prediction

Zg = Concat(head1, ..., headu) ∗Wo (5)

In this work, we employ u = 2 paraller attention heads
to extract global temporal features of the entrie sequence.
Finally, combining Zg and Ẑ, the outputs Z

′
of GTAB

will be obtained by element-wise summation, which can be
formulated as :

Z
′

= Ẑ + Zg (6)

2) Stacked Dilated Convolution Block (SDCB)
Dilated convolution network(DCN) [32] allows an exponen-
tially large receptive field by increasing the layer depth so as
to capture both short-term neighboring and long-term peri-
odic temporal dependencies with high effectiveness. There-
fore, we adopt DCN to extract features at different temporal
scales explicitly. Note that dilated convolution operation is
based on 1D convolution, injecting holes into the convolution
kernel, sliding over inputs by skipping values with a certain
step. Mathematically, given a 1D sequence input x ∈ RT and
a convolution kernel f ∈ Rk, xt denotes the t-th value in the
1D sequence x, and a d-dilated convolution operation of x at
step t is represented as

(f ?d x)t =

k−1∑
i=0

f(i) · xt−d×i (7)

where d is the dilated factor which controls the skipping
distance. Suppose the progressively increasing dilated factor
is dm = 2m−1, the receptive field size R of a m layer dilated
convolution network with kernel size k is

R = 1 + (k − 1)(2m − 1) (8)

In order to extract informative features on multi temporal
scales , we stack two-layer dilated convolution following by
rectified linear unit (ReLU ), and then apply a 1 × 1 con-
volutional layer to fusion the summary of features extracted
by every dilated convolution layer, as shown in Figure 2.
Given an initial input Z0 = Z

′ ∈ RT×N×F , the output
Z ∈ R(T−R+1)×N×F after passing the SDCB is formulated
as:

Zm+1 = σ(Φm ?dm Zm)

Z = σ(Φ1?1(
m∑
i=0

Zm)) + ẐWr
(9)

where Φm is the convolution kernel for the m-th dilated
causal convolution layer and Wr ∈ RF×F is the learnable
parameter of a residual connection. The adding features are
truncated to the same length according to the latest filter and
summary across the channel dimension. σ(·) is the ReLU
activation function, Φ1∗1 represent the 1 × 1 convolution.
After the dynamic temporal features Z are aggregated, a skip
connection utilizing standard convolution to standardizes the
Z is appended for jumping to the output module to have the
same sequence length.

E. DYNAMIC SPATIAL MODULE
We argue that there are two conditions should be noticed
in spatial feature representation: (1) The directly connected
nodes; (2) The dis-connected but reachable nodes. For some
extent, these two kinds of nodes all effect each other. The
dependencies of the former are local while the latter are
global. The key is how to model both local and global
effection simultaneously. In this module, we model spatial
dependencies using both static and dynamic strategies, as
shown in Figure 3. From the static perspective, we use the
pre-defined adjacency matrix Astatic = {A,AT } as local
spatial correlation and perform bidirectional diffusion convo-
lution to extract local spatial information. From the dynamic
perspective, we applied dynamic graph learning (DGL) con-
cept to constructe adaptive adjacency matrix Adynamic as
global spatial correlation for the sake of modeling the global
spatial dependencies. By using the above two strategies and
fusing the features between graph nodes in both static and
dynamic way, the capacity and expressiveness of capturing
saptial dependencies are enhanced.

Conv

Gaussian 

kernel

Static Branch

Adaptive

AvgPool

Sparsemax

Dynamic GCN

Dynamic Branch

Dynamic 

graph Learning

Static GCN

FIGURE 3: Pipeline of the dynamic spatial module.

1) Dynamic Graph Learning
Given the adjacency matrix Astatic ,which is pre-defined
with prior knowledge, we design an extremely lightweight
dynamic graph learning layer to predict a dynamic matrix
Adynamic directly, as shown in Figure 3. The DGL takes
the outputs of the dynamic temporal module Z ∈ RT

′
×N×F

as inputs, the feature and temporal dimensions of each node
are firstly squeezed and compressed by an adaptive average
pooling (AdaptiveAvgPool) layer and two 1×1 convolutional
layers sequentially, then we can get the hidden representa-
tions H ∈ RN×D

′

, where D
′

denote the dimensions of the
hidden layer. After that, we use the Gaussian kernel [33] to
measure the feature similarity scoreEsim(p, q) between each
pair of nodes (vp, vq) in the road network :
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Esim(p, q) = exp(−Dp,q/m)

where Dp,q =
∥∥(Hp −Hq)

TWφ(Hp −Hq)
∥∥
2

(10)

where Hp ∈ R1×D′
and Hq ∈ R1×D′

denote the rep-
resentations of node vp and vq , ‖·‖2 perform `2 norm.
Wφ ∈ RD

′
×D

′

is one of the trainable weights, which is
a shared transform basis to the Euclidean distance between
node vp and vq . m is a positive hyperparameter used to
adjust the scale of the distance D between nodes. Then, we
incorporate Astatic into a structure learning layer to get the
final similarity score :

S(p, q) = Esim(p, q) + β · Astatic(p, q) (11)

where β ≥ 0 is a trade-off parameter. If the β = 0,
the similarity score S(p, q) is learned in a data-driven way
without any prior assumption. And if the β > 0, S(p, q)
will be given a relatively larger similarity score between
directly connected nodes, and at the same time try to learn
the underlying pairwise relationships and directions between
disconnected nodes [34] .

Moreover, to improve training efficiency, reduce the effect
of noise, amplify the effective relations and make the model
more robust, we use sparemax function [34] which can retain
most important properties of softmax function and has the
ability of producing sparse distributions. The sparsemax(·)
function can be formulated as follows :

Adynamic = sparsemax(S)

= [S(p, q)− τ(S(p, :))]+
(12)

where [x]+ = max {0, x} and τ(·) is the threshold function
that returns a threshold. Sparsemax(·) preserves the values
above the threshold and the other values will be truncated
to zeros, which make the adjacency matrix sparse. It is
worth noting that Adymamic = {Afd , Abd} , Afd , Abd are the
dynamic graphs predicted by DGL according to the forward
adjacency matrix A and and the backward adjacency matrix
AT , respectively. Additionally, the dynamic adjacency matrix
Adynamic learned by the DGL layer differ among different
samples as well as each STM. Then, the Adynamic is fed into
the nexting graph convolution block to capture global spatial
representations.

2) Hybird Dynamic-Static GCN
The block contains a static branch and a dynamic branch
which aim to capture the local and global spatial depen-
dencies respectively. The static branch takes the outputs of
the dynamic temporal module Z ∈ RT

′
×N×F and the

pre-defined Astatic = {A,AT } as inputs. Yet, the dy-
namic branch takes the same features Z and the dynamic
Adymamic = {Afd , Abd} predicted by DGL as inputs. Finally,
the outputs of the two branchs further apaptively get fused to
model more effective spatial dependencies.

In the static branch, borrowing from Wu et al. [10], we
use pre-defined static adjacency matrix Astatic to perform
two step diffusion convolution in both forword an backward
directions to capture localized spatial dependencies, which
corresponds to Eq.(13)

Hstatic =
K−1∑
k=0

(Af )kZWs1 +
K−1∑
k=0

(Ab)kZWs2 (13)

where (·)k represents the power series of the transition ma-
trix,K is the number of diffusion steps ,Ws1 andWs2 denote
the learnable kernel . Here, the forward transition matrix
Af = A/rowsum(A) and the backward transition matrix
Ab = AT /rowsum(AT ). Hstatic is the output features of
the static branch, which only capture the local spatial depen-
dencies. However, the static branch has proved the ability
to capture the influence from both the upstream and the
downstream direction in traffic prediction model [10], [11].

More importantly, the dynamic branch can be formulated
as :

Hdynamic = AfdZWd1 +AbdZWd2 (14)

whereWd1 andWd2 are the learnable parameters of dynamic
branch. Hdynamic is the out of the dynamic branch , which
extract the global spatial dependency of the traffic.

After extracting the dynamic local and global spatial de-
pendencies, a weighted summation operation is applied for
fusion. The combination is expressed as follows:

Hhybrid = α� Hstatic + (1− α)� Hdynamic (15)

where α ∈ RF is learned parameters, differing in channels
dimension, which is used to balance Hstatic and Hdynamic .
The � is broadcasted hadamard product. Finally, a residual
mechanism and LayerNorm [35] are applied to improve
generalization performance.

F. OPTIMIZATION STRATEGY
Our model predicts the future Q timestamps speeds of all
sensors based on the historical P timestamps traffic records.
In the training phase, we choose Mean Absolute Error(MAE)
as the loss function. Furthermore, to avoid overfitting, we
adopt L2 regularization, which is defined by:

L(Θ) =
1

Q

t+Q∑
i=t+1

|Y i − Ŷ i|+ λ ‖Θ‖2 (16)

where Y i and Ŷ i denote the prediction value and ground
truth at i-th step, respectively. λ is the coefficient of the L2
regularization and Θ denotes all trainable parameters in our
model.
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IV. EXPERIMENTS
A. DATASETS
We evaluate our proposed method on two large-scale real
world datasets: METR-LA and PEMS-BAY [11]. The two
datasets are similar and both the nodes represent sensors
measuring traffic speed at 5-minutes intervals. METR-LA
dataset contains four months(rangeing from Mar 1st 2012 to
Jun 30th 2012) of traffic information on 207 sensors located
on the highways of Los Angeles County. PEMS-BAY dataset
contains six months(ranging from Jan 1st 2017 to May 31th
2017) of statistics on traffic speed on 325 sensors in the Bay
area. We adopt the same data processing procedures as in the
original papers [11]. A sequence of length 12 is used as the
input to predict the future traffic speed in one hour(12 steps).
Z-sore normalization is applied to all the input speed data.
Detailed statistics of the datasets are shown in Table 1.

TABLE 1: Statistics of METR-LA and PEMS-BAY datasets

Dataset #Sensors #Edges #Time Steps # Time range

METR-LA 207 1515 34272 3/1/2012 - 6/30/2017
PEMS-BAY 325 2369 52116 1/1/2017 - 5/31/2017

We build weighted adjacency matrix by road network dis-
tances between sensors with a thresholded Gaussian kernel.
The adjacency matrix is defined as :

Aij =

{
exp(−dist(νi,νj)

2

σ2 ), if dist(νi, νj)2 ≤ δ
0, if dist(νi, νj)2 > δ

(17)

where Aij represents the edge between sensor νi and νj ,
dist (νi, νj) denotes the road network distance from sensor
νi to νj . σ is the standard deviation of distances and δ is the
threshold to control the sparsity of the adjacency matrix A.

B. BASELINES
We compare our model with the following models:

• FNN: Feed Forward Neural Network with two hidden
layers.each contains 256 units.

• FC-LSTM: A Recurrent neural network with fully con-
nected LSTM hidden units.

• STGCN [9]: A complete convolutional structure com-
bining K-order chebyshev graph convolution with geted
linear unit(GLU) convolution layers for traffic predic-
tion.

• DCRNN [11]: Diffusion convolution recurrent neural
network , which captures the spatial dependency using
bidirectional random walks on the graph, and the tempo-
ral dependency using the encoder-decoder architecture
with scheduled sampling.

• GMAN [29]: adapts an encoder-decoder architecture
(similar with transformer), where both the encoder and
the decoder consist of multiple spatio-temporal atten-
tion blocks to model the impact of the spatio-temporal
factors on traffic conditions.

• Graph Wavenet [10]: A spatial-temporal graph con-
volutional network, which employs GCNs with a self-
adaptive matrix and a stacked dilated 1D convolution to
model the spatial-temporal dependencies.

• STSeq2Seq [15]: adapts an encoder-decoder architec-
ture (similar with transformer), where both the encoder
and the decoder consist of multiple spatio-temporal
attention blocks to model the impact of the spatio-
temporal factors on traffic conditions.

C. EXPERIMENT SETTINGS AND EVALUATION METRIC
We implemented our model based on the open source ma-
chine learning framework PyTorch [36] and conducted ex-
periments on Inter(R) Xeon(R) E5-2609 CPU @1.70GHZ
and one NVIDIA GeForce GTX 1080Ti GPU. We adopt the
same proportion with Graph WaveNet [10] which generate
training set (70%), validation set (10%) and test set (20%).
For our model, the number of STM L were set to 4 ,the
outputs dimensions of all modules F were set to 40, and the
parameter β was set as 1. The batch size was set to 64; the
maxinum diffusion step K was set as 2; the dropout rate of
temporal module was 0.3. DGLSTNet was trained based on
the Adam optimizer [37] for 100 epochs with early stopping
to prevent model from overfitting. The initial learning rate
was 0.001 with with a decay rate of 0.5 per 10 epochs
after twentieth epoch. In addition, the Layernorm and L2
normalization with a weight decay of 2e-4 were applied for
better generalization.

Three widely-used metrics are empolyed to evaluate pre-
dicting performance : Mean Absolute Error(MAE), Root
Mean Squared Error(RMSE), and Mean Absolute Percentage
Error(MAPE), defined as follows:

MAE =
1

N ×Q

N∑
i=1

Q∑
j=1

|yi,j − ŷi,j |

RMSE =

√√√√ 1

N ×Q

N∑
i=1

Q∑
j=1

(yi,j − ŷi,j)2

MAPE =
1

N ×Q

N∑
i=1

Q∑
j=1

|yi,j − ŷi,j |
yi,j

(18)

where ŷi,j and yi,j are the true value and the predicted value,
N is the number of sensors we select in the road network,
and Q is the total number of predicted time steps.

D. EXPERIMENTAL RESULTS
1) Prediction Performance Comparison
Table 2 displays our model and all baseline models on the
METR-LA and PEMS-BAY datasets for 15 minutes, 30
minutes and 60 minutes ahead prediction of MAE, RMSE
and MAPE. As shown in the table, we can observe that graph-
based models including STGCN, DCRNN, Graph Wavenet
and STSeq2Seq make better predictions than FNN and FC-
LSTM. This means that considering the hidden spatial de-
pendencies are critical to prediction performance.
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TABLE 2: Performance comparison of different approaches for traffic prediction on METR-LA and PEMS-BAY datasets

Dataset models 15min 30min 60min
MAE RMSE MAPE MAE RMSE MAPE MAE RMSE MAPE

METR-LA

FNN 3.99 7.94 9.90% 4.23 8.17 12.90% 4.49 8.69 14.00%
FC-LSTM 3.44 6.30 9.60% 3.77 7.23 10.90% 4.37 8.69 13.20%
STGCN 2.88 5.74 7.62% 3.47 7.24 9.57% 4.59 9.40 12.70%
DCRNN 2.77 5.38 7.30% 3.15 6.45 8.80% 3.60 7.60 10.50%
GMAN 2.77 5.48 7.25% 3.07 6.34 8.35% 3.40 7.21 9.72%
Graph Wavenet 2.69 5.15 6.90% 3.07 6.22 8.37% 3.53 7.37 10.01%
STSeq2Seq 2.64 5.10 6.72% 3.02 6.18 8.16% 3.47 7.36 9.96%
DGLSTNet 2.64 5.01 6.73% 2.98 6.00 8.05% 3.38 7.07 9.57%

PEMS-BAY

FNN 2.20 4.42 5.19% 2.30 4.63 5.43% 2.46 4.98 5.89%
FC-LSTM 2.05 4.19 4.80% 2.20 4.55 5.20% 2.37 4.96 5.70%
STGCN 1.36 2.96 2.90% 1.81 4.27 4.17% 2.49 5.69 5.79%
DCRNN 1.38 2.95 2.90% 1.74 3.97 3.90% 2.07 4.74 4.90%
GMAN 1.34 2.82 2.81% 1.62 3.72 3.63% 1.86 4.32 4.31%
Graph Wavenet 1.30 2.74 2.73% 1.63 3.70 3.67% 1.95 4.52 4.63%
STSeq2Seq 1.30 2.73 2.72% 1.62 3.72 3.61% 1.92 4.48 4.42%
DGLSTNet 1.29 2.70 2.68% 1.60 3.59 3.54% 1.88 4.30 4.35%

STGCN and DCRNN are the earliest two GCNs-based
methods for traffic prediction. STGCN employs K-order
Chebyshev graph convolution and complete convolution
structure on traffic data, while DCRNN combines diffu-
sion graph convolution with recurrent neural networks in
encoder-decoder manner. STGCN performs poorly com-
pared to DCRNN, because STGCN is designed for one-
step prediction and does not suit multiple steps ahead pre-
diction scenario. However, the two model focus on mod-
eling the spatial dependency by utilzing GCNs through-
out a fixed weighted graph, which neglects the complexity
and dynamic traffic condition over time. To overcome the
challenges, GMAN proposed an complete attention-based
encoder-decoder framework without GCNs, mainly improv-
ing the long-term prediction performance but performing
poor short-term performance. Nevertheless, GMAN calculate
multi spatial and temporal attention score from all vertices
and time steps represently, which the time and memory
consumption is more heavy.

DGLSTNet achieves the best performance for almost all
forecasting horizons on all metrics and both datasets. There
are some similarities among the three model GraphWavenet,
STSeq2Seq and DGLSTNet. They all adopt the diffusion
convolution to capture local spatial correlations and then
integrate it with the dynamic global spatial correlations. The
main difference is the constructe way of dynamic global
adjacency matrix. GraphWavenet introduces an adaptive ad-
jacency matrix and STSeq2Seq constructs patten-aware ad-
jacency matrix by feature embedding. Both non-local adja-
cency matrix only be calculated once at the beginning of
the model. Additionally, the adjacency matrix calculated by
softmax function results in dense fully connected adjacency
matrices, which introduce lots of noise into the learned spa-
tial correlations. Such dynamic global spatial information de-
rived from GraphWavenet and STSeq2Seq is relatively weak.
By contrast, our model learned the dynamic adjacency matri-
ces per-sample as well as per-GConv layer by the immediate

features and sparsemax function, which can provide a better
comprehension of traffic data and are crucial for modeling
complicated dependencies. A phenomenon worth consider-
ing that our model achieves small improvement on 15-minute
horizons (short-term) over GraphWavenet and STSeq2Seq,
while large improvement on 60-minute horizons(long-term).
As the long-term forecasting is inherently more uncertain
than short-term forecasting, we consider our model is more
capable to model complicated dependencies.
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FIGURE 4: speed prediction of the dataset METR-LA on
three random sensors
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To better illustrate the model’s forecasting ability, we ran-
domly select three sensors and visualize in Figure 4 one-day
predicting results of DGLSTNet and GraphWavenet under
15-min, 30-min and 60-min horizons, respectively. As can be
seen, the curve of DGLSTNet is closer to the ground truth
and predicted more accurately than GraphWavenet when
the ground truth changes rapidly. Especially, the accuracy
becomes more obvious as the predicting horizon increases.
Moreover, DGLSTNet can capture the trends of peak hous
better, this can be observed throughout the prediction of sen-
sor 12 around 18:00 and sensor 141 around 9:00. Although
both DGLSTNet and GraphWavenet are spatial-temporal
deep learning network which consider global-local spatial
dependencies simultaneously and based solely on convolu-
tion architecture, DGLSTNet is more effective than Graph-
Wavenet in modeling the complex traffic conditions. We
believe that the stable performance of DGLSTNet remains
due to the dual role of dynamic graph learning in each STM
and global temporal attention block.

2) Parameters Analysis

FIGURE 5: Prediction performance of DGLSTNet with dif-
ferent of L on METR-LA.

To investigate how different hyperparameter affect the
model performance and also to choose the optimal settings of
our model, we conduct analysis on two main hyperparameter:
the number L of spatial-temporal modules ranges from 2 to
6; the parameter β of DGLB controlling the contribution of
the static adjacency matrix ranges from 0 to 2.0. We use
the mean RMSE and MAPE of 12 steps prediction results
as the comparison metrics. The experimental results about
parameterL are presented in Figure 5. As the number of STM
increases, the prediction performance of the model improves.
However, after the number of STM reaches 4, the accurary of
the model was not improved or even becomes worse, and the
training time and GPU memory of the model also increases
greatly. Therefore, we chose L = 4 for our model as a trade-
off between performance and running efficiency.

After L was determined, we conduct analysis to select the
approprite β, as shown in Figure 6. It can be observed that
too larger or too smaller β degrades the model performance
significantly. The RMSE metric was not sensitive to these
parameters which were within the area of from 0.75 to 1.25,

FIGURE 6: Prediction performance of DGLSTNet with dif-
ferent of β on METR-LA.

while the impact of MAPE metric was greater. On the whole,
the best result was obtained when parameter β = 1.0. Finally,
parameter β = 1.0 was used in our model.

3) Ablation Studies
As described, there are three important components of our
approach: 1) GTAB, which extract global temporal features
by dense synthesizer attention; 2) static GCN branch in each
spatial sub-module, which extract local spatial dependencies
by diffusion graph convolution; 3) dynamic GCN branch in
each spatial sub-module,which extract dynamic glocal spatial
dependencies. In this section, in order to verify the effective-
ness of every compoments on our model , we compare the
following four variants of our model on METR-LA data.

– No-GTAB, whcih removes the global temporal attention
block.

– No-StaticGCN, which removes static branch and retain
the dynamic GCN branch.

– No-DyGCN, which removes dynamic GCN branch and
retain the static GCN branch.

– Dense-DGLSTNet, which replace the sparsemax with
softmax function.

Table 3 shows the RMSE and MAPE prediction perfor-
mance of every variant over different prediction interval.
We can find that DGLSTNet achieves the best prediction
performance. The predicting results of excels the No-GTAB
model, which verifies that it is necessary to model global
dependencies in the temporal domain. The DGLSTNet are
superior to model No-StaticGCN and No-DyGCN, which
proves that capturing local and global spatial-temporal fea-
tures simultaneously are important and effective for traffic
prediction. Compared with DGLSTNet, Dense-DGLSTNet
has poor prediction precision indicating that the softmax
function resulting in dense fully connected adjacency matrix
introduce lots of noise into the learned spatial correlations.
In summary, the DGLSTNet can achieve the best results
regardless of the prediction horizons, and each component
of our model make sense.

In order to further prove the effectiveness of our proposed
dynamic graph learning(DGL) in this paper, we evaluate two
new variants based on our model:
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TABLE 3: Performance of variants of DGLSTNet on different predicting intervals on METR-LA dataset

Models 15min 30min 60min all mean
RMSE MAPE RMSE MAPE RMSE MAPE RMSE MAPE

No-GTAB 5.06 6.84% 6.08 8.20% 7.15 9.81% 5.94 8.06%
No-StaticGCN 5.06 6.76% 6.07 8.17% 7.15 9.86% 5.95 8.08%

No-DyGCN 5.13 7.06% 6.10 8.42% 7.17 10.04% 5.98 8.32%
Dense-DGLSTNet 5.08 6.81% 6.12 8.14% 7.19 9.71% 6.00 8.00%

DGLSTNet 5.01 6.73% 6.00 8.05% 7.07 9.57% 5.87 7.92%

– Self-adapadj, similar to GraphWavenet, we constructe a
self-adaptive global adjacency matirx at the beginning
of DGLSTNet to replace DGL and apply the global
matrix in each STM.

– PAM, we apply the same patten-aware matirx from
STSeq2Seq to replace DSL in each STM.
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FIGURE 7: (a) validation Mean RMSE of 12 steps versus the
number of training epoch on METR-LA dataset. (b) RMSE
of each prediction interval of DSTGCN and two variants on
METR-LA dataset.

Fugure 7 illustrates the RMSE comparison of the DGLST-
Net and its two variants during training and inference phase
on METR-LA. It can be seen from the figure that DGLSTNet
has fast convergence rate and consistently outperforms better
than Self-adapadj and PAM, indicating that the DGL is
more effective than Self-adapadj and PAM in term of the
dynamic global spatial correction modeling. Therefore, it is
also proved that the dynamic and unique global spatial ma-
trix learned by DGL per-STM can extract more informative
global spatial dependencies than global spatial matrix only
be learn once at the beginning of model.

4) Training Efficiency
Table 4 Table presents the computation time of DCRNN,
Graph Wavenet, STSeq2Seq and DGLSTNet on the METR-
LA dataset. We reccorded the average training time cost
of each epoch and inference time for validation. It can be
observed that during the training phase, GraphWavenet is
the most efficient, followed by STSeq2Seq and DGLSTNet.
DCRNN runs much slower than other methods due to the
time-consuming sequence learning in complete recurrent net-
works. STSeq2Seq and DGLSTNet spend almost the same
amount of time in the training phase, while differ greater in
the inference phase. This is because STSeq2Seq use recurrent
networks to predict step by step, while DGLSTNet generate
all predictions in one run. Our model DGLSTNet runs about
two times slower than Graph Wavenet due to compute the
dynamic global spatial correction layer by layer. To summa-
rize, although DGLSTNet improves prediction performance,
it also increases computation time and there is still room for
further improvement.

TABLE 4: The computation time on the METR-LA datasets

Model Computation Time
Training(s/epoch) Inference(s/epoch)

DCRNN 320.13 37.64
Graph Wavenet 79.48 2.60
STSeq2Seq 159.12 20.69
DGLSTNet 162.37 9.46

V. CONCLUSION
We propose a novel spatial-temporal deep learning network
called DGLSTNet to focus on network-wide multiple steps
ahead traffic speed predicting. In the spatial dimension, a
dynamic graph learning block is introduced for learning the
dynamic sparse spatial correction in a global way. When
construcing the global adjacency matrix, the model considers
not only the similarities of the nodes, but also the under-
lying pairwise relationships between nodes. By integrating
the pre-defined and the adaptively learned global adjacency
matrices into graph convolution operation to capture both
local and global spatial dependencies simultaneously. In the
temporal dimension, a dynamic temporal module considering
the short-term local neighboring and the long-term global
trend correlations is proposed to effectively explicit infor-
mative temporal dependencies. Experiments on two real-
world datasets showed that the predicting accurary of our
model is better than existing models. In the further works, we
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plan to explore more complex spatial correlations to further
improve the prediction accurary, in addition, we can apply
our approach to other spatial-temporal forecasting, such as
ride-hailing demand prediction.
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