
Dynamic Graph ���

Algorithms	

Giuseppe F. Italiano 	

University of Rome “Tor Vergata”	

giuseppe.italiano@uniroma2.it	

http://www.disp.uniroma2.it/users/italiano	

Outline	

Lecture 1. (Undirected Graphs)

 Dynamic Connectivity

Lecture 2. (Undirected/Directed Graphs)

 Dynamic Shortest Paths

Lecture 3. (Non-dynamic?)

 2-Connectivity in Directed Graphs

Dynamic Graph Problems – Quick Intro

Outline	

Dynamic Graph Problems – Quick Intro

Lecture 1. (Undirected Graphs)

 Dynamic Connectivity

Lecture 2. (Undirected/Directed Graphs)

 Dynamic Shortest Paths

Lecture 3. (Non-dynamic?)

 2-Connectivity in Directed Graphs

Several Variants	

APSP: All Pairs Shortest Paths

NAPSP, NSSP, NSSS: Shortest Paths on Non-

negative weight graphs

SSSS: Single Source Single Sink Shortest Paths

SSSP: Single Source Shortest Paths

Several Variants	

APSP: All Pairs Shortest Paths

NAPSP, NSSP, NSSS: Shortest Paths on Non-

negative weight graphs

SSSS: Single Source Single Sink Shortest Paths

SSSP: Single Source Shortest Paths

Miscellanea	

•  Without loss of generality, directed graphs

•  W.l.o.g., update operations restricted to edge

cost changes: cost decreases can simulate

insertions; cost increases can simulate deletions.

(If edge not there, cost of + ∞)

•  Subpath Optimality (Optimal Substructure): any

subpath of a shortest path is a shortest path

Fully Dynamic APSP	

	
Given a weighted directed graph G = (V,E,w),���

perform any intermixed sequence of the following

operations:	

return distance from x to y
(or shortest path from x to y)

Query(x,y):

update cost of edge (u,v) to w Update(u,v,w): update edges incident to v [w()] Update(v,w):

Simple-minded Approaches	

Keep the solution up to date. 	

Fast query approach

Rebuild it from scratch

at each update.

Do nothing on graph.	

Fast update approach

Visit graph to

answer queries.

Rebuild the distance matrix	

from scratch after each

update.	

Fast query approach

O(n2)

To answer a query

about (x,y), perform a 	

single-source

computation from x.	

Fast update approach

O(1)

O(1)

Query

Update
O(1)

O(1)

Query

O(n2)

O(n3)

Update

Simple-minded Approaches	

State of the Art	

First fully dynamic algorithms date back to the 60’s

Until 1999, none of them was better in the worst case

than recomputing APSP from scratch (~ cubic time!)

Query	
Update	
Graph	
 Weight	

Ramalin.&Reps 96 general	
 real O(n3) O(1)

King 99 general	
 [0,C] O(n2.5 (C log n)0.5) O(1)

•  P. Loubal, A network evaluation procedure, Highway

Research Record 205, 96-109, 1967.

•  J. Murchland, The effect of increasing or decreasing the

length of a single arc on all shortest distances in a graph,

TR LBS-TNT-26, Transport Network Theory Unit,

London Business School, 1967.

•  V. Rodionov, A dynamization of the all-pairs least cost

problem, USSR Comput. Math. And Math. Phys. 8,

233-277, 1968.

•  …

Fully Dynamic APSP	

Edge insertions (edge cost decreases)

Quite easy: O(n2)

10

10

10

10

For each pair x,y check whether

D(x,i) + w(i,j) + D(j,y) < D(x,y)

x y

i j

•  Edge deletions (edge cost increases) 	

	
Seem the hard operations. Intuition:	

•  When edge (shortest path) deleted: need info

about second shortest path? (3rd, 4th, …)

G
… … 0 G

Fully Dynamic APSP	

Dynamic APSP	

O(1)

O(1)

Query

O(n2)

O(n2) O(n3)

Update

O(n2.5)
~	
 ~	

Demetrescu-I, J.ACM’04	

Real-weighted digraphs	

King, FOCS’99	

Unweighted digraphs	

Thorup, SWAT’04

Supporting negative weights +

improvements on log factors

Decremental bounds: Baswana, Hariharan, Sen J.Algs’07

Approximate dynamic APSP: Roditty, Zwick FOCS’04 +…

~	

Quadratic Update Time Barrier?	

Θ(n)	
Θ(n)	

+1
-1
+1

If distances are to be maintained explicitly,

any algorithm must pay Ω(n2) per update…

Related Problems	

Dynamic Transitive Closure (directed graph G)

update query authors

O(n2 log n) O(1) King, FOCS’99

Demetrescu-I., Algorithmica’08

O(n1.575) O(n0.575) Demetrescu-I., J.ACM’05

notes

 DAGs

Sankowski, FOCS’04

DAGs O(n2) O(1) King-Sagert, JCSS ‘02

Decremental bounds: Baswana, Hariharan, Sen, J.Algs.’07

O(m n1/2) O(n1/2) Roditty, Zwick, SIAM J. Comp.’08

O(m+n log n) O(n) Roditty, Zwick, FOCS’04

Sankowski, FOCS’04 worst-case

Dynamic Shortest Paths	

Many interesting ideas and techniques introduced

•  Algebraic graph methods

•  Decremental BFS [Even & Shiloach 1981]

•  Locally shortest paths

•  Long paths property

•  Path decompositions

•  …

Dynamic Shortest Paths	

Many interesting ideas and techniques introduced

•  Algebraic graph methods

•  Decremental BFS [Even & Shiloach 1981]

•  Locally shortest paths

•  Long paths property

•  Path decompositions

•  …

Fully Dynamic APSP (Recall)	

Edge insertions (edge cost decreases)

Quite easy: O(n2)

10

10

10

10

For each pair x,y check whether

D(x,i) + w(i,j) + D(j,y) < D(x,y)

x y

i j

O(mn2) = O(n4) over a sequence

Question 1 : Can we do better?

•  Edge deletions (edge cost increases) 	

	
Seem the hard operations. Intuition:	

•  When edge (shortest path) deleted: need info

about second shortest path? (3rd, 4th, …)

G
… … 0 G

Fully Dynamic APSP (Recall)	

Question 2 : Can we keep this info?

Edge insertions only	

Show how to improve the O(n4) bound over O(n2) edge

insertions (O(n2) worst-case per insertion)	

Unweighted (directed) graphs: O(n3 log n) over O(n2)

edge insertions (O(n log n) amortized per insertion)	

[Ausiello, I. , Marchetti-Spaccamela, Nanni J. Algs 1991]	

Incremental Shortest Path	

SP(v) : Shortest path tree rooted at vertex v	

SPR(v) : Shortest path tree rooted at v in reverse graph	

Terminology	

1

3 2

6

7 5 4

1

3 2

6

7 5 4

1

3 2

7 4

SP(1) SPR(1)

22

O(n2) Update	

When edge (i,j) is inserted do the following:

 for each v in V, update SP(v) by considering SP(j)

 (basic update)

1

3 2

6

7 5 4

1

3 2

6

7 5 4

SP(1)

6

5

SP(5)

23

O(n2) Update	

When edge (i,j) is inserted do the following:

 for each v in V, update SP(v) by considering SP(j)

 (basic update)

1

3 2

6

7 5 4

1

3 2

6

7 5 4

SP(1)

6

5

✖

✖

24

First Idea	

When edge (i,j) is inserted do the following:

 for each v in SPR(i), update SP(v) by considering SP(j)

 (basic update)

1

3 2

6

7 5 4

1

3 2

6

7 5 4

SP(1)

6

5

✖

✖

25 SPR(i)

SP(j) i

j

First Idea	

26 SPR(i)

i

First Idea	

Still O(n2) update

SP(j)

j

27 SPR(i)

SP(j) i

j

Second Idea	

28 SPR(i)

i

Second Idea	

✖
SP(j)

j

29 SPR(i)

i

Second Idea	

✖

✖

✖
SP(j)

j

30 SPR(i)

i

Second Idea	

✖

✖

SP(j)

j

✖

✖

✖

31 SPR(i)

i

Second Idea	

✖

✖

SP(j)

j

✖

✖

✖

Can show O(n log n)

amortized update

(see paper for details)

What are we doing exactly?	

Do we need to look at pair (x,y)?

y	
 y neighbor
of v

Inserting edge (i,j) does NOT improve shortest path from x to v

x	
 v	

2.

When edge (i,j) is inserted, avoid to look at all O(n2) pairs (x,y)

Look only at pairs (x,y) such that x that reaches i and y

reachable from j
1.

è	

i	
 j	

No, by subpath optimality

y	

y neighbor
of v

What are we doing exactly?	

Do we need to look at all pairs (x,y)?

Inserting edge (i,j) DOES improve shortest path from x to v

x	
 v	

3.

è	

i	
 j	

We need to look only at the pairs (x,y) such that shortest

path from u to y was improved

u	

Let u be the vertex immediately after x in the shortest

path from x to v

Again by subpath optimality: if inserting (i,j) did not

improve the shortest path from u to y, then it cannot

improve the shortest path from x to y

x	
 y	
πxy

Shortest path	
 Shortest path	

Not a shortest path	

Shortest path	

x	
 y	
πxy

A path is locally shortest if all of its

proper subpaths are shortest paths

Locally Shortest Paths	

[Demetrescu-I., J.ACM’04]

Locally

shortest paths

Locally shortest paths	

Shortest paths

By optimal-substructure property of shortest paths:

Back to Fully Dynamic APSP	

	
Given a weighted directed graph G = (V,E,w), ���

perform any intermixed sequence of the following

operations:	

return distance from x to y
(or shortest path from x to y)

Query(x,y):

update cost of edge (u,v) to w Update(u,v,w):

Recall Fully Dynamic APSP	

•  Hard operations edge deletions (increases)	

•  When edge (shortest path) deleted: need info

about second shortest path? (3rd, 4th, …)

Shortest path	
 Shortest path	

x	
 y	
πxy

•  Hey… what about locally shortest paths?

Candidate for being shortest path!

Falls short of being a shortest path just because some other path

(somewhere else) is better!

Locally shortest path	

Locally Shortest Paths for Dynamic APSP	

Idea:
Maintain all the locally shortest paths of the

graph

How do locally shortest paths change in a dynamic

graph?

We know already what happens for insertions (cost

decreases) only. What about deletions (cost increase)

only?

Assumptions behind the analysis	

Property 1

Locally shortest paths πxy are internally vertex-disjoint

This holds under the assumption that there is a unique

shortest path between each pair of vertices in the graph

(Ties can be broken by adding a small perturbation to

the weight of each edge)

x	
 y	

π1

π3

π2

Tie Breaking	

Shortest paths are unique

Assumptions

In theory, tie breaking is not a problem

Practice

In practice, tie breaking can be subtle

Properties of locally shortest paths	

Property 2

There can be at most (n-1) locally shortest paths

connecting x,y

x	
 y	

That’s a

consequence of

vertex-

disjointess…

Appearing locally shortest paths	

Fact 1

At most n3 (mn) paths can start being locally

shortest after an edge weight increase

x	
 y	

10

20

30

40

x	
 y	

100	

10

20

30

40

100

Disappearing locally shortest paths	

Fact 2

At most n2 paths can stop being locally shortest

after an edge weight increase

π stops being locally shortest after increase of e

subpath of π (was shortest path) must contain e

shortest paths are unique: at most n2 contain e

Maintaining locally shortest paths	

Locally shortest paths appearing after an increase: ≤ n3

Locally shortest paths disappearing after an increase: ≤ n2

The amortized number of changes in the set of

locally shortest paths at each update in an

increase-only sequence is O(n2)

An increase-only update algorithm	

This gives (almost) immediately:

O(n2 log n) amortized time per increase

O(mn) space

Maintaining locally shortest paths	

x	
 y	

10

20

30

40

x	
 y	

100	

10

20

30

40

What about fully dynamic sequences?

x	
 y	

How to pay only once?	

x	
 y	
x	
 y	

This path remains the same while flipping 	

between being LS and non-LS:	

Would like to have update algorithm ���

that pays only once for it until it is further

updated...	

x	
 y	

Looking at the substructure	

x	
 y	

…but if we removed the same edge

 it would be a shortest path again!

It’s not
dead!

This path remains a shortest path	

after the insertion	

This path is no longer a shortest path

after the insertion…

Historical paths	

x	
 y	

A path is historical if it was shortest ���

at some time since it was last updated	

historical path

Locally historical paths	

Shortest path

Shortest path

x	

y	

πxy Locally shortest

path

Historical path

Historical path

x	

y	

πxy

Locally historical

path

Key idea for partially dynamic	

LSP SP

Key idea for fully dynamic	

LHP

HP

LHP

SP HP

Putting things into perspective…	

LHP

HP LSP SP

The fully dynamic update algorithm	

O(n2 log3 n) amortized time per update

Fully dynamic update algorithm very similar to

partially dynamic, but maintains locally

historical paths instead of locally shortest paths

(+ performs some other operations)

O(mn log n) space

Idea:
Maintain all the locally historical paths

 of the graph

Full details in	

Locally shortest paths:

[Demetrescu-Italiano’04]

C. Demetrescu and G.F. Italiano

A New Approach to Dynamic All Pairs Shortest Paths

Journal of the Association for Computing Machinery

(JACM), 51(6), pp. 968-992, November 2004

Experimental study of dynamic NAPSP algorithms:

[Demetrescu-Italiano’06]

Camil Demetrescu, Giuseppe F. Italiano: Experimental

analysis of dynamic all pairs shortest path algorithms.

ACM Transactions on Algorithms 2 (4): 578-601 (2006).

Further Improvements 	

O(n2 (log n + log2 (m/n)))

amortized time per update

O(mn) space

Using locally historical paths,

Thorup [SWAT’04] has shown:

How many LSPs in a graph?	

Locally shortest paths in random graphs (500 nodes)

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

edges

m*n

#LS-paths

n*n

#LS-paths

m*n

n*n

LSP’s in Random Graphs	

Peres, Sotnikov, Sudakov & Zwick [FOCS 10]

Complete directed graph on n vertices with edge

weights chosen independently and uniformly at

random from [0;1]:

Number of locally shortest paths is O(n2), in

expectation and with high probability.

This yields immediately that APSP can be

computed in time O(n2), in expectation and with

high probability.

Lower Bounds	

Polylog bounds for dynamic connectivity

But dynamic shortest paths seem stubbornly more

difficult. Can we prove it?

Conditional lower bounds: basing hardness of dynamic

problems on known conjectures (3SUM, All Pairs

Shortest Paths, Triangle and Boolean Matrix

Multiplication Conjectures and the Strong Exponential

Time Hypothesis)

Lower Bounds	

[Patrascu 2010]

For dynamic APSP either update or query time must be Ω(nε)

[Roditty and Zwick 2011]

Any decremental or incremental algorithm for SSSP with

preprocessing time O(n3−ε), and update time O(n2−ε) and query

time O(n1−ε) for any ε > 0 implies a truly subcubic time

algorithm for APSP.

Note: Trivial algorithm recomputes shortest paths from a

source in O(m+nlog n) = O(n2) time after each update!

[Abboud and Vassilevska Williams 2014]

Exclude the possibility of an algorithm that has both O(n2−ε)

time updates and O(n2−ε) time queries, even for SSSS.

Dynamic SSSP (SSSS) not easier than APSP?	

Claim. If Fully Dynamic SSSS can be solved in time O(f(n))

per update and query, then also Fully Dynamic APSP can

be solved in time O(f(n)) per update and query. 	

All-Pairs queryG(x,y) can be implemented in G’ as follows:

updateG’ (s,x,0); updateG’ (y,t,0); queryG’ (s,t);

updateG’ (s,x, +∞); updateG’ (y,t, +∞)

G
… …

s t

Edges from s to G

and from G to t

have cost +∞

G’

More work to be done on Dynamic APSP	

Space is a BIG issue in practice

More tradeoffs for dynamic shortest paths?

Roditty-Zwick, Algoritmica 2011

O(mn1/2) update, O(n3/4) query for unweighted
~

Worst-case bounds?

Thorup, STOC 05

O(n2.75) update
~

Some Open Problems…	

Dynamic Maximum st-Flow

Dynamic algorithm only known for planar graphs

O(n2/3 log8/3 n) time per operation
I., Nussbaum, Sankowski & Wulf-Nilsen [STOC 2011]

What about general graphs?

Dynamic Diameter

Diameter():

 what is the diameter of G?

Do we really need APSP for this?

Some Open Problems…	

Dynamic Strongly Connected Components

(directed graph G)  

SCC(x,y):

 Are vertices x and y in same SCC of G?

Do we really need transitive closure for this?

In the static case strong connectivity easier

than transitive closure….

References	

A. Abboud, V. Vassilevska Williams. Popular conjectures imply

strong lower bounds for dynamic problems. FOCS 2014.

G. Ausiello, G.F. Italiano, A. Marchetti-Spaccamela, and U.

Nanni. Incremental algorithms for minimal length paths. Journal

of Algorithms, 12(4):615-638, 1991.

A. Bernstein. Fully dynamic (2 + ε) approximate all-pairs

shortest paths with fast query and close to linear update time. In

FOCS, 693–702, 2009.

A. Bernstein. Maintaining shortest paths under deletions in

weighted directed graphs. In STOC, 725–734, 2013.

References	

A. Bernstein and L. Roditty. Improved dynamic algorithms for

maintaining approximate shortest paths under deletions. In

SODA, 1355–1365, 2011.

C. Demetrescu and G. F. Italiano. A new approach to dynamic

all pairs shortest paths. J. ACM 51(6):968–992, 2004. See also

STOC 2003.

C. Demetrescu and G. F. Italiano. Experimental analysis of

dynamic all pairs shortest path algorithms. ACM Transactions

on Algorithms 2(4): 578-601 (2006). See also SODA 2004.

C. Demetrescu and G.F. Italiano. Fully dynamic all pairs

shortest paths with real edge weights. Journal of Computer and

System Sciences 72(5): 813-837 (2006). See also FOCS 2001.

References	

S. Even and H. Gazit. Updating distances in dynamic graphs.

Methods of Operations Research, 49:371–387, 1985.

S. Even and Y. Shiloach. An on-line edge-deletion problem.

J. ACM, 28:1–4, 1981

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Semi-

dynamic algorithms for maintaining single source shortest paths

trees. Algorithmica, 22(3):250–274, 1998.

D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully

dynamic algorithms for maintaining shortest paths trees. Journal

of Algorithms, 34:351-381, 2000.

References	

M. Henzinger, S. Krinninger, and D. Nanongkai. Dynamic

approximate all-pairs shortest paths: Breaking the O(mn) barrier

and derandomization. In FOCS, 538–547, 2013.

M. Henzinger, S. Krinninger, and D. Nanongkai. Sublinear-time

maintenance of breadth-first spanning tree in partially dynamic

networks. In ICALP, 607–619, 2013.

M. Henzinger, S. Krinninger, and D. Nanongkai. Sublinear-time

decremental algorithms for single-source reachability and

shortest paths on directed graphs. In STOC, 674–683, 2014.

M. Henzinger, S. Krinninger, and D. Nanongkai. A

subquadratic-time algorithm for dynamic single-source shortest

paths. In SODA, 1053–1072, 2014.

References	

V. King. Fully dynamic algorithms for maintaining all-pairs

shortest paths and transitive closure in digraphs. In STOC,

pages 81–91, 1999.

P. Loubal. A network evaluation procedure. Highway Research

Record 205, pages 96–109, 1967.

J. Murchland. The effect of increasing or decreasing the length

of a single arc on all shortest distances in a graph. Technical

report, LBS-TNT-26, London Business School, Transport

Network Theory Unit, London, UK, 1967.

M. Patrascu. Towards polynomial lower bounds for dynamic

problems. Proc. STOC, 603–610, 2010.

References	

G. Ramalingam and T. Reps. An incremental algorithm for a

generalization of the shortest path problem. Journal of

Algorithms, 21:267–305, 1996.

V. Rodionov. The parametric problem of shortest distances.

U.S.S.R. Computational Math. and Math. Phys., 8(5):336–343,

1968.

L. Roditty and U. Zwick. On dynamic shortest paths problems.

Algorithmica, 61(2):389–401, 2011. See also ESA 2004.

L. Roditty and U. Zwick. Dynamic approximate all-pairs

shortest paths in undirected graphs. SIAM Journal on

Computing, 41(3):670–683, 2012. See also FOCS 2004.

References	

H. Rohnert. A dynamization of the all-pairs least cost problem.

In Proc. 2nd Annual Symposium on Theoretical Aspects of

Computer Science, (STACS’85), LNCS 182, 279–286, 1985.

M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and

allowing negative cycles. In Proceedings of the 9th

Scandinavian Workshop on Algorithm Theory (SWAT’04), 384–

396, 2004.

M. Thorup. Worst-case update times for fully-dynamic all-pairs

shortest paths. In Proceedings of the 37th ACM Symposium on

Theory of Computing (STOC 2005), 2005.

72

Long Paths Property

 “Road”
Roads

Roads

Highways

Are there roads and highways in graphs?	

Let P be a path of length at least k.	

Let S be a random subset of vertices

of size (c n ln n) / k.

Then with high probability P ∩ S ≠ ∅.

Probability ≥ 1 – (1 / nc) (depends on c)

Long Paths Property
[Ullman-Yannakakis‘91]

Select each element

independently with probability

n

k

The probability that a

given set of k elements

is not hit is

ln
1(1)

k
k

cc n
n

k
p −⎛ ⎞

= − <⎜ ⎟
⎝ ⎠

−

lnc n
p

k
=

Long Paths Property	

Can prove stronger property:	

Let P be a path of length at least k.	

Let S be a random subset of vertices of size

(c n ln n) / k.

Then with high probability there is no

subpath of P of length k with no vertices in

S (P ∩ S ≠ ∅).

Probability ≥ 1 – (1 / nα c) for some α > 0.	

Long Paths Property	

Exploit Long Paths Property	

Randomly pick a set S of vertices in the graph

|S| =
c n log n

k
c, k > 0

Then on any path in the graph

 every k vertices there is a vertex in S,

 with probability ≥ 1 – (1 / nα c)

<k <k <k <k <k <k <k

Rome Lisbon
vertices in S

Roads and Highways in Graphs	

Highway = shortest path between two vertices in S

Highway

Highway entry points = vertices in S

Rome Lisbon

Road = shortest path using at most k edges

<k

Road

<k

Road Road

<k

Computing Shortest Paths 1/3	

Rome Lisbon

k

Compute roads

(shortest paths using at most k edges)
1

Even & Shiloach BFS trees may become handy…

…essentially an all pairs shortest paths computation on a

contracted graph with vertex set S, and edge set = roads

Highway

<k

Road

<k

Road

Compute highways

(by stitching together roads)
2

Computing Shortest Paths 2/3	

Highway

Rome Palmse

Road Road

Compute shortest paths (longer than k edges)

(by stitching together roads + highways + roads)
3

Used (for dynamic graphs) in many papers, i.e., King [FOCS’99],

Demetrescu-I. [JCSS’06], Roditty-Zwick [FOCS’04], …

Computing Shortest Paths 3/3	

