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Several Variants	
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Miscellanea	


•  Without loss of generality, directed graphs 

•  W.l.o.g., update operations  restricted to edge 

cost changes: cost decreases can simulate 

insertions; cost increases can simulate deletions. 

(If edge not there, cost of + ∞) 

•  Subpath Optimality (Optimal Substructure): any 

subpath of a shortest path is a shortest path  
 



Fully Dynamic APSP	


	
Given a weighted directed graph G = (V,E,w),���

perform any intermixed sequence of the following 

operations:	


return distance from x to y 
(or shortest path from x to y) 

Query(x,y): 

update cost of edge (u,v) to w Update(u,v,w): update edges incident to v [w( )] Update(v,w): 



Simple-minded Approaches	


Keep the solution up to date. 	


Fast query approach 

Rebuild it from scratch 

at each update. 

Do nothing on graph.	


Fast update approach 

Visit graph to 

answer queries. 



Rebuild the distance matrix	


from scratch after each 

update.	


Fast query approach 

O(n2) 

To answer a query 

about (x,y), perform a 	


single-source 

computation from x.	


Fast update approach 

O(1) 

O(1) 

Query 

Update 
O(1) 

O(1) 

Query 

O(n2) 

O(n3) 

Update 

Simple-minded Approaches	




State of the Art	


First fully dynamic algorithms date back to the 60’s 

Until 1999, none of them was better in the worst case 

than recomputing APSP from scratch (~ cubic time!) 

Query	
Update	
Graph	
 Weight	


Ramalin.&Reps 96 general	
 real           O(n3) O(1) 

King 99 general	
 [0,C] O(n2.5 (C log n)0.5) O(1) 

•  P. Loubal, A network evaluation procedure, Highway 

Research Record 205, 96-109, 1967. 

•  J. Murchland, The effect of increasing or decreasing the 

length of a single arc on all shortest distances in a graph, 

TR LBS-TNT-26, Transport Network Theory Unit, 

London Business School, 1967. 

•  V. Rodionov, A dynamization of the all-pairs least cost 

problem, USSR Comput. Math. And Math. Phys. 8, 

233-277, 1968. 

•  … 



Fully Dynamic APSP	

Edge insertions (edge cost decreases)  

Quite easy: O(n2) 

10 

10 

10 

10 

For each pair x,y check whether  

D(x,i) + w(i,j) + D(j,y)  <  D(x,y) 

x y 

i j 



•  Edge deletions (edge cost increases) 	


	
Seem the hard operations. Intuition:	


•  When edge (shortest path) deleted: need info 

about second shortest path? (3rd, 4th, …) 

G 
… … 0 G 

Fully Dynamic APSP	




Dynamic APSP	


O(1) 

O(1) 

Query 

O(n2) 

O(n2) O(n3) 

Update 

O(n2.5) 
~	
 ~	


Demetrescu-I, J.ACM’04	


Real-weighted digraphs	


King, FOCS’99	


Unweighted digraphs	


Thorup, SWAT’04 

Supporting negative weights + 

improvements on log factors 

Decremental bounds: Baswana, Hariharan, Sen J.Algs’07 

Approximate dynamic APSP: Roditty, Zwick FOCS’04 +… 

~	




Quadratic Update Time Barrier?	


Θ(n)	
Θ(n)	

+1 
-1 
+1 

If distances are to be maintained explicitly, 

any algorithm must pay Ω(n2) per update… 



Related Problems	


Dynamic Transitive Closure (directed graph G)  

update query authors 

O(n2 log n) O(1) King, FOCS’99 

Demetrescu-I., Algorithmica’08 

O(n1.575) O(n0.575) Demetrescu-I., J.ACM’05 

notes 

 DAGs 

Sankowski, FOCS’04 

DAGs O(n2) O(1) King-Sagert, JCSS ‘02 

Decremental bounds: Baswana, Hariharan, Sen, J.Algs.’07 

O(m n1/2) O(n1/2) Roditty, Zwick, SIAM J. Comp.’08 

O(m+n log n) O(n) Roditty, Zwick, FOCS’04 

Sankowski, FOCS’04      worst-case 



Dynamic Shortest Paths	


Many interesting ideas and techniques introduced 
 

•  Algebraic graph methods 

•  Decremental BFS [Even & Shiloach 1981] 

•  Locally shortest paths 

•  Long paths property 

•  Path decompositions 

•  … 
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Fully Dynamic APSP (Recall)	

Edge insertions (edge cost decreases)  

Quite easy: O(n2) 

10 

10 

10 

10 

For each pair x,y check whether  

D(x,i) + w(i,j) + D(j,y)  <  D(x,y) 

x y 

i j 

O(mn2) = O(n4) over a sequence  

Question 1 : Can we do better? 



•  Edge deletions (edge cost increases) 	


	
Seem the hard operations. Intuition:	


•  When edge (shortest path) deleted: need info 

about second shortest path? (3rd, 4th, …) 

G 
… … 0 G 

Fully Dynamic APSP (Recall)	


Question 2 : Can we keep this info? 



Edge insertions only	


Show how to improve the O(n4) bound over O(n2) edge 

insertions (O(n2) worst-case per insertion)	


Unweighted (directed) graphs: O(n3 log n) over O(n2) 

edge insertions (O(n log n) amortized per insertion)	


[Ausiello, I. , Marchetti-Spaccamela, Nanni J. Algs 1991]	


Incremental Shortest Path	




SP(v) : Shortest path tree rooted at vertex v	


SPR(v) : Shortest path tree rooted at v in reverse graph	


Terminology	


1 

3 2 

6 

7 5 4 

1 

3 2 

6 

7 5 4 

1 

3 2 

7 4 

SP(1) SPR(1) 
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O(n2) Update	


When edge (i,j) is inserted do the following: 

     for each v in V, update SP(v) by considering SP(j) 

                              (basic update) 

1 

3 2 

6 

7 5 4 

1 

3 2 

6 

7 5 4 

SP(1) 

6 

5 

SP(5) 
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O(n2) Update	


When edge (i,j) is inserted do the following: 

     for each v in V, update SP(v) by considering SP(j) 

                              (basic update) 

1 

3 2 

6 

7 5 4 

1 

3 2 

6 

7 5 4 

SP(1) 

6 

5 

✖ 

✖ 
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First Idea	


When edge (i,j) is inserted do the following: 

     for each v in SPR(i), update SP(v) by considering SP(j) 

                                      (basic update) 

1 

3 2 

6 

7 5 4 

1 

3 2 

6 

7 5 4 

SP(1) 

6 

5 

✖ 

✖ 



25 SPR(i) 

SP(j) i 

j 

First Idea	




26 SPR(i) 

i 

First Idea	


Still O(n2) update 

SP(j) 

j 



27 SPR(i) 

SP(j) i 

j 

Second Idea	




28 SPR(i) 

i 

Second Idea	


✖ 
SP(j) 

j 



29 SPR(i) 

i 

Second Idea	


✖ 

✖ 

✖ 
SP(j) 

j 



30 SPR(i) 

i 

Second Idea	


✖ 

✖ 

SP(j) 

j 

✖ 

✖ 

✖ 



31 SPR(i) 

i 

Second Idea	


✖ 

✖ 

SP(j) 

j 

✖ 

✖ 

✖ 

Can show O(n log n) 

amortized update 

(see paper for details) 



What are we doing exactly?	


Do we need to look at pair (x,y)? 

y	
 y neighbor  
of v 

Inserting edge (i,j) does NOT improve shortest path from x to v  

x	
 v	


2. 

When edge (i,j) is inserted, avoid to look at all O(n2) pairs (x,y) 

Look only at pairs (x,y) such that x that reaches i and y 

reachable from j 
1. 

è	

i	
 j	


No, by subpath optimality 



y	

y neighbor  
of v 

What are we doing exactly?	


Do we need to look at all pairs (x,y)? 

Inserting edge (i,j) DOES improve shortest path from x to v  

x	
 v	


3. 

è	

i	
 j	


We need to look only at the pairs (x,y) such that shortest 

path from u to y was improved 

u	


Let u be the vertex immediately after x in the shortest 

path from x to v 

Again by subpath optimality: if inserting (i,j) did not 

improve the shortest path from u to y, then it cannot 

improve the shortest path from x to y 



x	
 y	
πxy 

Shortest path	
 Shortest path	


Not a shortest path	


Shortest path	


x	
 y	
πxy 

A path is locally shortest if all of its  

proper subpaths are shortest paths 

Locally Shortest Paths	


[Demetrescu-I., J.ACM’04] 



Locally 

shortest paths 

Locally shortest paths	


Shortest paths 

By optimal-substructure property of shortest paths: 



Back to Fully Dynamic APSP	


	
Given a weighted directed graph G = (V,E,w), ���

perform any intermixed sequence of the following 

operations:	


return distance from x to y 
(or shortest path from x to y) 

Query(x,y): 

update cost of edge (u,v) to w Update(u,v,w): 



Recall Fully Dynamic APSP	


•  Hard operations edge deletions (increases)	


•  When edge (shortest path) deleted: need info 

about second shortest path? (3rd, 4th, …) 

Shortest path	
 Shortest path	


x	
 y	
πxy 

•  Hey… what about locally shortest paths? 

Candidate for being shortest path!  

Falls short of being a shortest path just because some other path 

(somewhere else) is better!  

Locally shortest path	




Locally Shortest Paths for Dynamic APSP	


Idea: 
Maintain all the locally shortest paths of the 

graph  

How do locally shortest paths change in a dynamic 

graph? 

We know already what happens for insertions (cost 

decreases) only. What about deletions (cost increase) 

only?  



Assumptions behind the analysis	


Property 1  

Locally shortest paths πxy are internally vertex-disjoint  

This holds under the assumption that there is a unique  

shortest path between each pair of vertices in the graph 

(Ties can be broken by adding a small perturbation to  

the weight of each edge) 

x	
 y	


π1 

π3 

π2 



Tie Breaking	


Shortest paths are unique 

Assumptions 

In theory, tie breaking is not a problem  

Practice 

In practice, tie breaking can be subtle 



Properties of locally shortest paths	


Property 2 

There can be at most (n-1) locally shortest paths 

connecting x,y 

x	
 y	


That’s a 

consequence of 

vertex-

disjointess… 



Appearing locally shortest paths	


Fact 1 

At most n3 (mn) paths can start being locally 

shortest after an edge weight increase 

x	
 y	


10 

20 

30 

40 

x	
 y	

100	


10 

20 

30 

40 

100 



Disappearing locally shortest paths	


Fact 2 

At most n2 paths can stop being locally shortest 

after an edge weight increase 

π stops being locally shortest after increase of e 

subpath of π (was shortest path) must contain e 

shortest paths are unique: at most n2 contain e  



Maintaining locally shortest paths	


# Locally shortest paths appearing after an increase: ≤ n3 

# Locally shortest paths disappearing after an increase: ≤ n2 

The amortized number of changes in the set of  

locally shortest paths at each update in an  

increase-only sequence is O(n2) 



An increase-only update algorithm	


This gives (almost) immediately: 

O(n2 log n)  amortized time per increase 

O(mn)  space 



Maintaining locally shortest paths	


x	
 y	


10 

20 

30 

40 

x	
 y	

100	


10 

20 

30 

40 

What about fully dynamic sequences? 



x	
 y	


How to pay only once?	


x	
 y	
x	
 y	


This path remains the same while flipping 	


between being LS and non-LS:	


Would like to have update algorithm ���

that pays only once for it until it is further 

updated...	




x	
 y	


Looking at the substructure	


x	
 y	


…but if we removed the same edge  

 it would be a shortest path again! 

It’s not 
dead! 

This path remains a shortest path	


after the insertion	


This path is no longer a shortest path 

after the insertion… 



Historical paths	


x	
 y	


A path is historical if it was shortest ���

at some time since it was last updated	


historical path 



Locally historical paths	


Shortest path  

Shortest path 

x	


y	

πxy Locally shortest 

path 

Historical path 

Historical path 

x	


y	

πxy 

Locally historical 

path 



Key idea for partially dynamic	


LSP SP 



Key idea for fully dynamic	


LHP 

HP 

LHP 

SP HP 



Putting things into perspective…	


LHP 

HP LSP SP 



The fully dynamic update algorithm	


O(n2 log3 n)  amortized time per update 

Fully dynamic update algorithm very similar to 

partially dynamic, but maintains locally 

historical paths instead of locally shortest paths 

(+ performs some other operations) 

O(mn log n)  space 

Idea: 
Maintain all the locally historical paths 

 of the graph  



Full details in	


Locally shortest paths:  

[Demetrescu-Italiano’04]  

C. Demetrescu and G.F. Italiano 

A New Approach to Dynamic All Pairs Shortest Paths 

Journal of the Association for Computing Machinery 

(JACM), 51(6), pp. 968-992, November 2004

Experimental study of dynamic NAPSP algorithms: 

[Demetrescu-Italiano’06]  

Camil Demetrescu, Giuseppe F. Italiano: Experimental 

analysis of dynamic all pairs shortest path algorithms. 

ACM Transactions on Algorithms 2 (4): 578-601 (2006). 



Further Improvements 	


O(n2 (log n + log2 (m/n)))   

amortized time per update 

O(mn)  space 

Using locally historical paths, 

Thorup [SWAT’04] has shown: 



How many LSPs in a graph?	

Locally shortest paths in random graphs (500 nodes)

0

5,000,000

10,000,000

15,000,000

20,000,000

25,000,000

0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000

# edges

m*n

#LS-paths

n*n

#LS-paths

m*n

n*n



LSP’s in Random Graphs	


Peres, Sotnikov, Sudakov & Zwick [FOCS 10] 

Complete directed graph on n vertices with edge 

weights chosen independently and uniformly at 

random from [0;1]: 
 

Number of locally shortest paths is O(n2), in 

expectation and with high probability. 
 

This yields immediately that APSP can be 

computed in time O(n2), in expectation and with 

high probability. 



Lower Bounds	


Polylog bounds for dynamic connectivity 
 

But dynamic shortest paths seem stubbornly more 

difficult. Can we prove it? 
 

Conditional lower bounds: basing hardness of dynamic 

problems on known conjectures (3SUM, All Pairs 

Shortest Paths, Triangle and Boolean Matrix 

Multiplication Conjectures and the Strong Exponential 

Time Hypothesis) 



Lower Bounds	


[Patrascu 2010] 

For dynamic APSP either update or query time must be Ω(nε) 
 

[Roditty and Zwick 2011] 

Any decremental or incremental algorithm for SSSP with 

preprocessing time O(n3−ε), and update time O(n2−ε) and query 

time O(n1−ε) for any ε > 0 implies a truly subcubic time 

algorithm for APSP. 
 

Note: Trivial algorithm recomputes shortest paths from a 

source in O(m+nlog n) = O(n2) time after each update! 
 

[Abboud and Vassilevska Williams 2014] 

Exclude the possibility of an algorithm that has both O(n2−ε) 

time updates and O(n2−ε) time queries, even for SSSS. 



Dynamic SSSP (SSSS) not easier than APSP?	


Claim. If Fully Dynamic SSSS can be solved in time O(f(n)) 

per update and query, then also Fully Dynamic APSP can 

be solved in time O(f(n)) per update and query. 	


All-Pairs queryG(x,y) can be implemented in G’ as follows: 

updateG’ (s,x,0); updateG’ (y,t,0); queryG’ (s,t); 

updateG’ (s,x, +∞); updateG’ (y,t, +∞) 

G 
… … 

s t 

Edges from s to G 

and from G to t 

have cost +∞ 

G’ 



More work to be done on Dynamic APSP	


Space is a BIG issue in practice  

More tradeoffs for dynamic shortest paths? 
 

Roditty-Zwick, Algoritmica 2011  

O(mn1/2) update, O(n3/4) query for unweighted 
~ 

Worst-case bounds? 
 

Thorup, STOC 05  

O(n2.75) update 
~ 



Some Open Problems…	


Dynamic Maximum st-Flow 

Dynamic algorithm only known for planar graphs 

O(n2/3 log8/3 n) time per operation 
I., Nussbaum, Sankowski & Wulf-Nilsen [STOC 2011] 

What about general graphs? 

  

Dynamic Diameter 

Diameter():  

 what is the diameter of G? 

Do we really need APSP for this? 



Some Open Problems…	


Dynamic Strongly Connected Components 

(directed graph G)  

SCC(x,y):  

 Are vertices x and y in same SCC of G? 

Do we really need transitive closure for this? 

In the static case strong connectivity easier 

than transitive closure…. 
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Long Paths Property 



   “Road” 
Roads 

Roads 

Highways 



Are there roads and highways in graphs?	


Let  P  be a path of length at least k.	


Let  S  be a random subset of vertices                       

of size (c n ln n) / k. 

Then with high probability  P ∩ S ≠ ∅. 

Probability   ≥ 1 – (1 / nc)      ( depends on c ) 

Long Paths Property  
[Ullman-Yannakakis‘91] 



Select each element 

independently with probability 

n 

k 

The probability that a 

given set of k elements 

is not hit is  

ln
1(1 )

k
k

cc n
n

k
p −⎛ ⎞

= − <⎜ ⎟
⎝ ⎠

−

lnc n
p

k
=

Long Paths Property	




Can prove stronger property:	


Let  P  be a path of length at least k.	


Let  S  be a random subset of vertices of size 

(c n ln n) / k. 

Then with high probability there is no 

subpath of P of length k with no vertices in  

S  (P ∩ S ≠ ∅ ). 

Probability  ≥ 1 – (1 / nα c ) for some  α > 0.	


Long Paths Property	




Exploit Long Paths Property	


Randomly pick a set  S  of vertices in the graph 

|S| = 
c n log n  

k 
c, k > 0 

Then on any path in the graph  

 every k vertices there is a vertex in S, 

 with probability ≥ 1 – ( 1 / nα c )  

<k <k <k <k <k <k <k 

Rome Lisbon 
vertices in S 



Roads and Highways in Graphs	


Highway = shortest path between two vertices in S 

Highway 

Highway entry points = vertices in S 

Rome Lisbon 

Road = shortest path using at most k edges 

<k 

Road 

<k 

Road Road 

<k 



Computing Shortest Paths 1/3	


Rome Lisbon 

k 

Compute roads  

(shortest paths using at most k edges) 
1 

Even & Shiloach BFS trees may become handy… 



…essentially an all pairs shortest paths computation on a  

contracted graph with vertex set S, and edge set = roads 

Highway 

<k 

Road 

<k 

Road 

Compute highways 

(by stitching together roads) 
2 

Computing Shortest Paths 2/3	




Highway 

Rome Palmse 

Road Road 

Compute shortest paths (longer than k edges) 

(by stitching together roads + highways + roads) 
3 

Used (for dynamic graphs) in many papers, i.e., King [FOCS’99],  

Demetrescu-I. [JCSS’06], Roditty-Zwick [FOCS’04], … 
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