# Dynamic Graph Algorithms 

## Giuseppe F. Italiano

University of Rome "Tor Vergata" giuseppe.italiano@uniroma2.it http://www.disp.uniroma2.it/users/italiano

## Outline

Dynamic Graph Problems - Quick Intro
Lecture 1. (Undirected Graphs)
Dynamic Connectivity
Lecture 2. (Undirected/Directed Graphs)
Dynamic Shortest Paths
Lecture 3. (Non-dynamic?)
2-Connectivity in Directed Graphs

## Outline

Dynamic Graph Problems - Quick Intro
Lecture 1. (Undirected Graphs)
Dynamic Connectivity
Lecture 2. (Undirected/Directed Graphs) Dynamic Shortest Paths

Lecture 3. (Non-dynamic?)
2-Connectivity in Directed Graphs

## Several Variants

$\square$ APSP: All Pairs Shortest Paths
$\square$ SSSP: Single Source Shortest Paths
$\square$ SSSS: Single Source Single Sink Shortest Paths
$\square$ NAPSP, NSSP, NSSS: Shortest Paths on Nonnegative weight graphs

## Several Variants

$\square$ APSP: All Pairs Shortest Paths
$\square$ SSSP: Single Source Shortest Paths
$\square$ SSSS: Single Source Single Sink Shortest Paths
$\square$ NAPSP, NSSP, NSSS: Shortest Paths on Nonnegative weight graphs

## Miscellanea

- Without loss of generality, directed graphs
- W.l.o.g., update operations restricted to edge cost changes: cost decreases can simulate insertions; cost increases can simulate deletions. (If edge not there, cost of $+\infty$ )
- Subpath Optimality (Optimal Substructure): any subpath of a shortest path is a shortest path


## Fully Dynamic APSP

Given a weighted directed graph $\mathrm{G}=(\mathrm{V}, \mathrm{E}, \mathrm{w})$, perform any intermixed sequence of the following operations:

Update(v,w): update edges incident to $\mathrm{v}[\mathrm{w}(\mathrm{)}]$

## return distance from x to y <br> (or shortest path from x to y )

## Simple-minded Approaches

Fast query approach
Keep the solution up to date.
Rebuild it from scratch at each update.

Fast update approach

Do nothing on graph.
Visit graph to answer queries.

## Simple-minded Approaches

Fast query approach

Rebuild the distance matrix from scratch after each update.


Fast update approach
To answer a query about ( $\mathrm{x}, \mathrm{y}$ ), perform a single-source computation from x .

Query

$\mathrm{O}(1)$

## State of the Art

First fully dynamic algorithms date back to the $60^{\prime} \mathrm{s}$
Until 1999 none of them was better in the worst case than recompating APSP from scratch ( $\sim$ cubictimet Research Record 205, 96-109, 1967.

- J. Murchland, The effect of increasing of decreasing the Query

problem, USSR Comput. Math. And Math. Phys. 8, 233-277, 1968.


## Fully Dynamic APSP

Edge insertions (edge cost decreases)


For each pair $\mathrm{x}, \mathrm{y}$ check whether

$$
\mathrm{D}(\mathrm{x}, \mathrm{i})+\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{D}(\mathrm{j}, \mathrm{y})<\mathrm{D}(\mathrm{x}, \mathrm{y})
$$

Quite easy: $\mathrm{O}\left(\mathrm{n}^{2}\right)$

## Fully Dynamic APSP

- Edge deletions (edge cost increases)

Seem the hard operations. Intuition:


- When edge (shortest path) deleted: need info about second shortest path? (3rd, 4th, ...)


## Dynamic APSP

Thorup, SWAT'04
Query
$\mathrm{O}\left(\mathrm{n}^{2}\right)$
Supporting negative weights + improvements on log factors


Decremental bounds: Baswana, Hariharan, Sen J.Algs' 07 Approximate dynamic APSP: Roditty, Zwick FOCS' 04 +...

## Quadratic Update Time Barrier?



If distances are to be maintained explicitly, any algorithm must pay $\Omega\left(\mathrm{n}^{2}\right)$ per update...

## Related Problems

Dynamic Transitive Closure (directed graph G)

| update | query | authors notes |
| :---: | :---: | :---: |
| $\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ | $\mathrm{O}(1)$ | King, FOCS' 99 |
| $\mathrm{O}\left(\mathrm{n}^{2}\right)$ | $\mathrm{O}(1)$ | King-Sagert, JCSS ‘02 DAGs <br> Demetrescu-I., Algorithmica’ 08 <br> Sankowski, FOCS' 04 worst-case |
| $\mathrm{O}\left(\mathrm{n}^{1.575}\right)$ | $\mathrm{O}\left(\mathrm{n}^{0.575}\right)$ | Demetrescu-I., J.ACM' 05 DAGs Sankowski, FOCS' 04 |
| $\mathrm{O}\left(\mathrm{m} \mathrm{n}^{1 / 2}\right)$ | $\mathrm{O}\left(\mathrm{n}^{1 / 2}\right)$ | Roditty, Zwick, SIAM J. Comp.' 08 |
| $\mathrm{O}(\mathrm{m}+\mathrm{n} \log \mathrm{n})$ | $\mathrm{O}(\mathrm{n})$ | Roditty, Zwick, FOCS' 04 |
| Decremental | nds: | ana, Hariharan, Sen, J.Algs.' 07 |

## Dynamic Shortest Paths

Many interesting ideas and techniques introduced

- Algebraic graph methods
- Decremental BFS [Even \& Shiloach 1981]
- Locally shortest paths
- Long paths property
- Path decompositions


## Dynamic Shortest Paths

Many interesting ideas and techniques introduced

- Algebraic graph methods
- Decremental BFS [Even \& Shiloach 1981]
- Locally shortest paths
- Long paths property
- Path decompositions


## Fully Dynamic APSP (Recall)

Edge insertions (edge cost decreases)


For each pair $x, y$ check whether

$$
\mathrm{D}(\mathrm{x}, \mathrm{i})+\mathrm{w}(\mathrm{i}, \mathrm{j})+\mathrm{D}(\mathrm{j}, \mathrm{y})<\mathrm{D}(\mathrm{x}, \mathrm{y})
$$

Quite easy: $\mathrm{O}\left(\mathrm{n}^{2}\right) \quad \mathrm{O}\left(\mathrm{mn}^{2}\right)=\mathrm{O}\left(\mathrm{n}^{4}\right)$ over a sequence
Question 1 : Can we do better?

## Fully Dynamic APSP (Recall)

- Edge deletions (edge cost increases)

Seem the hard operations. Intuition:


- When edge (shortest path) deleted: need info about second shortest path? (3rd, 4th, ...)

Question 2 : Can we keep this info?

## Incremental Shortest Path

Edge insertions only
Show how to improve the $\mathrm{O}\left(\mathrm{n}^{4}\right)$ bound over $\mathrm{O}\left(\mathrm{n}^{2}\right)$ edge insertions ( $\mathrm{O}\left(\mathrm{n}^{2}\right)$ worst-case per insertion)

Unweighted (directed) graphs: $\mathrm{O}\left(\mathrm{n}^{3} \log \mathrm{n}\right)$ over $\mathrm{O}\left(\mathrm{n}^{2}\right)$ edge insertions ( $\mathrm{O}(\mathrm{n} \log \mathrm{n}$ ) amortized per insertion)
[Ausiello, I. , Marchetti-Spaccamela, Nanni J. Algs 1991]

## Terminology

SP(v) : Shortest path tree rooted at vertex v
$\operatorname{SP}^{R}(\mathrm{v})$ : Shortest path tree rooted at v in reverse graph

$\mathbf{S P}^{\mathrm{R}}$ (1)

## $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Update

When edge $(i, j)$ is inserted do the following: for each $v$ in $V$, update $S P(v)$ by considering $S P(j)$ (basic update)


## $\mathrm{O}\left(\mathrm{n}^{2}\right)$ Update

When edge $(i, j)$ is inserted do the following: for each $v$ in $V$, update $S P(v)$ by considering $S P(j)$ (basic update)


## First Idea

When edge $(i, j)$ is inserted do the following: for each v in $\mathbf{S P}^{\mathrm{R}}(\mathbf{i})$, update $\mathrm{SP}(\mathrm{v})$ by considering $\mathrm{SP}(\mathrm{j})$ (basic update)


## First Idea




SP(j)
$\mathbf{S P}^{\mathbf{R}} \mathbf{( i )}^{\mathbf{i}}$

## First Idea




SP(j)

## Second Idea



SP(j)
$\mathbf{S P}^{\mathbf{R}}(\mathbf{i})$

## Second Idea




SP(j)
$\mathbf{S P}^{\mathbf{R}}(\mathbf{i})$

## Second Idea




SP(j)
$\mathbf{S P}^{\mathbf{R}}(\mathbf{i})$

## Second Idea




SP(j)
$\mathbf{S P}^{\mathrm{R}}$ (i)

## Second Idea



## Can show $O(n \log n)$ amortized update (see paper for details)

## What are we doing exactly?

When edge ( $\mathrm{i}, \mathrm{j}$ ) is inserted, avoid to look at all $\mathrm{O}\left(\mathrm{n}^{2}\right)$ pairs ( $\mathrm{x}, \mathrm{y}$ )

1. Look only at pairs ( $\mathrm{x}, \mathrm{y}$ ) such that x that reaches i and y reachable from j
2. Inserting edge ( $\mathrm{i}, \mathrm{j}$ ) does NOT improve shortest path from x to v


Do we need to look at pair ( $\mathrm{x}, \mathrm{y}$ ) ?
No, by subpath optimality

## What are we doing exactly?

3. Inserting edge ( $\mathrm{i}, \mathrm{j}$ ) DOES improve shortest path from x to v


Do we need to look at all pairs ( $\mathrm{x}, \mathrm{y}$ )?
Let $u$ be the vertex immediately after x in the shortest path from x to v

We need to look only at the pairs $(\mathrm{x}, \mathrm{y})$ such that shortest path from $u$ to $y$ was improved

Again by subpath optimality: if inserting (i,j) did not improve the shortest path from $u$ to $y$, then it cannot improve the shortest path from x to y

## Locally Shortest Paths

A path is locally shortest if all of its proper subpaths are shortest paths
[Demetrescu-I., J.ACM'04]


## Locally shortest paths

By optimal-substructure property of shortest paths:


## Back to Fully Dynamic APSP

Given a weighted directed graph $G=(V, E, w)$, perform any intermixed sequence of the following operations:

Update( $\mathrm{u}, \mathrm{v}, \mathrm{w}$ ): update cost of edge ( $\mathrm{u}, \mathrm{v}$ ) to w

$$
\text { Query }(\mathrm{x}, \mathrm{y}): \quad \begin{aligned}
& \text { return distance from } \mathrm{x} \text { to } \mathrm{y} \\
& \text { (or shortest path from } \mathrm{x} \text { to } \mathrm{y})
\end{aligned}
$$

## Recall Fully Dynamic APSP

- Hard operations edge deletions (increases)
- When edge (shortest path) deleted: need info about second shortest path? (3rd, 4th, ...)
- Hey... what about locally shortest paths?


Falls short of being a shortest path just because some other path (somewhere else) is better!

## Locally Shortest Paths for Dynamic APSP

Idea:
Maintain all the locally shortest paths of the graph

How do locally shortest paths change in a dynamic graph?

We know already what happens for insertions (cost decreases) only. What about deletions (cost increase) only?

## Assumptions behind the analysis

$$
\text { Property } 1
$$

Locally shortest paths $\pi_{\mathrm{xy}}$ are internally vertex-disjoint


This holds under the assumption that there is a unique shortest path between each pair of vertices in the graph
(Ties can be broken by adding a small perturbation to the weight of each edge)

## Tie Breaking

## Assumptions

Shortest paths are unique
In theory, tie breaking is not a problem

## Practice

In practice, tie breaking can be subtle

## Properties of locally shortest paths

$$
\text { Property } 2
$$

There can be at most ( $\mathrm{n}-1$ ) locally shortest paths connecting $\mathrm{x}, \mathrm{y}$


That's a consequence of vertexdisjointess...

## Appearing locally shortest paths

Fact 1
At most $\mathrm{n}^{3}(\mathrm{mn})$ paths can start being locally shortest after an edge weight increase


## Disappearing locally shortest paths

## Fact 2 <br> At most $\mathrm{n}^{2}$ paths can stop being locally shortest after an edge weight increase

$\pi$ stops being locally shortest after increase of $e$
subpath of $\pi$ (was shortest path) must contain $e$
shortest paths are unique: at most $\mathrm{n}^{2}$ contain $e$

## Maintaining locally shortest paths

\# Locally shortest paths appearing after an increase: $\leq \mathrm{n}^{3}$
\# Locally shortest paths disappearing after an increase: $\leq \mathrm{n}^{2}$

The amortized number of changes in the set of locally shortest paths at each update in an increase-only sequence is $\mathrm{O}\left(\mathrm{n}^{2}\right)$

## An increase-only update algorithm

This gives (almost) immediately:
$\mathrm{O}\left(\mathrm{n}^{2} \log \mathrm{n}\right)$ amortized time per increase
$\mathrm{O}(\mathrm{mn})$ space

## Maintaining locally shortest paths

What about fully dynamic sequences?


## How to pay only once?



This path remains the same while flipping between being LS and non-LS:
Would like to have update algorithm that pays only once for it until it is further updated...

## Looking at the substructure



Thishipatathisemoalongelicatshtrotetst path afterteththernsextion...
...but if we removed the same edge it would be a shortest path again!

## Historical paths

A path is historical if it was shortest at some time since it was last updated


## Locally historical paths



## Key idea for partially dynamic

## Key idea for fully dynamic



## Putting things into perspective...



## The fully dynamic update algorithm

Idea:
Maintain all the locally historical paths of the graph

Fully dynamic update algorithm very similar to partially dynamic, but maintains locally
historical paths instead of locally shortest paths (+ performs some other operations)
$O\left(n^{2} \log ^{3} n\right)$ amortized time per update
$\mathrm{O}(\mathrm{mn} \log \mathrm{n})$ space

## Full details in

Locally shortest paths:
[Demetrescu-Italiano'04]
C. Demetrescu and G.F. Italiano

A New Approach to Dynamic All Pairs Shortest Paths Journal of the Association for Computing Machinery (JACM), 51(6), pp. 968-992, November 2004

Experimental study of dynamic NAPSP algorithms:
[Demetrescu-Italiano'06]
Camil Demetrescu, Giuseppe F. Italiano: Experimental analysis of dynamic all pairs shortest path algorithms. ACM Transactions on Algorithms 2 (4): 578-601 (2006).

## Further Improvements

Using locally historical paths, Thorup [SWAT'04] has shown:
$\mathrm{O}\left(\mathrm{n}^{2}\left(\log \mathrm{n}+\log ^{2}(\mathrm{~m} / \mathrm{n})\right)\right)$
amortized time per update

$\mathrm{O}(\mathrm{mn})$ space

## How many LSPs in a graph?

Locally shortest paths in random graphs ( 500 nodes)


## LSP's in Random Graphs

Peres, Sotnikov, Sudakov \& Zwick [FOCS 10]
Complete directed graph on $n$ vertices with edge weights chosen independently and uniformly at random from $[0 ; 1]$ :

Number of locally shortest paths is $\mathrm{O}\left(\mathrm{n}^{2}\right)$, in expectation and with high probability.
This yields immediately that APSP can be computed in time $\mathrm{O}\left(\mathrm{n}^{2}\right)$, in expectation and with high probability.

## Lower Bounds

Polylog bounds for dynamic connectivity
But dynamic shortest paths seem stubbornly more difficult. Can we prove it?

Conditional lower bounds: basing hardness of dynamic problems on known conjectures (3SUM, All Pairs Shortest Paths, Triangle and Boolean Matrix
Multiplication Conjectures and the Strong Exponential Time Hypothesis)

## Lower Bounds

[Patrascu 2010]
For dynamic APSP either update or query time must be $\Omega\left(\mathrm{n}^{\varepsilon}\right)$
[Roditty and Zwick 2011]
Any decremental or incremental algorithm for SSSP with preprocessing time $\mathrm{O}\left(\mathrm{n}^{3-\varepsilon}\right)$, and update time $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ and query time $\mathrm{O}\left(\mathrm{n}^{1-\varepsilon}\right)$ for any $\varepsilon>0$ implies a truly subcubic time algorithm for APSP.

Note: Trivial algorithm recomputes shortest paths from a source in $\mathrm{O}(\mathrm{m}+\mathrm{nlog} \mathrm{n})=\mathrm{O}\left(\mathrm{n}^{2}\right)$ time after each update!
[Abboud and Vassilevska Williams 2014]
Exclude the possibility of an algorithm that has both $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time updates and $\mathrm{O}\left(\mathrm{n}^{2-\varepsilon}\right)$ time queries, even for $\operatorname{SSSS}$.

## Dynamic SSSP (SSSS) not easier than APSP?

Claim. If Fully Dynamic SSSS can be solved in time $O(f(n))$ per update and query, then also Fully Dynamic APSP can be solved in time $O(f(n))$ per update and query.


Edges from s to G and from $G$ to $t$ have cost $+\infty$

All-Pairs query ${ }_{\mathrm{G}}(\mathrm{x}, \mathrm{y})$ can be implemented in $\mathrm{G}^{\prime}$ as follows:
update $_{G^{\prime}}(\mathrm{s}, \mathrm{x}, 0)$; update $\mathrm{G}^{\prime}(\mathrm{y}, \mathrm{t}, 0)$; query ${ }_{\mathrm{G}^{\prime}}(\mathrm{s}, \mathrm{t})$;
update $_{\mathrm{G}^{\prime}}(\mathrm{s}, \mathrm{x},+\infty)$; update $_{\mathrm{G}^{\prime}}(\mathrm{y}, \mathrm{t},+\infty)$

## More work to be done on Dynamic APSP

$\square$ space is a $B \mathbf{~}$ issue in practice
$\square$ More tradeoffs for dynamic shortest paths?
Roditty-Zwick, Algoritmica 2011
$\widetilde{\mathrm{O}}\left(\mathrm{mn}^{1 / 2}\right)$ update, $\mathrm{O}\left(\mathrm{n}^{3 / 4}\right)$ query for unweighted
$\square$ Worst-case bounds?
Thorup, STOC 05
$\widetilde{\mathrm{O}}\left(\mathrm{n}^{2.75}\right)$ update

## Some Open Problems...

$\square$ Dynamic Maximum st-Flow
Dynamic algorithm only known for planar graphs $\mathrm{O}\left(n^{2 / 3} \log ^{8 / 3} n\right)$ time per operation
I., Nussbaum, Sankowski \& Wulf-Nilsen [STOC 2011]

What about general graphs?
$\square$ Dynamic Diameter
Diameter():
what is the diameter of G?
Do we really need APSP for this?

## Some Open Problems...

$\square$
Dynamic Strongly Connected Components (directed graph G)
$\operatorname{SCC}(x, y)$ :
Are vertices $x$ and $y$ in same SCC of G ?
Do we really need transitive closure for this? In the static case strong connectivity easier than transitive closure....

## References

A. Abboud, V. Vassilevska Williams. Popular conjectures imply strong lower bounds for dynamic problems. FOCS 2014.
G. Ausiello, G.F. Italiano, A. Marchetti-Spaccamela, and U. Nanni. Incremental algorithms for minimal length paths. Journal of Algorithms, 12(4):615-638, 1991.
A. Bernstein. Fully dynamic $(2+\varepsilon)$ approximate all-pairs shortest paths with fast query and close to linear update time. In FOCS, 693-702, 2009.
A. Bernstein. Maintaining shortest paths under deletions in weighted directed graphs. In STOC, 725-734, 2013.

## References

A. Bernstein and L. Roditty. Improved dynamic algorithms for maintaining approximate shortest paths under deletions. In SODA, 1355-1365, 2011.
C. Demetrescu and G. F. Italiano. A new approach to dynamic all pairs shortest paths. J. ACM 51(6):968-992, 2004. See also STOC 2003.
C. Demetrescu and G. F. Italiano. Experimental analysis of dynamic all pairs shortest path algorithms. ACM Transactions on Algorithms 2(4): 578-601 (2006). See also SODA 2004.
C. Demetrescu and G.F. Italiano. Fully dynamic all pairs shortest paths with real edge weights. Journal of Computer and System Sciences 72(5): 813-837 (2006). See also FOCS 2001.

## References

S. Even and H. Gazit. Updating distances in dynamic graphs. Methods of Operations Research, 49:371-387, 1985.
S. Even and Y. Shiloach. An on-line edge-deletion problem.
J. ACM, 28:1-4, 1981
D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Semidynamic algorithms for maintaining single source shortest paths trees. Algorithmica, 22(3):250-274, 1998.
D. Frigioni, A. Marchetti-Spaccamela, and U. Nanni. Fully dynamic algorithms for maintaining shortest paths trees. Journal of Algorithms, 34:351-381, 2000.

## References

M. Henzinger, S. Krinninger, and D. Nanongkai. Dynamic approximate all-pairs shortest paths: Breaking the $\mathrm{O}(\mathrm{mn})$ barrier and derandomization. In FOCS, 538-547, 2013.
M. Henzinger, S. Krinninger, and D. Nanongkai. Sublinear-time maintenance of breadth-first spanning tree in partially dynamic networks. In ICALP, 607-619, 2013.
M. Henzinger, S. Krinninger, and D. Nanongkai. Sublinear-time decremental algorithms for single-source reachability and shortest paths on directed graphs. In STOC, 674-683, 2014.
M. Henzinger, S. Krinninger, and D. Nanongkai. A subquadratic-time algorithm for dynamic single-source shortest paths. In SODA, 1053-1072, 2014.

## References

V. King. Fully dynamic algorithms for maintaining all-pairs shortest paths and transitive closure in digraphs. In STOC, pages 81-91, 1999.
P. Loubal. A network evaluation procedure. Highway Research Record 205, pages 96-109, 1967.
J. Murchland. The effect of increasing or decreasing the length of a single arc on all shortest distances in a graph. Technical report, LBS-TNT-26, London Business School, Transport Network Theory Unit, London, UK, 1967.
M. Patrascu. Towards polynomial lower bounds for dynamic problems. Proc. STOC, 603-610, 2010.

## References

G. Ramalingam and T. Reps. An incremental algorithm for a generalization of the shortest path problem. Journal of Algorithms, 21:267-305, 1996.
V. Rodionov. The parametric problem of shortest distances. U.S.S.R. Computational Math. and Math. Phys., 8(5):336-343, 1968.
L. Roditty and U. Zwick. On dynamic shortest paths problems. Algorithmica, 61(2):389-401, 2011. See also ESA 2004.
L. Roditty and U. Zwick. Dynamic approximate all-pairs shortest paths in undirected graphs. SIAM Journal on Computing, 41(3):670-683, 2012. See also FOCS 2004.

## References

H. Rohnert. A dynamization of the all-pairs least cost problem. In Proc. 2nd Annual Symposium on Theoretical Aspects of Computer Science, (STACS’85), LNCS 182, 279-286, 1985.
M. Thorup. Fully-dynamic all-pairs shortest paths: Faster and allowing negative cycles. In Proceedings of the 9th Scandinavian Workshop on Algorithm Theory (SWAT'04), 384396, 2004.
M. Thorup. Worst-case update times for fully-dynamic all-pairs shortest paths. In Proceedings of the 37th ACM Symposium on Theory of Computing (STOC 2005), 2005.

## Long Paths Property



## Are there roads and highways in graphs?

## Long Paths Property [Ullman-Yannakakis '91]

Let $\boldsymbol{P}$ be a path of length at least $\boldsymbol{k}$.
Let $\boldsymbol{S}$ be a random subset of vertices of size $(\boldsymbol{c} \boldsymbol{n} \ln \boldsymbol{n}) / \boldsymbol{k}$.

Then with high probability $\boldsymbol{P} \cap \boldsymbol{S} \neq \varnothing$.
Probability $\geq \mathbf{1}-\left(\mathbf{1} / \boldsymbol{n}^{c}\right) \quad$ (depends on $\boldsymbol{c}$ )

## Long Paths Property



Select each element independently with probability

$$
p=\frac{c \ln n}{k}
$$

The probability that a given set of $\boldsymbol{k}$ elements is not hit is

$$
(1-p)^{k}=\left(1-\frac{c \ln n}{k}\right)^{k}<n^{-c}
$$

## Long Paths Property

Can prove stronger property:
Let $\boldsymbol{P}$ be a path of length at least $\boldsymbol{k}$.
Let $S$ be a random subset of vertices of size $(c n \ln n) / k$.

Then with high probability there is no
subpath of $\boldsymbol{P}$ of length $\boldsymbol{k}$ with no vertices in
$\boldsymbol{S}(\boldsymbol{P} \cap \boldsymbol{S} \neq \varnothing)$.
Probability $\geq 1-\left(1 / n^{\alpha c}\right)$ for some $\alpha>0$.

## Exploit Long Paths Property

Randomly pick a set $S$ of vertices in the graph

$$
|S|=\frac{c n \log n}{k} \quad c, k>0
$$

Then on any path in the graph every $k$ vertices there is a vertex in $S$, with probability $\geq 1-\left(1 / n^{\alpha c}\right)$


## Roads and Highways in Graphs

Highway entry points = vertices in $S$

Road $=$ shortest path using at most $k$ edges

Highway = shortest path between two vertices in $S$


## Computing Shortest Paths 1/3

## 1 Compute roads <br> (shortest paths using at most $k$ edges)



Even \& Shiloach BFS trees may become handy...

## Computing Shortest Paths 2/3

## Compute highways <br> (by stitching together roads)


...essentially an all pairs shortest paths computation on a contracted graph with vertex set $S$, and edge set = roads

## Computing Shortest Paths 3/3

## 3 Compute shortest paths (longer than $k$ edges) (by stitching together roads + highways + roads)



Used (for dynamic graphs) in many papers, i.e., King [FOCS' 99], Demetrescu-I. [JCSS' 06], Roditty-Zwick [FOCS' 04], ...

