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Abstract

Social media has become an ideal platform for the propagation of rumors, fake news, and

misinformation. Rumors on social media not only mislead online users but also affect the

real world immensely. Thus, detecting the rumors and preventing their spread became an

essential task. Some of the recent deep learning-based rumor detection methods, such as

Bi-Directional Graph Convolutional Networks (Bi-GCN), represent rumor using the com-

pleted stage of the rumor diffusion and try to learn the structural information from it. How-

ever, these methods are limited to represent rumor propagation as a static graph, which isn’t

optimal for capturing the dynamic information of the rumors. In this study, we propose novel

graph convolutional networks with attention mechanisms, named Dynamic GCN, for rumor

detection. We first represent rumor posts with their responsive posts as dynamic graphs.

The temporal information is used to generate a sequence of graph snapshots. The repre-

sentation learning on graph snapshots with attention mechanism captures both structural

and temporal information of rumor spreads. The conducted experiments on three real-world

datasets demonstrate the superiority of Dynamic GCN over the state-of-the-art methods in

the rumor detection task.

1 Introduction

Social media has been a great disseminator for new information and thoughts. Due to its acces-

sibility of sharing information, however, social media has also become an ideal platform for

propagations of rumors, fake news, and misinformation [1]. Although the definition of rumor

may vary by literature, we use the term rumor to indicate messages in which the veracity labels

are unknown at the time of diffusion [2, 3]. Rumors on social media not only mislead the users

of online but also affect the real world immensely [4]. Thus detecting the rumors and prevent-

ing their spread became an essential task.

Early studies in rumor detection focused on understanding the characteristics of rumors [5,

6] and extracting prominent features of rumor from the textual contents or the users’ profiles

[7–11]. Also, the temporal features or propagation patterns were elaborated significantly in

[12–17], respectively. These elaborated features show profound results in rumor detection
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tasks. The manually extracted content-based, user-based, or propagation-based handcrafted

features were used to train classical machine learning classifiers such as a decision tree, ran-

dom forest, or SVMs. However, the limitation of using manually extracted features is that it

fails to capture the high-dimensional patterns of rumors.

To solve the problem of using handcrafted features and avoid the feature engineering efforts

[18–21], had adopted neural networks such as recurrent neural networks (RNNs) or convolu-

tional neural networks (CNNs). The proposed rumor detection models were able to capture

the high-dimensional representation from the textural contents, user profiles, and propagation

structures. The models of using the propagation structure [20, 21] try to represent the skeptical

or conflict opinions of the responsive posts such as retweets, replies, or comments toward the

original message.

Recent advent in Graph Neural Networks (GNNs) and its variants such as Graph Convolu-

tional Networks (GCN), GraphSAGE, and Graph Attention Networks (GAT) [22–25] have

gained a lot of attention. The GNNs have shown promising results in graph inference tasks

such as node classification, graph classification, and link prediction. [26, 27] successfully

adopted GCN and GAT in the rumor detection domain, respectively. However, both models

aren’t considering the temporal dynamics of the rumor propagation, which only considers the

static graph structure of the final state of rumor propagation.

In this study, motivated by the dynamic nature of rumor propagation, we present a novel

graph convolutional network-based model, named Dynamic GCN, to better understand the

evolving pattern of rumor propagation. The model includes two distinct ways of representing

rumor propagation with graph snapshots: sequential and temporal snapshots. Fig 1 depicts

how the rumor propagation can be represented with the sequence of snapshots. In the example

scenario, the initial trust (Fig 1a) of the root post begins to gain doubts (Fig 1b), and the posts

that reveal doubts are supported by others (Fig 1c). With this whole process, the veracity value

of the root post can be inferred. The details of the representation will be discussed in section 4.

The extended GCNs capture the spatial representation of rumor posts within a snapshot. And

finally, the series of graph snapshot representations are combined with an attention mecha-

nism. We evaluate the proposed model with three real-world datasets and show our model

outperforms other state-of-the-art methods.

We summarize the main contributions as follows:

• We propose two distinct ways of depicting a dynamic graph by generating two variants of

graph snapshots: sequential and temporal snapshots.

Fig 1. Example of an evolving rumor propagation network where each node represents a post. The link between
nodes implies a direct reaction. The numbers in nodes are in the chronological ordering of the generation, and the
distance from the root post represents the time interval. The colors depict users’ latent stances on their parent’s post (e.g.,
neutral (blue), suspect/doubt (red), trust/support (green)). Example scenario: there is an initial claim of Node 0. Node 1,
2, and 3 express neutral stances to the initial claim. Node 4, 5, 7, 8, and 10 express suspect/doubt and Node 6, 9, 11
express trust/support on their parent posts, respectively. Can we identify the veracity label of Node 0?

https://doi.org/10.1371/journal.pone.0256039.g001
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• We propose a novel GCN-based rumor detection model that can capture the evolving pat-

tern of rumor propagation by aggregating the structural representations of snapshot

sequences.

• The conducted experiments on three real-world datasets demonstrate that our model

accomplishes superior results on the rumor detection task compared to other state-of-the-

art methods.

We organize this paper as follows. In Section 2, we briefly review the rumor detection meth-

ods and the fundamental components of our model; GCNs and attention mechanisms. In Sec-

tion 3, we formulate the rumor detection problem with the propagation structure of rumor. In

Section 4, we introduce our model as follows: snapshot generation, graph convolution net-

works, readout layer, attention mechanisms, and prediction. In Section 5, the details of experi-

ments and performance evaluation are described. And finally, we conclude this work in

Section 6.

2 Related work

2.1 Rumor detection

Rumor is commonly defined as a message in which the veracity labels are unknown [2, 3].

Rumor detection on social media is a task of classifying messages or posts with their veracity

labels. Traditional approaches in rumor detection and other misinformation detection are to

extract handcrafted features with prior knowledge on rumors. The content-based method and

user-based method were two main approaches [7–9, 11]. To elaborate different and additional

features, the temporal or linguistic features were considered in [12–14]. Another characteristic

feature of the rumor is its propagation structure. [15–17] utilize propagation patterns of rumor

and show profound results on rumor detection. The manually extracted content-based, user-

based, temporal, or propagation-based handcrafted features were used to train classical

machine learning classifiers such as a decision tree, random forest, or SVMs. However, the

limitation of models with handcrafted features is that they fail to capture the high-dimensional

patterns of rumors. To solve the problem [18, 19], adopted deep learning models such as

RNNs or CNNs variants to extract texture, image features, or user profile features from the

rumor posts. Noticeably, models which utilize propagation structure as additional features that

try to represent the skeptical or conflict opinions from the responsive posts. Recently, sophisti-

cated models like GCN [26] or GAT [27] have successfully been adopted in the rumor detec-

tion domain.

2.2 Representation learning on graphs

Promising results on neural networks in various fields, encourage studies to bring deep learn-

ing to topological graph structures. Early studies of node embedding [28, 29] leverage sam-

pling method like random walk for shallow node embedding. Recent advent in graph neural

networks (GNNs) and its variants [22–25] made representation learning to be applied directly

to a variety of graph structures such as social networks (friendship network, citation network,

transaction network), knowledge graphs, computer networks, biochemical graph, and so on.

One of the early and honored studies of GNNs is graph convolutional networks (GCNs) [23].

It approximates spectral filters with Chebyshev polynomial to extend convolutional operations

on graphs. Another important study of the GNNs variant is GraphSAGE [24], which proposes

different trainable aggregation functions from neighbor node embeddings with sampling

methods. The proposed aggregation functions like mean, LSTM (random ordered), max-pool-

ing are symmetric, where the ordering of neighbor nodes can be invariant. GAT [25] utilizes
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the attention mechanism for neighbor node embeddings. The GNNs have firmly established

state-of-the-art performance in various graph inference tasks such as node classification, graph

classification, link prediction, and community detection (clustering for the network structure).

The fundamental component of GNNs is message passing architecture where the representa-

tion of the node is aggregated with its neighbors. The key differences in GNN variants are

diverse neighborhood aggregation methods and different pooling approaches [30, 31].

2.3 Attention mechanism

The attention mechanism captures the importance of the input sequence by calculating the

attention scores and weights. Compared to RNN-variants, such as Long Short-TermMemory

(LSTM) [32], Gated Recurrent Units (GRU) [33], or Seq2Seq model [34], attention mecha-

nisms have demonstrated outstanding results on both the efficiency and the performance in a

variety of fields [35, 36]. Various attention mechanisms have been proposed depending on

how they calculate the attention weights. [36] proposed additive attention, which adopts a

feedforward neural network to calculate the importance of the input in the context of the input

sequence. [35, 37] suggested dot-product attention and self-attention, which utilized dot-prod-

uct similarity to capture the significance of certain input words from the set of words in the

task of neural machine translation. Attention mechanism had also introduced and shown

promising results in graph representation learning [25] where the node embeddings are calcu-

lated and attended over their neighbor nodes’ features.

2.4 Representation learning on dynamic graph

Graph structure like social network contains the property of dynamics by its nature [38]. Dif-

ferent approaches have been proposed to capture the dynamics of graphs. Early studies [39,

40] have focused on the changes or graph properties such as clusters, centralities, and similari-

ties in certain temporal points of graphs called graph snapshots. From the advancement of fea-

ture-based dynamic graph representations, architectures with triadic closure and RNNs [41,

42] were adopted to embed sequences of graph structures. [43] suggested Dyngem which uti-

lizes the snapshot method with an autoencoder to embed the evolving graphs. As the GNN-

based methods have shown promising results on graph embedding tasks [44, 45], proposed

GCN architectures combined with LSTM, GRU for the dynamic graph embedding. [46]

applied a self-attention mechanism for representing the dynamic graphs.

3 Problem definition

In this section, the rumor detection task on graph structure is described. Rumor detection

aims to predict the veracity label of a message. We formulate the task as below.

Let C = {c1, c2, � � �, cm} be the set ofm claims, where each claim (or a conversational thread)

ci consists of nimicroblog posts Pi ¼ fpi0; pi1; � � � ; piðni�1Þg. The pi0 is the root post of ci and ni

− 1 responsive posts are in chronological order by their post time. Each post pij is represented

with F dimensional feature xij 2 R
F .

Propagated from the root post, responsive posts form a propagation tree Gi = hVi, Eii,

where each edge represents its direct responsiveness [15, 16]. The vertex set Vi is represented

with the posts’ features fxi0; xi1; � � � ; xiðni�1Þg and the edge set Ei represents set of directed edges

from source posts (root or responsive posts) to their direct responsive posts. Ai is an adjacency

matrix for the directed graph Gi and Xi ¼ fxTi0; x
T
i1; � � � ; x

T
iðni�1Þg

T
2 Rni�F is the feature matrix

for posts Pi. Upon representing the propagation tree as a static graph, to elaborate its evolving
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pattern, we define the diffusion graph with T step series of snapshots Si ¼ fSð1Þi ; Sð2Þi ; � � � ; SðTÞi g.

The detail of the snapshot formulation will be discussed at section 4.1.

Each claim ci is associated with its veracity label yi, where yi belong to one of four classes {T,

F, U, N} (True rumor, False rumor, Unverified rumor, or Non-rumor) or two classes {R, N}

(Rumor, Non-rumor) depending on the dataset [16, 18]. The definition of rumor labels that

we borrowed is the messages in which the veracity labels are unknown at the stage of the prop-

agation and later classified by human annotators as true, false, or unknown. (non-rumor mes-

sages are thoughts or simple admiration) [2, 3]. In this study, we define the task of rumor

detection as a supervised graph classification problem, which the goal is to learn a mapping

function f: C! Y to classify the veracity labels of ci using Si and Xi.

4 Dynamic GCN

In this section, we propose a dynamic graph representation learning model for rumor detec-

tion, named Dynamic GCN (DYNGCN). The main components of the model are snapshot gen-

eration, graph convolutional networks, readout layer, and attention mechanisms. The

components are respectively responsible for the following functionalities: rumor propagation

representation, representation learning on a graph snapshot, node embedding aggregation for

global graph representation, and sequential learning from the series of graph snapshots. Fig 2

is the overview of our dynamic rumor detection model with its layers and inputs’ shapes.

4.1 Snapshot generation

To capture the evolving pattern of the rumor diffusion, we adopt the series of graph snapshots.

We introduce two different ways of depicting the dynamic graphs as T step graph snapshots S

= {S(1), S(2), � � �, S(T)}. One is with sequential snapshots, and the other is with temporal snap-

shots. In Fig 3, we illustrated the two different methods of snapshot generations. Here on the

index i for the claim ci will be omitted. S(t) is the graph snapshot at the time step t. Each graph

snapshot in S will have separate adjacency matrices A = {A(1), A(2), � � �, A(T)} with S(t) = hV(t),

E(t)i.

Fig 2. The overall architecture of Dynamic GCN rumor detection model with its layers and inputs’ dimensions for each layer.

https://doi.org/10.1371/journal.pone.0256039.g002
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4.1.1 Sequential snapshots. Consider the ordering of the additional nodes and links of

the propagation tree. Starting from S(1), the following graph snapshots will contain d(n − 1)/Te

additional links (and nodes), where n − 1 is the total number of responsive links. Eventually,

each graph snapshot S(t) will contain dt × (n − 1)/Te links. The edge set for the sequential snap-

shot is as:

EðtÞ ¼ fe1; e2; � � � ; edt�ðn�1Þ=Teg ð1Þ

4.1.2 Temporal snapshots. Consider temporal information of the propagation tree. Com-

pared to the sequential snapshot which contains the equal counts of additional edges, temporal

snapshots separate T step diffusion with the fixed time interval r. Time interval r is retrieved

by dividing the time difference of the first and the last responsive posts with the time step T.

The edge set for the temporal snapshot S(t) can be defined as:

EðtÞ ¼ fejte � te1
� r � ðtÞ; e 2 Eg;

r ¼
teðn�1Þ

� te1

T

ð2Þ

where τe is the timestamp of link e, and r is the time interval of the snapshots.

4.2 Graph convolutional networks

For the snapshot representation learning, we adopt graph convolutional architecture. Upon

generating the graph snapshots S = {S(1), S(2), � � �, S(T)} and their adjacency matrices A = {A(1),

A(2), � � �, A(T)}, we conduct representation learning on the graph snapshots with the graph con-

volutional networks (GCNs) [23]. Introduced in [23], the approximated normalized graph

Laplacian [47] is used for high-dimensional node representation learning. Together with an

adjacency matrix AðtÞ 2 RNðtÞ�NðtÞ

, where N(t) is the number of nodes in the snapshot, and fea-

ture matrix X 2 RNðtÞ�F , the learnable parametersWk 2 R
dk�1�dk are trained, where kth layer

Fig 3. The disparity of snapshot generation results in sequential snapshots (b) and temporal snapshots (c) originated from the
propagation tree (a). Sequential snapshots take account of chronological ordering and node counts, while temporal snapshots
utilize timestamps.

https://doi.org/10.1371/journal.pone.0256039.g003
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produce node embeddings Hk 2 R
NðtÞ�dk . The GCNmodel that we adopted is as:

Hk ¼ sðÂHk�1WkÞ;

Â ¼ D̂�1=2 ~AD̂�1=2; ~A ¼ Aþ IN ; ~D ii ¼
X

j

~A jj
ð3Þ

Trainable parametersW� are shared between same level of GCNs with different snapshots

steps. We use 2-layer GCNs with ReLU as activation function σ. We also adopt a skip-connec-

tion-like method [48] called feature enhancement [26] to enhance the information from a cer-

tain node, in this case, the root node. The root representations in a previous GCN layer bypass

the layer as:

~H k ¼ concatðHk; ðHk�1ÞrootÞ ð4Þ

And finally, inspired and introduced by [26, 49], instead of perceiving diffusion pattern as

undirected graph, we adopt bi-directional GCNs which consider both direction of graph

representation separately as:

Hk ¼ concatð~~H k; ~H

~

kÞ ð5Þ

The outputsH
ðtÞ
K , produced by the last layer K of GCNs, are node embeddings of each graph

snapshot S(t).

4.3 Readout layer

After the GCN layers embed node representation H
ðtÞ
K 2 RNðtÞ�dK of each graph snapshot S(t),

the global graph pooling method is used to convert node representation to graph representa-

tion. The permutation invariant (symmetric) down-sampling method like max / mean / sum-

pooling, or even sophisticated pooling method like [30, 31] can be used for the aggregation

function in the readout layer. In this work, we empirically selected mean-pooling method for

global graph pooling. The element-wise mean operation of node embeddings of the last layer

K of GCN as:

hSðtÞ ¼ MEANðHðtÞ
K Þ ð6Þ

for the global graph snapshot embedding at t 2 {1, 2, . . ., T}; hS(t).

4.4 Attention mechanism

To apprehend the dynamic (temporal) information of graph snapshots, we use attention

mechanisms. We adopt two well-known attention mechanisms: additive attention [35] and

scaled dot-product attention [36]. From the graph snapshot embeddings

hs ¼ fhsð1Þ ; hsð2Þ ; � � � ; hsðTÞg, the goal is to learn the attention weights and use them to aggregate

the weighted inputs.

Introduced in [20, 35], for the additive attention, we retrieve the context vectorms by apply-

ing element-wise mean operation of embeddings of hs. The context vectorms is used as a

query (Q) of the attention mechanism and hs is used for the key (K) and value (V). For the

additive attention, query and key are concatenated and fed to a feed-forward neural network

PLOS ONE Dynamic GCN for rumor detection

PLOSONE | https://doi.org/10.1371/journal.pone.0256039 August 18, 2021 7 / 17

https://doi.org/10.1371/journal.pone.0256039


to produce the attention scores z. Attention weights are calculated as:

AttentionðQ;K;VÞ ¼ SoftmaxðMLPðQ;KÞÞV

SoftmaxðziÞ ¼
ezi

XK

j¼1
ezj

; z ¼ ðz1; z2; � � � ; zKÞ 2 R
K ð7Þ

Scaled dot-product attention consider the dot-product similarity of the embeddings when

calculating the attention scores. We adopt self-attention which the query (Q), key (K), value

(V) is all hs ¼ fhsð1Þ ; hsð2Þ ; � � � ; hsðTÞg as:

AttentionðQ;K;VÞ ¼ Softmaxð
ðQKTÞ

ffiffiffiffiffi

dk

p ÞV ð8Þ

The softmax result of normalized similarity measures of snapshots is applied to calculate

the attention weights for the hs where dk is the dimension of hs(t).

The outputs of the two different attention layers are both the weighted sequences of the

snapshot embeddings. The element-wise average of the T snapshots where attention weights

are applied is used to retrieve the global graph embedding hG as:

hG ¼
1

T

X

T

i¼1

hSðiÞ ð9Þ

4.5 Training & prediction

For the graph classification task, the graph embedding hG is fed to the multi-layer perception

as:

ŷ ¼ SoftmaxðMLPðhGÞÞ ð10Þ

The ŷ 2 Rjclassj is the probabilities of veracity labels where class = {T, F, U, N} or class = {R,

N}.

Our supervised graph classification model is trained with the cross-entropy loss of the pre-

dictions and ground truth labels. The loss function of our model is defend as:

L ¼
X

jclassj

i¼1

� yTi logŷ i ð11Þ

where yi is the ground truth label for the claim ci.

5 Experiments

In this section, we perform experiments on three real-world datasets and compare the perfor-

mance of the proposed model, Dynamic GCN, with other rumor detection baselines. Further-

more, we conduct ablation studies and analyze the results on different snapshot counts and

variants of the sequential learning methods.

5.1 Datasets

We evaluate the proposed model with three publicly available rumor detection datasets: Twit-

ter15 [13], Twitter16 [16], andWeibo [18]. These datasets contain rumor propagation trees,

where nodes are posts and links are responsive relations such as replies or retweets, with one

of the four ground truth veracity labels (True rumor, False rumor, Unverified rumor, Non-
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rumor) for Twitter15 and Twitter16 and two classes (Rumor, Non-rumor) forWeibo dataset.

The detailed statistics of the datasets are provided in Table 1. We used the bag-of-words

(BoW) features by selecting the top 5,000 vocabularies for the corpus by TF-IDF; thus, each

post initially contains 5,000 features.

5.2 Baselines

We compare our Dynamic GCNmodel with the following rumor detection baseline models:

• DTC [7]: A decision tree-based classifier with handcrafted features to identify the credibility

of microblog posts related to trending topics.

• RFC [11]: A random forest based-ranking method that elaborates the inquiry phrases of

posts.

• SVM-TS [12]: An SVMmodel that captures the temporal characteristics of social context

features of posts.

• SVM-TK [16]: An SVMmodel with a tree kernel that captures higher-order patterns of

propagation structures of rumors.

• GRU [18]: An RNN-based model that learns contextual information from continuous repre-

sentations of relevant posts over time.

• RvNN [21]: A recursive neural network-based model which captures the structural patterns

of a top-down and bottom-up rumor propagation trees.

• Bi-GCN [26]: A graph convolutional network-based model, which captures propagation pat-

terns with message passing architecture.

• DYNGCN (Proposed): A graph convolutional network-based model with attention mecha-

nisms to capture temporal dynamics of graph snapshots.

We haven’t included the Propagation Path Classification (PPC) model [20] and Global-

Local Attention Network (GLAN) model [27] as our baselines since both methods include

crawled user profiles as additional input features (such as whether the user is suspended or ver-

ified), which could be too biased at the time of current work. A few years had passed since the

initial collection of the datasets, the results could be distorted and might be too much

depended on when the user profiles were crawled. Instead, we compare our model with the

Table 1. The statistics of the rumor detection datasets.

Twitter15 Twitter16 Weibo

# of root posts 1490 818 4664

# of users 276,663 173,487 2,746,818

# of posts 331,612 204,820 3,805,656

# of true rumors 372 205 0

# of false rumors 370 205 2313

# of unverified rumors 374 203 0

# of non-rumors 374 205 2351

avg. max. time (hours) 1,337 848 2,461

avg. # of posts / event 222.6 250.4 816.0

max. # of posts / event 1,768 2,765 59,318

https://doi.org/10.1371/journal.pone.0256039.t001
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state-of-the-art model [26], which considers the posts relations without additional crawled

user profiles.

5.3 Experimental setup

We conducted 10 runs of 5-fold cross-validation and reported the average accuracies and F1

scores by each label. For the fair comparison, for the models with early stopping method [50]

such as Bi-GCN and ours, we randomly splitted 4-fold of training set into 80% training set and

20% validation set, which eventually making 16:4:5 splits for train, validation, and test sets.

The validation set was used for early stopping with patience of 10 epochs.

The model has 256 hidden dimensions for a single graph snapshot, including root feature

enhancement and bi-directional representation. We set 2-layer GCNs and used rectified linear

units for the non-linearity. We adopt the dropout [51] rate of 0.5 for GCN layers and Dro-

pEdge [52], graph data augmentation method, rate with 0.2. We train our model with Adam

optimization algorithm [53] with the initial learning rate 5E-4 and a maximum of 200 epochs

if not early stopped.

Our model is implemented in PyTorch [54] with PyTorch Geometric [55] for the message

passing framework. For the baseline models, we conduct experiments with the authors’ pro-

vided codes with the same hyperparameters that were reported, respectively. For the fair com-

parison, we directly cited (�) some of the metrics already reported in original papers [16, 18]

with equivalent experimental settings due to some handcrafted features that are unavailable at

the time of the reproduction.

5.4 Performance evaluations

Tables 2 and 3 summarize the overall performances of the rumor detection task of the pro-

posed model with other baselines. The reported performances are accuracies and F1 scores of

DYNGCN with both additive attention (ADD) and dot-product attention (DOT) with the

sequential (S) snapshots or temporal (T) snapshots size of 3. The accuracy results of DYNGCN

with additive attention shows (S) 0.818, (T) 0.827 in Twitter15, and (S) 0.828, (T) 0.836 in

Twitter16. The accuracy results of DYNGCN with dot-product attention shows (S) 0.819, (T)

0.821 in Twitter15, and (S) 0.829, (T) 0.824 in Twitter16. Although the two attention methods

don’t show significant performance differences, the model with additive attention and

Table 2. Overall performance of rumor detection task on Twitter15 and Twitter16.

Model Twitter 15 Twitter 16

Accuracy TR FR UN NR Accuracy TR FR UN NR

F1 F1 F1 F1 F1 F1 F1 F1

DTC [7]� 0.454 0.317 0.355 0.415 0.733 0.465 0.419 0.393 0.403 0.643

RFC [11]� 0.565 0.401 0.422 0.543 0.810 0.585 0.547 0.415 0.563 0.752

SVM-TS [12]� 0.544 0.404 0.472 0.483 0.796 0.574 0.571 0.420 0.526 0.755

SVM-TK [16]� 0.667 0.772 0.669 0.645 0.619 0.662 0.783 0.623 0.655 0.643

GRU [18] 0.641 0.688 0.634 0.571 0.684 0.633 0.577 0.715 0.527 0.617

RvNN [21] 0.723 0.821 0.758 0.654 0.682 0.737 0.835 0.743 0.708 0.662

Bi-GCN [26] 0.814 0.793 0.811 0.872 0.768 0.804 0.718 0.787 0.799 0.895

DYNGCN w/additive attention Sequential 0.818 0.860 0.793 0.761 0.779 0.828 0.765 0.736 0.826 0.637

Temporal 0.827 0.837 0.769 0.820 0.746 0.836 0.880 0.804 0.853 0.741

DYNGCN w/dot-product attention Sequential 0.819 0.871 0.816 0.771 0.800 0.829 0.873 0.756 0.775 0.708

Temporal 0.821 0.859 0.806 0.765 0.782 0.824 0.876 0.848 0.767 0.742

https://doi.org/10.1371/journal.pone.0256039.t002
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temporal snapshots outperformed others. Furthermore, both variants of attention models out-

perform other state-of-the-art models, such as Bi-GCN and RvNN, in both Twitter15 and

Twitter16 with the aid of evolving patterns. The results indicate that taking account of the tem-

poral information and evolving pattern of rumor propagation is beneficial. A similar result is

shown for the binary classification task of theWeibo dataset. Although the timestamps aren’t

retrieval forWeibo, the experiment with the sequential snapshots with the snapshot size of 3

shows the improved performance.

It is demonstrated that the traditional machine learning-based methods with handcrafted

features, (DTC, RFC, SVM-TS, SVM-TK), show lower performances compare to other deep

learning-based methods (GRU, RvNN, BiGCN, DYNGCN). However, SVM-TS and SVM-TK

show superior results within the traditional handcrafted methods since these models are able

to utilize temporal features. It is constructive to consider temporal information of rumor for

rumor detection.

Finally, among the propagation-based baselines, a graph-based models, DYNGCN and Bi-

GCN, outperforms other baselines such as RvNN or GRU since graph convolutional network

can better capture the structural representation of rumor diffusion.

5.5 Ablation study

In order to see the performance of our model in different settings, we report the following

ablation studies. The performance results with different snapshot counts for sequential and

temporal snapshots, with different learning algorithms for combining snapshot sequences, and

attention weights of additive attention and dot-product attention.

5.5.1 Different snapshot counts. Fig 4 is the result of DYNGCN with the snapshot counts

of 1, 2, 3, 4, and 5 with dot-product attention. Although there aren’t significant correlations in

the aspect of accuracy with the counts, adopting multiple snapshots shows better performance

compare to a single static snapshot in both sequential and temporal snapshots. However, we

observed that simply applying larger snapshot counts won’t produce a performance improve-

ment and believe this can be a hyperparameter for the dataset.

5.5.2 Different learning methods for the sequence. The attention layer of our model can

be replaced with other Seq2Seq [34] models since the inputs to the attention layer are a

sequence of snapshot representations. Fig 5 is the result of different sequence learning methods

(Bi-LSTM, Bi-GRU, additive attention, and dot-product attention (self-attention)) with the

snapshots count of 3. Attention mechanisms that are used for a weighted sum of sequential

Table 3. Overall performance of rumor detection task onWeibo.

Model Weibo

Accuracy Rumor Non-rumor

F1 F1

DTC [7] � 0.831 0.831 0.819

RFC [11] � 0.849 0.864 0.830

SVM-TS [12] � 0.857 0.861 0.857

GRU [18] 0.910 0.914 0.906

RvNN [21] 0.908 0.905 0.911

Bi-GCN [26] 0.928 0.928 0.928

DYNGCN w/ ADD (Seq) 0.936 0.936 0.936

DYNGCN w/ DOT (Seq) 0.932 0.932 0.932

https://doi.org/10.1371/journal.pone.0256039.t003
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and temporal snapshot representations outperform the other RNN-based models. Bidirec-

tional LSTM/GRU show low performance in aggregating the temporal representation of graph

snapshots. We suspect the results of the relatively low performance of Bi-LSTM and Bi-GRU

are due to the short sequence of global graph snapshots. [34]

Fig 4. Difference in accuracy for different snapshot counts.

https://doi.org/10.1371/journal.pone.0256039.g004

Fig 5. Differences in accuracy of various sequence learning methods.

https://doi.org/10.1371/journal.pone.0256039.g005
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5.5.3 Effects of the attention mechanisms. Finally, Figs 6 and 7 are the visualization of

the average attention weights of additive attention and dot-product attention. Notice that addi-

tive attention takes a context vector as a query for the attention; thus, the attention matrix is

diagonal, while dot-product attention is a self-attention. The result shows the additive atten-

tion considers the early stage of the rumor propagation while the dot-product attention

Fig 6. Average attention weights of additive attention on Twitter16.

https://doi.org/10.1371/journal.pone.0256039.g006

Fig 7. Average attention weights of dot-product attention on Twitter16.

https://doi.org/10.1371/journal.pone.0256039.g007
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significantly considers the snapshots in the end-stage. This can be interpreted as that the addi-

tive attention reply on the context query to understand the global or overall propagation while

dot-product attention relies on the input sequence to jointly understand the overall pattern.

Although the weight itself depends on the dataset, we could see that each attention mechanism

represents the propagation structure in its own way.

6 Conclusion

In this research, we propose Dynamic GCN, an end-to-end GCN-based model with attention

mechanisms, for rumor detection. The model is able to capture the dynamics of rumor propa-

gations using sequential snapshots and temporal snapshots. We empirically evaluate our

model with three real-world datasets and compare the performance of the rumor detection

(veracity classification) task with other rumor detection baselines. The results show that our

model outperforms other state-of-the-art methods. The ablation studies report performance

differences with snapshots counts, learning sequence variants, and the weights for the different

attention mechanisms. We believe there is still room for improvement in the context of GCNs

variants, global graph pooling, and additional features from different contexts.
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