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Abstract

Dynamic graph representation learning is critical for graph-based down-
stream tasks such as link prediction, node classification, and graph recon-
struction. Many graph-neural-network–based methods have emerged
recently, but most are incapable of tracing graph evolution patterns over
time. To solve this problem, we propose a continuous-time dynamic graph
framework: dynamic graph temporal contextual contrasting (DGTCC)
model, which integrates both the temporal and topology information
and mines the latent evolution trend of graph representation. In this
model, the node representation is first generated by a self-attention–
based temporal encoder, which measures the importance weights of
neighbor nodes in temporal sub-graphs and then stores them in the
contextual memory module. After sampling the node representation
from the memory module, the model maximizes the mutual informa-
tion of the same node that occurred in two nearby temporal views by
the contrastive learning mechanism, which helps track the evolutional
trend of nodes. In inductive learning settings, the results on four real
datasets demonstrate the superiority of the proposed DGTCC model.

Keywords: Dynamic graph, Graph representation learning, Contrastive
learning, Mutual information
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1 Introduction

Graph representation learning[1] has aroused signiőcant attention since it
exhibits excellent potential in real-world applications such as graph anomaly
detection[2], link prediction, and drug discovery[3]. Various graph represen-
tation methods are being developed to transform original graph data into
low-dimensional vectors while preserving the intrinsic properties of the graph.
Most of the proposed works are mainly designed for static graphs, which means
that the nodes and edges of the graph are stationary and do not change over
time. However, both nodes and edges in a graph often change dynamically
in the real world; there is usually an increase or decrease in the number of
edges, nodes, and the change of nodes attribute themselves. As a result of the
complex time evolution graph structure, representation learning for dynamic
graphs is challenging. For example, a new user joins a social network, users in
the social network create new relationships, users in an e-commerce platform
continues to interact with new items, and new connections occur in a commu-
nication network over time. To apply the existing graph representation model
to a dynamic graph, we must treat it as a static graph and completely ignore
its evolutionary structure. However, dynamic information has been substanti-
ated to facilitate various graph analysis tasks, such as community detection[4],
link prediction[5], and network embedding[6]. Therefore, excellent potential to
develop dynamic graph representation methods is demonstrated by considering
the evolutionary characteristics of graphs.

According to the modeling methods of dynamic graphs[7], these tasks can
be roughly divided into discrete-time methods[1, 8, 9] and continuous-time
methods[10, 10, 11]. The former methods rely on constructing a discrete-
time dynamic graph, which approximates the dynamic graph as a series
of graph snapshots that change over time. Generally, static graph model-
ing techniques such as GCN[12] or GAT[13] are applied to each snapshot.
Then, a recurrent neural network or self-attention mechanism is introduced to
capture the complex time dependence between snapshots. However, discrete-
time methods may be sub-optimal because they ignore őne-grained time and
structural information, critical in real-world applications. For example, in an
e-commerce user-item graph, a new interaction is more likely to represent
the latest preferences of a user. In addition, introducing edges (interactions)
affects node attributes. Node information must be updated whenever a new
interaction occurs since the distribution of these edges on the timeline is not
uniform. Therefore, continuous-time dynamic graph-based graph approaches
are attracting increasingly more attention in graph representation learning,
and the most advanced results are achieved. For example, in TGAT[14] a
continuous-time kernel encoder with a self-attention mechanism to aggre-
gate information from the temporal neighborhood is proposed. In TGN[15], a
generic temporal aggregation framework with node-level memory mechanisms
is introduced. In APAN[16], the concepts of asynchrony and mailbox are intro-
duced. Once the interaction is completed, detailed information is sent as an
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email to the mailbox of the K-hop neighbor. By reading out the mailbox of
the relevant node, the real-time inference is generated simultaneously.

𝑡1 𝑡2,4 𝑡3 𝑡4
𝑡5 𝑡3𝑡6

Photography interest 

Movie interest 

Interaction of nodes 𝑡3𝑡1 𝑡7

Music interest 

Fig. 1: From the perspective of the dynamic social network graph structure,
many user interactions often exist within the same community structure, and
user interactions between different communities would be relatively sparse.
Individual representation evolves over time, but does not change dramatically.

Owing to the development of self-supervised learning in computer vision
and natural language processing, many researchers have extended self-
supervised learning to graph representation learning. Currently, there is very
limited work that combines self-supervision with link prediction in dynamic
graph representation. The graph self-supervised learning method [17] is used
to learn node representation by sampling the weighted sub-graph and gener-
ating the node attributes and edges of the mask in the sub-graph. Still, the
time cost is often expensive in the pre-training process. Contrasting learn-
ing aims to learn representations that preserve similarity via contrasting two
or more semantically views (obtained via data augmentations of the graph).
The existing contrasting-based graph self-supervised learning methods for
dynamic graphs learn graph representations by comparing data with positive
and negative samples in the feature space[18]. However, most dynamic graph
representation models that introduce contrasting learning ignore the semantic
association between the temporal neighborhood of each individual. Inspired
by time consistency[19], it is reasonable to assume that evolution is generally
łsmooth," in that the semantics of each remain unchanged over a small amount
of time. Based on the above assumptions, we propose a novel continuous-time
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dynamic graph representation framework via temporal and contextual con-
trasting, called DGTCC. The main contributions of our work are summarized
as follows.

• We propose a novel dynamic graph representation framework to capture
both the temporal and topology information; this is followed by integrating
a self-supervised task into the training process of our model to mine the
latent evolution trend of graph representation.

• We generalize the contrasting learning strategy and maximize the agreement
of the same node embeddings between two temporal views, which encourages
mutually independent positive samples to spread apart in the representation
space without explicitly sampling negative samples.

• The proposed model is evaluated on four real-world datasets for interac-
tion prediction. Experimental results demonstrate the effectiveness of the
proposed method.

2 Related Work

2.1 Conventional Methods of Graph Representation

Graph representation models conventionally focus on sample multiplex struc-
tural information in a graph and generate node sequences to learn low-
dimensional representations of nodes. DeepWalk[20] was the őrst algorithm
proposed to learn node embedding in an unsupervised manner. Like word
embedding tasks, the motivation of DeepWalk is that nodes in the graph and
words in the corpus follow a power-law distribution, and Node2vec[21] extends
DeepWalk by combining breadth-őrst and depth-őrst sampling to obtain prop-
erties of homophily and structural equivalence. DeepWalk only captures the
őrst-order similarity between nodes, while LINE[22] captures both őrst- and
second-order similarity. Representations can also be induced from Laplacians
of the adjacency matrix by non-negative matrix factorization[23, 24]. However,
those graph representation methods are limited by their transductive learning
setting and cannot directly predict unseen nodes, but must retrain the entire
model.

2.2 Contemporary Graph-neural-network-based Methods

2.2.1 Static Graph.

After the őrst proposed of traditional graph convolutional neural network
(GCN)[12], the newer models of graph-neural-network (GNN) -based graph
representation methods have attracted widespread attention and achieved
promising results. A GCN is divided into spectral- and spatial-domain meth-
ods. The spectral-domain method converts a graph from non-Euclidean to
Euclidean space, and the spatial-domain method extracts features from graphs
by convolution kernels to handle variable-length neighbor nodes. The tradi-
tional graph representation method based on transductive learning cannot
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build a prediction model. A new data point added to the test dataset would
have to retrain the model from scratch. Therefore, Graphsage[25] is proposed
to learn the embedding of each node inductively. Speciőcally, each node is
represented by an aggregation of its neighborhood. Thus, neighbor nodes can
also represent a new node, even if it did not appear in the training process in
the graph. Based on the above innovation, it was proposed in GAT[13] that
attention mechanisms assign different weights to different neighbor nodes.

2.2.2 Discrete-time Methods.

A discrete-time dynamic graph (DTDG) is often represented by a series of
graph structure snapshots. The discrete-time window is used to represent the
continuous-time interaction between nodes and the evolution trend of the
graph. The advantage of using discrete-time graph methods is that the static
graph model can be used for each snapshot of the graph. In previous studies,
DySAT[26] was the őrst DTDG representation method that linearly extracted
structural and temporal information based on a self-attention mechanism.
DNE[27] applies a skip-gram model to DTDG representation learning. The
basis is to learn a mapping function for each time graph slice, which refers
to the combinatorial objective optimization function of LINE[22]. Unlike the
traditional DTDG modeling method, EvolveGCN[28] focuses speciőcally on
GCNs, using recursive neural networks [29] to inject dynamic information into
the parameters of the GCN to form an evolving sequence. Although previ-
ous DTDG representation methods have achieved leading promising results,
model performance is sensitive to the choice of window size, and timing infor-
mation may be lost in snapshots. We focus herein on continuous-time dynamic
graph (CTDG) representation models, as much empirical evidence suggests
the superiority of CTDG representation methods on dynamic graphs.

2.2.3 Continuous-time Methods.

Continuous-time methods directly operate on a time evolution graph and focus
on designing different time aggregators to extract information rather than on
time discretization. A dynamic graph is represented as a series of interactions
in chronological order, with precise timestamps recorded. In recent research,
Dyrep[30] can express the changes of association and communication in a uni-
őed manner by deőning events and can generate node representation for newly
added nodes in the graph quickly and efficiently. Jodie[31] uses two recurrent
neural networks to update the representation of the node at each interac-
tion and can also represent the node’s future embedding change trajectory.
TGAT[14] uses a time coding kernel in conjunction with a graph attention layer
to aggregate time neighbors and be able to infer embeddings for new nodes
inductively and observed nodes as the graph evolves. A TGN[15] encapsulates
the aggregation of TGAT and leverages node-level memory to capture long-
term dependencies. However, the disadvantages of the above approach are a
poor understanding of remote dependencies, the difficulty of training, and the
inherent weaknesses of a recursive neural network (RNN). In the APAN[16], an
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asynchronous mail propagation mechanism is introduced. When the interac-
tion between the two nodes is completed, the interaction information would be
delivered as "mail" to the "mailbox" of the k-hop neighbor. The graph query
and calculation phase would be transferred to the back of the model inference.
In AdaGNN[32], a boosting-based meta learner for GNNs was proposed that
automatically learns multiple projections and the corresponding embedding
spaces, and captures different aspects of the graph signals.

2.3 Contrastive Learning on Graph Representation

Among the self-supervised learning methods, the self-supervised methods of
contrasting learning have elicited broad adoption in many graph representation
studies and have achieved signiőcant results. The meaning of contrast learn-
ing on the graph is that for any two nodes, the more similar (belonging to the
same category) they are, the closer the graph representation would be, and vice
versa. In DeepWalk, the similarity of the nodes is considered to select the node
for the next walk. The main inspiration of Deep InfoMax is the use of local
and global mutual information. DGI[33] uses the readout function to combine
global information to obtain the representation of nodes and constructs neg-
ative samples (rearranges the features of the corresponding nodes, combined
with topology information) to make the generated node representations closer
to positive samples at the same time.

Many existing studies have also proved that contrasting learning methods
that do not use negative examples in self-supervised learning tasks can also
achieve better results. In[34], it is mentioned that the potential representation
of nodes can be better learned by not using negative samples when perform-
ing contrasting learning. In addition, in BYOL[35], characterization is further
learned by enhancing characterization, negative samples are not used, and
training degradation is avoided by increasing prediction and stop gradient.
According to SimSiam[36], negative samples can be ignored in self-supervised
learning tasks and only Siamese networks and stop-gradient operations can
be relied on to achieve the most advanced performance. These methods have
successfully improved the representation learning of visual data.

Different samples are selected as positive or negative examples in con-
trasting learning, leading to different experimental effects. However, recent
research on dynamic graph modeling with the introduction of contrasting
learning[17, 18] only considers maximizing the similarity between positive
sample nodes and minimizing the similarity between negative samples, which
ignores the characteristics of the interactive change trend over time of nodes.
On the contrary, DGTCC aggregates the changes in network topology and
node attributes when learning the hidden-layer representation of dynamic net-
work nodes and synthesizes the temporal information of node interaction using
temporal context contrasting learning.
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3 METHOD

3.1 Problem definition

Static Graph. We use G = (V, E), which is used in many traditional graph
representation models, to denote a static graphs, where V ∈ {v1, v2, ...vn} is
the set of n nodes in the static graph, and E ⊆ V × V is the set of edges
generated by interactive nodes.

Dynamic Graph. The characterization of the dynamic graph includes two
methods: DTDG and CTDG. Among them, a DTDG is often represented by
a series of graph structure snapshots G = (G1,G2, ...Gt) with the same length
t. Discrete time windows are used to represent continuous-time interactions
between nodes. Therefore, the performance of the DTDG model is susceptible
to the choice of window size, and temporal information may be lost in the
snapshot.

In contrast, the input of the CTDG model is a sub-graph of all event
interactions generated at time t, and the node representation is dynamically
updated through the temporal sub-graph aggregation model. Interaction can
be expressed as Gλ = (vi, vj , t). Compared to discrete-time dynamic graphs, a
CTDG can better describe the interaction information between nodes.

3.2 Proposed Method

First, a brief overview of the proposed method is given; then, each part
of the method is elaborated. DGTCC primarily includes an encoder, tem-
poral information processing, and a timing context comparison module and
decoder. Attention-based encoders are used to extract low-dimensional vector
representations of interactive nodes over time. The timing information pro-
cessing part fuses the new node representation learned by the encoder with the
previously stored node historical representation. In the timing context com-
parison module, we designed a speciőc comparison loss for intra-fragment and
inter-fragment graphs to increase the temporal diversity of dynamic graph
representation. The overall framework is shown in Figure 2.

3.2.1 Dynamic Graph Encoders

Since a GCN assigns the same weight to each neighbor node, a GCN usually
does not have a good effect in processing dynamic graphs because the impor-
tance of the node in the neighbor nodes N ∈ Rn is not exactly the same; n is
the number of nodes in the set, and Ni denotes the set of neighbor nodes of
node vi.

We use an attention-based graph encoder to learn the embedded Zi of
the interaction node in the current local sub-graph. The encoder introduces
a classical attention mechanism to measure the importance of different neigh-
bors of node vi by aggregating the d-hop time neighborhood node information.
We deőne the source and destination nodes as vs, vd. For an interaction pro-
duced by vs and vd at time t, our goal is to dynamically capture the current
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Attention

Encoder
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t-1 t
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3
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𝑍1 𝑍2 𝑍3 𝑍4 𝑍5

MLP

Contextual
Contrasting

Last Time Memory

𝑝121𝑝242𝑝313𝑝434

Fig. 2: Prposed general framework for a dynamic graph representation of tem-
poral and context contrasting (DGTCC). Please note that we do not explicitly
select negative sample pairs without interaction for comparison or use data
enhancement to transform a sample into a sample of its kind in the tempo-
ral context contrast module. We treat the representation of the same nodes in
the nearby temporal sub-graph as positive examples and only maximize the
mutual information between positive samples.

interaction⟨vs, vd, t⟩ by learning a mapping function f .

Zi(t) = emb(i, t) =
∑

di(0, t)

f ( vs(t), vd(t)) (1)

The computation of node vi is obtained from the aggregation information of
its l-hop temporal neighborhood neighbor through the graph attention layer
embedded in the l layer.

Zl
i(t) = MLPl

(

Zl−1
i (t)∥Z̃l

i(t)
)

(2)

Z̃l
i(t) = MultiHeadAttention l

(

Ql(t),Kl(t),Vl(t)
)

(3)

Ql(t) = Zl−1
i (t) (4)

Kl(t) = Vl(t) (5)

Vl(t) =
[

Zl−1
1 (t) ∥ei1 (t1)∥φ (t− t1) , . . . ,Z

l−1
N (t) ∥eiN (tN )∥φ (t− tN )

]

(6)

The symbol || denotes the concatenation operation to link the source and des-
tination nodes. The embedding of node vi is obtained from the aggregation
information of its l−hop time neighborhood neighbor through the graph atten-
tion layer embedded in the l layer. Different from APAN, which uses positional
encoding in order of the arrival of mails, we use a time coding function Φ and
only care about the timespan t − tN between the two interactions, and each
layer is equivalent to executing multiple attention layers, in which the query
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Ql(t) is the query node (that is, the target node or its l-1 hop neighbor). The
key K and value V are adjacent nodes.

Memory

𝒁𝒊𝒍−𝟏(𝒕)

𝒁𝟐𝒍−𝟏(𝒕 − 𝒕𝟐)𝒁𝟏𝒍−𝟏(𝒕 − 𝒕𝟏)
𝒁𝑵𝒍−𝟏(𝒕 − 𝟏)
Temporal 

Neighbor 
Sample 

Multi-head Attention 

Attention(Q,K,V)
Attention(Q,K,V)
(K,   V,   Q,)

Time 

Encoder

෩𝒁𝟏𝒍−𝟏(𝒕)𝒁𝒊𝒍−𝟏(𝒕)
Concat

M

L

P

𝒁𝒊𝒍(𝒕)
Embedding

Fig. 3: The encoder network of DGTCC is a multi-head attention module. This
attention module calculates the current node embedding Zi(t) ∈ Rd according
to the relativity between the last updated embedding Zl−1

i (t) ∈ Rd and tem-
poral neighbor information extracted from the memory module.

The attention model uses multi-head attention to form multiple sub-spaces
so that the model can learn information from different angles. Finally, a layer
of a multi-layer perceptron (MLP) is used to combine the reference node
representation with aggregated information. Since some nodes may cease to
be active for a while, the graph attention mechanism can better aggregate
neighbor information based on node representation and time information.

3.2.2 Temporal Information Processing

Like Dyrep and Jodie, we introduce additional memory to store representations
of adjacent nodes each time an interaction occurs. We use node-wise level node
representation updates to model node representation in sequential dynamic
graphs. The memory module remembers the long-term dependencies of each
node in the graph. When a new node is encountered, the memory portion of
the node is initialized to the 0 vectors. Then, it updates the model for each
event involving that node. When nodes vi and vj have an interaction at time
t, we calculate the message mi(t) for each interacting node:

mi(t) = msgn
(

si
(

t−
)

, t, vi(t)
)

(7)

si(t
−) is the memory representation of the last update of node i before

time t. msg is a learnable message function. We use a simple MLP layer to
extract information about the current interaction.

The best experimental effect of the CTDG model is to update the repre-
sentation of nodes every time there is an interaction between nodes. However,
due to efficiency issues, the batch size is usually not set to 1, so we add model
training to the interaction of a batch simultaneously. For multiple interactions
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on the same batch of internal nodes, we use the message aggregation function
to summarize the interaction information to the node Vi in the current batch:

mi(t) = aggregate(mi(tk), ...,mi(tn)) (8)

Message Aggregation. For the aggregation function, we can select the
RNN model to store the information of multiple interactions of nodes vi in
the same batch, but to avoid additional computational overhead, it is similar
to the mailbox mechanism of the continuous-time dynamic graph model TGN
and APAN, When the node vi in the same batch involves multiple interactions,
we only compress all the information mi(t) ∈ Rn∗d of the node vi horizontally
by mi(t) ∈ R1∗d.

Memory Update. Every event involving the node itself updates the
node’s memory: si(t) = mem. For interaction events involving two nodes, vi
and vj , the memory of both nodes is updated after the event occurs. Here, mem

is a learnable memory update function, such as a recurrent neural network,
i.e., a gate recurrent unit(GRU) or recurrent neural network(RNN).

3.2.3 Temporal Contextual Contrasting

Motivated by recent contrastive learning developments in visual representa-
tion learning[37], different graph augmentation strategies (i.e., node descent
and edge perturbation) in static graph representation learning[38, 39] are pro-
posed. However, in dynamic graph settings, individual representations usually
evolve over time. A part of such methods[31] relies on the modeling accuracy of
future interactions and could be vulnerable to noise in addition to maximizing
the mutual information between the latent representations of interaction nodes
in the future, ignoring characteristics of node evolution over time. Therefore,
we instinctively assume that the evolution of node representation is a smooth
process, meaning that node representation would not change greatly in the
őne particle time slice rather than altering the original features of the original
graph structure through perturbation. Based on the above assumptions, we
propose a temporal contextual contrasting module. We use the current inter-
action sub-graph obtained by neighbor sampling, and the node representation
after attention encoder {Z1, Z2, Z3 . . . , Zn}, compared with the previous round
of memory representation Zt−1

i in the sub-graph.
As proved in [40], minimizing this training objective function is equivalent

to maximizing the lower bound of mutual information between interactive
nodes. We use a contrastive loss to distinguish the same node embedded with
other nodes embedded in these two nearby temporal contextual views. We
deőne Sim(·) ∈ Rd×d as a discriminator function that takes two predictive
representations as input and scores the consistency between them. θ is a cosine
similarity and g(·) is a nonlinear projection to enhance the latent information
of the node.

Sim (vi, vj) = θ (g (vi) , g (vj)) (9)
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For any node vi, the embeddings generated in one view v−i are anchors, the
embeddings generated in the other temporal view vi are positive samples,
and the embeddings of non-vi nodes in the two views are naturally regarded
as negative samples. We deőne the pairwise target of each pair (v−i , vi) that
generates an interaction as

Ltc

(

v
−
i

, vi

)

= log
e
Sim

(

v
−
i

,vi

)

/τ

e
Sim

(

v
−
i

,vi

)

/τ
+

∑N
k=1

✶[k ̸=i]e
Sim

(

vi,vk
)

/τ +
∑N

k=1
✶[k ̸=i]e

Sim
(

v
−
i

,v
−
k

)

/τ
(10)

where ✶[k ̸= i] ∈ {0, 1} is an indicator function equal to 1 when k is not
equal to 1 and τ is a temperature parameter. In our work, we do not explic-
itly sample negative nodes. Instead, given a positive pair, we naturally deőne
the negative sample as all other nodes in the two temporal interactive node
batch [t-n,t],[t,t+n]. The second term of the denominator in the correspond-
ing formula (10) is the source-target node pairs without interaction within an
inter-view window. The third term corresponds to the negative pairs between
intra-view windows. The overall goal to maximize is then deőned as the average
of all positive pairs.

K =
1

2N

N
∑

i=1

[Ltc (ui,vi) + Ltc (vi,ui)] (11)

3.2.4 MLP Decoder

For the modeling of a temporal dynamic graph representation, we use the link
prediction between nodes as the downstream task of MLP layer. In link pre-
diction, the goal is to predict the probability of an edge appearing between two
nodes at a given timestamp. We use the node interaction generated before time
{⟨S1, S2, 1⟩ , ⟨S2, S3, 2⟩ . . . } as the model training input. After multi-layer GNN
model calculation, a universal mapping function φ (·) representing the link
probability score yu,v is őnally learned. We use t moments after the link prob-
ability prediction model of ultimate use

{

P t
1,2, P

t+1
2,3 , .....P tn

i,j

}

as the predicted
output for the link.

4 EXPERIMENTS

The results of an empirical evaluation of the benchmark dataset to validate
the effectiveness of the proposed DGTCC framework is reported here. We
conducted link prediction experiments on four real-world dynamic network
datasets and explored the role of each component of DGTCC on individual
node representation. Moreover, the sensitiveness of the temporal graph atten-
tion layer and self-supervised auxiliary parameter β were also analyzed to show
the robustness of the proposed method.
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Table 1: Statistics of the datasets used in the experiments.

Wikepedia Reddit ML-10M Yelp

Node 9227 11000 20537 6569
Edge 157474 672447 43760 95361
Edge features 172 172 - -
Timespan 30 days 30 days 12 snapshots 15 snapshots
Data Spilt 70%-15%-15% 70%-15%-15% 70%-15%-15% 70%-15%-15%

4.1 Experimental setup

4.1.1 datasets

The four datasets come from different real-world scenarios, and all these net-
works consist of a sequence of edges/links with timestamps. The statistical
information of these datasets is summarized in Table 1. Although Reddit and
Wikipedia have initial node vectors, following the settings in [15], we assigned
the same zero feature vector to all nodes. For link prediction tasks, to gener-
ate a set of links with labels for training and testing, we sorted the links by
time (ascending) and selected the top 70% as training data, 15% as validation
data, and the remaining 15% as testing data for all datasets.

Wikipedia1. Wikipedia is widely used in many SOTA dynamic graph
modeling tasks. Nodes represent wiki users and wiki pages, and interactive
edges represent user edit pages. The dynamic label indicates whether the user
is prohibited from posting a dynamic label. We used data from 1,000 frequently
edited pages and 9,227 active users on Wikipedia, and a total of 157,474
interactions were generated at different timestamps as experimental data.

Reddit1. The bipartite interaction graph of Reddit users collects one
month of user interaction data, which has approximately 11,000 nodes and
700,000 edges. The interaction in Reddit refers to the interaction between
the user and the subreddit by posting. The dynamic temporal tag indicates
whether the user is prohibited from posting under the subreddit.

ML-10M. ML-10M[41] is a bipartite temporal graph of user-tag interac-
tions that consists of user-tag interactions in which the links connect users
with the tags they applied to certain movies.

Yelp2. Yelp is a user enterprise bipartite graph. The dynamic graph is
composed of links between the user and businesses, and these links represent
the user’s observational ratings of the businesses over time.

4.1.2 Baselines

As a CTDG model, DGTCC updates the representation of the node whenever
the interaction of the node occurs. We selected őve dynamic graph represen-
tation methods and three static methods as DGTCC’s main competitors. We
introduced these baselines in detail in Section 2. Moreover, in Wikipedia and

1http://snap.stanford.edu/jodie
2https://www.yelp.com/dataset/challenge

http://snap.stanford.edu/jodie
https://www.yelp.com/dataset/challenge
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Reddit datasets, the results of all baselines are strictly inherited from their
original papers. We used the same data processing and splitting methods as
the original paper. The baselines involved in the experiment are the following.

• Node2vec: Node2vec[21] is similar to DeepWalk, generating node sequences
by a biased random-walk-based nodes sampling strategy. These sequences
could be treated as text input skip-gram models to obtain vectors for each
node.

• GAT: GAT[13] is a GNN-based graph representation learning method that
proposes that the attention mechanisms assign different weights to different
neighbor nodes.

• Sage: Sage[25] is an extended GNN that can learn the node representations
for previously unseen data. It provides three aggregators: mean aggregator,
long short-term memory (LSTM) aggregator, and pooling aggregator.

• DySAT: DySAT[26] is the őrst DTDG representation method that linearly
extracts structural and temporal information based on the self-attention
mechanism.

• Jodie: Jodie[31] is a representation learning framework that learns to fore-
cast the embedding trajectories into the future to make predictions about
the entities and their interactions.

• Dyrep: Dyrep[30] divides the change of graph structure into two processes:
topological evolution and node interaction. Dyrep learns the topology evo-
lution and activities between nodes, where the representation of node vi is
updated after an event involving vi.

• TGN: TGN[15] combines the advantages of Jodie and TGAT and introduces
node-level memory into the timing aggregation stage of TGAT.

• APAN: In APAN[16], an asynchronous mail propagation is introduced to
decouple the graph query and calculation phases and use graph propagation
to model the temporal graph structure. .

4.1.3 Parameter Settings

For all datasets, we used the Adam optimizer with a learning rate of 0.0001,
a batch size of 200 for both training and testing, and early stopping with a
patience of 5. When selecting a batch of interactive nodes, the same number of
negative examples (not generated) link nodes were selected simultaneously to
enhance the robustness of the model representation learning. The number of
temporal layers was set to 2 and attention heads to 2. Note that our experiment
setup closely followed those of TGN[15] and APAN [16]. The magnitude of the
self-supervised task β was set to 0.25. In the experiments described next, we
prove that the DGTCC method is not sensitive to hyper-parameters.

4.1.4 Evaluation Metrics

Because the model’s performance under the inductive setting is more robust, it
can reduce the impact of noise; we directly divided the unseen nodes in the test
set into the test set and the veriőcation set to evaluate the learning ability of
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Table 2: Dynamic link prediction performance in AP and AUC. We use
different colors to highlight the őrst and second best performing algorithms.

Wikipedia Reddit ML-10M Yelp

AP AUC AP AUC AP AUC AP AUC

Node2vec 0.6905 0.6883 0.8034 0.8463 0.7538 0.7548 0.7905 0.7928
GAT 0.7401 0.7321 0.9060 0.8400 0.7727 0.8413 0.8366 0.7458
Sage 0.9109 0.9087 0.9627 0.9614 0.7824 0.7784 0.8463 0.8486

DySAT 0.9441 0.9244 0.9265 0.9470 0.8930 0.8610 0.8058 0.8379
Jodie 0.9322 0.9273 0.93485 0.9437 0.7837 0.7963 0.7398 0.7942
Dyrep 0.9712 0.9713 0.9709 0.9688 0.7512 0.7510 0.7904 0.8223
TGN 0.9786 0.9752 0.9847 0.9843 0.8953 0.9123 0.8827 0.9066
APAN 0.9797 0.9802 0.9922 0.9879 0.8602 0.8786 0.8833 0.9092

ours 0.9824 0.9810 0.9832 0.9828 0.9190 0.9242 0.9131 0.9190

the model. We used average precision (AP) and the area under the ROC curve
(AUC) as evaluation indicators for the link prediction task, as was done for the
traditional sequence graph representation task. Given a series of interactions
generated in a time interval, we calculated the occurrence probability of node
i, j interaction of each interaction and calculate AP and AUC based on the
true label.

4.2 Performance Comparison

We evaluated our method and the baselines for the temporal link prediction
task. All experiments were repeated őve times, and average results are reported
in Table 2, from which we made the following observations. (1)DGTCC con-
sistently outperforms all the competitors on Wikipedia, ML-10M, and Yelp.
According to the analysis, the frequency of nodes in the event stream of Red-
dit is relatively sparse compared with the other three datasets. Nodes tend to
have their next interaction within a longer interval. Therefore, it is challeng-
ing to use contrasting learning to amplify mutual information of nodes in the
interaction between nodes with a long time interval (inactive nodes). We can
ignore the maximum retrospective duration by setting a time upper bound
for the problem that nodes are not active in the dynamic graph representa-
tion task. (2)We noticed that DGTCC performs better than other baselines
on the Yelp and ML-10M datasets compared to Wikipedia. By analyzing the
datasets, 88.4% interactions are repeated in Wikipedia. A similar situation
does not exist on ML-10M or Yelp because users would generally only review
a movie or business once. Therefore, we can conclude that richer node neigh-
borhoods would perform better when the node representation is represented as
a high-dimensional vector. Meanwhile, richer neighbor nodes can also enable
the contrasting learning to have multiple forms of representations between dif-
ferent positive samples, which help capture the evolution mode of nodes and
prevent the phenomenon of model collapse[35].
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4.3 Ablation Experiments

Impact of Different Model Components The superiority of DGTCC
detailed in the preceding subsection can be seen due to the efficient modeling
of the topology and the temporal evolution trend. To further study the con-
tribution of each module in DGTCC, we developed two variants of DGTCC:
DGTCC-T and DGTCC-I. DGTCC-T represents traditional self-supervised
contrasting learning methods in a dynamic graph that only samples the inter-
action in the future temporal subgraph to determine whether it is a positive
or negative sample. In contrast, DGTCC-I represents maximizing the mutual
information between the latent representations of nodes which interval a tem-
poral view, which is different from contrasting two nearby temporal views of
the same node identity. We compared them to the full DGTCC on the ML-10M
and Wikipedia datasets.
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Fig. 4: Contribution of each component

As can be observed in Figure 4, the contributions of each component are
different in the two datasets. We summarize our observations as follows: The
result of maximizing the mutual information between two nearby temporal
views of the same node identity is better than contrasting interval temporal
views, which validates our assumption that coherence may be more important
than graph modeling. We can also observe that DGTCC outperforms DGTCC-
T by a large margin, demonstrating our optimization strategy’s effectiveness
in dynamic settings compared to traditional contrasting learning.
Impact of Self-Supervised Learning. Since β is an additional hyperparam-
eter that we introduced to control the effects of auxiliary tasks, we attempted
to evaluate how the size of the β in our temporal context module affects per-
formance. We report the performance of DGTCC with a set of representative
β values {0.001, 0.01, 0.02, 0.03, 0.05}. We observed that the DGTCC model
only considered the interaction information of nodes in the temporal graph
when learning the representation of the model when β was too small in most
cases. However, the performance would be improved when β increases, and
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the model can often take the similarity of nodes in temporal context infor-
mation into better consideration when learning node representation. However,
in some cases, over-constraining the user’s representation changes can lead to
performance degradation due to possible over-őtting problems.
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Fig. 5: Performance of DGTCC w.r.t different values of β.

Number of sampled graph attention layers. To study the impacts of
the temporal graph attention layer, we ranged the number of layers of the
network within {1, 2, 3, 4, 5}. According to the results presented in Figure 5,
DGTCC is not very sensitive to the number of layers. Nevertheless, aggregating
a large amount of historical neighbor information would introduce additional
noise and reduce model performance, which has been similarly demonstrated
in TGAT[14].
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Fig. 6: Performance of DGTCC w.r.t different values of layer.
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5 Conclusions

In this study, we propose a dynamic graph representation method based on
temporal and context contrasting (DGTCC), a continuous-time dynamic graph
framework for temporal graph representation. Inspired by the characteristic of
time consistency in dynamic graph representation, we consider the trend that
the changes between nodes over time always tend to be smooth. We introduce
contrasting learning to build a temporal and context contrasting module and
combine the topology information in the graph structure. As an auxiliary task,
we only maximize the agreement of the same nodes in two temporal views
without explicit negative sampling, which could capture the smoothing trend of
node evolution and achieve better results. Experimental results of downstream
tasks with link prediction demonstrate the superiority of the proposed model,
and the ablation study results validate the effectiveness and rationale of the
model parameters.

In the proof of [42], uniformity loss encourages the separation of inde-
pendent samples in representation space. In traditional contrasting learning
methods, if the concept of "uniformity" is not introduced, the features of all
points are as evenly distributed as possible on the sphere. This would lead to
the representation collapse of all nodes, while only the uniformity component
will not generate any meaningful aggregation of nodes with similar charac-
teristics. Eventually, each node is nearly the same, and the performance of
the model decreases. Whether the same predictor module can be built with-
out negative samples to bring the two networks closer to each other in the
representation of a dynamic graph can be targeted in future research.
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