Massachusetts Institute of Technology
Artificial Intelligence Laboratory

8 June 1978 o o ' Al Memo = 480
Dynamic Graphics using Quasi Pé.r_a.llelism

K"enn_eth M. Kahn and Carl Hewitt

Abstract

Dynarmc computer graphics is best represented as several processes operating in parallel. Full
parallel processing, however, entails much complex mechanism making it difficult to write simple, intuitive
* programs for generating computer animation. What is presented in this paper is a simple mcans of
attaining the appearance of paral]chsm and the ability to program the graphics in a conccptnally parallel
fashion without the complexity of a more general paraiiel mechanism. Each entity on thc display screen
- ean be muiependentiy programmed to move, turn, change size, color or shape and to mteract with other

entttles. ) ) ' ) :
The scheme presented herein bcgins with l.he notion of a q!.iantum of time, or tick, within which
there are no ordering constraints on events. Each entity or actor decides what it must do upon the next
tick. Ticks are a powerful means of controlling parallel processes but are usually at too low a conceptual
level for user convenience. Higher-level operations built upon the tick mechanism are presented, most
notably the ability to instruct any entity or group of entities to gradually change or move at a rate that
is itsclf changcable by the same operation. To illustrate these ideas a simple celestial’ mechanics
simulation is presented Upon each tick the velocities and ‘positions of the objects are updated by the
gravltatmnal and propulswe forces acting upon them. - :

Ticks are only one product of an ob_yeet-onented programmmg style. For the best control and

‘the most modularity, graphics programming should be object oriented. Each object displayed, and its '

parts, should be independently programable. Instead of being passive data, objects should be responsible
for the changes in their position or appearance. Instead of a global controller, each object should interact
with the others. l : : '

This is a revision of a paper to be presented at the Siggraph 18 Conference.

One of the authors (Kahn) is currently supported by an IBM fellowship. The research &escnbocl hercm is
being conducted at the Artificial Intell:gence 'Laboratory. - . . e

T) Massachusetts Institute of
Technology 1978

Page -1



Paraliel Graphics Table of Contents Kahn & Hewitt

CONTENTS

I. Parallel Processing for Dynamic Graphics ...cccoivniniinicaninnnnns e ra e 3

- A. Apparent Parallelism ..o s srasssesan, e 4
B. A Simple Example .....cciiimiiiiiiiiiiininriiiiesnsiniisieseseses 4

II. An Example from Celestial MECHANICS cvveverrereverreeseserruersressensassseesssessssnnes 6

III. Efficiency and the Distribution of Control and Data ...oeveveeverereeessesnesnenees 11

. IV. Synchrony Problems ................... rerivesenesaresesantesssstesasentatesessesnrnneansnnnnns 13
V. Comparisons with Other Parallel Graphics Systems ............... eeereennnnes S 16
VI. Conclusions and.Directio‘ns for Future Research ...oeveeeerveeeessuneens eertersessanas 17

F’age-; a2



Parallel Graphics Parsliel Processing for ijmmic Grs_nphir:a’ . Kahn& Hewitt

I. Parallel Processing for Dynamic Graphics

Dynamic graphics is concerned with the display of changing images. Typically th_eré are
many different entities or agpects of entities changing simultaneously. To reduce thé programming
complexity we represent each.entity and its parts as a module capabl;e of changing its state and
appearance and of interacting with other modules. To simplify the control of these objects we
make them 1ndependent entities and run them in parallel

- Each entity on the display screen can be thought of as a little person who can be asked to
“move, change appearance remember and forget information. These little people, or éctorﬁ. interact
with each other to form a community. Th:s metaphor of cornputatlon as a society of interacting.
entities is, espemaily appropriate for dynamic graphics where it usually easy to anthropomorphlze
the images on a display, whether they be of DNA strands, engine parts, m_mple geometric shapes,
-super-soni'c_trainsports, or peop.le. ‘The communities can exist at different levels, for example, there
may be a commuﬁiq—r of people while simultaneously there is a community of arms,'Iegs., and heads
associated with each pefsoﬁ Object-drieﬁted computer languages such as Smailfaik Act 1, or
- D:rectorl are ideal for programmmg in this style. Though regardless of cornputer language one

can conceptualize one’s d:spla}* asa community of active entities.2

1. Director is an object-oriented language especially designed for animation and artificial intelligence
" applications. It was designed and lmplcmented by Kahn. [hahn 1978] All the examples in this paper are
‘working programs in Director. -
" 2. Of course, the convenience with which one can program this way varies greatly from language to
language. The object-oriented parallel scheme presented, for example, would be very difficult to implement
in a gencral fashion in any language which did not permit the construction and subsequent evaluation of

code. The ability to modify planned actions is important, as is the ahll:ty to do part of a planned action
and plan to the rest latter. - : . :

Page'- 3



Paraliel Graphics Apparent Paralielism Kahn & Hewitt

Apparent Parallelism

To animate the changes of many objé;:ts simultaneously one needs para'llel proce#sin'g or at
least the appearance of haviﬁg it. In this paper we opt for the latter in the interests of simpiicit}.
During a tick, processes can run in any order, even sequent:ally. 50 long as the objects are in the
desired cons;stent state when the frame ends. If the animation is being filmed, recorded
frame-by-frame on video, or in the computers memory for later playback then all that matters is
that the display is correct when the frame is recorded, between recordih'gs anything rna.)r happen.
If animation is being displayed .in real time then the time to perform all the actions of a tick
should be less than a refresh cycle (typically a thirtieth of a second).” _ _

o To coordinate and control these processes we introduce the notion of a tick, or a quanturr.\.
of time within which one is unconcerned about the order of events_. All the objects have associated_ o
with them a .va.riable containing a list of actions to take on the next tick When an object receives
a tick it does all the actions it had planned for that time. In the s:mplest case, an ammatlon_'_
-program proceeds by sendmg a nck to each object on the screen, recordmg or dlsplaymg the
current state and repeating. It is the responsiblilty of each object to respond to each tick. More
complexity is introduced when there are several ticks to a frame or when only certain subsqts. of

'objects are to.run at a certain time.
- A Simple Example
Suppose we want to animate a shape to move gradually forward and we ali-eady have a

pnrmtlve called "Forward" that moves an object forward by causing it to hide and reappear at its

new position.! We couid wrlte the following s:mple program

~ 1. This example and the next rely upon a computational display entity called a "turtle”. Turtles have a
state consisting of a position and direction and respond to messages asking them to go forward or to turn.
More details can be found in [Papert 1971a), [Papert lngh] and [Goldstem 1975].

Page-4




Paraliel Graphics ; A Simple Example . Kahn & Hewitt

REPEAT FOREVER (ASK AN-OBJECT FORWARD SPEED) (ASK SCREEN RECORD)

The object called "an-object” will go forward “"speed” then the screen is recorded and this is

- repeated forever. If we wanted two objects to move forward simultaneously then we could write:

REPEAT FOREUER (ASK OBJECT1 FORWARD SPEED1)
(ASK OBJECT2 FORWARD SPEEDZ)
{ASK SCREEN RECORD)

The need for explicitly using ticks ha\'e not yet risen. But suppose we want Objecti to
go forward 300 steps and the other 400 steps. Or we want "Object2” to change its speed after four
frames The program becomes more and more unwleldy An alternative is to explicitly use tlcks as

follows (as opposed to the 1mpl1cn: use of ticks in the prewous e:mamples)1

. (ASK OBJECT1 SET YOUR SPEED TO 50) '; this need oniy be mentioned miually
(ASK OBJECT2 SET YOUR SPEED TO 40) ; or a default could have been used
(ASK OBJECT1 PLAN NEXT GRADUALLY FORWARD 300)
; insert (gradually forward 300).into Object!l's. list of actions for Hze next r;ck
(ASK OBJECTZ PLAN NEXT GRADUALLY FORWARD 400)
(ASK OBJECTZ PLAN AFTER 4 TICKS CHANGE YOUR SPEED TO 60); 4 ticks later cﬁange .speed

- At this pomt nothing has happened on the dlsplay screen, only the plans have been associated

‘with the objects To run the plans and record the state there is a special kind of entity, movles ,
that cause ticks to be sent to each object and the screen to be recorded The sending of the

rnessage "gradually forward 300" to Objectl causes the following events

(ASK OBJECT1 FORWARD 50) ; goes forward 50 units (m speed)
(ASK OBJECT1 PLAN NEXT GRADUALLY FORWARD 250) ; plans to do the rest mext

- 1 'I'ius paper is not the appropriate place to fully descnbe the syntax of Dlrector The last of the
following statements means that the message (plan after 4 ticks change your speed to 60) is sent to object2.
Four ticks later object2 will receive the imbedded. message, i.e. (change your speed to 60). The imbedded
_ message may be any message that the reclpnent can respond to.

Page-5




' Parallel Graphics - An Example from Celestial Mechanics Kahn & Hewitt

II. An Example from Celestial Mechanics _

- Suppose we want to simulate the orbits of planets and space ehips. One \eay to do this is
to assoc.iate with each physical object another object corresponding to its velocity. The veloci.t')r
actors have their own state and their position in velocity space relative to. (0,-0) represents their
direction and rn_agn.itude. At each tick each physical object’s position is tjpdated by adding it to its
velocity. The velocity itself may .be updated in a similar manner b'y.the thrust of the ship or by

the gravitaftiona!_ pull of other massive objects. The tick mechanism provides a means by which
‘the different physical objects can behave in apparent parallelism. Ticks also 5implify.the phyéics
by reducing the problem to the computation of the change during a small constant unit of time. In
thie way the"integration needed to compute the 'positilon and velocity is approxlmated irppliciely by

the program. Turtle geometry further simpliﬁes the mathematics by computing the vector_

additions in velocity space by movmg the turtle instead of usmg trigonometry exphcit!y This

representatlon of a velocity vector by the posmon of a turtle is similar to the approach presented in
[Abelson 1975 | | o

. - First we define the class of physical objects by describing how to make instancee of it, h.o.w :
to update the state of an instance and how to compute the gravitational pull caused by an ObJBCI.. :
. A subclass of physu:al objects, space shlps are defined to do all that phys:cal objects do and, in
addition, know how to thrust forward. Suns and planets are subclasses of physmal objects with no
special behavior Finally we define the gravitational ﬂeld which is capable of changlng the

velocxty of any object by exerting the pulls of all the masses that it knows about.

Page - 6 o




Parallel Graphics | An Example from Celestial Mechanics Kshn & Hewitt

(def"ine physical-object object
;3 make physical-object as a kind of object and send it the following messages
(set your mass to 10) ;; the default mass
(receive (make ?instance) now do ;; this enables me to extend the normal behavior
(ask :self make ,instance) ;; create the object as mormal
(ask ,instance plan next repeat forever update your state)
i3 on every tick send yourself the message (update your state) :
(ask velocity make (velocity-of ,instance)) ;; mcke a velocity for objecr
instance) ;; return the newly created instance
(receive (update your state) ;; when ! get a message ashing me to update my state
(cond ((ask :self recall your offspring}) ;3 if a class do nothing
(t (ask :self change your position to ;; I update my position by
33 by adding to my current position to the position of my velocity
,(position-sum (ask :self recall your position) '
. {ask (velocity-of ,:self) recall your position)))
HH 1 ask the gravitational field at my !emtwn to cﬁange my velm:ity
(ask gravitational-field .
apply grawtationa'l forces at
.(ask :self recall your position) to (velocity-of ,.se'lf)))))
(receive (yle'ld pull at ?place)
;3 to determine the gravitational pull at the place (G=1 in our units)
(guotient (ask :self recall your mass) ;; take my mass
(square (ask :self yield dtstance to p'iace))
;3 divide by the square of my distance to the place to get force per :econd
:frames-per-second ;; divide by this to get force per frame '
:ticks-per-frame))) ;; divide to get force per tick

Page - 7




Parallel Graphics ~ An Example from Celestial Mechanics Kahn & Hewitt

(define gravitational-field something ;; make the field and send it the foliowmg me:.rages
(receive (apply gravitational forces at ?place to ?velocity)
53 for me to apply the gravitational forces at a place to a velocity
(ask :self exert pulls of ;; [ exert the pulls of the masses not at the place
' . (remove-any-at-place (ask :self recall your masses) place)
on ,velocity at ,place)) ;; on the velocity
(receive (exert pulls of (?first-mass %rest-of-the-masses) on ?velocity at ?p'lace)
33 0 exert the gravitational pull at a point of some masses on a velocity
(ask ,velocity - _
move ,(ask ,first-mass yield pull at ,place) - _
_ in direction from ,place to ,(ask ,first-mass recall your position))
"33 move towards the mass from the place by the pull (acceleration) at that place
(ask :self exert pulls of ,rest-of-the-masses on ,velocity at ,place))
3+ and let the rest of the masses exert themselves on the velocity
 (receive (exert pulls of () on 7 at ?};; when rhere are no more masses do nothing
: nil)) '

(define \_fé'loc1ty object);; a velocity is an object so that is can more in velocity space

(define ship physical-object ;; now to define ships
(recewe A{thrust forward ?amount) ;; When I'm asked to thrust forward
Fan) . {ask (velocity-of ,:self) s
' ‘change your heading to ,(ask se1f recall your heading))
35 1 set the heading of my velocity to my own heading
(ask (velocity-of ,:self) ;; and cthange my velocity by
" 33 having it go forward the quotient of the thrust and my mass
forward ,(quotient amount (ask :self recall your mass))))
(draw using draw-rocket of size)) ’ :
35 and ] am dmwn by the Draw-rocket pracedure applied to my size

(def‘me sun physical-object 33 a sun is also a physical- ob_;ect

- (set your angle to 10) ;; near enough to a circle (really a 36-agon)

~ (set your mass to 100) ;; the default mass of a sun is 100 : : '

(draw usmg draw-poly of s1ze angle)) ;; 1/ am drawn using me -poly of my size and angle

(define enterpmse ship ;; make a sﬂip called zhe enterprise
(set your state to (-700 200 45)) ;3 put me at cmy intercmng :tamng state
(show) ;; show yourself
(p]an next repeat 10 thrust forward 100));; turn on rkrwter: far the next 10 ticks

Page - B




Paraliel Graphicé An Example from Celestial Mechanics Kahn & Hewitt

{define sunl sun " ;; make sunl . :
(ask (velocity-of sunl) to back 25) ;; start me qff with a velocity of 25 domnward:
‘(set your size to 100) ;; give it a size
(set your mass to 7000000)) ;; and a big mass

(define sun2 sun ;; this one is a little smaller and less massive
" (ask (velocity-of sun2) to forward B0)
{(set your state to (600 0 0)) ;;: start qﬁ‘ way to the nght
(set your size to 60)
(set your mass to 3000000))

(ask gravitatiohai-ﬁeld set your masses to (sunl sun2 enterprise}) ; tell the field about the objects
s Everything is ready 1o go, so to test it we make a 10 tick movie. It can be seen in Figure 1.

(define test-movie-1 movie
~(fiTm the next 10 ticks);; finally make the movie
(project));; show the movie at default speed and order

The‘adv'aﬁtagles ~of programming in this fashion are many. Computational entities
'cbrres;.aon.d very closely with physically lntuitive-entities._ Cﬁrresponding .to each ébjeét in spacé
 there is an object in the program complete with state and a b:ehavioral'-specific;ition. ‘The:
I’gravitational field is alSc_i a separate enfity_m_vhich upon request applies the gmvitatioﬁal pull of
each mass to any velocity. The ti:.:ks'reduce the comp_utatibn to that of calculating the change -
- during a small amount of time. Also the mathematics in the example is kept simple enough for a
ten }'éar old by keeping the trigondmetry inside of :ﬁe turtle primitives for moving fo}wérd and
‘turning right. It should be clear that the program is very general, that any number of objects can
' '-ex:st and new ones can even be added or old ones removed at any tlme Also the accuracy with

"whu:h the calculatlons take place are easily conlrolled by the variable for the number of ticks per

frame.!

1. The time needed to coﬁpute many ticks for each frame might be .vez.-y high though.

Page-8 |




Paraliel Graphics  An Example from Celestial Mechanics  Kahn & Hewitt

- Figure 1A Simple Test Run with Two Suns and a Ship

,g,__. o | 7
<7 °o <

Page - 10




Parallel Graphica Efficiency and the Distribution of Control and Data Kahn & Hewitt

III. _Effi'ciency' and the Distx_-ibutioﬁ of Control _é.nd Data

- Control and data are dlstrlbuted in the previous exampies of the use of ticks and objects.
There is little doubt that this reduces the conceptuai complexity of the programming but it poses
many questions regarding the efficiency of programming graphics in this manner. For example,'
the lack of any glébal agenda or sch.edule might lead one to suspeﬁt that the distribution of the
.planned actions and their times of occurrence is less efficient. The argument goes .a.s follows. If an
object plans to do some action many ticks from now and nothing until then, then if _cbntro] was
based upon a global agenda then nothing need h.appen until that time. With the information in
the agenda spread out in the objects involved the object with sornething to do much later still must
. be sent ticks in order ta decremem the time il: plans to do the action. This seems phyncal!y
-mtumve but needlessly inefficient, The cost of an actor processing a tick, however, can be very

small. Moreover, the distribution of the plans makes. the changing of plans much simplier. An
“object can take its p_i'ans and modify them and there is no gldba_l structure that also needs to be
' quafed | _ : _ ' | |
' Planning with a tu:k mechamsm is not restricted to plans with respect to a particular time.
" To plan an action to happen when a pamcular event happens or condition is met can be done two
ways. Either the actor involved can ask other actors to inform it of some event or up_on every t:ck.
it determine if some condition is true. In this way an object can ].;ulan 'io explode when it coliidés _
~ with énothér or to go forward when some other acrcn; has ﬁn_ished going forward. _
- Stjppose we want the ships to fnelt upoﬁ cﬁl!is’ion with a sun and explode if collid.in'g with
' anythmg else. Then using ticks and messages we.can arrange that each ship asks the other Ob_]ECtS.
- where they are on every tick, determmes whether they are colhdmg and behaves accordmgly An
aiternauve convennon is to arrange that on every ticks an actor corresponding to space (or several
" actors representing regions in spaée) checks for collisions of objects within it. “This scheme is less -
~ general, b_ut'usually more efficiént, thaﬁ the one where each object asks each other for its position.

For example, to have the Enterprise explode or melt upon collision ask it the following:

Page - ﬁ




Paraliel Graphics - Efficiency and t'he Distribution of Control and Data Kshn & H_uwitt

(ask enterpr1se plan to (cond ((ask ,other are you a sun) ;; if the orher !s a sun
- - “(melt)) ;; then the action is to melt
(t “(explode})) ;; otherwise it is to explode
35 only if receiving a message about colliding with some other
after receiving colliding with ?other)

If one has a mulu-processor system with many processurs then a tick mechanism can easily
" be programmed to take advantage of them. All the events that occur within a tick are unordered
except for any requirements to serialize the acts of individual actors. The events are-grouped by
the object 'involvec_l and so in terms of locaﬁty of data, one can optimize by running those actions
of the same object on the same processor. Tlhe.advantages of having ticks are great if one is
running on paraliel hardware since there is no global data structure that must be kept cons:stent-

and easily accessible.

Page - 12




Parallel Graphics ' Synchrony Problems - Kahn & Hewitt

IV. Synchrony Problems

. When processes are being run independently one occasionally runs into syncﬁrony_
problems. The most Icom_mo'n occurrence of such problems is when maﬁy objects try to do
something that only a few can do at once. The simple example of how to handle this within a tick
framework that we shall explore is how to define doors such that at most .one object .c'an go
through a door on a tick. We want a fair solution,. so that those waiting the longest for a door get
- through a.n.d no one need wait forever. A solution that we shall present is one where each object
as_ks-'thé_door for permission before entering. The object need not wait around in a line, it is more
like getting a. number at a crowded store. Each door keeps a queue of the objects that want to go
through it. A door is defined to inspéct its queue at each tick and if it is not empty the door
removes the 6bject at-thé head of its queue and asks the object if it will énter now. If it does not
- want to enter the door any longer {maybe it went thmugh another door in the meannme) then the
next ob}ect on the queue is asked if it will go through now and so on.. |
The programmmg of this in Director can be accomplished easily as foliows.

(define door something ;; dqﬁne a daor as follows -
(receive (place me on your queue ?wanderer);; a wanderer wants to go through me

(ask (queue-of ,:self) enqueue ,wanderer));; so I put it at the end of mj-queue

(recewe (grant permission to front of queue)

(cond ((not (ask (queue-of ,:self) empty?)) ;; oniy if the queue is not empty

(let ((front of-queue (ask (queue-of ,:self) dequeue)))
i3 1 take the first ome off the queue and call it front-of-queue

(cond ((ask ,front-of-queue will you go thru ,:self door now?)

35 if it is willing 1o go through me .

(prmt “(,:self door letting ,front-of- queue 'I:hr'u
at ,(ask :self recall your time)}))

33 then print event for demonstration and testing

(t (ask :self grant permission to front of queue)))))))

3+ if the front of the queue changed its mind
33 then try again with tn_’:e next in line

Page - 13




Paraliel Graphics = Synchrony Problems Kabn & Hewitt

(receive (make ?a-door) now do ;; when making a new door
(ask :self make ,a-door) ;; make it as usual but
-(ask queue make (queue-of ,a-door)) ;; also make a queue for the door
(ask ,a-door plan next repeat forever grant permission to front of queua)
33 every door should plan to always grant permission
33 1o the head of its queue
(ask ,a-door set your time to 0) ;; initialize its time
- (ask ,a-door plan next repeat forever increment your time by 1)))
"33 the ume is only used for tésting and demonstration

(define wanderer something ;3 define the objects that wander around and go thru doors
(receive (will you go thru ?door-name door now?)
i3 when asked if 1 will go thru a door now
(cond ((ask :self recall your (wanting-to-go-thru ,door-name))
i3 if 1 recall wanting to go thru that door
(ask :self forget your (wanting-to-go-thru ,duor-name))
i3 then I forget wanting to go thru the door
(ask :self go thru ,door-name door)
33 and actually go thru the door
o t))) i; and respond true to the quemon
(recewe (go thru ?door-name door) :
i3 this is where the wanderer would really go thru the door
- nil)- :
(receive (want to go thru ?door-name door)
55 If 1 want to go thru a particular door
(ask :self set your (wanting-to-go-thru ,door-name) to t)
i3 then I vemember that | want to go thru it
(ask ,door-name place me on your queue ,:seif)))
i3 and ask the door to put me on its queue

i To test this out we create two doors and a few wanderers and start them going.

(define oak door). ;5 create an oak door
(define pine dooé-) ;s create a'door named pine

. (def‘me 'Iazyl wanderer' 33 Create a wanderer named
(want to go thru oak door)}) ;; who wants to -go thru the oak door

_(define lazy2 wanderer ;; create anotﬁer ﬂamed lazy2
{(want to go thru p'ine door)) ;: who wants to go H:m the other door

Page -4




Parsllel Graphics : Synchrony Problems ' Kahn & Hewitt

(define 'gi*eedyl wanderer ;; create another named greedyl
(want to go thru pine door) ;; who wants fo go through both doors
- (want to go thru oak door))

. (det‘me greedyz wanderer i3 as does anotﬁer wanderer named g'reedyz

(want to go thru oak door)
(want to go thru pine door))

- (define senswie wanderer HH sens:b!e is another wanderer

(receive (go thru ?door-name door) now do ;; who when going rﬁru a door

(ask :self go thru ,door-name door) ;; does the usual for a door

(ask :self forget your (wanting-to-go-thru )

53 and forgets about any other doors that it might have wanted to go thru
(want to go thru pine door) ;; wanis ro -go Hzm either :
(want to go thru oak door))

3Torun r}u's we have the dg’auzr universe send out ticks to those with something to do next,

s in this case Oak and Pine.

(ask default- universe run for 5 ticks) H send out ticks to everyone Jfive times

(PINE DOOR LETTING LAZY2 THRU AT TIHE 1) ; t}:e.ie are prmted out by each of the doors
(OAK DOOR LETTING LAZYI THRU AT TIME 1) :

(OAK DOOR LETTING SENSIBLE THRU AT TIME 2)

(PINE DOOR LETTING GREEDYl THRU AT TIME 2)

(PINE DOOR LETTING GREEDY2 THRU AT TIME 3) .

(OAK DOOR LETTING GREEDY1 THRU AT TIME 3)

(OAK DOOR LETTING GREEDY2 THRU AT TIME 4)

. P_aga -15




' Paraliel Graphics Comparisons with Other Paraliel Graphics Systems Kahn & Hewitt

V. Comparisons with Other Parailel Graphics Systems

Several anlmatmn systems permlt parallelism that is described and ccmtrui!ed vxa.
graphlcal input. The approach taken in-this paper is not an alternative to -these demonstrative
~systems but rather is complen'ientary. ‘One alternative aﬁproacﬁ was taken by Pfister in the system
called Dali [Pfister 1974]. Dali is programed by specifying &emom which fire when their triggering
conditions ‘become true. The use of ticks combined with serializers [Atkmson 1978] is both stmpiler

“and more general since it does not make any restrictions upon how information can flow.
Some other languages are too similar to what is presented here to form any impﬁrtant

| comparisons. For example, Smalltalk [Kay 1977] can easily be extended to have ticks. Simula

.[Birtwisti'e 1973], a language ivhich strongly influenced both Smalltalk and Director, could also be '

changed slightly to support quasi-parallelism for graphics. As we have seen, ‘ticks permit the

 specification of any condltlon for an event, while a global agenda sorted by time as in Samulal

restncts one to a temporal specification.

Page - 16




Paraliel Graphics Conclusions end Directions for Future Research Kahn & Hewitt

- VI. Conclusions and Directions for Future Research

One wants one’s programs to reflect the structure of the task. Dynamic graphics mvolves
the dlsplay of changes of many different elements and their features. It has been argued that an
object-ortented parallel approach reflects this. This approach is also physlcany intuitive in its
- stress on Iocahty and modularity. Programming in this style, one can make use of powerful
| metaphors from physics and think of each entity as a physical object that is affected only by other
actors that send it messages and that behaves mdependently having its own clock. Another very
 useful metaphor that a programmer can make use of i is that of a society. just as in societies we are
- familiar with, there are various structures of command and information flow  that map over to
object onented computatlon |

One direction of future research is to find other powerful computational concepts for the
) _.eont:eptuahzat:on of the display of changing images. Turtles, ticks, and objects are both
prograrnrning ldnguage constructs and ways of thinking about one's problems. There need's to be
more of them For example, perhaps the notion of an actmty that an ~object is engaged in should
be exphcitly represented as an actor. In that way it could receive messages and change its plans in
_ accordance with new events. One might also ccnslder extending the physu:s metaphor. Perhaps
all events should be viewable only from a frarne of reference” in a way analogous to relativity.
The generalization of this idea of taking the observer into account shouId apply to all events,
including, of course the v:ewmg of a three-dimensional object from a viewpoint. This dtrectlon
for research is also pointed out in [Kay 1977b}, [Moore 1973, and [Bobrow 1977). .

A related and equally important direction graphtcs programrnlng shou!d move is towards -
the mclus:on of much more knowledge into the software. The more the system knows about what

 the entmes being dlsplayed are, how they behave and interact the easier it becomes to use it. The

- graphics prograrnmmg has been at too low a level of detail, we should be movmg towards systems .

that know enough so that a users prtmar}' effort is comtnunicatmg what he or she wants to

happen and not how to do it. Much of the resear_ch_ in the artificial intelligence community on

. Page - 17




Parallel Grept‘ﬁcs. ' Conclusions and Directions for Future Research ~ Kahn & Hewitt

'kn_ow}edge-based programming" is very relevant to the task of making images and mé_nipulating

them ll"l a convenient manner.

The apphcanon of artificial mtelhgence techniques to computer graphics is called for. -

One of the authors of this paper is engaged in creating a system capable of producing simple '

non-representational narrative cartoons in response to a ‘vague, incomplete, high-level description
[Kahn 1977b] The system knows enough about how characters should move and look in order to
establ:sh a personality, convey an emotional state, or an interpersonal nnteraction Animation is

more than the simulation of a world its product:on entails inferences, heuristics, and knowledge

Acknbwiedg ements

We wish to thank Henry Lieberman, Andy diSessa, Bill Kornfeld and Gerry Sussman for

- their very helpful criticism of earlier drafts of this paper. Henr)r Lieberman, Danny Hiilis,

Seymour Papert and the work uf the Learning Research Group at Xerox Parc were a source of

- many of our ideas. The support of the MIT Artificial Intelligence Lab was cruc:ai One of the
authors (Kahn) is very grateful to IBM for prmrlding a fellowship that gave him the time to

explore this and other toplcs

F’aga -18




Parallel Graphics | " Bibliogrephy | - Kabn & Hewitt

VII. Bibliography

[Abelson 1975] Abelson, H., DiSessa A., Rudolph L.
Velocnty Space and the Geornetr)' of Planetary Orbits,” American Journal of Physics, _]uly 1975

[Baker 1977) Baker, H. and Hewitt, C. '
"The Incrementa] Garbage Coliection of Processes” SIGART-SIGPLAN S)rrnpos:um on
Artificial Intelligence and Programming Languages, August 15-16, 1977 University of Rochester

[Birtwistle 1973] Birtwistle, G., Dahl O, Myhrhaug B, and Nygaard K.
Simula Begin, Auerbach Publishers, Inc, Philadelphia, Parallel. 1973

[Goldberg 1976] Goldberg, A. and Kay, A. ed:tors
"Smalitalk-72 Instruction Manual”
The Learning Research Group, Xerox Palo Alto Research Center, March 1976

'[Goldstem 1974] Goldstein, 1. P,
Understanding Simple Picture Programs, MIT Al Laboratory AI-TR-294, September 1974 -

' [Goldstem 1975] Goidstem L, Lieberman H., Bochner H,, Miller M. _
_"LLOGO: An Implemenmtion of LOGO in LISP" MIT-AI Memo 307, March 4, 1975

[Hewitt 1975] Hewitt C., Smith B.
"Towards a Programmmg Apprentice” JEEE Transact:ons on Soﬂware Engineering SE-1, March 1975

- [Hewitt 1977) Hewitt, C. and Atkinson. R.
- "Parallelism and Synchronization in Actor Systems”
Record of 1977 Conference on Principles of Programming Languages,jan 17-19, 19‘77 267-280

[Kahn 1976) Kahn K.
"An Actor-Based Computer Ammat:on Language Proceedings of the SIGGRAPH!ACM Workshop
on User Onented Design of Computer Graphlcs Systems, Pittsburgh, Pa,, October 1976

[Kahn 19773] Kahn, K.
“Three Interactions between Al and Education”,
~ Machine Intelligence 8 Machine Representatlons of K_nowledze
eds Elcock E and Michie, D., Ellis Horwood Ltd and _]ohn Wyhe & Sons 1977

- [Kahn 1977b] Kahn, K. |
"A Computational Theory of Animation”, Massachusetts Instltute of Technology, -
Al Working Paper #145, April 1977

Page - 19




~ Paraliel Graphiéa '_ o .Bibl'iography . ~ Kahn & Hewitt

[Kahn 1977c] Kahn, K., Lieberman H.
"Computer Animation: Snow White’s Dream Machine”,
Technolugy Review, Vol. 80, No. |, October{November 1977, pp 3¢-46

[Kahn 1978] Kahn, K.
"Director Users Guide", Forthcoming Massachusetts Instuute of Technology, Al Memo, 1978

[Kay 1977a] Kay, A, Goldberg A.
"Personal Dynamic Medla C.omputer, IEEE, March 1977, v. 10, n. 3, pp 31-41

[Kay 1977b] Kay, A
"Microelectronics and the Personal Computer”, Scientific American, September 1977

E [Newman 1971] Newman w. :
- "Display Procedures \ CACM’, Vol. 4, No. 10, Oct 197

[Paime 1977) Paime, J:
"Moving Pictures Show Slmulatmn to User”,
FOA Rapport, Swedish National Defense Research Institute, April 1977

[Papert lQ’z‘Ia] Papert S.
I"Teachmg Ch:ldren Thinkmg MIT-AI Memo 247, October 1971

[Papert Ig?lb] Papert S.
. "Teaching Children To Be Mathematicians vs. Teal:hmg About Mathematics” ,
MIT-Al Memo 249, _}uly o :

-[Pflster 19'?4] Pfister, G. -
The Computer Control of Changing P]ctures.
MIT Project MAC Technical Report TR-135, Project Mac, 1974

Pege -20 -




