
Scientific Programming 12 (2004) 263–273 263
IOS Press

Dynamic grid scheduling with job migration

and rescheduling in the GridLab resource

management system

K. Kurowski, B. Ludwiczak, J. Nabrzyski, A. Oleksiak and J. Pukacki
Poznan Supercomputing and Networking Center, Poland

E-mai: {krzysztof.kurowski, bogdanl, naber, ariel, pukacki}@man.poznan.pl

Abstract. Grid computing has become one of the most important research topics that appeared in the field of computing in

the last years. Simultaneously, we have noticed the growing popularity of new Web-based technologies which allow us to

create application-oriented Grid middleware services providing capabilities required for dynamic resource and job management,

monitoring, security, etc. Consequently, end users are able to get easier access to geographically distributed resources.

In this paper we present the results of our experiments with the Grid(Lab) Resource Management System (GRMS), which acts on

behalf of end users and controls their computations efficiently using distributed heterogeneous resources. We show how resource

matching techniques used within GRMS can be improved by the use of a job migration based rescheduling policy. The main

aim of this policy is to shorten job pending times and reduce machine overloads. The influence of this method on application

performance and resource utilization is studied in detail and compared with two other simple policies.

1. Introduction

Grid environments are dynamic by nature. Hetero-

geneity, the high probability of failures, latencies con-

nected with wide area networks, and the lack of dedi-

cated access to resources, knowledge about local poli-

cies and jobs’ runtimes can all cause a high degree

of variance and unpredictability of application perfor-

mance and resource utilization.

Consequently, the efficient scheduling of jobs before

their submission often turns out to be very difficult to

achieve. It appears that rescheduling methods, which

take advantage of a migration mechanism, may provide

a good way of improving performance [11,12,16].

Depending on the goal that is to be achieved us-

ing the rescheduling method, the decision to perform

a migration can be made on the basis of a number of

events. For example the rescheduling process in the

GrADS project [11] consists of two modes: migrate on

request (if application performance degradation is un-

acceptable) and opportunistic migration (if resources

were freed by recently completed jobs). A performance

oriented migration framework for the Grid, described
in [16], attempts to improve the response times for
individual applications. Another tool that uses adap-
tive scheduling and execution on Grids is the Grid-

Way framework [12]. In the same work, the migration
techniques have been classified into the application-
initiated and grid-initiated migration. The former cat-
egory contains the migration initiated by application
performance degradation and the change of application
requirements or preferences (self-migration). The grid-
initiated migration may be triggered by the discovery
of a new, better resource (opportunistic migration [14]),
a resource failure (failover migration), or a decision
of the administrator or the local resource management
system.

Nevertheless, none of the aforementioned reschedul-
ing algorithms focus on the migration initiated by a
lack of free resources required by a new incoming ap-
plication. Since this case is especially important for
the high rate of incoming applications and for limited
resources, we decided to explore it in detail.

In this paper, we present the rescheduling method
implemented in the Grid(Lab) Resource Management

ISSN 1058-9244/04/$17.00 2004 – IOS Press and the authors. All rights reserved

264 K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system

System (GRMS) [1] being developed in the framework

of the GridLab project [2]. This method is applied

when a job pending in the head of the GRMS queue

cannot be submitted to any of machines for lack of the

sufficient amount of required resources. The main dif-

ference, compared with the other rescheduling meth-

ods presented above, is that in our approach, in order to

improve application performance, another application

is migrated (to release required resources). Before the

job is migrated, GRMS asks the application to check-

point and terminate. Application-level checkpointing

was used in our tests.

We compare this approach with two simple policies:

first, submitting the job regardless of insufficient avail-

able resources (in this way overloading machines), and

second, postponing the job submission until required

resources are released.

2. GRMS

GRMS is an open source meta-scheduling system

for large scale distributed computing infrastructures.

Based on the dynamic resource selection, mapping and

advanced grid scheduling methodologies, combined

with feedback control architecture, it has been tailored

to deal with resource management challenges in Grid

environments, e.g. load-balancing among clusters, set-

ting up execution environments before and after job ex-

ecution, remote job submission and control, file stag-

ing, and more. For our tests, we have used version 1.8.0

of GRMS, which is based on the Globus Toolkit 2.4 [3]

and makes use of low-level Globus Services deployed

on resources located in various academic institutions in

Europe and the USA [4]. GRMS connects to the core

services through a set of Java and C APIs. In particu-

lar, GRMS uses GRAM, GridFTP and GRIS/GIIS ser-

vices. As a persistent service, GRMS provides a set of

well-defined GSI-enabled Web Service interfaces for

various clients, e.g. applications, command-line clients

or portals. Moreover, GRMS is able to take advan-

tage of middleware services, e.g. the GridLab Autho-

rization Service or Replica Management Services, as

well as to interoperate with infrastructure monitoring

tools such as the GridLab’s Mercury Monitoring Sys-

tem [5]. Therefore, GRMS is in fact one of the main

components of a grid middleware layer that can be or-

ganized in many different ways depending on the par-

ticular infrastructure and applications. The architec-

ture of GRMS together with a set of its internal mod-

ules, namely Job Queue, Job Registry, Job Manager,

Fig. 1. GRMS v1.8.0 Architecture.

Resource Discovery and a central unit called Broker

Module, is presented in Fig. 1. The aim of the Bro-

ker Module is to control the whole process of resource

and job management. The broker has been designed

in such a way that it allows us to implement various

scheduling and policy plug-ins. One of the plug-ins

studied in this paper, called the Reschedule plug-in, is

responsible for job migration and rescheduling within

GRMS. It is also worth mentioning the Resource Dis-

covery Module,which monitors the status of distributed

resources. It uses flexible hierarchical access to both

central (GIIS) and local information services (GRIS),

in particular to the Mercury Monitoring System that ba-

sically extends the functionality of GRIS/GIIS services

by adding more dynamic information about jobs and

the usage of resources. The remaining GRMS modules

are essential for maintaining system consistency.

3. Applications

In order to be able to migrate a job, it has to be check-

pointable first. In general, we can distinguish between

two kinds of checkpointing: system-level and applica-

tion (user)-level checkpointing [6]. In the first case, a

system managing jobs usually takes advantage of the

operating system mechanisms to swap an image of the

application (data and stack segments of processes, CPU

and memory status, etc.) to the disk, and then to recover

the computation at the point where the checkpoint was

generated. Application-level checkpointing requires

the application developer to implement mechanisms for

K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system 265

storing data to a checkpoint file. In other words, check-

pointing is hard coded in the application. This kind of

checkpointing is obviously much more portable. Thus,

due to a high heterogeneity of resources, application-

level checkpointing is more applicable in Grids. Tech-

nically speaking, all applications have to implement a

relatively simple Web Service interface in order to be

ready for GRMS checkpoint calls. Then, during the

execution, the application must register its location by

providing its Web Service addresses together with a

GRMS JOB ID. The GRMS JOB ID is taken from an

environment variable set up by GRMS during a sub-

mission process. Once GRMS receives this informa-

tion, it is able to call the application and request it to

checkpoint, and if necessary to migrate it to a different

location. Note that the application developer has to im-

plement all internal mechanisms to write a checkpoint

file to the local disk when the application receives a

checkpoint call from GRMS.

4. Scheduling policies

As already mentioned, we have compared three dif-

ferent scheduling policies applied to jobs that should

not be submitted due to the lack of free requested re-

sources:

– Overload. Submit the job regardless of the insuf-

ficient amount of resources (overload a machine).

– Wait. Keep the job pending in the queue until

required resources are released.

– Reschedule. Reschedule running jobs using mi-

gration in order to release resources needed to sub-

mit the pending job.

There are also other policies that can be used to avoid

performance deterioration during the processing of jobs

in the queue. One of these policies is the backfilling

mechanism studied in [15] and used in many existing

scheduling systems, e.g. LSF [7] or Sun N1 Grid En-

gine 6.0 [8]. As we decided to focus on adaptive im-

provements of the schedule using job migration, these

techniques do not come within the scope of this paper.

Nevertheless, we plan to investigate them in the future.

All three considered policies are presented in detail in

the following sections.

4.1. Wait policy

The wait policy keeps a pending job in the GRMS

queue if it cannot be submitted to any of the machines

because the amount of free resources required for this

job is insufficient. GRMS periodically checks the sta-

tus of resources and their availability, and if the suffi-

cient amount is released, the job pending in the head

of GRMS queue is submitted to the best available ma-

chine.

4.2. Overload policy

The overload policy enables submitting a job regard-

less of the insufficient amount of free resources. The

advantage of this approach is that jobs do not have to

wait in the queue. On the other hand, it obviously leads

to the overloading of selected machines. If the num-

ber of jobs is reasonable and intervals between arrivals

of jobs are big enough, drawbacks concerning the de-

crease of performance resulting from the overload of

machines may be less significant than those concerning

long queue pending times. Furthermore, operating sys-

tems are able to manage a larger amount of the physical

memory than is actually available taking advantage of

swapping techniques.

4.3. Reschedule policy

The reschedule policy checkpoints and migrates al-

ready running jobs in order to release the amount of

resources required by a job pending in the queue. The

rescheduling method that we used in the experiment

consists of several steps. These steps, and the evalu-

ation criteria for the selection of a job to be migrated,

are presented in the following three subsections.

4.3.1. Steps of rescheduling

The rescheduling process includes the following

steps:

Discover resources. First, resources that a user has

an access to are selected. Note, that GRMS acts and

performs all operations on resources on behalf of partic-

ular user. We assume in our experiments that reschedul-

ing and migration operations apply to jobs submitted

by a single user. However, these techniques can be

easily used in a multi-user GRMS mode.

After selection of resources the user has access to, we

filter the resources that meet all application’s resource

requirements expressed by the user within the GRMS

job description. The hypothetical GRMS job request

containing a requirement for 100 MB free memory

available is presented below in Fig. 2. If no resources

are found, then it is not possible to run the job with-

out decreasing the performance of the job. Sometimes,

266 K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system

<grmsjob appid = "GRMS_Example_Job">

 <simplejob>

 <resource>

 <memory>100</memory>

 <ostype>linux</ostype>

 <osversion>redhat9</osversion>

 </resource>
 <executable type="single" count="1">

 <file name="exec-file" type="in">

 <url>gsiftp:// helix.bcvc.lsu.edu/
 {$HOME}/test/gatapp</url>

 </file>

 <arguments>

 <value>INPUT_1</value>
 <value>INPUT_2</value>

 </arguments>

 <checkpoint>

 <file name="checkpointFile.txt" type="in">
 <url></url></file>

 </checkpoint>

 <stdout>

<url>gsiftp://rage1.man.poznan.pl/{$HOME}/OUTPUT.txt</url></s

tdout>
<stderr><url>gsiftp://rage1.man.poznan.pl/{$HOME}/STDERR.txt

</url></stderr>

</executable>

</simplejob>
</grmsjob>

Fig. 2. The example of GRMS job description and the application’s resource requirement for 100MB of free memory.

however, it is possible to find resources for the job by
migrating other, usually smaller, jobs from busy to less
busy resources. Of course, using migration in this case
is often very risky, because we do not have any guaran-
tee that no new job is started on the released resource
after migration. This can be guaranteed either by ad-
vance reservation or if the Grid scheduler performing
migration and job scheduling is the only entry point to
the grid.

Discover resources meeting relaxed requirements. If
no resources are found in the preceding step, the re-
quirements concerning dynamic parameters are trans-
formed into requirements concerning the correspond-
ing static parameters. For instance, instead of free
memory, the total amount of the physical memory is
taken into consideration to check if particular resources
meet the application’s requirements. This step is just
done in order to decide whether there is a potential for
migration. The pending job can be potentially executed
on these resources if some of the running jobs can be
migrated to another machine.

Select jobs to migrate. In the next step, the system
tries to determine the migration of which jobs can bring

the required result, if at all. This step consists of two ac-

tions. First, GRMS searches for jobs after termination

of which the pending job could be started immediately.

This is nothing more than a simple preemption mecha-

nism on the grid and we call this sub-step a preemption

check. Actually, in the next action (or sub-step) of this

step we go even further. The jobs selected at the pre-

emption check phase are analyzed again to check which

of them can be migrated to other available resources,

taking into account the requirements of these jobs and

the resources available at the moment. Potentially one

or more such jobs exist.

Choose the best job to migrate. As a result of the

preceding step, the set of jobs for migration is selected.

The best of them is chosen using two sets of evaluation

criteria. The first set of criteria allows GRMS to eval-

uate the machines a job to be migrated runs on. Obvi-

ously, this evaluation is done from the perspective of the

pending job. The second set allows GRMS to evaluate

the jobs that can be migrated. The former set of criteria

consists of memory, load, CPU count and CPU speed,

while the latter includes the number of hosts a job can

K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system 267

migrate to, the size of the migrating job, and the job’s

runtime. Further details can be found in Section 4.3.2.

Checkpoint and terminate the application. In this

step, the selected job is requested to checkpoint and

exit.

Move the terminated job back to the queue. The

terminated job is moved back to the beginning of the

GRMS queue in order to be submitted to another ma-

chine.

Submit job. In this step the job waiting for the re-

quired resources is submitted to a machine. If this step

is performed after moving the job to be migrated back

to the queue, the pending job is submitted to the host

from which the job to be migrated was selected. Oth-

erwise, the machine is selected using the multicriteria

resource selection algorithm presented in [13].

The diagram in Fig. 3 illustrates the sequence of

foregoing steps.

4.3.2. Selection of a job for migration

An accurate evaluation of the job that is to be

migrated is very important, since the process of

checkpointing and migration may itself be very time-

consuming. There are multiple factors that influence

the performance of this process. Therefore, multicri-

teria methods are of great importance and perfectly fit

such problems [13].

In our study we adopted the model in which solu-

tions are ranked according to values of a multicriteria

evaluation function. The following function was used

to evaluate job migrations:

f(C) =
1

n∑

i=1

wi

w∗

i
Ci (1)

where n is a number of criteria, c is a vector of criteria,

and w is a vector of weights expressing an importance

of criteria.

We evaluated jobs that were to be migrated, both by

evaluating the hosts after the release of resources by

migrated jobs, and by evaluating the migration costs.

In our experiment, we used the following criteria for

the evaluation of hosts:

– available memory: memAvail,

– mean load during the last 1, 5 and 15 minutes:

CPUload,

– CPU count: CPUcount,

– CPU speed: CPUspeed.

The following set of criteria was applied to evaluate

checkpointing and migration costs:

– the number of hosts a job can migrate to (to mini-

mize the risk of a failure): hostNum,

– the size of a migrating job (memory allocated by

this job): jobSize,

– the job’s current runtime (in order to migrate jobs

that will not finish soon): runTime.

The importance of every single criterion was expressed

using weights as presented in formula Eq. (1). The fol-

lowing values of weights were set in our experiments:

memAvail = 3, CPUload = 2, CPUcount = 1, CPUs-

peed = 1, hostNum = 1, jobSize = 3, and runTime =
2.

– For more details concerning multicriteria resource

selection in Grids a reader is referred to [13].

5. Experiment

5.1. Computing environment

We performed our experiments in the real testbed of

the GridLab project [4]. Machines that are a part of the

testbed are located in various sites across Europe and

the USA. They are presented in detail in Table 1.

5.2. Jobs

The set of jobs used in the experiments consisted of

40 single processor jobs with randomly set runtimes

(the number of iterations) and resource requirements.

In our experiments, we chose free physical memory as

the resource jobs were competing for. However, the

general algorithm also allows the analysis of other re-

sources and even multiple kinds of resources simulta-

neously.

Intervals between arrivals of jobs, numbers of itera-

tions and amounts of required free memory have been

drawn at random using the uniform distribution.

Unless stated otherwise, results presented in the pa-

per were obtained for the set of jobs characterized by

the following parameters:

– memory requirements (in MB): mean = 144, stan-

dard deviation = 84, max = 275, min = 60;

– duration of jobs, i.e. number of iteration processed

by applications: mean = 12250, standard devia-

tion = 5549, max = 22000, min = 4000;

– intervals between jobs’ arrival times (in minutes):

mean = 4.79, standard deviation = 2.26, max =
9, min = 1.

268 K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system

Fig. 3. Sequence of steps during job submission.

5.3. Measurements

We measured a number of metrics concerning re-

source utilization and application performance in order

to evaluate three studied policies. To measure these

metrics we used several sources of information. From

the Mercury system [5] developed in the scope of Grid-

Lab, we obtained metrics describing resources, e.g.

free memory and machine load. The Globus MDS

(GIIS/GRIS services) [3] provided us with static infor-

mation about resources, e.g. CPU speed, CPU count,
physical memory etc. Finally, we extracted application
performance indices including job execution and pend-
ing times from the GRMS database, which contains
necessary information about the jobs’ history.

The following parameters have been measured:

– completion time of the last job (makespan);
– mean response time of jobs;
– mean free memory on hosts;
– mean CPU load on hosts;

K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system 269

– standard deviation of free memory on hosts;

– standard deviation of CPU load on hosts.

6. Results

The primary objective of this paper is to compare the

efficiency of the rescheduling policy with the two re-

maining policies that do not use migration at all. Thus,

most of the analyses in this section include a compari-

son of particular policies. However, we have also added

a subsection devoted to changes of various metrics over

time and studied the influence of job requirements and

duration on the performance of rescheduling.

6.1. Performance of applications

As metrics to measure the performance of methods

applied we used various time measures. In particular,

the response time (during which the whole request is

served) and makespan (the completion time of the last

job) are very important metrics for an evaluation of the

algorithms’ efficiency.

A comparison of these metrics for all three policies is

presented in Fig. 4. We can observe that the reschedule

policy outperforms others as regards both the response

time and the makespan. The difference concerning the

response time is more significant than the difference

between values of makespan for particular strategies.

By using the reschedule policy we can avoid many

long queue waiting times that increase the maximal

and mean response time. Using the reschedule policy,

the mean and maximal response times were improved

by 23% and 30%, respectively, compared to the wait

strategy.

Additionally, the wait strategy turned out to be more

profitable for the job response times and makespan than

the overload policy. The big makespan for the over-

load strategy resulted from several jobs running on dra-

matically overloaded machines. Even after completion

of most of the jobs it was impossible to reduce a load

without the use of a job migration. Furthermore, some

of the jobs that were run using the overload policy were

not even executed.

6.2. Utilization of resources

Resource utilization is a crucial issue for adminis-

trators and resource owners. Therefore, the influence

of the analyzed policies on this performance index is

illustrated in Fig. 5.

Fig. 4. Makespan, mean and max response times for the overload,
wait and reschedule policies.

0.67

0.57

0.74

0.15
0.10

0.13

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Overload Wait Reschedule

L
o

a
d

Mean Standard deviation

108.92

80.42

130.71

47.8252.6453.66

0

20

40

60

80

100

120

140

Oveload Wait Reschedule

F
re

e
m

em
o

ry

Mean Standard deviation

Fig. 5. Mean and standard deviation of free memory (below) and

CPU load (above).

The reschedule policy made it possible to avoid ex-

treme machine overloads, which lead to a consider-

able and unbalanced resource utilization, occurring es-

pecially in the case of the overload policy. On the

270 K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system

Table 1

Machines used in the experiment

Host Country CPU no CPU speed Phys. Mem

rage1.man. poznan.pl Poland 2 Pentium-III 1.4 GHz 1.0 GB

fs0.das2.cs.vu.nl Holland 2 Pentium-III 1.0 Ghz 2.0 GB

n0.hpcc.sztaki.hu Hungary 2 PIII-.5G Hz 251 MB

rage2.man.poznan.pl Poland 2 Pentium-III 1.4 GHz 1.0 GB

rage3.man.poznan.pl Poland 2 Pentium-III 1.G Hz 1.0 GB
peyote.aei.mpg.de Germany 4 Xeon 2.8 GHz 4.0 GB

gridentry.uni-paderborn.de Germany 2 Pentium III 850 Mhz 512 MB

rage4.man.poznan.pl Poland 2 Pentium-III 1. GHz 1.0 GB

helix.bcvc.lsu.edu USA 4 Xeon 2.0 GHz 4.0 GB

other hand, the wait policy is characterized by lower
resource utilization, since this method keeps jobs in the
queue until the required resources are available. The
resource utilization using the reschedule policy is rea-
sonable: greater than for the overload and smaller than
for the wait policy. Surprisingly, differences between
the mean resource utilization for particular policies are
rather reasonable. In the case of a load, the reason is
that, we used only memory (not load) to decide about
the migration to another host. Additionally, several
jobs were running on the overloaded hosts long after
a majority of other jobs finished, decreasing the over-
all load and memory usage in the case of the overload

policy.

6.3. Influence of resource requirements and execution

times on the performance of policies

To make the comparison of the policies more use-
ful and detailed, we should determine classes of jobs
for which particular methods perform better than for
others. Therefore, we investigated the influence of job
runtimes and resource requirements, i.e. “the size” of
the job, on the performance of each studied policy.

Results presented in Fig. 6 confirmed our presump-
tions that the use of rescheduling brings the greatest
benefits if it is used for relatively small and rather long
jobs. Free memory and numbers of iterations given in
Fig. 6 stand for the mean values for the whole set of
jobs.

We observed that the especially good performance
gain has been attained when the incoming job set con-
sisting of many small long-lasting jobs was followed
by the submission of jobs having large requirements (in
our case concerning free memory).

6.4. Changes of metrics over time

It seems interesting to have a closer look at the way
all policies behave. Let’s see. Figures 7, 8 and 9 show
how the measured performance changes over time.

13

73

14

47

87

36

72

12

0

20

40

60

80

100

120

140

160

180

200

6000 12000 18000

M
ea

n
 r

es
p

o
n

se
 t

im
e

Overload Wait Reschedule

174

9993

7063

40 40

68

49

0

20

40

60

80

100

120

140

160

180

200

30% 50% 70%

M
ea

n
 r

es
p

o
n

se
 t

im
e

Overload Wait Reschedule

Fig. 6. Mean response time depending on application memory re-
quirements: 30%, 50% and 70% of the mean memory available

on hosts (below), and duration: 6000, 12000 and 18000 iterations

(above).

The advantage of the reschedule policy revealed it-
self mainly when the test machines were saturated with
incoming jobs, which means that new jobs submitted

to GRMS could not be started immediately (peaks in
the middle of Fig. 7). However, an excessive number
of jobs decreased the performance of all policies, even
the reschedule policy. The obvious reason of this is
that jobs could not migrate to any other hosts for lack
of free resources.

You can see in Fig. 8 the periods in which throughput
decreased significantly for the wait policy. This phe-

K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system 271

Fig. 7. Response time changing over time.

Fig. 8. Number of running jobs changing over time.

nomenon is related to the aforementioned long job wait-

ing times. This effect did not appear to such an extent

for the reschedule policy, since in this case jobs were

rescheduled to enable waiting jobs to run (at the same

time avoiding the overload of machines). Of course,

throughput deteriorations also occur if jobs cannot be

migrated to other hosts, but they are not as significant

as for the wait policy (there are smaller “valleys” on the

plot of the reschedule strategy in Fig. 8). We should

also be aware that the steadily increasing number of

running jobs in the case of the overload policy is not

profitable, because it slows down job execution times.

This is caused by the intense overload of machines.

Figure 9 shows that just as in the case of load and the

job throughput, high resource utilization (concerning

allocated memory) occurred for the overload policy.

On the other hand, use of the wait policy led to the

Fig. 9. Mean free memory changing over time.

lowest resource utilization (the biggest amount of free

memory).

Comparing these results with the analysis of other

metrics presented in this section, we can conclude that

the best performance of the reschedule policy is con-

nected with reasonable resource utilization: not too

great (to avoid a machine overload) and not too small

(to avoid excessively long waiting times for jobs in the

queue).

7. Summary

7.1. Conclusions

In this paper, we presented our rescheduling method

that aims to shorten queue waiting times in the

Grid(Lab) Resource Management System (GRMS)

and, consequently, decrease the application response

times. We explored a migration that was performed due

to the insufficient amount of free resources required by

incoming jobs. Application-level checkpointing was

used in order to provide full portability in the hetero-

geneous Grid environment. In our tests, the amount of

free physical memory was used to determine whether

there are enough available resources to submit the pend-

ing job. Nevertheless, the algorithm is generic, so we

can easily incorporate other resources such as free pro-

cessors, disc space, or even a network bandwidth.

Rescheduling techniques turned out to be very use-

ful, especially for applications of a reasonable “size”

and duration. Makespan, response times and resources

utilization metrics were particularly improved in the

case of sets of applications characterized by reasonable

memory requirements and sufficiently long execution

times. On the other hand, the rescheduling policy did

272 K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system

not work well for excessively small jobs, as they mostly

fitted the available memory and did not take advan-

tage of the migration technique. On the basis of our

experiments, the optimal value of mean jobs’ memory

requirements appears to be about 50% of the memory

available on hosts. Additionally, the memory require-

ments of applications should be diverse. Especially

good performance gain was achieved when the set of

incoming jobs consisting of many small long-lasting

jobs was followed by the submission of jobs having

larger requirements.

We should also emphasize that migration turned out

to be useful and more efficient than the remaining two

policies, although experiments were performed in the

wide area network on the transatlantic testbed. Thus,

benefits achieved by means of the reduction of queue

waiting times and the migration of applications to the

best available resources outstripped overheads con-

nected with writing and reading the checkpoint files,

application startup times, and the transfer of necessary

data through the network.

The reschedule policy achieved the best performance

due to reasonable resource utilization when compared

with the remaining two strategies (greater than for

the wait policy and lower than for the overload pol-

icy). The response time metrics (both the mean and

maximal value) have been particularly improved using

rescheduling. This is a real advantage of the reschedul-

ing policy, since the response time is a very important

metric for individual users submitting jobs to the Grid.

The rescheduling capability can be considered as

a useful additional feature for performance improve-

ment, since it is not suitable for all possible jobs’ sizes,

durations and sequences. The grid scheduler should

try to schedule jobs as optimally as possible and then

reschedule them dynamically, if this is both required

and feasible. Furthermore, we have shown that the

insufficient amount of free resources required by the

incoming application can be a useful initiator of the

migration, in addition to those investigated in other pa-

pers (and listed in Section 1), such as, for example,

performance deterioration of the running application.

In general, the use of the job migration and

rescheduling methods leads to the significant improve-

ment of overall performance. Furthermore, this ap-

proach may be the only way to provide requested per-

formance for end-users if job execution times and re-

source usage are not known a priori, as we assumed in

our experiments. We conclude that dynamic reschedul-

ing based on application-level checkpointing and mi-

gration is a strategy that should improve resource

brokering and scheduling in heterogeneous and non-
dedicated environments. Therefore these mechanisms
are particularly useful for Grids.

7.2. Future research

In this paper we compared the rescheduling method
with two very simple policies under the assumption
that the environment does not provide any information
about estimated job runtimes and queue waiting times.
However, more advanced techniques can also be used,
for example backfilling, which is a common method for
improving job throughput [7,15]. In future research, we
would like to compare these with rescheduling methods
based on the job migration presented in this paper.

We also plan to make some improvements to the
existing rescheduling algorithm. One of them is the
attempt to prevent multiple migrations of the same job
by using the history of migrations. Moreover, we are
going to use the rescheduling algorithm for more than
one type of resource simultaneously (supplementing
the free memory with free processors and disc space,
etc.). We would also like to involve more metrics (with
a greater accuracy) to evaluate the selection of jobs to
migrate, for example:

– estimations of the remaining job execution times,
– network metrics to estimate the costs of migration

more precisely,
– exact sizes of the checkpoint files (instead of the

memory allocated by applications).

In our tests we used the migration mechanism work-
ing between single hosts with public IP addresses.
However, in grid environments, jobs submitted to lo-
cal sites are usually run under the control of queuing
systems. Internal nodes of clusters are often inacces-
sible from the outside due to private IP addresses or
firewalls. Thus, migration between such clusters be-
comes more difficult. To enable this capability, we
plan to apply the Mercury Monitoring System (used in
the experiment to gather information about the state of
resources) to checkpoint the application inside a clus-
ter by sending an appropriate system signal. In this
scenario, GRMS uses the Mercury Monitoring Sys-
tem’s interfaces only on a front-end machine to send
a checkpoint call. Another advantage of this approach
is the possibility of checkpointing and migrating jobs
between different queuing systems.

Other measures we are working on include the util-
ity, stability and robustness of the new schedule ob-
tained after rescheduling. This will allow us to provide
methods for robust predictive and reactive scheduling
on the grid.

K. Kurowski et al. / Dynamic grid scheduling with job migration and rescheduling in the GridLab resource management system 273

Acknowledgments

We are pleased to acknowledge support from the EU

GridLab project (IST-2001-32133).

References

[1] http://www.gridlab.org/WorkPackages/wp-9/.

[2] http://www.gridlab.org.
[3] http://www.globus.org.

[4] http://www.gridlab.org/WorkPackages/wp-5/testbed/gtest.

html.

[5] http://www.gridlab.org/WorkPackages/wp-11/.

[6] https://forge.gridforum.org/projects/gridcpr-wg.

[7] http://www.platform.com/.

[8] http://wwws.sun.com/software/gridware/.
[9] F. Berman et al., Adaptive Computing on the Grid Using Ap-

pLeS, IEEE Transactions on Parallel and Distributed Systems

14(5) (2003), 369–382.

[10] R. Buyya, D. Abramson and J. Giddy, A Computational

Economy for Grid Computing and its Implementation in the

Nimrod-G Resource Broker, Future Generation Computer

Systems, Vol. 18 Elsevier Science, 2002, pp. 1061–1074.

[11] H. Dail, O. Sievert, F. Bermann et al., Scheduling in the Grid

Application Development Software Project, in: Grid Resource

Management: State of the Art and Future Trends, J. Nabrzyski,

J. Schopf and J. Weglarz, eds, Kluwer Academic Publishers,

2003, pp. 71–98.

[12] E. Huedo, R. Montero and I. Llorente, The GridWay Frame-

work for Adaptive Scheduling and Execution on Grids, In

Proceedings of AGridM Workshop (in conjunction with the
12th PACT Conference, New Orleans (USA), Nova Science,

October, 2003.

[13] K. Kurowski, J. Nabrzyski, A. Oleksiak and J, Weglarz, Mul-

ticriteria Aspects of Grid Resource Management, in: Grid Re-

source Management, J. Nabrzyski, J. Schopf and J. Weglarz,

eds, Kluwer Academic Publishers, Boston/Dordrecht/London,

2003, pp. 275–296.

[14] R.S. Montero, E. Huedo and I.M. Llorente, Grid Resource
Selection for Opportunistic Job Migration, In Lecture Notes

in Computer Science 2790 (August, 2003), pp. 366–373.

[15] S. Srinivasan, R. Kettimuthu, V. Subramani and P. Sadayap-

pan, Characterization of Backfilling Strategies for Parallel Job

Scheduling, In Proceedings of 2002 International Workshops

on Parallel Processing (held in conjunction with the 2002 In-

ternational Conference on Parallel Processing, ICPP 2002),

August, 2002.
[16] S. Vadhiyar and J. Dongarra, A Performance Oriented Mi-

gration Framework For The Grid, In Proceedings of CCGrid,

IEEE Computing Clusters and the Grid, CCGrid 2003, Tokyo,

Japan, May 12–15, 2003.

Submit your manuscripts at

http://www.hindawi.com

Computer Games
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable

Computing

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied
Computational
Intelligence and Soft
Computing

 Advances in 

Artificial
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in

Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer
Engineering

Journal of

Journal of

Computer Networks
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Advances in

Multimedia

 International Journal of

Biomedical Imaging

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational
Intelligence and
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling &
Simulation
in Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

The Scientific
World Journal
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

