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Dynamic Hair Capture using Spacetime Optimization
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Figure 1: Our dynamic hair capture system is able to recover different motions of wavy hair driven by wind (middle) and head shaking (right).
The captured hair model (right of each pair) faithfully reconstructs the geometry and dynamics of video frames (left of each pair).

Abstract

Dynamic hair strands have complex structures and experience in-
tricate collisions and occlusion, posing significant challenges for
high-quality reconstruction of their motions. We present a compre-
hensive dynamic hair capture system for reconstructing realistic hair
motions from multiple synchronized video sequences. To recover
hair strands’ temporal correspondence, we propose a motion-path
analysis algorithm that can robustly track local hair motions in in-
put videos. To ensure the spatial and temporal coherence of the
dynamic capture, we formulate the global hair reconstruction as a
spacetime optimization problem solved iteratively. Demonstrated
using a range of real-world hairstyles driven by different wind condi-
tions and head motions, our approach is able to reconstruct complex
hair dynamics matching closely with video recordings both in terms
of geometry and motion details.

CR Categories: I.3.5 [Computer Graphics]: Computational Geom-
etry and Object Modeling—Geometric algorithms; I.3.7 [Computer
Graphics]: Three-Dimensional Graphics and Realism—Animation;

Keywords: image-based hair modeling, dynamic capture

1 Introduction

Along with a striking development of image sensing and computer
vision techniques, the 3D dynamic capture has received consid-
erable research in computer graphics, ranging from human body
poses [de Aguiar et al. 2008; Vlasic et al. 2008], facial expres-
sion [Bickel et al. 2007; Bradley et al. 2010; Beeler et al. 2011],
and cloth motions [Bradley et al. 2008] to natural phenomena such
as liquids [Wang et al. 2009a; Gregson et al. 2012], flames [Ihrke
and Magnor 2004], and even plant growth [Li et al. 2013]. 3D
reconstruction of dynamic data enables runtime re-targeting and re-
rendering, but also paves the way to understand specific dynamics
and building various applications, such as the derivation of data-
driven models and the validation of numerical simulations.

In this paper, we focus on the capture of 3D dynamic hair, a rela-
tively underexplored dynamic capture problem. As one of the most
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recognizable parts of a human body, hair strands have diverse styles
and exhibit rich spatiotemporal details. While many hair simulation
techniques have been devised, these methods still face limitations
in terms of fidelity, scalability, parameter selection, and contact res-
olution. 3D capture, on the other hand, provides a direct way to
recover complex hair dynamics, and thus can be complementary to
simulation methods.

Dynamic hair capture is challenging. At any time instance, the re-
constructed hair needs to faithfully capture the overall hair shape as
well as resolve spatial details. Addressing this problem has been a
central subject in many recent static hair capture methods [Wei et al.
2005; Luo et al. 2013a; Hu et al. 2014]. Although fairly sophisti-
cated, these methods, when applied for dynamic hair capture, lack
the ability to establish strands’ temporal correspondence across a
whole sequence of static reconstructions. Further, the reconstructed
hair distribution over a scalp can vary dramatically. Straightforward
application of these methods fails to respect temporal coherence,
resulting in unpleasant flickering artifacts.

Reconstruction of hair strands’ temporal correspondence gives rise
to many challenges. Dynamic hair constantly experiences mutual
collisions, and some hair strands can move to the surface layer of
a hair volume, occluding other stands in a time-varying way. Con-
sequently, no matter how many cameras are placed around, the hair
strands that can be tracked through video capture will be incomplete
and temporally discontinuous. To make matters worse, the tiny and
thin features of hair strands can cause severe motion blur in the cap-
tured video. Therefore, traditional feature-tracking algorithms such
as optical-flow methods fail to track hair strands robustly. While
there exist prior attempts of dynamic hair capture (e.g., [Yamaguchi
et al. 2009; Luo et al. 2011; Zhang et al. 2012]), they still suffer
from problems such as temporally incoherent hair fibers and topol-
ogy, and lacking sufficient details.

Our approach to address the strand correspondence is based on a
key observation: the motion of individual hair strands projected
on a 2D image plane leaves clear trajectories on either horizontal
or vertical slices of a spacetime video volume. Such trajectories,
which we call motion paths (see Figure 5), are resilient to image
noises, temporal aliasing and motion blur, and thus can serve as
robust indicators of hair correspondence across frames. However,
owing to the hair occlusions, motion paths that are recoverable from
video sequences are likely to be sparse. To circumvent this problem,
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we exploit a high-quality spatial hair reconstruction at each frame,
and develop a spacetime optimization algorithm to infer the missing
correspondence in a temporally coherent way.

Our proposed approach has the following major steps. We start
by reconstructing static hair geometry at every frame. We build
our approach upon the multi-sensor hair capture method [Luo et al.
2013a] to construct a set of directed hair ribbons (in § 3) represent-
ing a group of local hairs that have consistent shapes and directions.
Meanwhile, we extract the hair motion paths from individual video
sequences (in § 4). We then convert the per-frame hair ribbons into
hair strands by solving a spacetime optimization problem (in § 5),
which incorporates the extracted motion paths to ensure temporal
coherence of hair motion as well as the hair length preservation and
hair root distribution to achieve physically plausible hair geometries.

2 Related Work

Over the past decades, numerous methods have been devised to
model, simulate, and render human hair. We refer the reader to a
survey [Ward et al. 2007] of this prolific field. In this section, we
mainly review work most closely related to ours: static and dynamic
hair capture methods.

Static hair capture. Static hair reconstruction from multi-view
images is pioneered by a series of work including [Kong et al. 1997;
Grabli et al. 2002; Paris et al. 2004; Wei et al. 2005; Paris et al.
2008]. Several key ideas introduced therein, such as the estimation
of a dense 3D vector field from 2D images and tracing hair strands
through a vector field, are widely used in recent hair reconstruction
work. Jakob et al. [2009] reconstructed detailed fiber-level hair
geometry by sweeping the focal plane of a macro lens at different
distances. This method generally takes a rather long time and is
impractical for dynamic capture. Bonneel et al. [2009] estimated
hair geometry and appearance from a single photograph. But their
method aims for statistically plausible approximation rather than
faithful reconstruction. Beeler et al. [2012] introduced a system to
capture sparse facial hair and facial skin simultaneously using multi-
view stereo matching. Using thermal imaging techniques, Herrera
et al. [2012] sidestepped several common issues, such as anisotropic
hair reflectance, hair-skin segmentation, and achieved high-quality
reconstruction. But this method relies on the thermal emission from
the head scalp, and is not suitable for long hair strands that grow far
away from the head. Chai et al. [2012] proposed a single-view hair
modeling algorithm that can generate a partial hair model suitable
for image manipulation. Our dynamical hair capture is based on
the static hair capture method [Luo et al. 2013a], which groups hair
segments into ribbons, and then converts the ribbons into structured
hair wisps. The reconstructed hair structures are further improved
by a recent method [Hu et al. 2014] that exploits physical simulation
methods to build a database of strand examples.

All these methods focus on faithful reconstruction of static hair ge-
ometry. None of them were explicitly designed to ensure temporally
coherent hair reconstruction. When provided with a sequence of
input images, these methods can perform the reconstruction at ev-
ery single time instance, but may lead to hair jumping or flickering
artifacts.

Dynamic hair capture. Dynamic hair capture from videos is
much less explored. A central challenge is to ensure temporal coher-
ence while retaining the hair details. Ishikawa et al. [2007] attached
small reflective markers to a few hair strands and used a motion
capture system to reconstruct the motions of these “guide strands”,
followed by an interpolation scheme to generate a full dynamic
hair model. They were limited by very coarse hair motions, as the

Figure 2: Our dynamic hair acquisition setup consists of 21 Go-
Pro cameras and six LED arrays.

details were smeared out by the interpolation of guide hairs. Ya-
maguchi et al. [2009] extended an earlier work [Wei et al. 2005].
The method, however, only works for straight hair with limited mo-
tion. Luo et al. [2011] computed multi-view correspondence from
2D orientation maps for dynamic hair capture, but still has arti-
facts of temporal incoherence in the results. Zhang et al. [2012]
proposed a simulation-guided approach for dynamic hair capture.
Simulated hair motions are used to ensure temporal coherence, but
this method is limited by an over-smoothed hair geometry. Lastly,
Chai et al. [2013] demonstrated a dynamic hair modeling technique
based on single-view input, but their combination of optical flow
with sparse features for tracking hair motion is limited by simple
hairstyles and motions. Taking into account cross-view consistency
of hair orientations, Luo et al. [2013b] proposed an algorithm to
reconstruct a 3D hair surface of high accuracy. While their method
also works on dynamic input, the output result is a surface mesh
rather than a set of hair strands.

Different from all those methods, our approach exploits motion
paths to ensure temporal coherence. Our extraction of motion paths
is robust against image noises, temporal aliasing, and motion blur.
We further incorporate the motion paths into an optimization frame-
work to produce temporally coherent and detailed reconstruction.

3 Data Capture and Preprocessing

Our system takes as input video frames of moving hair captured
from multiple view angles. In the preprocessing step, the frames at
every time instance form a multi-view stereo system. We prepro-
cess video captured from every view individually, and reconstruct
the hair geometric structures statically. In particular, we reconstruct
at every time instance a set of directed hair ribbons following Luo
et al.’s recent work [2013a]. These hair ribbons, although lacking
temporal coherence, represent the hair’s large-scale shapes and di-
rections of growth, and will be used later as an initialization in our
optimization framework (in § 5).

Acquisition setup. We capture moving hair using 21 GoPro
HERO 3+ cameras mounted around the subject. They are able to
record video in 720p at 120 fps, and cover an angular range of
about 270◦ in longitude and 45◦ in latitude. We calibrate all the
spatially mounted cameras using the Multicore Bundle Adjustment
package [Wu et al. 2011], and synchronize their captures with a
flashbulb. To reduce sharp shadows, we light the hair with six LED
arrays (see Figure 2 for our lab setup).

Background removal. For each captured image frame, we re-
move non-hair background region automatically using a color clas-
sifier trained with a Gaussian Mixture Model [Chen et al. 2012]. For
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Figure 3: Hair ribbons and their directions: We reconstruct hair
ribbons of an input frame (left), connect them into hair wisps (mid-
dle), and build directed hair ribbons (right). The ribbon direction is
color-coded using a color gradient from red to yellow.

all datasets used in our examples, we manually paint 1 ∼ 3 binary
masks, which are sufficient to learn a classifier of foreground and
background pixels.

Head, scalp, and hair roots. We track the head’s rigid motion
by attaching a chessboard on the face of a dummy head (see Fig-
ure 2). We detect the chessboard using functionalities provided in
OpenCV [Bradski 2000] and estimate the head’s rigid motion at
every time instance automatically. The estimated rigid transforma-
tions are used to transform a 3D head model initially provided and
aligned by the user. We hypothesize that the hair roots are uniformly
distributed over the entire scalp region of the head model. And the
number of hair roots is a user-specified parameter, typically ranging
from 30k to 50k in our examples.

Directed hair ribbons. We generate hair ribbons using the ap-
proach introduced in [Luo et al. 2013a]. Here we briefly review this
method, while referring the reader to the original paper for more de-
tails. We start by generating a point cloud of the hair’s outer surface
using the Patch-based Multi-View Stereo (PMVS) algorithm [Fu-
rukawa and Ponce 2010]. Then we construct hair segments starting
from each reconstructed 3D point. The segments are generated
based on a 3D orientation field on the point cloud surface. We
compute a 2D dense orientation field for every single view using
a method similar to [Paris et al. 2004; Chai et al. 2012], and then
combine them into a 3D orientation field [Wei et al. 2005]. Next,
we group the segments into ribbons based on their spatial similarity
in local regions. And lastly, we build a connection graph to repre-
sent possible ways of connecting hair ribbons. This graph is used
to solve a graph-cut optimization problem for finalizing the ribbon
connection into hair wisps. Different from [Luo et al. 2013a], we
stop the pipeline at this step without moving on to the hair strand
generation. Instead, we choose the ribbons that are connected into
final wisps as our directed hair ribbons, as they have compatible
growth directions (see Figure 3). The directed hair ribbons will be
used as an initialization in § 5.
Remark. The rationale of keeping only directed hair ribbons is that
they can serve as representatives of local geometric structures of hair
at every time instance. In other words, they are “intrinsic” informa-
tion that we can recover statically. Provided with this information,
existing methods such as [Luo et al. 2013a] rely on heuristics to
interpolate hair geometries that are invisible or missing. While hair
interpolation is almost unavoidable because of hair occlusions, in
the case of dynamic capture, it is prudent to design the interpolation
scheme in a temporally coherent way. The static capture methods,
however, were not designed to respect temporal coherence. There-
fore, we postpone the computation of interpolated geometries such
as invisible hair strands and hair attachment to the scalp. We will
exploit motion paths introduced in the next section to bridge the
detected local geometric structures with temporally coherent dy-

Figure 4: The ambiguity of hair motion: A hair segment (black)
moves in three different directions. Its movements are perceived in
a local window (dashed circle). The two observed movements in (a)
and (b) are indistinguishable. When the hair segment moves along
its tangential direction (c), its movement can not even be observed.

namics.

4 Motion Path Analysis

A key step of dynamic hair capture is the extraction of temporal
information from input video sequences for tracking individual hair
strands. Unfortunately, traditional optical-flow-based methods fail
to track hair strands because of their thin structures. In fact, it is
even practically impossible to track the exact motion of most hair
segments, since the motion captured on an image can be ambiguous,
a phenomenon known as “Barberpole illusion” (see Figure 4).

Inspired by the Epipolar-Plane Images (EPIs) of light fields [Bolles
et al. 1987; Kim et al. 2013], we observe that the motion of hair
strands often exhibits clear trajectories in the horizontal or vertical
slices of a spatiotemporal video volume, as shown in Figure 5. This
observation underpins our basic idea of hair strand tracking: we
extract 2D hair trajectories robustly from each slice of the video
volume. These trajectories, which we call motion paths, will then
be used to track shape changes of 3D hair strands.

In this section, we first lay out in § 4.1 our algorithm of extracting
motion paths represented as a set of polylines. While the motion
paths are in 2D, when used in an optimization framework, they suf-
fice to estimate the 3D shape changes of a hair strand, as elaborated
in § 4.2.

4.1 Extraction of Motion Paths

Without loss of generality, consider a horizontal slice, which we
call motion-path slice, at row y of a spatiotemporal video volume.
For each pixel (x, t) on this slice, we wish to find (i) a confidence
value indicating how well we can track hair’s motion path at that
pixel, and (ii) a direction pointing to a pixel (x′, t+ 1) that are on
the same motion path in the next time frame (see Figure 5(d)).

A hybrid direction detector. One way to estimate the moving
direction at a pixel and the associated confidence value is using a
Gabor filter [Paris et al. 2004; Jakob et al. 2009]: we convolve the
image with a set of Gabor filters oriented at different angles, and for
each pixel select the angle that maximizes the filter response as the
detected pixel direction. The confidence value is computed based
on the amplitude and variation of filter responses. This method is
robust to image noise, and the resulting confidence map also cor-
responds to the ridge line features as demonstrated in [Chai et al.
2012]. This property helps us robustly re-center motion paths and
avoid drifting when tracing the paths in temporal domain. However,
simply applying oriented Gabor filters in our method is problematic.
When a hair strand moves quickly (e.g., faster than the video frame
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Figure 5: Motion paths: In a spatiotemporal video volume (a),
the motion of hair strands exhibits clear trajectories in a horizontal
slice (b)(c). In (d), one of such trajectories, which we call a motion
path, is highlighted in green.

rate), its trajectories on a motion-path slice may become discontin-
uous. The resulting temporal aliasing will be picked up by Gabor
filters as erroneous moving directions (see Figure 6(b)).

Another approach is to directly find in row t + 1 a pixel (x′, t +
1) whose 1D neighborhood within a radius r best matches that of
(x, t). In particular, let Iy(x, t) denote the pixel color at (x, t) of
the motion path slice, we compute

x
′ = argmin

x′

r
∑

j=−r

∥

∥Iy(x+ r, t)− Iy(x
′ + r, t+ 1)

∥

∥

2
. (1)

In this paper, we call this method 1D block matching. Unlike Gabor-
filter-based methods, this method is robust against temporal aliasing,
but more prone to image noise. In addition, it is also hard to estimate
a confidence map that corresponds to the ridges (see Figure 6(c)).

We propose a hybrid approach to leverage the advantages of both
methods. Given a motion-path slice, we first estimate a direction
field using the 1D block matching method. Let di denote the esti-
mated motion-path direction at a pixel i. We then convolve at each
pixel i with a Gabor kernel rotated exactly to the direction di. The
Gabor kernel we use has a form,

Kθ(u, v) = exp

(

−
1

2

[

ũ2

σ2
u

+
ṽ2

σ2
v

])

cos

(

2πũ

λ

)

, (2)

where ũ = u cos θ + v sin θ and ṽ = −u sin θ + v cos θ for a
rotation angle θ. For all the examples, we use σu = σv = 2, λ = 4.
The resulting filter responses are normalized over the entire image
as the confidence map. Lastly, we apply one pass of the orientation
refinement procedure as described in [Chai et al. 2012] to remove
outliers. This hybrid method is robust against both temporal aliasing
and image noise, as shown in Figure 6(d).

Tracing motion paths. Once we have obtained a direction and
confidence field on every motion-path slice, we start to trace the
motion paths along the estimated motion-path direction field. The

(a)

(b)

(c)

(d)

(e)

Figure 6: Motion path extraction: (a) Given a motion path slice
with temporal aliasing, (b) Gabor filters may detect incorrect direc-
tions due to aliasing. (c) An 1D block matching approach is robust
against aliasing, but prone to image noise. (d) Our hybrid approach
combines the advantages of (b) and (c), and produces a reliable
sparse direction field from which (e) a set of polyline paths can be
traced. The pseudo-color in (b-d) represents the detected direction
as in the inset.

confidence value at a pixel measures the quality of a local motion-
path direction; a low confidence indicates that the direction might
be contaminated by noises. Therefore, we are only interested in
motion paths along which the confidence values are high.

In each motion-path slice, we sweep through every row t (corre-
sponding to a frame t in time). For each untraced pixel (x, t) with
a confidence value higher than a threshold σ, we start tracing a new
motion path from that pixel. The tracing process repeatedly finds a
new pixel (x′, t+ 1) along the motion-path direction at the current
location (x, t) until it reaches a pixel whose confidence is below the
threshold σ. For all our examples in this paper, we set σ = 0.3.
At each tracing step, we also adopt a re-centering scheme similar
to that in [Chai et al. 2012] to correct the new position to the local
maximum of confidence. The pixels along a single trace form a
polyline on a motion-path slice (see Figure 6(e)). At the end of this
step, we obtain a set of polylines starting at different video frames
in time. These polylines serve for two purposes in our system: (i)
we use them to quickly check if a given pixel (x, y) at time frame
t is on any motion-path; this kind of query will be frequently used
when we optimize the hair geometry in § 5. And (ii) we use them to
warp a hair strand from one time frame to adjacent time frames, as
detailed in the next subsection.

4.2 Hair Prediction using Motion Paths

With a set of motion paths ready, we now present our algorithm
to warp a hair strand from its shape in time frame t to an adjacent
time frame t′. The algorithm introduced here will be used thereafter
in § 5. We will refer back to this subsection later when presenting
the hair geometry optimization algorithm.
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Figure 7: Motion path prediction in a single view: (a) A motion
path (red curve) intersecting with projected strand ξVt at (xφ, yφ)
traces to position φt,t′(xφ, yφ, t

′) at frame t′. (b) In a zoomed-in

view, we predict the shape of the projected strand ξVt′ by minimizing
the distance between φt,t′(xφ, yφ, t

′) and its closest strand point

ξVt′ (sφ). The latter can be represented as a linear combination of
the two adjacent projected strand particles.

Notations. We denote the shape of a hair strand at a time frame
t as ξt, and let ξVt be the 2D projection of ξt on a camera view V .
A hair strand is represented as a polyline consisting of N particles.
We use ξt(i), i = 1...N to denote the position of the i-th particle

on the strand and use ξVt (i) to indicate the corresponding projected
position on the view V . Additionally, we use φt,t′(x, y) to denote a
motion path between frame t and t′ that passes through pixel (x, y)
at frame t. Similarly, φt,t′(x, y, tc) denotes the pixel position this
motion path passes through at frame tc, so that φt,t′(x, y, t) =
(x, y).

Single-view prediction. Given a 2D projection of strand ξ in
view V and frame t (i.e., ξVt ) and the extracted motion paths, our
goal here is to predict the hair strand shape at time frame t′ by es-
timating the projected positions of hair particles ξVt′ (i), i = 1...N .

We first collect a set ΦV of motion paths that pass through the hair
projection ξVt from time frame t to t′, namely,

ΦV =
{

φt,t′(x, y) | (x, y) ∈ ξ
V
t

}

.

In other words, the hair strand deforms along all the paths in
ΦV , so the projected shape of ξ in frame t′ should pass through
φt,t′(x, y, t

′) for all the paths φt,t′ ∈ ΦV . Because of the possi-
bility of “Barberpole illusion”, we can not simply interpret a mo-
tion path φt,t′ as a point on ξVt moving horizontally from (x, y) to

φt,t′(x, y, t
′). To estimate the hair strand shape ξVt′ at time frame t′,

we propose to solve an optimization problem in which the point-to-
curve distance between φt,t′(x, y, t

′) and ξVt′ is minimized for all

φt,t′ ∈ ΦV in a least-squares sense (see Figure 7).

Concretely, consider a motion path φ ∈ ΦV that intersects with the
projected hair strand ξVt . Let (xφ, yφ) denote the intersection point.
Following along the motion path φt,t′ , its predicted position at t′ is
φt,t′(xφ, yφ, t

′). Denoting the unknown projected hair shape at t′

as ξVt′ , we define an energy function

EΦ =
∑

φ∈ΦV

∥

∥

∥
ξ
V
t′ (sφ)− φt,t′(xφ, yφ, t

′)
∥

∥

∥

2

, (3)

where ξVt′ (sφ) denotes the closest point on ξVt′ from the motion
path-predicted point φt,t′(xφ, yφ, t

′). If sφ is a real-valued parame-

terization of the polyline ξVt′ , we can rewrite the position of ξVt′ (sφ)

as a piece-wise linear interpolation of the hair particles, namely,

ξ
V
t′ (sφ) = (⌈sφ⌉ − sφ)ξ

V
t′ (⌊sφ⌋) + (sφ − ⌊sφ⌋)ξ

V
t′ (⌈sφ⌉),

where ⌈sφ⌉ and ⌊sφ⌋ are respectively the subsequent and preceding

hair particles of hair strand ξVt′ at the parameter sφ.

In addition, since the motion paths are typically sparse in compari-
son to strand vertices, we introduce two regularization terms. The
first one is to preserve strand length,

Elen =

N
∑

i

∥

∥

∥
ξ
V
t′ (i+ 1)− ξ

V
t′ (i)

∥

∥

∥

2

,

and the second is to preserve local shape details represented by
Laplacian coordinates [Sorkine et al. 2004]:

E∆ =
∑

i

∥

∥

∥
2ξVt′ (i)− ξ

V
t′ (i− 1)− ξ

V
t′ (i+ 1)

∥

∥

∥

2

.

Finally, the total energy is defined as

E = αΦEΦ + αlenElen + α∆E∆. (4)

We set αΦ = 300 and αlen = α∆ = 1 in all our examples.

Now we need to solve for the unknown hair particle positions
ξVt′ (i), i = 1..N by minimizing the energy function (4). The eval-
uation of (4) involves computing the parameterization sφ of closet
points, as used in (3). If we know sφ a priori, minimizing the en-
ergy function (4) amounts to solving a sparse linear system of pro-
jected vertex positions of ξVt′ (i.e., ξVt′ (i), i = 1..N ). We therefore
solve the minimization problem of (4) in an iterative way similar
to the Iterative Closest Point (ICP) algorithm: in each iteration, we
first find for each φt,t′(x, y, t

′) the closest point on the current es-

timation of ξVt′ , and then solve the resulting linear system (using
CHOLMOD [Davis and Hager 2009; Chen et al. 2009]) to compute
updated vertex positions of ξVt′ .

Multi-view prediction. When we have input from multiple views
in which ξt is visible, the 2D projection of ξt′ in each view needs
to match as closely as possible the hair strand prediction by that
view’s motion paths. These 2D motion path predictions collectively
constrain the 3D shape of ξt′ . The formulation of the optimization
is similar to the single-view case. The only difference is that the
penalty term (3) for the mismatch of motion paths now includes all
views where ξt is visible.

5 Spacetime Hair Optimization

So far we have reconstructed a sequence of directed static hair rib-
bons at all time instances (in § 3) and extracted motion paths in
motion-path slices of every view’s spatiotemporal video volume (in
§ 4). In this section, we combine them together to generate a final
animation of hair strands in a spatiotemporally coherent way.

We start by estimating a per-frame 3D direction field from the di-
rected hair ribbons (§ 5.1). Since the ambiguity of hair’s direction
of growth has been resolved by direction analysis in our data pre-
processing step [Luo et al. 2013a], we can trace physically plausible
hair strands using the direction field (§ 5.2). However, these ini-
tial strands resemble independent geometric shapes of hair in each
time frame, neglecting their temporal coherence. Consequently, the
resulting hair strands have flickering artifacts. To address this prob-
lem, we propose an iterative optimization method that effectively
re-matches each strand’s external part with its root, producing a
final dynamic hair model that is both temporally smooth and detail-
preserving (§ 5.3).
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Figure 8: Ribbon warping: (left) Directed hair ribbons recon-
structed at a single frame are typically sparse. (right) By adding the
warped ribbons from adjacent (±2 in this case) frames, the resulting
ribbons are much denser. They retain hair details and temporally
coherence.

5.1 Per-frame 3D Direction Fields

The directed hair ribbons produced in the preprocessing step (§ 3)
represents the most salient static hair structures at each frame, but
they are likely to be sparse (see Figure 8). Our first attempt of infer-
ring the missing data was computing a dense 3D direction field using
the sparse known directions as constraints, followed by tracing hair
strands using the resulting direction field. This approach produces
smooth vector field, mainly because the directions and shapes repre-
sented by directed hair ribbons are consistent throughout the entire
hair volume. However, since the directed hair ribbons are sparse,
the resulting direction field tends to be overly smoothed, losing hair
structure details. Moreover, we observed that the sparsity of hair
ribbons can change dramatically from frame to frame, leading to
temporally incoherent direction field. On the other hand, it suggests
that we can fill in missing ribbons in one frame by warping ribbons
from adjacent frames using motion paths.

Ribbon warping using motion paths. In each time frame t, we
warp ribbons from an adjacent time frame t+∆ toward the frame
t and add them into the set of hair ribbons at frame t (see Figure 8).
According to [Luo et al. 2013a], every hair ribbon resembles a set
of isocurves. Warping a ribbon from frame t +∆ to t amounts to
a multi-view motion-path prediction (introduced in § 4.2) of each
isocurve. In practice, we use ∆ ∈ {−2,−1, 1, 2}, and only warp a
ribbon if all its isocurves have at least 5 intersecting motion paths.
Recall that in § 4.1 we extract motion paths as polylines. We check
the intersection between a polyline and an isocurve by comparing
the closest distance between them against a small threshold value of
2 pixels.

Hair root directions. Hair roots are almost always invisible, yet
their direction can significantly affect overall hair shape as well as
the reproduction of hair features such as parting lines or vortices.
Our system allows the user to draw directly a hair parting line on
the scalp. For each hair root, we then estimate an incline direction
using the gradient of a geodesic distance field defined on the param-
eterized scalp surface [Wang et al. 2009b]. The hair root direction
is set by tilting the scalp surface normal to the incline direction by
a user-adjustable amount. We use a 90 degree incline angle for all
our examples.

Direction field diffusion. Lastly, we generate a complete direc-
tion field at a time frame by diffusing the directions defined on all

directed ribbons, including both the original and the warped ones.
The direction filed is solved in a bounding box of hair volume. We
discretize the bounding box into voxels, among which the ones con-
taining either part of a ribbon or a hair root are considered as known
voxels whose directions are the ribbon’s direction or root direction.
We use the known voxels as Dirichlet boundary condition to solve
a Laplace equation. This diffusion procedure is similar to [Fu et al.
2007], and the voxel size used in our examples is 3 mm.

5.2 Generating initial strands

Interior distance field. To confine hair strands to captured hair
volume, we also compute a scalar distance field, denoted as D,
similar to the one used by Luo et al. [2013a]. We reuse the 3D grid
used for the direction field diffusion to solve and store D there. A
voxel that is occupied by a directed hair ribbon or a head model
is considered as a hair boundary voxel, in which we store a zero
distance-field value. The distance values of the boundary voxels of
the bounding box volume is set to be the smallest Euclidean distance
between that voxel and any hair boundary voxel. The values of all
other voxels are computed by solving a diffusion equation.

Strand growing. Given a time frame t, after computing the 3D
direction field V and the interior distance field D, we now generate
an initial hair model by growing individual strands from the hair
roots following the 3D direction V,

ξ(i) = ξ(i− 1) + ǫV(ξ(i− 1)), (5)

The growing of a hair strand terminates when any of the following
conditions is met: (i) the strand has grown out of the hair volume
where D(ξ(i)) > dbound; (ii) the growing direction has a sharp
change V(ξ(i)) · V(ξ(i − 1)) < 0; (iii) the strand has reached a
predefined maximum length. We set dbound to be 10 mm in practice.

Strand length correction. Following the process above, we can
generate an initial dynamic hair model S0 from all the input frames.
Each dynamic strand in S0 has a fixed root, but its length may vary
significantly through the sequence. This is because it is very difficult
to detect hair tips from input video frames. Previous image-based
methods tend to generate as-long-as-possible hair strands, causing
hair tips to concentrate unnaturally in a narrow region (usually near
the bottom volume boundary in the case of a draping hairstyle).

To remedy this issue, for each dynamic strand ξ, we calculate its
average length through the entire sequence as a preferred length, and
trim ξ so that its length in any frame is no longer than the preferred
length. Figure 9 compares the initial hair strands before and after
length correction. This correction step greatly reduces strand length
variation while keeping the overall hair shape nearly unchanged.

5.3 Optimizing Final Strands

Being traced directly from the 3D direction field, the initial dynamic
hair model S0 in general matches the large-scale geometry of the
original hair quite well. However, the connections between exterior
strand segments and hair roots are temporally inconsistent and prone
to small differences from the input. As a result, a strand may largely
jitter even though its root is fixed on the scalp, and the entire hair
model will appear flickering.

EM-like optimization. We therefore seek hair strand motion that
can both robustly grow to the exterior and match the spatial geo-
metric details in each frame. This problem is similar to the case in
Expectation-Maximization (EM) [McLachlan and Krishnan 1997],
where the variables (the strand shape) and the parameters of the
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Figure 9: From left to right: input video frame, directed hair ribbons, initial strands without length preserving, initial strands with length
preserving, and the final optimization result.

energy function (the spatial constraints this strand should satisfy)
are both unknown. We thus introduce an EM-like algorithm for op-
timizing the final shape of each strand. It alternates between the E
and the M steps:

• In the E-step, for each strand ξt in frame t, we use multi-
view motion path prediction (§ 4.2) to warp the corresponding
strand ξt+∆ from an adjacent frame t+∆ to the current frame,
with an additional hard constraint that the root of the warped
strand must coincide with ξt(0).

Let ξt+∆,t denote a strand warped from frame t+∆ to t, for
each ξt we calculate a weighted average of all warped strands:

ξ
∗
t =

3
∑

∆=−3

w∆ξt+∆,t, (6)

where w∆ is normalized Gaussian weight, and ξt,t = ξt. The
warped strands are uniformly re-sampled before averaging.

• In the M-step, we align each average strand ξ∗t computed in the
E-step with the local spatial constraints. We select the aligned
strand ξ′t by iteratively minimizing the following energy func-
tion:

Ev =
∑

i

(

∥

∥ξ
′
t(i+ 1)− ξ

′
t(i)− ǫVt(ξt(i))

∥

∥

2

+
∥

∥ξ
′
t(i)− ξ

∗
t (i)

∥

∥

2
)

,

(7)

where Vt is the 3D direction field in frame t, and ǫ = 3 mm
the step length for initial hair tracing.

This process deforms ξ∗t locally so that it better matches the ge-
ometric details encoded in the direction field and in the mean
time preserve the temporally consistent large-scale shape, ef-
fectively performing a re-connection between exterior hair seg-
ments and hair roots on the scalp.

In practice we find that 10∼25 EM iterations are sufficient to con-
verge to a good result in most cases.

6 Results

We have captured three different hairstyles including a short straight
one, a long wavy one, and a long straight one, each with several
different types of motions. As shown in Figure 13, our results can
faithfully reproduce the prominent shapes of the original hair strands
even in the case where a group of hair wisps move in front of other
hairs. When blown by wind (Figure 1 and 13), the stochastic strand
motion can also be reconstructed by our method. For the long wavy
hairstyle, the reconstructed hair model preserves the original char-
acteristic waves while maintaining temporal consistency. We refer

Algorithm Step Time cost (hours)

Image background removal 0.2

PMVS point cloud 4

Directed hair ribbons 1

Motion path analysis 0.5

Align ribbons 4

Initial strands 2

Final strands 3

Total 14.7

Table 1: Timings of our algorithm on a typical 1200-frame, 21-
view dataset, measured on a shared cluster with about 200 effective
processing cores.

the readers to the supplemental video that includes all the dynamic
results.

In Figure 10, hair strands dynamically interact with a ball, mimick-
ing the cases where real hair collides with obstacles such as one’s
shoulders. The reconstructed hair strands move around the virtual
ball in a convincing way, even though some internal strands may
penetrate into the ball, as our current algorithm does not resolve
collisions explicitly.

Our input video sequences have a length of 3∼10 seconds (120
frames per second), and the reconstructed hair models in our ex-
amples consist of 30K∼50K strands. Note that the hair’s level of
details largely depends on the input video quality and the resolution
of reconstructed vector field. In our case, 30K∼50K strands are
sufficient for capturing the geometric details while keeping a low
storage and I/O cost. For rendering purpose, however, a denser set
of hair can be interpolated.

6.1 Implementation details

Our algorithm pipeline is mostly automatic. Given a set of multi-
view video captures, the only needed manual input is to paint 1-3
hair masks for training the foreground/background classifier, and
aligning the head model in a single frame. It takes about 15 min for
manually setting a dataset.

We process the captured data on a shared computer cluster whose
available cores vary from several dozens to a few hundreds. For
a typical 1200-frame dataset, the average processing time is about
15 hours. Table 1 shows the timings for individual algorithm steps.
The input image frames and the output of every steps take about
500GB storage in total for each dataset.
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Figure 10: Hair interacting with a ball: Three input frames are
shown in the top row, and the corresponding reconstructed hair
models are in the bottom row.

6.2 Discussion

Comparison with [Zhang et al. 2012]. Our captured hairstyles
are similar to those in [Zhang et al. 2012]. However, the results from
both approaches have significant differences. Spatially, our results
capture the hair’s global shape. In comparison with [Zhang et al.
2012], our results preserve more local details. Notably, we resolve
the non-smooth wisp structures and the gaps in-between (e.g., the
valley-shaped hair region in the fourth group of Figure 13 - Dataset
#1). Temporally, Zhang et al.’s results only demonstrate with gentle
and relatively slow hair motions, as shown in their video. In con-
trast, our method can handle rapid head shaking as well as wind
blows under which nearby strands may move quite differently. This
robustness is due to our robust motion path tracking and the space-
time optimization that takes both spatial and temporal constraints
into account in each iteration.

Motion path slice direction. In all our examples, we use hori-
zontal motion-path slices for motion-path extraction, because the
hair strands are more likely to intersect with nearly perpendicular
slices. If the 2D projection of a strand intersects with slices nearly
in parallel, the resulting motion paths may become ambiguous and
thus difficult to detect, as shown in Figure 11. We note that neither
our motion path extraction nor the motion prediction algorithm de-
pends on a specific slice direction. When necessary, one can choose
different slice directions according to the strands’ local orientations.

Limitations. The types of dynamic hair that our method can ro-
bustly reconstruct are limited by the geometric and motion inconsis-
tency of the hair subject. In our pipeline, a number of steps such as
point cloud reconstruction, 2D orientation fields, directed ribbons,
and 3D direction field all assumes that the hair geometry have lo-
cally limited shape variance. While this assumption is valid for a
wide range of real-world hairstyles (e.g., the wavy one shown in
Figure 1 and 13), certain hairstyles under large-scale head motions
or external forces such as in a strong wind can result in severely
large local variance of hair geometry. For those cases, our method

Figure 11: A vertical motion path slice of the video volume in
Figure 5(a).

may produce overly smoothed results. One failure case in our ex-
periments is shown in Figure 12, where the hair strands are blown
by a strong electronic fan, producing a rather chaotic hair motion.
In this case, the PMVS fails to reconstruct a reliable point cloud,
and the directed ribbons are sparse even after ribbon augmentation.
What makes it worse, resolving the ambiguity of hair’s direction of
growth in a temporally coherent way also becomes quite challeng-
ing. While our method still produces a complete and temporally
smooth dynamic model, the rich motion details in the input are
largely missing in the reconstruction.

Another limitation of our method is that the silhouette (visual hull)
of the reconstructed hair may not closely match the input, especially
near the tips of draping hairs. By using a more sophisticated video
matting algorithm, we might be able to cut hair tips near the sil-
houette based on soft hair masks, and thereby further improve the
direction estimation and strand tracing. Another alternative is to
replace the PMVS-based point cloud reconstruction by [Luo et al.
2013b], which can generate a high-quality hair surface using a wide-
baseline setup similar to ours.

Real hair often has a small portion of stray strands. Their shapes and
motion can differ from their nearby hair strands noticeably. This
kind of spatially local variance poses difficulties for many existing
reconstruction methods including ours. Missing those spatial de-
tails can degrade the visual realism of final results. One possible
approach to circumvent this problem is to add some procedurally
generated or physically simulated stray hairs to the reconstruction
results in a post-processing step.

When hair strands interact with an object (see Figure 10), our cur-
rent algorithm reconstructs hair strands that might intersect with the
object mainly because of two reasons. First, when the object is par-
tially occluded by hair, the object surface behind the hair becomes
invisible from cameras. Thus it is difficult to recover that part of
3D shape of the object unless some prior knowledge about the ob-
ject’s geometry is assumed. Second, even with a known object’s
geometry, our current framework does not resolve the collisions ex-
plicitly. However, it is possible to correct the hair strand positions
in a postprocessing step to resolve collisions using methods such as
position-based dynamics [Müller et al. 2007; Cai et al. 2014]. In
this paper, we leave the dynamic capture of both objects and hair
strands as a future work, and focus on the capture of hair strands
only.

Capturing the hair of real human subjects requires a robust head
tracking algorithm (e.g., [Bradley et al. 2010; Beeler et al. 2011]).
Our algorithm has no assumption about the material or physical
properties of hair fibers, so it should be able to reconstruct most hair
strands of a human subject. But similar to the case involving hair-
object interactions, one needs to take extra care when processing

8



To appear in ACM TOG 33(6).

Figure 12: Failure Case: When the hair motion is highly chaotic,
our method will produce over-smoothed result.

hair strands near the boundaries. Lastly, integrating our hair capture
technique into a full-body human dynamic capture system with other
specialized techniques is an interesting, albeit challenging, direction
for future research.

7 Conclusion

We have presented a comprehensive system for reconstructing a dy-
namic hair model from synchronized multi-view video sequences.
Our approach exploits hair motion paths extracted from horizontal
slices in a spatiotemporal video volume. These motion paths enable
us to warp hair ribbons and constrain hair motions, and thereby to
formulate the dynamic hair reconstruction as a spacetime optimiza-
tion problem. When reconstructing hair motion details, we avoid
favoring either the spatial or the temporal smoothness over the other.
Instead, we postpone the generation of a complete hair model until
we have analyzed directed ribbons and motion paths separately. We
then reconstruct the hair model in an optimization framework that
considers both spatial and temporal constraints together. Demon-
strated with a number of hairstyles, our reconstructed hair motion
faithfully capture the real hair dynamics in a temporally coherent
way while retaining plausible motion details.
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Dataset #1: short straight hair + head shaking

Dataset #3: long wavy hair + head shaking

Dataset #5: long straight hair + head shaking

Figure 13: Dynamic hair capture results: Please see the accompanying video for the complete motion results.
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