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Abstract

Nonlinear oscillators are widely used in biology, physics and engineering for modeling and control. They are interesting because of their

synchronization properties when coupled to other dynamical systems. In this paper, we propose a learning rule for oscillators which adapts their

frequency to the frequency of any periodic or pseudo-periodic input signal. Learning is done in a dynamic way: it is part of the dynamical system

and not an offline process. An interesting property of our model is that it is easily generalizable to a large class of oscillators, from phase oscillators

to relaxation oscillators and strange attractors with a generic learning rule. One major feature of our learning rule is that the oscillators constructed

can adapt their frequency without any signal processing or the need to specify a time window or similar free parameters. All the processing is

embedded in the dynamics of the adaptive oscillator. The convergence of the learning is proved for the Hopf oscillator, then numerical experiments

are carried out to explore the learning capabilities of the system. Finally, we generalize the learning rule to non-harmonic oscillators like relaxation

oscillators and strange attractors.

c© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Nonlinear oscillators have been widely used to model

various physical and biological processes and for the last

two decades, they are also used in engineering fields,

for example autonomous robotics. Models of Josephson

junctions [22], lasers, central pattern generators (CPGs) [6,10,

13,23], associative memories [2,18] and beat perception [8,14]

are a few examples that show the importance of oscillators in

modeling and control.
Oscillator models are interesting because of their synchro-

nization capabilities, either with other oscillators or with exter-

nal driving signals. In most cases, it is a difficult task to choose

the right parameters of the oscillators to ensure that they will

synchronize as desired. Most studies use phase-locking behav-

ior, but when parameters are outside the phase-locking region

synchronization fails. This is mainly the case because oscil-

lators lack plasticity, they have fixed intrinsic frequencies and

cannot dynamically adapt their parameters.
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Some recent studies, however, concentrate on developing

dynamic plasticity for oscillators, so they can learn and

synchronize with a wider range of frequencies, without one

having to tune the parameters by hand [1,2,9,15–17]. But these

attempts are so far limited to very simple classes of oscillators,

equivalent to phase oscillators, mainly because this is the only

class of oscillators that can be analytically studied and for

which convergence can be proved, when adding adaptivity to

the system. Adaptive relaxation oscillators were also developed

to model rhythm perception [8]. These oscillators are able to

adapt their frequencies to synchronize with external input. But

these input signals are simple and reduce to periodic pulse

trains.

Recently, we designed an adaptive oscillator for studying

adaptive locomotion in biologically inspired robotics [3,4]. In

that work we developed an adaptive frequency Hopf oscillator

able to adapt to the resonant frequency of a mechanical system.

The oscillator is able to adapt its frequency to the frequency

of complex input signals. In this contribution, we prove the

convergence of this oscillator and generalize the adaptive rule

for more complex oscillators so they can learn the frequencies
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of, and synchronize with, any rhythmic input signal. An

interesting property of our method is that we go beyond phase-

locking of oscillations. We add plasticity to the system, in

the sense that the system can change its own parameters in

order to learn the frequencies of the periodic input signals.

So the range of frequencies that can be learned is not limited

and after learning the oscillator continues to oscillate at the

learned frequency, even if the input signal disappears. We call

our adaptive mechanism1 dynamic Hebbian learning because it

shares similarities with correlation-based learning observed in

neural networks [11].

One major aspect of our approach is that an oscillator

learns the frequency of any periodic input, without any

signal processing. This means that an oscillator can adapt its

frequency to any kind of periodic, or even pseudo-periodic,

input. The process is completely dynamic, and does not require

the specification of time windows or similar free parameters as

is often the case in signal processing algorithms. The whole

learning process and the frequency extraction from the input

is totally embedded in the dynamics of the system. Another

interesting property of the method is that we can directly

apply it to many kinds of oscillators, for example relaxation

oscillators and strange attractors. An oscillator, perturbed by a

periodic signal F , is described by the general equations

ẋ = f (x, y, ω) + ǫF

ẏ = f (x, y, ω)

with ω some parameter influencing the frequency of the

oscillations. We introduce a learning rule for this parameter

ω̇ = ±ǫF
y

√

x2 + y2
.

The sign depends on the direction of rotation of the limit cycle

in the (x, y) phase space. This general adaptation rule works

for many different oscillators, ω will converge to a value such

that one frequency component of the oscillator and one of the

input F match. We discuss this general learning rule in this

contribution.

In Section 2, we first present the adaptive learning rule with

a simple Hopf oscillator and prove the convergence and the

stability of the whole system. Then, in Section 3, we present

some numerical simulations, to show that the oscillator can

adapt its frequency to the frequency of any kind of periodic

or pseudo-periodic signal. Finally, in order to demonstrate

the generality of our method, we construct, in Section 4, an

adaptive Van der Pol oscillator which we discuss in detail. We

also present examples of frequency adaptation with an adaptive

Rayleigh oscillator, an adaptive Fitzhugh–Nagumo oscillator

and an adaptive Rössler system. In Section 5, we finish this

contribution with a discussion.

2. Learning frequencies with a Hopf oscillator

In this section, we introduce the learning rule for frequency

adaptation in oscillators. To keep the discussion as simple

1 In this article, we use adaptation and learning as synonyms.

as possible, we use a Hopf oscillator to discuss our learning

method, because its phase evolution is simple to describe.

Generalization to more complex oscillators will be presented

in further sections. We first present the model, then we prove

the convergence of the adaptive dynamical system.

2.1. Model description

2.1.1. The Hopf oscillator

The dynamics of the Hopf oscillator is governed by the

following differential equations

ẋ = (µ − r2)x − ωy + ǫF (1)

ẏ = (µ − r2)y + ωx . (2)

where r =
√

x2 + y2, µ > 0 controls the amplitude of the

oscillations and ω is the intrinsic frequency of the oscillator.

This means that without perturbations (when ǫ = 0), the system

is oscillating at ω rad s−1. This oscillator is coupled with a

periodic force F . When the force is zero, the system has an

asymptotically stable harmonic limit cycle, with radius
√

µ

and frequency ω. As the limit cycle of the Hopf oscillator is

structurally stable, small perturbations around its limit cycle

(ǫ > 0) do not change the general behavior of the system. This

means that the limit cycle will still exist, only its form and time

scale will change. Structural stability assures that this change is

close to identity.

As we are mainly interested in the phase dynamics, we

rewrite the system in polar coordinates. We set x = r cos φ

and y = r sin φ. Eqs. (1) and (2) transform into

ṙ = (µ − r2)r + ǫF cos φ (3)

φ̇ = ω − ǫ

r
F sin φ. (4)

It is well known that when the oscillator has its intrinsic

frequency ω close to one frequency component of the periodic

input, it will phase-lock (this phenomenon is also called

entrainment) [19]. This means that the oscillations synchronize

with the frequency of the periodic input. The maximum

distance between the intrinsic frequency of the oscillator and

the periodic input that still permits phase-locking depends

directly on the coupling strength. The stronger the coupling, the

larger the entrainment basin. Outside this basin, the oscillator

is still influenced by the coupling but does not synchronize.

If the periodic input has several frequency components, then

several entrainment basins will appear. Phase-locking will be

possible with each frequency component. Outside the basin,

the oscillator will have a tendency to accelerate or decelerate,

according to the term F sin φ, on average the oscillator will

tend to oscillate at a frequency which is between the intrinsic

frequency of the oscillator and the frequency of the input. In

the case of multi-frequency inputs, these oscillations will be

influenced in a similar manner.

2.1.2. Adaptive dynamical system

Now we can build our adaptation rule by using the influence

of the external perturbation on the activity of the oscillator. The
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adaptation rule will be a dynamical system of the form

ω̇ = f (ω, r, φ, F). (5)

In the following we motivate the concrete choice of the

adaptation rule by reasoning about the effects of a perturbation

in a geometric way in the phase space of the dynamical system.

This provides insights into our choice of the learning rule.

In further sections, we will show more rigorously that this

reasoning is appropriate and leads to the desired behavior.

To get a good grasp on the effects of perturbations on a limit

cycle system (i.e. an oscillator) it is helpful to look at the limit

cycle in the phase space representation. In the phase space all

perturbations have a direction, i.e. they can be represented as a

vector EP in that space.

Due to the stability properties of a limit cycle system a

perturbation can in the long term only affect the phase of the

oscillator. The phase is marginally stable whereas the system is

damped perpendicularly to the limit cycle. This means that the

phase point always returns to the limit cycle, but it can be phase

shifted. In other words the system after a singular perturbation

will forget all the perturbation’s influence except its influence

on the phase.

Especially in a small neighborhood of the limit cycle a

small perturbation can only affect the phase strongly if it

perturbs the oscillator in the direction tangential to the limit

cycle. The perturbations perpendicular to the limit cycle are

damped out. The domain where this assumption is valid

depends on the coupling of phase and radius. While for

the Hopf oscillator this assumption is valid for a very large

neighborhood, the neighborhood can be very small for other

oscillators, e.g. oscillators with strongly bent isochrones.

To discuss the influence of the perturbation on the phase in

this neighborhood, let us introduce a coordinate system with

its origin on the phase point. The first base vector Eer is chosen

perpendicular to the limit cycle, while the second base vector

Eeφ is chosen tangential to the limit cycle (cf. Fig. 1). Thus,

this coordinate system rotates with the phase point along the

limit cycle. In order to find the influence pφ = | Epφ | of the

perturbation on the phase it is sufficient to project EP on Eeφ

pφ = EP · Eeφ . (6)

Thus, depending on the external perturbation and the state

of the oscillator (i.e. the position of the point on the limit

cycle) the perturbation accelerates the phase point or slows

it down. If the perturbation is a periodic signal, this results

in an average acceleration or deceleration depending on the

frequency difference. This effect, if the frequency of the

oscillator and the external frequency are close, leads to well

known phase-locking behavior. Thus, the influence carries the

information needed to adjust to the frequency of the external

perturbation. Consequently, if we take this same effect to

tune the frequency of the oscillator (on a slower time scale)

the frequency should evolve toward the frequency of the

perturbation. Therefore, the effect of f (ω, r, φ, F) on ω has to

be the same as the effect of the perturbation on the phase, thus

(on average) driving ω toward the frequency of the perturbation.

Fig. 1. We illustrate the coordinate system in which synchronization is most

naturally discussed. The figure shows an arbitrary limit cycle. The system

is strongly damped in the direction perpendicular to the limit cycle Eer and

marginally stable in the direction tangential to the limit cycle Eeφ . This is the

reason for the structurally stable limit cycle in the first place and allows for

a resetting of the phase on the other hand. Note that the two-dimensional

representation is always valid for discussing a limit cycle since there exists

always a two-dimensional manifold which contains the limit cycle. Refer to the

text for a discussion of the perturbation EP .

While the discussion here is valid for limit cycles of any

form and in any dimension, in the case of the Hopf oscillator

and the perturbation as chosen in Eqs. (3) and (4) it is evident

that pφ = ǫ
r

F sin φ. We chose accordingly

ω̇ = −ǫF sin φ (7)

which corresponds in Cartesian coordinates to

ω̇ = −ǫF
y

√

x2 + y2
. (8)

The adaptation of ω happens on a slower time scale than the

evolution of the rest of the system. This adaptation time scale

is influenced by the choice of ǫ. Note that the r variable is

dropped because we do not want a learning rule which is

scaled by the amplitude of the oscillations. With this rule, the

oscillator will adapt to the frequency of any input signal. As

in applications most signals will be non-harmonic, i.e. they

have several frequency components, the oscillator will adapt to

one of these components, generally the closest to the intrinsic

frequency of the oscillator. We must also note that it is required

to keep the oscillator coupled with the input, because it is the

evolution of φ(t), i.e. change of frequency correlated with ω̇,

that enables adaptation in Eq. (7). A proof of convergence of

this adaptive oscillator (Eqs. (3), (4) and (7)) in the general case

of multi-frequency inputs is given in the next section.

2.2. Proof of convergence with the Hopf oscillator

In this section we prove the stability of the adaptive Hopf

oscillator, but we will see in following sections that the results

we derive in this section can also justify convergence for other

types of oscillators. The new dynamical system we study is

the one composed of the oscillator and its learning rule for the

frequency (Eqs. (3), (4) and (7)). As long as ω > 0, because of
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structural stability, the behavior of the oscillator (Eqs. (3) and

(4)) is known, so we just have to prove that ω converges to the

desired input frequency.

We use perturbation methods (cf. [12]) to discuss the

convergence of the system. The solution of the system

{r(t), φ(t), ω(t)} can be written as a perturbation series, with

ǫ < 1

r(t) = r0 + ǫr1 + ǫ2r2 + ǫ3 Rr (9)

φ(t) = φ0 + ǫφ1 + ǫ2φ2 + ǫ3 Rφ (10)

ω(t) = ω0 + ǫω1 + ǫ2ω2 + ǫ3 Rω (11)

with initial conditions r0(t0) = r0, φ0(t0) = 0 and ω0(t0) = ω0

independent of ǫ. Here, ri , φi and ωi are functions of time

and Rr , Rω and Rφ are small residues of the order ǫ3, which

means there exists a constant k such that Ri < k, generally k

is small. The following proof will hold under the hypothesis

that k ≪ 1, numerical simulations in Section 3 will confirm

this hypothesis. We could also expand the perturbation series

to higher order: the finer the approximation, the wider the

time interval valid for the approximation. But we will show

that convergence appears on the time scale associated with the

second order approximation. By inserting Eqs. (9)–(11) into

Eqs. (3), (4) and (7), and by observing that

sin(φ0 + ǫφ1 + ǫ2φ2 + ǫ3 Rφ)

=
∞
∑

k=0

(−1)k(φ0 + ǫφ1 + ǫ2φ2 + ǫ3 Rφ)2k+1

(2k + 1)!

= sin φ0 + ǫφ1 cos φ0 + O(ǫ2) (12)

and similarly that

cos(φ0 + ǫφ1 + ǫ2φ2 + ǫ3 Rφ)

= cos(φ0) − ǫφ1 sin(φ0) + O(ǫ2) (13)

we can identify the terms corresponding to each ǫn and derive

the following differential equations

ṙ0 = (µ − r2
0 )r0 (14)

φ̇0 = ω0 (15)

ω̇0 = 0 (16)

ṙ1 = µr1 − 3r1r2
0 + F cos φ0 (17)

φ̇1 = ω1 − 1

r0

(

r1φ̇0 − r1ω0 + F sin φ0

)

(18)

ω̇1 = −F sin φ0 (19)

ṙ2 = µr2 − 3r2r2
0 − r2r2

1 − Fφ1 cos φ0 (20)

φ̇2 = ω2 − 1

r0

(

r1φ̇1 − r1ω1 + r2φ̇0 − r2ω0 + Fφ1 cos φ0

)

(21)

ω̇2 = −Fφ1 cos φ0 (22)

with initial conditions r0(t0) = √
µ, φ0(t0) = 0, ω0(t0) = ω0

and ri (t0) = φi (t0) = ωi (t0) = 0, ∀i = 1, 2. We consider

that the unperturbed system (i = 0) has already converged to

the limit cycle and that at time t0, there are no perturbations.

We have to solve Eqs. (16), (19) and (22) to construct an

approximate solution of Eq. (7) and thus show the convergence

properties of the adaptation rule ω. The behavior of the two

other state variables is already known since the Hopf oscillator

has a structurally stable limit cycle. In order to solve these

equations we also have to solve Eqs. (14), (15) and (18). The

error of the approximation will be of order O(ǫ3) and will hold

for some time interval [t0, t0 + σ ]. The solutions of Equations

Eqs. (14)–(16) are straightforward

r0(t) = √
µ (23)

φ0(t) = ω0(t − t0) (24)

ω0(t) = ω0. (25)

To solve the other equations, we first rewrite the periodic input

as its complex Fourier series

F(t) =
∞
∑

n=−∞
AneinωF t . (26)

Here ωF is the frequency of the input. We now consider the case

where ω0 6= nωF , ∀n ∈ N, which means that at the beginning

the system is not synchronized with any frequency component

of the periodic input F . We then get

ω̇1 = −
( ∞
∑

n=−∞
AneinωF t

)

sin(ω0(t − t0))

= −
∞
∑

n=−∞
An

ei(nωF +ω0)t−iω0t0 − ei(nωF −ω0)t+iω0t0

2i
. (27)

This is solved to give

ω1(t) = 1

2

∞
∑

n=−∞
An

(

−
(

ei(nωF −ω0)t+iω0t0 − einωF t0
)

(nωF − ω0)

+
(

ei(nωF +ω0)t−iω0t0 − einωF t0
)

(nωF + ω0)

)

(28)

and

φ̇1 = ω1 + ω̇1√
µ

(29)

which is solved to give

φ1(t) = ω1(t)√
µ

+ 1

2

∞
∑

n=−∞
An

(

(

ei(nωF +ω0)t−iω0t0 − einωF t0
)

i(nωF + ω0)
2

+ 2ω0(t − t0)e
inωF t0

n2ω2
F − ω2

0

−
(

ei(nωF −ω0)t+iω0t0 − einωF t0
)

i(nωF − ω0)
2

)

.

(30)

By combining Eqs. (25) and (28), we have a first order

approximation ω(t) = ω0+ǫω1(t)+ǫ2 Rω. This approximation

is a periodic solution with mean equal ω0. Nevertheless, this

first order approximation does not show any adaptation of ω(t).
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This seems normal, since we argued before that the learning

takes place on a larger time scale than the perturbation (which

is of order ǫ). We now derive the second order approximation

to show that learning appears on the associated time scale. As

we are interested in the second order form of ω, we now solve

Eq. (22)

ω̇2 = −
( ∞
∑

m=−∞
AmeimωF t

)(

eiω0(t−t0) + e−iω0(t−t0)

2

)

φ1(t)

= −1

2

( ∞
∑

m=−∞
Am

(

ei(mωF +ω0)t−iω0t0

+ ei(mωF −ω0)t+iω0t0
)

)

φ1(t). (31)

By expanding the equation we find a sum of simpler terms that

can be easily integrated

ω2 =
∫ t

t0

(

1

4

∑

m,n∈Z
Am An(E1 + E2 +E3 + E4 + E5 + E6)

)

(32)

where

E1 = ei((m+n)ωF +2ω0)t−2iω0t0

×
( −1√

µ(nωF + ω0)
− 1

i(nωF + ω0)
2

)

E2 = ei((m+n)ωF −ω0)t+2iω0t0

×
(

1√
µ(nωF − ω0)

+ 1

i(nωF − ω0)
2

)

E3 = ei(mωF +ω0)t+i(nωF −ω0)t0

×
(

−2ω0√
µ((nωF )2 − ω2

0)
− 4nωFω0

i((nωF )2 − ω2
0)

2

)

E4 = ei(mωF −ω0)t+i(nωF +ω0)t0

×
(

−2ω0√
µ((nωF )2 − ω2

0)
− 4nωFω0

i((nωF )2 − ω2
0)

2

)

E5 = ei(m+n)ωF t

(

2ω0√
µ((nωF )2 − ω2

0)
+ 4nωFω0

i((nωF )2 − ω2
0)

2

)

E6 =
(

eiω0(t−t0) + e−iω0(t−t0)
)

×
(

−2ω0

(nωF )2 − ω2
0

)

ei(mωF t+nωF t0)(t − t0).

Previously, we postulated that ω0 6= nωF , ∀n ∈ N,

consequently, the integration of E1, E2, E3 and E4 gives

periodic functions with zero mean. The integration of E6 gives a

function oscillating with some frequency but with its amplitude

varying because of the t term, the average contribution of this

function is zero. The integration of E5 is more interesting

because when n = −m, the exponential disappears and we

have a constant instead. Thus when integrating we will find

linear terms. For the case m 6= −n, after integration, we find a

periodic function with zero mean. Therefore, ω2(t) is composed

of a periodic function ω̃2(t) with zero mean and a deviation

Dω(t).

ω2(t) = ω̃2(t) + Dω(t) (33)

where

Dω(t) =
∫ t

t0

1

4

∑

n∈Z
m=−n

An Am

(

2ω0√
µ((nωF )2 − ω2

0)

− 4nωFω0

i((nωF )2 − ω2
0)

2

)

=
∫ t

t0

(

−A0

2
√

µω0
+
∑

n∈N∗

An Ānω0√
µ((nωF )2 − ω2

0)

)

=
(

−A0

2
√

µω0
+
∑

n∈N∗

|An|2ω0√
µ((nωF )2 − ω2

0)

)

(t − t0). (34)

Then, the solution of ω(t) in a neighborhood of t0 is

ω(t) = ω0 + ǫω1(t) + ǫ2ω̃2(t) + ǫ2 Dω(t) + O(ǫ3). (35)

The solution is composed of small oscillations of amplitude

much smaller than ǫ around ω0 and a slight deviation ǫ2 Dω(t).

This deviation term determines how the frequency converges to

the input frequency. It can also be used to predict the basins

of attraction for inputs with several frequency components

(cf. Section 3.3). For an input signal that has only one frequency

in its spectrum, the deviation is obviously in the direction of

this frequency, since Dω(t) > 0 when ωF > ω0 and Dω(t) < 0

otherwise. As this approximation is valid for any ω0 and any

t0, i.e. the point in time when we make the approximation is

not important, the oscillator will always, on average, change

its frequency in the direction of the input frequency. For more

complex signals with more than one frequency component,

because of the (nωF )2 − ω2
0 term in Dω, the system will just

change its frequency according to the distance between its

intrinsic frequency ω0 and the frequency components of the

input. The amplitudes An of the frequency components will

also influence this convergence, in the sense that the more

intensity a frequency component has, the more it will attract

ω(t). Section 3 shows examples of such convergence. We must

also note that the zero frequency (the mean of the periodic

signal) can also influence the convergence because of the A0

term. Thus, if the input signal has a non-zero mean, ω could

eventually converge to 0 if A0 has a stronger influence than the

other frequency components. In this case, the limit cycle of the

Hopf oscillator would bifurcate into a fixed point.

We still have to discuss the case ω0 = nωF for a given

n ∈ N. In this case, the oscillator is synchronized with one

frequency component of the perturbation. Thus, ω(t) oscillates

and deviates from nωF . Then there are two cases, either the

deviation becomes an attraction as soon as ω0 6= nωF and the
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intrinsic frequency of the oscillator is always staying in a small

neighborhood of nωF , or ω(t) diverges from this frequency

and gets attracted by another frequency component of the input

signal, with stronger amplitude.

We notice that ǫ controls both the amplitude of oscillations

around nωF and the learning rate of the system (proportional

to ǫ2). So the faster the learning is, the higher the error of

adaptation will be. But as ǫ < 1, the error of adaptation is

bounded and small (of the order of ǫ).

So we have proved that the learning rule makes the

frequency converge to a frequency component of the input

signal, for any initial conditions (t0, ω0). The attracting

frequency component depends on its distance to the intrinsic

frequency of the oscillator and its intensity. The proof is

global because we did not make any assumption on the initial

condition for ω and on the neighborhood of the attracting

frequencies.

3. Numerical simulations

The goal of this section is to study the behavior of the

learning dynamical system with numerical simulations. First we

give a simple example of adaptation of the oscillator receiving

a simple periodic signal as input. Then we confirm the proof of

Section 2.2 by calculating the second order approximation error

for a simple example. We also use the analytic results to predict

the behavior of the system when varying several parameters.

Finally, we show that the system can adapt to pseudo-periodic

signals.

3.1. Simple example of learning

First of all, we want to show a simple example of how the

system works and discuss the influence of the learning rate ǫ.

The adaptive Hopf oscillator is composed of the perturbed Hopf

oscillator

ẋ = (µ − r2)x − ωy + ǫF (36)

ẏ = (µ − r2)y + ωx (37)

and of the adaptive frequency learning rule

ω̇ = −ǫF
y

√

x2 + y2
. (38)

Here we use a simple cosine signal F = cos(30t) as input,

with µ = 1 and initial conditions r(0) = 1, φ(0) = 0 and

ω(0) = 40. We integrate the system numerically for several

values of ǫ, the results of the simulations are shown in Fig. 2.

In this figure, we can see that the oscillator adapts its intrinsic

frequency to the frequency of the input signal. We also see that

ǫ controls the adaptation rate of the system, the higher ǫ is, the

faster the learning.

3.2. Error evaluation of the analytic approximation for a

simple perturbing force

In Section 2.2, we derived an approximate solution of the

learning dynamical system, in order to prove its convergence.

Fig. 2. Plot of the evolution of ω for four different values of ǫ. Here we set

µ = 1, x(0) = 1 and y(0) = 0, the perturbing force is F = cos(30t). For every

value of ǫ, we see that ω converges to 30, which is the frequency of the input

signal. Therefore, the system is able to learn the frequency of the input signal.

We also notice that ǫ controls the convergence rate, the higher it is, the faster

the system learns.

The error of this approximation is bounded by some constant

k. We now evaluate numerically the error of the approximation,

for a simple sinusoidal input, in order to show that this constant

is really small and that the hypothesis made for proving

convergence holds. We set F = sin(ωF t), t0 = 0, µ = 1.

Then we can derive an approximate solution of ω(t) using Eqs.

(25), (28) and (32).

ω0(t) = ω0 (39)

ω1(t) = − 1

2(ωF − ω0)
sin((ωF − ω0)t)

+ 1

2(ωF + ω0)
sin((ωF + ω0)t) (40)

ω2(t) = sin(2ω0t)

16ω0(ωF − ω0)
− sin(2ωF t)

16ωF (ωF − ω0)

− sin(2(ωF − ω0)t)

16(ωF − ω0)
2

+ t

8(ωF − ω0)

− t

8(ωF + ω0)
+ sin(2(ωF + ω0)t)

16(ωF + ω0)
2

− sin(2ω0t)

16ω0(ωF + ω0)
+ sin(2ωF t)

16ωF (ωF + ω0)

+ cos(2ωF t) − 1

16ωF (ωF − ω0)
2

+ cos(2ω0t) − 1

16ω0(ωF − ω0)
2

+ cos(2(ωF − ω0)t) − 1

16(ωF − ω0)
3

− cos((ωF + ω0)t) − 1

4(ωF − ω0)
2(ωF + ω0)

− cos((ωF − ω0)t) − 1

4(ωF − ω0)
3

− cos(2(ωF + ω0)t) − 1

16(ωF + ω0)
3

− cos(2ωF t) − 1

16ωF (ωF + ω0)
2

+ cos(2ω0t) − 1

16ω0(ωF + ω0)
2

+ cos((ωF + ω0)t) − 1

4(ωF + ω0)
3

− cos((ωF − ω0)t) − 1

4(ωF + ω0)
2(ωF − ω0)

. (41)

We can now numerically evaluate the errors of the

approximations of order 1, ωǫ(t) = ω0 + ǫω1(t), and of order
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Fig. 3. Results of the simulation of the first and second order approximations.

For a simple input, here F = sin(40t), ǫ = 0.9, initial conditions are t0 = 0,

w0 = 30. The upper figure shows the evolution of the ω variable for the initial

dynamical system (Eq. (38)), the first order approximation ωǫ(t) and the second

order approximation ω
ǫ2 (t). The lower figure shows quadratic errors between

the initial system and the two approximations, for the evolution of ω.

2, ωǫ2(t) = ω0 + ǫω1(t) + ǫ2ω2(t). The upper plot of Fig. 3

shows the result of this simulation. First of all, we clearly see

that the dynamical system correctly learns the frequency of the

input signal. In this figure we also plotted the functions ωǫ(t)

and ωǫ2(t), we clearly see that the second order approximation

is really better than the first and explains the behavior of the

system on a larger time scale. Actually, it explains very well

the convergence process of the learning dynamical system. We

see that the learning appears on a coarser time scale than the

oscillations of the system. In the lower plot, we see the square

error between the original system and the approximations. We

clearly see that the second order approximation follows the

real system for quite a long time. Table 1 summarizes the

maximum square error of the approximations. It must be noted

that numerical integration of the dynamical system is done

with an embedded Runge–Kutta–Fehlberg(4, 5) algorithm, with

absolute and relative errors of 10−6. As a matter of fact,

errors below this value cannot be taken as significant errors.

Obviously, the first order approximation diverges rapidly, at

0.1 s of simulation, the error is becoming really significant.

On the other hand, the second order approximation is really

good still after 10 s. These results validate the hypothesis of

the approximation methods and so, the analytic proof. This also

emphasizes the fact that learning takes place on a larger time

scale than the perturbations on the oscillator and its oscillations.

Consequently, the adaptive Hopf oscillator has two distinct time

scales. The finer one describes the perturbation on the oscillator

and its oscillations. Learning takes place on the coarser one.

3.3. Predicting learning with multi-frequency inputs

When learning the frequency of multi-frequency input

signals, we might expect the system to converge to one of the

frequency components of the input. But how can we calculate

the range of initial frequencies for which the adaptive oscillator

will converge to a specific frequency component of the input?

Table 1

This table summarizes the maximum errors of the simulation for the first and

second order approximations discussed from Fig. 3

Time (s) Maximum error ωǫ Maximum error ω
ǫ2

0 0 0

0.001 5.18e−13 1.70e−19

0.01 4.91e−7 1.15e−12

0.1 0.0053 6.30e−11

1 0.0114 1.85e−7

10 0.0340 4.25e−4

While proving the convergence of the system, we derived a

deviation equation, Eq. (34), that describes the deviation from

the initial intrinsic frequency, ω0, of the oscillator

Dω(t) =
(

−A0

2
√

µω0
+
∑

n∈N

|An|2ω0√
µ((nωF )2 − ω2

0)

)

(t − t0). (42)

We saw that this equation depends on the initial frequency of the

system ω0, the frequency components of the periodic input nωF

and their amplitude An . Thus, for a given input signal, we can

calculate the values of ω0 for which the function is equal to zero

∀t . These zeros give the intervals of convergence, the dynamical

system converging towards the frequency components located

in the same interval as ω0.
For example consider the following input

F = 0.2 sin(20t) + 0.5 sin(30t) + 0.3 sin(40t). (43)

The main frequency of this signal is ωF = 10. The amplitude

of the frequency component are A2 = 0.2
2i , A3 = 0.5

2i , A4 = 0.3
2i

and Ai = 0, ∀i ∈ N \ {2, 3, 4}. Thus we only have to find the

roots of the following equation

0.22ω0

4(202 − ω2
0)

+ 0.52ω0

4(302 − ω2
0)

+ 0.32ω0

4(402 − ω2
0)

= 0. (44)

The solutions of this equation are 0 and ±
√

717±
√

134089
0.76 . As we

are working with frequencies >0 we have the following bounds

ωdown ≃ 21.3598 and ωup ≃ 37.8233. Thus we must expect

to have convergence to 20, 30 or 40 when ω0 ∈ [0, ωdown],
[ωdown, ωup], [ωup, ∞] respectively, with some uncertainty at

the limit of the intervals, because of the oscillations of order ǫ

that can make the system switch from one interval to the other.

Fig. 4 shows this behavior, the horizontal dotted lines mark the

bounds. Convergence corresponds to what we predicted.

3.4. Learning the pseudo-period of chaotic signals

We proved convergence for periodic signals, but we argue

that even pseudo-periodic signals can be used as input for

the learning dynamical system. In order to show this fact, we

present the result of learning, when coupled to a chaotic pseudo-

periodic signal. We couple the oscillator with the z variable of

the Lorenz system [21], whose equation is

ẋ = −σ x + σ y (45)

ẏ = −xz + r x − y (46)

ż = xy − bz. (47)
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Fig. 4. In this figure, we plotted ω(t) for several initial conditions, ω0. The

periodic input is Eq. (43), ǫ = 0.9. The dotted lines indicate the boundary

between the different basins of attraction, corresponding to the different

frequency components of the input, that were predicted analytically.

Fig. 5. The left plot of this figure represents the evolution of ω(t) when the

adaptive Hopf oscillator is coupled to the z variable of the Lorenz attractor. The

right plot represents the z variable of the Lorenz attractor. We clearly see that

the adaptive Hopf oscillators can correctly learn the pseudo-frequency of the

Lorenz attractor. See the text for more details.

Here σ = 10, r = 28 and b = 8
3 (parameters for which

the system produces a strange attractor). The Fourier spectrum

of the z variable indicates two major frequency components

(data not shown), the first one at frequency 0 (A0 in the

Fourier series), because the average of z, 〈z〉 6= 0, and the

second one at ∼1.3 Hz. As the zero-frequency component has

a really strong amplitude compared to the other and we do

not want adaptation to this frequency, we center the z variable

before coupling to the oscillator. Otherwise, ω converges to 0

and the oscillations disappear. Indeed the basin of attraction

corresponding to frequency ∼1.3 Hz is not very wide and ω

gets kicked out of it because of the chaotic nature of the input.

Thus the input for coupling we use is F = z − 〈z〉.
Fig. 5 shows the result of the learning process. After

convergence, 〈ω〉 ≃ 8.13 rad s−1 which corresponds to an

intrinsic frequency of the oscillator of ∼1.29 Hz. Thus our

adaptive dynamical system has learned the pseudo-frequency

of the strange attractor. As this is not a strictly periodic signal,

ω(t) oscillates, following the constantly changing pseudo-

frequency of the attractor.
This experiment enforces the idea that our adaptive

dynamical system is able to learn the frequency of any periodic,

or pseudo-periodic signal. It learns a frequency component of

the input, even if the signal is really noisy or if the frequency is

not strictly defined.

4. Generalization to non-harmonic oscillators

In previous sections, we presented an adaptive Hopf

oscillator able to learn the frequency component of a periodic

signal. The goal of this section is to show how we can

easily apply our adaptive rule to non-harmonic oscillators like

relaxation oscillators. The problem with such oscillators is that

they have two time scales (slow buildup and fast relaxation) so it

is difficult to treat them analytically to prove convergence of the

adaptive rule. In this section, we discuss in detail the case of the

Van der Pol oscillator, then we show results for the adaptive rule

with the Rayleigh oscillator, the Fitzhugh–Nagumo oscillator

and the Rössler system.

4.1. An adaptive Van der Pol oscillator

4.1.1. The Van der Pol oscillator

The Van der Pol is a classical example of relaxation

oscillator and is often used in biological modeling, for example

to model CPGs for quadrupedal locomotion [5]. Its equation is

ẍ + α(x2 − p2)ẋ + ω2x = 0. (48)

Here α controls the degree of nonlinearity of the system (the

relaxation part), p the amplitude of the oscillations and ω

mainly influences the frequency of the oscillations. In this study

we set the amplitude of oscillations to p = 1. We rewrite the

system in a two-dimensional form and perturb it in the direction

of x as we did in Section 2

ẋ = y + ǫF (49)

ẏ = −α(x2 − 1)y − ω2x . (50)

Because of the relaxation property of the oscillator, the

frequency spectrum contains, in addition to the frequency of the

oscillations, an infinite number of frequency components. They

are all multiples of the frequency of the oscillations and have

smaller intensities. The nonlinear part of the system, whose

importance is driven by the α variable, influences the intensity

of these components. This means the higher α is, the more

intensity high frequency components have. The frequencies of

the oscillations are mainly defined by ω, but α also influences

this frequency. In fact an increase of the nonlinear term α tends

to slow the oscillator down.

Fig. 6 shows the frequency spectrum of the x variable for

two different values of α. We clearly see that the intensities of

the fast frequency components increase as α increases. We also

observe that the oscillator gets slower when α increases (the

peaks shift to the left). But still ω is a good control parameter

for the frequency of the system.

The complexity of the frequency spectrum of such

oscillators complicates learning. Indeed, according to the initial

conditions (i.e. according to the distance between the frequency

of the periodic force and the main frequency of the oscillator),
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Fig. 6. Frequency spectra of the Van der Pol oscillator, both plotted with

ω = 10. The left figure is an oscillator with α = 10 and on the right the

nonlinearity is higher, α = 50. On the y-axis we plotted the square root of the

power intensity, in order to be able to see smaller frequency components.

Fig. 7. Plots of the frequency of the oscillations of the Van der Pol oscillator

according to ω. Here α = 50. There are two plots, for the dotted line the

oscillator is not coupled and for the plain line the oscillator is coupled to

F = sin 30t . The strength of coupling is ǫ = 2. We clearly see basins of phase-

locking, the main one for frequency of oscillations 30. The other major basins

appear each 30
n (dotted horizontal lines). We also notice small entrainment

basins for some frequencies of the form
30p

q . For a more detailed discussion

of these results refer to the text.

the oscillator may learn different frequencies and synchronize

one of its higher frequency components to the input, instead of

adapting its main frequency.

4.1.2. The adaptive dynamical system

The adaptive rule we introduced in this article dynamically

changes the parameter that mainly controls the frequency of the

oscillations. Thus, in this case we will make the ω parameter

a dynamical system. Before discussing adaptation, we want to

discuss the locations of the entrainment basins as a function

of ω, in order to understand how the adaptive rule will work.

The entrainment basins are the regions of frequencies where

the oscillator phase-locks with an input signal [19].

Fig. 7 shows the entrainment basins of a Van der Pol

oscillator with high nonlinear component α = 50, which is

forced by a periodic signal sin(30t). As expected, we see phase-

locking at frequency of oscillations 30, with an entrainment

basin of ω ∈ [32, 35]. We also explained that the oscillator may

phase-lock its higher frequency components, as these frequency

components are equally spaced, one should expect phase-lock

for fractions of the frequency of the perturbing force. In this

case, for example, we see phase-locking at frequencies of

oscillations 30
2 , 30

3 and 30
4 .

This figure may become even more complex if the input

signal has several frequency components. We would see

entrainment basins every time a frequency component of the

oscillator is close enough to any frequency component of the

external signal. Then, when using our adaptive rule, one should

expect convergence to any entrainment basins, depending on

the initial conditions. Therefore, the oscillator might adapt its

higher frequency components to the frequency of the input.

We now discuss the learning rule we introduced in Section 2,

applied to the Van der Pol oscillator. We just change the sign

of Eq. (7). This is justified because when looking to the limit

cycle of the Van der Pol oscillator, we see that it is rotating in

the opposite direction to the Hopf oscillator limit cycle. So the

learning rule is

ω̇ = ǫF
y

√

x2 + y2
. (51)

We do not give an analytical proof of convergence for the

Van der Pol oscillator because to use perturbation methods, as

we did for the Hopf oscillator, we need to know the solution

for the unperturbed Van der Pol oscillator, but to the best

of our knowledge, only implicit solutions are known [7] and

thus such a proof is beyond the scope of this article. But the

general behavior of the system should be qualitatively the same,

because of the linear coupling on the oscillator. Let us rewrite

Eqs. (49) and (50) into polar coordinates

ṙ = ǫF cos φ + (1 − ω2)r cos φ sin φ + αr3 sin4 φ (52)

φ̇ = −ω2 cos2 φ − sin2 φ + αr2 sin3 φ cos φ − ǫF

r
sin φ. (53)

Even if the phase evolution is more complex than for the Hopf

oscillator, the interaction between the phase of the oscillator

φ and the perturbation F is of the same kind. Indeed, we

clearly identify the same − ǫF
r

sin φ terms for the phase for

both oscillators (Eqs. (52) and (53) and Eqs. (3) and (4)). So

we can expect the same deviation of ω and therefore, the same

convergence properties.

Now that we have discussed the different expected

behaviors, we present a series of experiments in order to

confirm our predictions and the functionality of the adaptive

dynamical system.

4.1.3. Numerical confirmation

We predicted that the adaptive Van der Pol oscillator will

either adapt its frequency of oscillations or one of its higher

frequency components to the frequency of the input. In order

to show this, we study the convergence of ω for different

initial conditions, when the oscillator is coupled with a simple

sinusoidal input (F = sin(30t)). Fig. 8 shows the result of the

simulation.

When the initial condition ω0 > 23, we clearly see

that ω converges to 34 which corresponds to a frequency of
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Fig. 8. This figure shows the convergence of ω for several initial frequencies.

The Van der Pol oscillator is perturbed by F = sin(30t), with coupling ǫ = 0.7,

α = 50. We clearly see that the convergence directly depends on the initial

conditions and as expected the different kinds of convergence correspond to the

several entrainment basins of Fig. 7.

oscillations of 30 rad s−1. In this case the oscillator is correctly

adapting its frequency to the frequency of the input. For

lower values of ω0, we see convergence to other frequencies,

corresponding to the entrainment basins of Fig. 7. We can

conclude that the adaptive rule is changing ω in order to get one

frequency component of the oscillator to the same frequency as

the input signal. In fact, ω is falling into the nearest entrainment

basin. Therefore, we see how useful entrainment basin studies

are for understanding the dynamics of the adaptive oscillator.

Moreover, even if there is not a direct relation between ω

and the frequency of the oscillations, the adaptive learning rule

can appropriately tune ω so that the frequency of oscillations

(or one of the other frequencies of the oscillator) is the same

as the frequency of the input signal. Fig. 9 shows the result

of the adaptation of the oscillator for various input signals.

From these experiments, we see that ω converges to a value

that corresponds to a correct adaptation of the frequency of the

oscillations to the frequency of the input. In each experiment,

we see that after learning, the Van der Pol oscillator and the

input signal are oscillating at the same frequency.

The adaptive Van der Pol oscillator demonstrates how to

generalize our adaptive rule to complex oscillators. But, an

increase in the complexity of the frequency spectrum of an

oscillator also generates side effects, like adaptation toward

synchronization of the higher frequency components of the

oscillator and the frequency of an input signal. Thus, when

using highly nonlinear oscillators, one should always know the

kind of frequency spectrum it has, in order to be able to predict

the behavior of the oscillator. Even if we cannot analytically

prove the convergence of our model, by numerically calculating

the positions of the entrainment basins of the oscillator when

perturbed, we are able to predict the behavior of the system in

a quite powerful way.

In this section, we also discussed a very important property

of the adaptive learning rule. Although the parameter we tune

does not have a linear relation with the frequency of the

oscillator, as is often the case for highly nonlinear oscillators,

the adaptive oscillator is able to correctly adapt this parameter

and find the appropriate frequency of oscillations. It seems that

a monotone relation between the frequency of the oscillations

and the parameter we tune is sufficient for frequency adaptation.

4.2. Other examples of adaptive oscillators

In this section, in order to show the generality of the adap-

tive rule, we present experimental results with three other os-

cillators. We build an adaptive Rayleigh oscillator, an adaptive

Fitzhugh–Nagumo oscillator and an adaptive Rössler system.

The construction of the adaptive dynamical system is

straightforward. The main task is to identify in each oscillator

the parameter that most influences the frequency of the

oscillations. Then, we only have to make this parameter a

dynamical system in the same way as we did for the Hopf or

the Van der Pol oscillator. The right column of Fig. 10 gives the

resulting equations for each oscillator.

In order to demonstrate the frequency adaptivity of these

modified oscillators, we made experiments for each oscillator.

The results of the experiments are summarized in Fig. 10. In

these experiments, the oscillators were perturbed by a simple

sinusoidal input and each oscillator was able to adapt its

ω parameter in order to learn the frequency of the input.

Moreover, although the parameters controlling the frequency

in each oscillator are not linearly related to the frequency of the

oscillations, the adaptive rule is able to correctly find the correct

value for the ω parameter to learn the desired frequency.

5. Discussion

Fields such as control of autonomous robots and signal

processing may need models of plastic dynamical systems

to adapt to a constantly changing environment. Moreover,

plasticity in nonlinear oscillators might become an important

aspect in modeling adaptive processes, for example in biology

where adaptivity and memory are major properties of living

systems. The learning rule presented in this article is a step

towards a general framework of plastic dynamical systems,

which are systems for which learning is embedded in their

dynamics and not an offline optimization process.

The evolution of the parameter controlling the frequency

of the adaptive oscillators that we discussed can be viewed

as the correlation between the phase of the oscillator and

the input signal. So we defined a type of correlation-based

learning for periodic functions. In neurobiology, correlation-

based learning rules are known as Hebbian learning [11], hence

we call our rule dynamic Hebbian learning to highlight its

correlation properties. The possible relevance to biology has to

be investigated in further research.

The construction of adaptive oscillators that we presented

is simple, and general enough to be applied to non-harmonic

oscillators and not only to phase oscillators. The adaptive rule

is general for an oscillator, perturbed by a signal F(t), with

general equation



L. Righetti et al. / Physica D 216 (2006) 269–281 279

Fig. 9. We show the adaptation of the Van der Pol oscillator to the frequencies of various input signals: (a) a simple sinusoidal input (F = sin(40t)), (b) a

sinusoidal input with uniformly distributed noise (F = sin(40t) + uniform noise in [−0.5, 0.5]), (c) a square input (F = square(40t)) and (d) a sawtooth input

(F = sawtooth(40t)). For each experiment, we set ǫ = 0.7 and α = 100 and we show three plots. The right one shows the evolution of ω(t). The upper left graph

is a plot of the oscillations, x , of the system, at the beginning of the learning. The lower graph shows the oscillations at the end of learning. In both graphs, we also

plotted the input signal (dashed). In each experiment, ω converges to ω ≃ 49.4, which corresponds to oscillations with a frequency of 40 rad s−1 like the input and

thus the oscillator correctly adapts its frequency to the frequency of the input.

ẋ = f (x, y, ω) + ǫF(t)

ẏ = f (x, y, ω)
(54)

with ω influencing the frequency of the oscillations. We have

the general learning rule

ω̇ = −ǫF
y

√

x2 + y2
. (55)

Only the sign in front of F may change according to the

orientation of the flow of the oscillator in the phase space. In

this sense we generalize the concept of learning presented by

Nishii in [16,17], in which learning rules were only derived

for phase oscillators. Nevertheless, in addition to frequency

adaptation, Nishii also derived learning rules for coupling

strength in populations of oscillators, which is an issue we do

not address in this contribution.
The learning rule we presented is not rigid and can be

modified. For instance, for the Hopf oscillator, a change in the

learning rule in Eq. (7), from sin φ to cos φ or any combination

of periodic functions will not change the convergence

properties. This would only correlate the force with more

complex periodic functions instead of sin φ. Intuitively, the

proof of convergence should give the same results, since the

learning part of the approximation (Eq. (34)) depends on the

conjugate symmetry of the complex Fourier series of the input

signal, which is true for every real input signal.

The mathematical proof given in this paper leads to a better

comprehension of the learning process, which takes place on

a coarser time scale than the oscillations of the system. This

proof also allows us to predict what the oscillator would learn

in the case of multi-frequency inputs. Nevertheless, we only

give a proof for the adaptive Hopf oscillator and even if we

numerically show that more complex adaptive oscillators can

be designed, a general rigorous proof for a larger class of

oscillators is still missing. Constructing such a proof is a very

difficult task.

A major feature of our learning rule is that the oscillator can

extract the frequency of any input signal without any explicit

signal processing (Fourier transform) or any explicit time

window or similar parameters. All the processing is embedded

in the dynamics of the oscillator. We also showed that the

system can learn frequencies from really noisy signals or from

pseudo-periodic signals, like a signal from the Lorenz strange

attractor. The adaptive rule is also valid for tuning parameters

that do not control linearly the frequency of the oscillations. A

monotonic, possibly nonlinear, relation between the frequency

of oscillations and the adapted parameter is sufficient for correct

adaptation of the parameter as we showed for the case of

relaxation oscillators. In this case, the system is able to correctly

find a value that produces oscillations at the same frequency as

the input signal.
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Fig. 10. We show results for several adaptive oscillators. For each oscillator, we give its equation in the right column, ω corresponding to the adaptive parameter.

We also specify the values of the different parameters used in the experiments. In the left column we plotted results of the experiment. Each figure is composed of

three plots. The right one is a plot of the evolution of ω. The left ones are plots of the oscillations (the x variable) and of the input signal F (dashed line), before

(upper figure) and after (lower figure) adaptation.

Dynamic Hebbian learning for adaptive oscillators has an

important implication in the design of CPG models. Actually,

coupled nonlinear oscillators are often used for modeling

CPGs [6,10,13,23], but the coupling has to be defined by hand

and this is a non-trivial task. By using adaptive oscillators, one

could build CPGs that can dynamically adapt their frequencies

and consequently, create a desired pattern of oscillations.

For instance, we are currently exploring how a population

of adaptive oscillators can implement some kind of dynamic

Fourier transform [20]. Furthermore, one can imagine using this

adaptation mechanism to model various processes where self-

synchronization is observed.
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