
Dynamic Helper Threaded Prefetching on the Sun
UltraSPARC® CMP Processor

Jiwei Lu, Abhinav Das, Wei-Chung Hsu

Department of Computer Science and Engineering
University of Minnesota, Twin Cities

{jiwei,adas,hsu}@cs.umn.edu

Khoa Nguyen, Santosh G. Abraham

Scalable Systems Group
Sun Microsystems Inc.

{khoa.nguyen,santosh.abraham}@sun.com

Abstract

Data prefetching via helper threading has been
extensively investigated on Simultaneous Multi-
Threading (SMT) or Virtual Multi-Threading (VMT)
architectures. Although reportedly large cache
latency can be hidden by helper threads at runtime,
most techniques rely on hardware support to reduce
context switch overhead between the main thread and
helper thread as well as rely on static profile feedback
to construct the help thread code. This paper develops
a new solution by exploiting helper threaded pre-
fetching through dynamic optimization on the latest
UltraSPARC Chip-Multiprocessing (CMP) processor.
Our experiments show that by utilizing the otherwise
idle processor core, a single user-level helper thread
is sufficient to improve the runtime performance of the
main thread without triggering multiple thread slices.
Moreover, since the multiple cores are physically
decoupled in the CMP, contention introduced by
helper threading is minimal. This paper also discusses
several key technical challenges of building a light-
weight dynamic optimization/software scouting system
on the UltraSPARC/Solaris platform.

1. Introduction

Modern processors spend a significant fraction of
overall execution time waiting for the memory systems
to deliver cache lines. This observation has motivated
copious research on hardware and software data
prefetching schemes. Execution-based prefetching is a
promising approach that aims to provide high
prefetching coverage and accuracy. These schemes
exploit the abundant execution resources that are
severely underutilized following an L2 or L3 cache
miss on contemporary processors supporting
Simultaneous Multi-Threading (SMT) [8] or Virtual
Multi-Threading (VMT) [24]. In hardware pre-
execution or scouting [3], [15], [18], [22], [23], [25],

[26], [28], the processor checkpoints the architectural
state and continues speculative execution that
prefetches subsequent misses in the shadow of the
initial triggering missing load. When the initial load
arrives, the processor resumes execution from the
checkpointed state. In software pre-execution (also
referred to as helper threads or software scouting) [2],
[4], [7], [10], [14], [24], [29], [35], a distilled version
of the forward slice starting from the missing load is
executed, minimizing the utilization of execution
resources. Helper threads utilizing run-time
compilation techniques may also be effectively
deployed on processors that do not have the necessary
hardware support for hardware scouting (such as
checkpointing and resuming regular execution).

Initial research on software helper threads
developed the underlying run-time compiler
algorithms or evaluated them using simulation. With
the advent of processors supporting SMT and VMT,
helper threading has been shown to be effective on the
Intel Pentium-4 SMT processor and the Itanium-2
processor [7], [13], [24], [25], [29]. In an SMT
processor such as Pentium-4, many of the processor
core resources such as L1 caches, issue queues are
either partitioned or shared. Helper threads need to be
constructed, deployed and monitored carefully so that
the negative resource contention effects do not
outweigh the gains due to prefetching. The VMT
method used a novel combination of performance
monitoring and debugging features of the Itanium-2 to
toggle between the main thread and helper thread
execution. However, on Itanium-2, the large overhead
in toggling between these modes limits the number of
cycles available for actual helper code execution to a
couple of hundred cycles. Only a few missing loads
can be launched in this short time interval.

Almost all general-purpose processor chips are
moving to Chip Multi-Processors (CMP) [19], [20],
including the Gemini, Niagara, Panther chips from
Sun, the Power4 and Power5 chips from IBM [16] and
recent announcements from AMD/Intel. The IBM and

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

Sun CMPs have a single L2 cache shared by all the
cores and private L1 caches for each of the cores.
Since the cores do not share any execution or L1
resources, helper thread execution on one core has
minimal negative impact on main thread execution on
another core. However, since the L2 cache is shared,
the helper thread may prefetch data into the L2 cache
on behalf of the main thread. Since such CMPs are
soon going to be almost universal in the general-
purpose arena and since many single-thread
applications are dominated by off-chip stall cycles,
helper thread prefetching on CMPs is an attractive
proposition that needs further investigation.

The minimal sharing of resources between cores
gives rise to unique issues that are not present in an
SMT or VMT implementation. First, how does the
main thread initiate helper thread execution for a
particular L2 cache miss? In an SMT system, both
threads are co-located on the same core enabling fast
synchronization. Second, how does the main thread
communicate register values to the helper thread? In
the Itanium-2 VMT system, the register file is
effectively shared between the main and helper
threads.

We have devised innovative mechanisms to
address these issues, implemented a complete dynamic
optimization system for helper thread based
prefetching, and measured actual speedups on an
existing Sun UltraSPARC IV+ CMP chip [27]. In our
system, the main thread is bound to one core and the
runtime performance monitoring code, the runtime
optimizer and the dynamically generated helper code
execute on the other core. Runtime performance
monitoring selects program regions that have
delinquent loads. The helper code generated for these
regions is optimized to prefetch for delinquent loads.
The main thread uses a mailbox in shared memory to
communicate and initiate helper thread execution. The
normal caching mechanism maintains this mailbox in
the L2 cache and also in the L1 cache of the helper
thread's core. We address many other implementation
issues in this first evaluation of helper thread
prefetching on a physical Chip-Multiprocessor and
measure significant performance gains on several
SPEC benchmarks and a real-world application.

The remainder of this paper is organized as
follows. Section 2 provides the background and related
work. Section 3 discusses the helper thread model in
our optimization framework, including code selection,
helper thread dispatching, communication and
synchronization. Section 4 introduces the dynamic
optimization framework on the UltraSPARC system.

Section 5 evaluates the performance of dynamic helper
threading and Section 6 draws the conclusion.

2. Background and Related Works

Many researchers have proposed to use one or more
speculative threads to warm up the shared resources,
such as the caches and the branch prediction tables, to
reduce the penalty of cache misses and branch mis-
predictions. These helper threads (also called scout
threads) usually execute a code segment pre-
constructed at compile time by identifying the
instructions on the execution path leading to the
performance bottleneck [5].

2.1. SMT/VMT vs. CMP

Pre-computation based helper threads have been
evaluated on Pentium-4 with hyper-threading and on
Itanium-2 system with special hardware support for
VMT [7], [13], [15], [24], [29]. Other helper
threading works such as Data-Driven Multi-Threading
(DDMT) [3], Simultaneous Subordinate Micro-
threading (SSMT) [28] and Transparent Threads [10]
target at achieving effective helper threaded
prefetching on SMT processors.

Unlike SMT and VMT, which share many critical
resources, Chip Multi-processing (CMP) processors
limit sharing, for example, to only the L2/L3 cache.
While the restricted resource sharing moderates the
benefit of helper threading to only L2/L3 cache
prefetching, it also avoids the drawback of hard-to-
control resource contention encountered by helper
threading on SMT. The impact of different resource
sharing levels to thread communication cost on CMP
as well as the corresponding performance margin for
pre-execution have been quantitatively assessed by
Brown and et al. on a research Itanium CMP [14].

2.2. Dynamic vs. Static Helper Threading

Software-based dynamic optimization [6], [17], [30],
[31], [33] adapts to the runtime behavior of a program
due to the change of input data, and/or the underlying
micro-architecture. Current dynamic optimizations
include data prefetching, procedure inlining, partial
dead code elimination, and code layout, which have
been proven to be useful complements to static
optimizations. Optimizations such as data cache
prefetching and branch mis-prediction reduction are
usually difficult to perform at compile time since
cache miss and branch mis-prediction information
may not be available. Furthermore, program hot spots
may as well change under different input data sets or

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

on processors with different micro-architectures. For
example, statically pre-constructed helper threads may
incur performance degradation if the generated binary
is executed under different inputs or on a non-CMP
processor. For this reason, it is more desirable to
generate helper threads dynamically.

3. Helper Thread Model for CMP

This paper focuses on the aspects of helper-threaded
prefetching through dynamic optimization on a real
CMP processor, UltraSPARC IV+ (code named
“Panther”). Since each Panther processor encapsulates
two identical cores, helper threads can run on the
often under-utilized secondary core to prefetch data
into the shared cache so as to improve the main thread
performance. Unlike other helper threading schemes
discussed for SMT [4], [7], [10], [13], [15], [29],
thread communication for Panther has to be conducted
through the L2 cache since the L2 cache is the closet
level of shared caching. On the other hand,
construction of helper threads on Panther is less
constrained by resource contention as each core is a
complete processing unit with its own functional units,
TLB, L1 caches and register files; execution of the
helper thread would have less negative impact on the
main thread performance.

3.1. Piggyback on the Optimizer Thread

In Kim’s helper threading work [7], the main thread
activates the helper thread in a master-slave fashion.
Where there is no work for the helper thread, the SMT
processor runs in Single-Threading (ST) mode to
avoid performance degradation in the main thread.
The overhead of switching from ST to MT, or vice
versa, becomes a major concern if no hardware
support is provided. To alleviate such cost, they
prototyped several lightweight instructions for thread

synchronization. Other research work on helper
threading also faces the same issue.

Our dynamic optimization system is based on the
ADORE dynamic optimization framework [17], which
spawns a secondary thread to collect runtime
performance profile, detect phase changes, select hot
regions and deploy optimizations to the original
binary. This secondary thread is in sleep mode most of
the time and it consumes very little system resources.
To employ software scouting in our runtime
optimization system, we piggy-back the helper thread
on the dynamic optimization thread, meaning that the
dynamic optimization thread communicates with the
main thread to prefetch data in the post-optimizing
stage. This design minimizes the cost of dynamically
triggering helper threads and maintains a better
control of helper threading at runtime.

3.2. Task Dispatching

Figure 1 shows the control flow of the merged
dynamic optimization and helper thread. The control
loop first waits for a new profile-window [17], upon
which the phase detector is called to check for major
changes in the behavior of the main program’s
execution. Once a new phase becomes stable (Section
4.3), the dynamic optimizer selects the hot regions as
candidates for software scouting. The optimizer
generates two code segments in the code cache, one
for the main thread and the other for the helper
thread. The code segment for the main thread
communicates register values and synchronizes with
the helper thread. It is patched to the binary of the
main thread so that this code segment is executed
prior to entering each hot region. The code segment
for the helper thread prefetches data that may likely be
needed in the hot region by the main thread. Once a
helper thread code is generated, the merged

end

check phase status
from the samples

main thread
still alive?

new profile
arrives?

detected new
phase?

prepare profile from
the samples

optimize hot loops and
prepare helper tasks

start

dispatch new helper task,
if any.

short time sleep

system busy?

yes

no

yes

yes yes

no

no

no

deploy optimized code

Figure 1. Control flow of runtime optimization for helper threading on UltraSPARC CMP.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

optimization/helper thread enters a “scouting” mode.
It checks a dispatching table (the mailbox) to see
whether there are outstanding requests for scouting.
Such requests are dynamically registered by the newly
generated regions/loops. These requests carry the
location of the code segment in the code cache that the
helper thread should execute.

In Dorai et al.’s work [10], each scouting task is a
function. The optimized loop executed in the main
thread passes the corresponding function pointer to the
helper thread. We use a different approach by passing
only the function ID to the helper thread while the
function pointer is maintained in the dispatching table
at entry <ID>. This gives more freedom to the runtime
optimizer -- whenever the dynamic optimizer learns
that the helper task for a certain region/loop is not
helping (e.g. cache stalls are not reduced), it can
simply change the addresses in the corresponding
entry to point to a newly generated helper task.

Figure 2 illustrates how the dispatching table
works. Each of the three optimized hot loops passes its
ID to the helper thread when executed. The helper
thread will call Helper_Func_<ID> to perform its
helper task. The first task on the list is an idle function
that will be called when there is no task to perform.
Finally, in a throughput computing environment, if all
processor cores are busy running useful jobs, the
scouting job may be skipped so that all the cores are
available for increasing throughput.

3.3. Loop-based Region Selection

Most helper thread schemes for data cache prefetching
focus on selecting hot loops as candidates because 1).
For data cache prefetching, delinquent loads are likely
found in frequently executed loops, and 2). Loops can
amortize the cost of communication and minimize the
cost for synchronization. Consequently, our runtime
optimization system uses runtime profile to select hot

loops and determine whether helper threading may be
beneficial based on the information sampled from
hardware performance counters. However, there are
cases where loops may have been transformed into
various shapes by compiler optimizations such as loop
peeling and software pipelining; hence the loop
structures observed at runtime can be obscure. To deal
with this problem, our runtime loop selector searches
in a broader context for loop structures to reduce the
risk of missing important candidates1.

3.3.1. Loop Processing

Once a stable phase is detected, the code selector scans
a hot region for backward branches to delimit the
rough boundary of a hot loop. The Sun UltraSPARC
architecture provides a branch prediction bit for
branch instructions. The compiler sets such prediction
bits based on its best knowledge of the program
structure or from profile feedback. Accordingly, our
loop selector skips backward branches with a “not
taken” hint to prevent the selected code from exiting
the scouting loop prematurely that reduces the
effectiveness of scouting. Each PC sample is a PC
location associated with a sampled performance event.
A loop is considered hot when there are a large
number of PC samples occurring in it. To lower the
cost incurred on optimizing less important regions, we
select loops in sorted order, starting from the hottest
PC, one by one until the accumulated PC samples of
all selected loops exceed 90% of all samples.

3.3.2. Region Selection

Next, the code selector performs a quick profile-
assisted control flow analysis on each loop to check
whether the critical path in the loop covers the
majority of the loop’s PC samples. This is to reassure
the quality of the selected loops. Additionally, some
loops can overlap with each other as they are
essentially portions of a large loop. Such loops will be
merged. Selecting nested loop is another challenge.
For most inner loops, fewer extra registers are
required to perform inter-thread communication,
whereas the cost of doing so might be unbearable if
the inner loop iterates only a small number of times.
Contrarily, such overhead can be well amortized in
outer loops, yet getting extra registers for outer loops
is often more costly. To make appropriate choice, our
code selector estimates the relative execution time
between the inner and the outer loop by computing the
total number of PC samples and the minimal execution
cycles of each loop. The minimum execution cycles is

1 Some architectures support branch history information that
simplifies this work.

Main Thread Helper Thread

Code Cache

…

&Helper_Func_3&Helper_Func_3

&Helper_Func_2&Helper_Func_2

&Helper_Func_1&Helper_Func_1

 &Idle_Func

4

3

2

1

0

…

&Helper_Func_3&Helper_Func_3

&Helper_Func_2&Helper_Func_2

&Helper_Func_1&Helper_Func_1

4

3

2

1

0

Loop_#1

Loop_#2

Loop_#3

Helper_Func_1

Helper_Func_2

Helper_Func_3

1

Figure 2. Dispatching Table.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

the un-stalled cycles of a single iteration plus cycle
stalls from delinquent loads. We divide the PC sample
count by minimum execution cycles to roughly figure
out the relative trip count of each loop (Before that,
the values of both metrics of the inner loop are
subtracted from the outer loop). If the inner loop’s trip
count is more than ∆T times (currently ∆T is 10) of that
of the outer loop, the code selector would favor the
inner loop, otherwise, it selects the outer loop.

In the final step, loops selected from the above
operations are decoded and assigned initial values,
such as structural and performance properties.

3.3.3. Delinquent Load Identification

Delinquent loads refer to load operations causing
heavy cache miss stalls. The libcpc library in Solaris
(similar to pfmon [12] library in Linux/Itanium)
enables the signal handler to collect cache miss events
when the hardware performance counter overflows at
the user-defined sampling rate. However, due to the
delay in the pipeline, the event address acquired from
the interrupts is often a few instructions past the actual
event, which is called “interrupt skid”. Fortunately,
this lag rarely spans across taken branches. Thus a
simple back-scan is sufficient to find the real
delinquent load, except when the interrupt hits on a
branch, then the instruction in the branch delay slot is
also examined.

3.4. Helper-Thread Code Generation

The scouting code in each helper task is constructed
by selecting the backward slices [5] of the delinquent
loads plus instructions that change the control flow.
The main thread needs to pass live-in variables to the
helper thread and maintain proper synchronizations
with the helper thread.

3.4.1. Stores, Prefetches and Non-Faulting Loads

In the scouting code, memory stores are ignored as the
helper thread is speculative in nature and should not
modify the architecture state of the main thread.
However, some computations may involve local
variables on the main thread’s stack. Such memory
dependences can be easily detected from their “[%SP
+ off]” or “[%FP + off]” addressing patterns. These
variables can be treated as registers and their
corresponding references (load/store) can be selected
as well. However, such references need to be converted
into register references or private memory references
since the stack pointer of the helper thread is different.

On Panther, a cache missing load instruction
blocks the pipeline whereas a prefetch instruction does
not. Accordingly, delinquent loads in scout code

should always be replaced by prefetches unless their
result is used by subsequent computations. In the latter
case, a bit in the IR (Intermediate Representation) of
that load is set indicating its result is used by other
selected instructions, so this delinquent load will be
converted into a non-faulting load. It is quite often
that load operations in the helper thread can be
replaced by non-blocking prefetches. This conversion
usually enables the helper thread to run ahead of the
main thread even if the distilled slice is not much
smaller than the original code in the main thread.

3.4.2. Inter-Thread Communication

Inter-thread communication refers to the operations of
activating the helper thread and passing live-in
variables. The latency of communication is important
to the effectiveness of the prefetching because it takes
time for the helper thread to run ahead of the main
thread. The later the helper thread starts, the longer it
takes to catch up with the main thread. It is difficult to
schedule communication code far ahead of the loop
entry due to the complexity of control and data
dependences. Therefore, prior work propose hardware
support for light-weight thread switching to trigger the
helper thread and use shadow registers for passing
live-in variables. Unfortunately, such support is not
available on the Panther processor. In our system, we
attach a shared memory buffer to each entry in the
dispatching table to perform inter-thread
communication. The live-in variables to be passed
from the main thread to the helper thread include loop
invariants and variants. Invariants only need to be
passed once rather than at every synchronization point
(see Section 3.4.3).

The Solaris operating system randomly schedules
user threads to any core/chip on a regular basis by
default. To avoid losing the benefit from having the
helper thread warm up the shared cache, the helper
thread and main thread must be bound to different
cores on the same chip. This is enforced by using the
system call processor_bind at the beginning of each
thread’s execution.

The cost of inter-thread communication through
memory can be minimized by the shared cache. On

Machine Configuration Cost in cycles

Dual-core UltraSPARC IV+ with
shared L2 Cache

60 ~ 65

2-way single-core UltraSPARC III 450 ~ 500

Table 1. The cost of inter-threading
communication via memory operation.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

the Panther CMP, the one way communication latency
is ~60 cycles. If the cache is not shared, however, it
can be as high as 500 cycles (shown in Table 1). This
low cost enables a large window for effective helper
threaded prefetching as the helper thread can catch up
and run ahead of the main thread easily.

3.4.3. Synchronization

Since the merged optimization/helper thread takes
care of both dynamic optimization and helper thread
prefetching, a well-managed scheduling scheme is
needed. Once a helper task starts, it must finish within
a certain time limit so that critical dynamic
optimization tasks such as phase change detection can
take place in a timely manner. Additionally, the
dynamic optimizer must ensure that no incorrect
control flow leads to run-away loops. Such run-away
loops not only thwarts the merged optimizer/helper
thread from gaining control to perform its continuous
profiling and optimization jobs but also pollutes the
data cache with useless data. To address this issue, the
helper thread loop synchronizes with the main thread
loop after a certain number of iterations [7]. In our
system, we use an asynchronous protocol between the
two threads to avoid cross-checking each other’s
progress. In this protocol the helper thread maintains
a single counter while every main thread loop
maintains a private counter. All counters consist of
three components: a task ID, a synchronization index
and an iteration counter. The “iteration counter” is
used in each loop to track the number of loop
iterations. When it overflows a preset threshold, say
128, the main thread and helper thread take different
actions. The helper thread will terminate the current
scouting work while the main thread passes updated
values of live-in variables and increments the
synchronization index to indicate the start of a new
synchronization interval, before continuing normal
execution. When the helper thread enters the helper
function again, it compares the first two parts of its
counter with the main thread loop’s counter. Equality
of the comparison indicates this scouting task has been
done, hence is skipped. Inequality means this is either
a new task requested from a different loop or the old
loop has entered a new synchronization interval so the
helper thread should synchronize the counter and start
the scouting work. This protocol minimizes the
synchronization overhead in the main thread as it
never waits for the helper thread.

3.4.4. Qualification Test

Helper threaded prefetching is meant to be applied to
all loops experiencing external cache misses.

However, some loops are particularly difficult for
effective prefetching since the results of delinquent
loads are needed on the loop’s critical path. The
helper thread hence may not run faster than the main
thread, making the prefetching useless. As a result, we
apply a qualification test to rule out such loops at the
end of code generation lest these loops degrade the
performance. In this test, a set of metrics are used to
assess the risk of applying helper threading, such as
the loop size, the PC sample coverage and the lengths
of misses’ dependence chains, etc.

4. Dynamic Optimization Framework

In this section, we briefly describe the effort of
implementing a dynamic optimization system on the
UltraSPARC architecture 2 and discuss architectural
features that are important to runtime optimization; in
particular, the new helper threaded prefetching.

4.1. Startup of Runtime Optimizer

Although the way to start-up a runtime optimization
system varies across different implementations [6],
[17], [30], [31], [33], it is commonly accepted that the
runtime optimizer should be activated at the beginning
of programs’ execution. A straightforward solution is
to make the optimizer a dynamically linked library
loaded by the runtime loader. On Sun’s Solaris
operating system, an environment variable called
LD_PRELOAD can be explicitly set to run library code
right before program execution. We use this interface
to start our dynamic optimizer as it is easy to control.

4.2. Hardware Performance Monitoring

Modern micro-processors provide hardware
performance monitoring (HPM) capabilities and
powerful counters that facilitate performance
monitoring and profiling. For example, ADORE [17]
takes advantage of the comprehensive Itanium PMU to
achieve low-overhead runtime optimization and in
turn sped up many programs, including large
applications.

The libcpc library in Solaris is used to access the
performance counters. Since the current UltraSPARC
only implements two physical counters, monitoring
multiple performance events must go through
interleaving counters. The drawback of interleaving,
however, is that the profiler receives fewer samples for
each event if the sampling rate remains unchanged.
To maintain the quality in dynamic profiling, we
choose to dedicate one physical counter to the most

2 Many of the issues are also applicable to other architectures.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

important event (e.g. CYCLE_CNT), and use the
second counter to interleave other important events.
Additionally, a slight change to the Solaris kernel has
been implemented to enable buffering the interrupts
generated from event overflows. This buffering
scheme significantly reduces the overhead of signal
handling from 8-10% down to 1-2%. With the greatly
reduced signal handling cost, the dynamic
optimization system is able to afford a higher
sampling rate for continuous performance monitoring.

4.3. Phase Detection

Running programs often exhibit time-varying behavior
called phases, as the example shows in Figure 3. A
phase-sensitive optimizer that adapts to phase changes
is able to identify more optimization opportunities.
Several phase detection schemes have been proposed
[1], [32], yet most of them tend to capture fine-grain
phases that may incur excessive overhead to software
optimizations. Consequently, we decide to use
ADORE’s low-cost PC-Centroid [17] approach to
detect phase changes.

First, the algorithm calculates the average PC
address of all samples collected in a fixed time
interval, called PC-Centroid, as a depiction of phase
to reveal the pivot of code mass that the main program
has executed. In actual computation, a few high bits in
the PC address must be masked out to deal with the
situations where frequent switches from the user code
to the shared library code (shared library code often
locate in high address range) may generate misleading
centroids.

Next, the expectation value E and the standard
deviation D of n (n is a fixed value, e.g. 7) most recent
PC-Centroids are calculated to form a tolerant space
[E–D, E+D]. If the newly arrived PC-Centroid is
shifting beyond the current tolerant space by some
extent, a signal of phase change will be raised. To
improve this scheme, a state machine has also been

introduced to help capture important phases and
ignore transient insignificant changes.

4.4. Optimization

4.4.1 Code Cache and Reachability Issue

The code cache stores the optimized code of each
running program, where the execution of the program
can be re-directed to by patching the entry point to a
code region with a branch. To be accessible within the
same process, the code cache must be allocated in the
same virtual address space. Direct branching on some
platforms has limited branch range. For example, the
largest range of branch distance on UltraSPARC is
±8MB only. Therefore, the reachability issue arises if
the code cache sits beyond the range of a single branch
instruction.

Figure 4 shows an application’s virtual address
mapping on the UltraSPARC/Solaris system. Close
investigation reveals many “holes” in this address
space where the code cache can be safely allocated to
maintain reachability. For instance, the space from
address “00060000” to “0006E000” is a good
candidate. There are other holes in the higher address
space but all beyond the reachability of one direct
branch from the text segment. If the code cache has to
be positioned in those addresses, trampoline code that
uses indirect branch is needed to assure reachability,
although the trampoline code requires some unused

Execution Time

Cache Stall

Average PC

CPI

 New Incoming Phase

Figure 3. Three performance characteristics (L2-Stall, Average PC, and CPI) exhibit
the runtime behavioral change of SPECINT benchmark mcf. The vertical lines
represent new phases detected by the PC_Centroid approach.

00010000 320K r x /home/a123948/a.out
0006E000 24K rwx /home/a123948/a.out
00074000 616K rwx [heap]
FF100000 688K r x /usr/lib/libc.so.1
FF1BC000 32K rwx /usr/lib/libc.so.1
FF340000 16K r x /usr/lib/libmp.so.2
FF354000 8K rwx /usr/lib/libmp.so.2
FF370000 8K rwx [anon]
FF3B0000 160K r x /usr/lib/ld.so.1
FF3E6000 16K rwx /usr/lib/ld.so.1
FFBD2000 120K rw [stack]

Figure 4. An application’s runtime virtual address
mapping on Solaris 10.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

bytes in the text segment that are reachable by direct
branches from the original code. Such code sequence
is costly and should be avoided as much as possible.

4.4.2 Weak/Strong Prefetch

The Panther processor supports two variations of
prefetch instructions: weak prefetch and strong
prefetch. Although their semantics are implementation
dependent, the key difference is that the weak prefetch
can be dropped when the prefetch queue is full, or
when a TLB miss is encountered. In general, strong
prefetch should be used if many prefetches are needed
to bring in useful data, and weak prefetch should be
used when the prefetch is more speculative.

Initially, we replaced delinquent loads with weak
prefetches in the helper thread, especially when
control dependent instructions are not included (as
suggested in some earlier research). However, as the
two cores do not share TLB, a weak prefetch can get
dropped in case of a TLB miss. Unlike in the main
thread, where the regular loads will eventually bring
in the missed TLB entries, the helper task may end up
having all prefetches dropped due to TLB misses
(since the regular loads are replaced by prefetches).
We therefore decide to use strong prefetch in the
helper thread code. Although this is generally a better
code generation strategy, there are cases when weak
prefetch may yield better performance (Section 5.6).

4.4.3 Register Allocation

Runtime binary optimization often requires extra
registers to perform computations. For helper
threading on CMP processors, the main thread only
needs to free up two to three registers for
communication and synchronization; there is no other
computation needing additional registers. Extra
registers can be obtained by compiler through register
pre-reservation or annotations indicating which
registers are not used in a procedure or a loop nest. In
ADORE [17], free registers are obtained by using the

new IA64 instruction alloc to dynamically allocate
registers from the register stack. On UltraSPARC, we
decide to collect the register liveness information and
spill unused or less-frequently used registers to
memory. For instance, according to the SPARC ABI,
some spaces are unused in the function’s activation
record where a small number of registers can be safely
spilled. Spilling and restoring registers inevitably adds
overhead. Yet such overhead is normally negligible
since the optimization for helper threading is targeted
at hot loops. Finally, register allocation is not an issue
for the helper functions as registers in the helper
thread context are always available.

4.5. Atomic Patching and Cache Coherence

In a binary optimization system, patching refers to
redirecting the original code execution to the
optimized code in the code cache. This operation must
be performed atomically in a multi-threading
environment to ensure the execution will see either old
code or new code, but never half-way patched
instructions. In our runtime optimization system,
patching involves using a 32-bit store to place a single
branch instruction in the original code, which is
atomic. In addition, the Panther CMP’s I-Cache
snoops on stores issued from all processor cores so
that the patched instruction will be brought into the I-
Cache, making it unnecessary to explicitly execute an
iflush instruction. Other solutions about the cache
coherence can be found in Brown et al.’s work [14].

5. Performance Evaluation

5.1. Machine Configuration

We implement our dynamic optimization system on a
4-way Sun UltraSPARC IV+ (code named Panther)
machine [27] running Solaris 10. Each processor is a
dual-core CMP sharing a 2MB on-chip L2-cache. The

0.0
0.2
0.4
0.6
0.8
1.0
1.2

fa
ce

re
c

m
gr

id

lu
ca

s

vp
r

m
es

a

pa
rs

er

cr
af

ty

ap
pl

u

m
cf

ga
p

am
m

p

gz
ip

ga
lg

el

sw
im ar

t

fm
a3

d

tw
ol

f

ap
si

w
up

w
is

e

gc
c

eq
ua

ke

bz
ip

2N
or

m
a

liz
ed

 E
xe

cu
tio

n
Ti

m
e

0%

20%

40%

60%

80%

100%

S
ta

ll
in

 P
e

rc
en

ta
ge

Normalized Execution Time Stall on Shared Caches

Figure 5. Helper threaded prefetching on CPU2000 benchmarks compiled with base option and profile
feedback. 6 programs have L2/L3 cache miss stall no less than 20%.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

per-core L1-I/D Caches are 64 KB, 4-way set
associative with 64B line size. Many other
architectural enhancements have been added onto this
new chip including a 32MB shared external cache,
enhanced Branch Prediction Unit and support for
weak/strong prefetches.

5.2. Benchmarks

To examine the effectiveness of helper threaded
prefetching on programs encountering cache misses,
we studied the CPU2000 benchmark suite (we believe
CPU2006 would be more appropriate to study cache
performance, but they are not available yet), as well as
one real world application, Fluent (version 6.1.9),
which is a large computational fluid dynamics
software. All CPU2000 programs are compiled by Sun
Forte Compiler using two options: 1) base + profile-
feedback, 2) peak. They all run reference input (the
first input set if there are multiple sets). For Fluent,
we compiled it using the best option we could find and
fed it with 9 different data input sets: 3 small (fl5s1-
3), 3 medium (fl5m1-3), and 3 large (fl5l1-3), obtained
from the Fluent website [9].

5.3. Performance Results

As shown in Figure 5 and Figure 6, stall on L2 and L3
cache still dominates the performance of a few

CPU2000 binaries 3 . However, with the 32MB L3
cache, most CPU2000 programs suffer from only L2
cache misses. Our runtime helper threaded prefetching
was able to speed up four base binaries by as much as
35% (mcf) and three peak binaries. Similarly, Figure 7
shows that performance gain from 2% to 16% can be
achieved from 4 out of the 9 input sets for the
application fluent (with input data fl5s3, fl5m3, fl5l1,
and fl5l2).

Figure 8 shows the change of cycle breakdown
before/after applying help threaded prefetching.
Helper threaded prefetching is particularly effective on
hiding L3 cache miss latency, as shown in the figure.
Since the helper threaded prefetching does not
decrease L1 data cache miss penalty (shown as
L2_hit_stall in Figure 8), we need to consider CMT
type helper threading or in-thread prefetching if L1
cache miss stall dominate the performance. Note that
the working set sizes of CPU2000 programs may be
less suitable to evaluate the effectiveness of a cache
hierarchy of latest processors. The yet to be announced
CPU2006 programs would have a working set size
more representative of current and future applications.
For those programs that do not benefit from helper
threaded prefetching, there is only 1-2% extra
overhead caused by the runtime optimizer.

3 On the CMP processor, L1 cache is per-core, whose misses cannot
be pre-fetched from other cores.

0.0
0.2
0.4
0.6
0.8
1.0
1.2

fa
ce

re
c

m
gr

id

lu
ca

s

vp
r

m
es

a

pa
rs

er

cr
af

ty

ap
pl

u

m
cf

ga
p

am
m

p

gz
ip

ga
lg

el

sw
im ar

t

fm
a3

d

tw
ol

f

ap
si

w
up

w
is

e

gc
c

eq
ua

ke

bz
ip

2N
or

m
a
liz

ed
 E

x
ec

ut
io

n

Ti
m

e

0%

20%

40%

60%

80%

100%

S
ta

ll
in

 P
e
rc

en
ta

g
e

Normalized Execution Time Stall on Shared Caches

Figure 6. Helper threaded prefetching on CPU2000 benchmarks compiled with peak option.

0

200

400

600

no-opt opt no-opt opt no-opt opt no-opt opt

mgrid gap fma3d mcf

B
illi

on
s

of
 C

yc
le

s L3_Miss_Stall

L3_Hit_Stall

L2_Hit_Stall

Other

Figure 8. Cycle breakdown before and after
prefetching. “no-opt” is for original code and "opt"
is for dynamic helper threaded prefetching.

Normalized Execution Time

0.0

0.2

0.4

0.6

0.8

1.0

1.2

fl5s1 fl5s2 f l5s3 f l5m1 fl5m2 fl5m3 fl5l1 fl5l2 fl5l3

Fluent

Figure 7. Helper threaded prefetching on fluent.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

In Figure 5 and Figure 6, our dynamic helper
thread optimizer did not speed up some programs with
high cache miss stalls. As an example, our optimizer
failed to obtain sufficient registers for the
transformation for wupwise (to avoid excessive
spilling). For other programs, the tight data
dependence from linked-list chasing prevents us from
performing effective scouting.

5.4. Effect of Control Flow Structures

To ensure the prefetching accuracy of the helper
thread, the scout code for each loop includes
instructions that change the control flow, as discussed
in Section 3.4. However, it would be interesting to
understand the impact of not including such
instructions. Would the removal of these instructions
make the helper thread run faster and hide miss
latency more effectively for the main thread?

Figure 9 studies the effect measured on the four
base binaries that we speedup using helper thread
prefetching. Without the control flow instructions,
only one program completely lost its performance gain
(gap) while the other three still benefit from the
software scouting, although the speedups now become
less. This is because the helper thread missed some
early exits of the loop by not computing the control
flow, which causes a delay in reaching or entirely
missing the next synchronization point. Additionally,
without control flow computation the helper task runs
the maximum number of iterations that is set as
synchronization interval (e.g. 32, 128 and 512). If the
actual iteration count in the main thread loop is much
fewer, the helper thread might severely pollute the L2
and L3 cache (as shown in Figure 9, w/o loop control
+ 512 always renders the worst performance). As a
result, our runtime optimizer by default selects control
flow computations into the helper thread code for
prefetching.

5.5. Evaluation of Synchronization

Since helper threads do not include store instructions,
and may skip control dependent instructions, there is a
risk that the helper thread loop runs out of control.
Therefore, synchronization intervals are set between
the main thread and the helper thread to keep run-
away loops under control.

To find appropriate values, Figure 10 evaluates
five intervals, at which the helper thread synchronizes
with the main thread every: 4, 16, 64, 256, or 1024
iterations. Since the instructions computing control
flow are included and the external cache is large
enough for the CPU2000 programs, there is not much
performance degradation when large intervals like
1024 are used. However, it is quite interesting that
helper threading is still very effective even at a small
interval of 4. At such a small interval size, one might
expect that the helper thread cannot run considerably
ahead of the main thread and initiate prefetches
sufficiently early to hide the miss latency. In fact,
while the main thread is stalled on the first cache miss
in the interval, the helper thread uses prefetch
instructions in place of some regular loads to initiate
multiple misses. Thus, the helper threading scheme
overlaps multiple misses achieving high Memory-
Level Parallelism (MLP) even when it is unable to run
sufficiently ahead of the main thread to hide miss
latency. Therefore, significant speed-up is achievable
even with a smaller interval size.

5.6. Weak vs. Strong Prefetches

The relative benefits of using strong/weak
prefetches on the UltraSPARC CMP processor are
evaluated here. As mentioned in Section 4.4.2, strong
prefetch is generally preferable in helper threading
since the TLB is private per core and weak prefetches
do not ensure that data is brought into the shared
cache. Figure 11 demonstrates that when weak

-10%

0%

10%

20%

30%

40%

mgrid gap fma3d mcf

S
p

ee
d

u
p

w / control f low

w /o ctrl f low + 32

w /o ctrl f low + 128

w /o ctrl f low + 512

Figure 9. Effect of excluding control flows in
helper tasks. 32, 128 and 512 represent the
synchronization interval in loop iterations.

0.4

0.5

0.6

0.7

0.8

0.9

1.0

1.1

mgrid gap fma3d mcf

N
o

rm
al

iz
ed

 E
xe

cu
ti

o
n

 T
im

e

4

16

64

256

1024

Figure 10. Effect of different synchronization
intervals.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

prefetches replace strong prefetches, performance
gains of some programs (mgrid and fma3d) are
diminished. Nevertheless, weak prefetch works better
for some cases, such as mcf. There are two reasons for
this. First, in mcf, the traversal of the linked-lists must
use non-faulting loads, not prefetch instructions. As a
result, TLB misses can be resolved by non-faulting
loads as well, regardless the weak prefetches are
dropped or not. Second, the strong prefetch could
cause delay when the prefetch queue is full. For this
reason, when TLB misses is less a concern and
prefetch is more speculative, using weak prefetches
may have an edge over strong prefetches in the helper
thread to allow it to run faster.

6. Conclusion and Future Work

This paper presents the design and implementation
of a dynamic optimization system capable of helper
threaded prefetching on a state-of-art UltraSPARC
CMP processor, where two on-chip processor cores
share an on-chip L2 cache and an off-chip L3 cache.
We have shown that effective helper threaded
prefetches can be generated dynamically using
runtime profiling based on hardware performance
monitoring. By utilizing the otherwise idle processor
core, the dynamic optimizer has a great potential to
speed up single-threaded user applications,
particularly those suffering significantly from L2 or
external cache misses. For programs that helper
threaded prefetching does not help, our system
introduces negligible slowdown (< 2%) due to the
light weight runtime profiling mechanism. This paper
also discusses the critical issues of implementing
efficient helper threaded prefetching, which include
efficient synchonization/communication, whether
control flow should be kept in the helper thread, and
the impact of using different prefetch instruction in
the helper thread. We believe this dynamic optimizer
would have greater performance impact on the next

generation benchmarks such as the CPU2006 with
larger working set sizes.

In the near future, we will focus on finding an
arbitrator to decide whether to select helper threaded
or in-thread cache prefetching optimizations based on
profitability analysis. Specifically, since some
programs sped up by helper threading can also be sped
up by in-thread prefetching, the dynamic optimizer
may favor in-thread optimization when the other on-
chip cores could be used to run other jobs. In-thread
optimization should also be considered when the
performance is dominated by private L1 cache misses.
Although it seems that helper threaded prefetching on
CMP may be inadequate in a throughput oriented
computing environment, a number of transaction
processing benchmarks show that some threads (such
as log writer and DB writer) could be more time
critical than others in attributing to the total
performance. Hence helper threaded prefetching can
be selectively applied to the time critical threads, even
in a throughput computing environment.

The thread synchronization mechanism requires
further evaluation on the future CMP processors as
well. The reason for this is that a faster
synchronization mechanism (e.g. through shared L1-
Cache or hardware assist) will help utilizing the idle
core more efficiently according to our current scheme,
particularly when multiple main threads are involved.
Other aspects that need enhancement include register
allocation, region selection and undoing ineffective
optimization to maximize the performance gain of
dynamic help threaded prefetching.

References
[1] A. Dhodapkar and J. E. Smith. “Comparing Program

Phase Detection Techniques”, In Proc. of Micro-36,
Dec. 2003.

[2] A. Bhowmik and Manoj Franklin. “A General
Compiler Framework for Speculative Multithreading,”
in Proc. of SPAA’02, Aug 2002.

[3] A. Roth and G. Sohi, “Speculative Data-Driven Multi-
Threading,” in Proc. of HPCA-7, Jan 2001.

[4] C.-K. Luk, “Tolerating Memory Latency through
Software-Controlled Pre-Execution in Simultaneous
Multithreading Processors,” in Proc. of ISCA-28, July
2001.

[5] C. Zilles and G. Sohi, “Understanding the Backward
Slices of Performance Degrading Instructions,” in Proc.
of ISCA-27, 2000.

[6] D. Bruening, T. Garnett, and S. Amarasinghe. “An
Infrastructure for Adaptive Dynamic Optimization”, In
Proc. of CGO’03, March 2003.

-10.0%

0.0%

10.0%

20.0%

30.0%

40.0%

mgrid gap fma3d mcf

S
p

ee
d

u
p

strong prefetch

w eak prefetch

Figure 11. Strong vs. weak prefetch.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

[7] D. Kim, S. S. Liao, P. H. Wang, J. d. Cuvillo, X. Tian,
X. Zhou, H. Wang, D. Yeung, M. Girkar, J. P. Shen,
“Physical Experimentation with Prefetching Helper
Threads on Intel’s Hyper-Threaded Processors,” In
Proc. of CGO’04, March 2004.

[8] D. M. Tullsen, S. J. Eggers, and H. M. Levy.
“Simultaneous Multithreading: Maximizing On-Chip
Parallelism,” In Proc. of ISCA-22, June 1995.

[9] Fluent Benchmarks.
http://www.fluent.com/software/fluent/fl5bench/intro.ht
m.

[10] G. K. Dorai, D. Yeung. “Transparent Threads:
Resource Sharing in SMT Processors for High Single
Thread Performance,” in Proc. of PACT-2002, Sept
2002.

[11] G. Sohi, S. Breach, and T.N. Vijaykummar,
“Multiscalar Processors,” in Proc. of ISCA-22, Jun
1995.

[12] Hewlett-Packard Corp. Perfmon Project.
http://www.hpl.hp.com/research/linux/perfmon.

[13] H. Wang, P. Wang, R. D. Weldon, S. Ettinger, H.
Saito, M. Girkar, S. Liao, and J. Shen. “Speculative
Precomputation: Exploring Use of Multithreading
Technology for Latency,” Intel Technology Journal,
Feb 2002.

[14] J. A. Brown, H. Wang, G. Chrysos, P. H. Wang, and J.
P. Shen. “Speculative Precomputation on Chip
Multiprocessors,” in Proc. of MTEAC-6, Nov 2002.

[15] J. Collins, H. Wang, D. Tullsen, C. Hughes, Y. Lee, D.
Lavery, J. Shen, “Speculative Precompuation: Long-
range Prefetching of Delinquent Loads,” in Proc. of
ISCA-28, July 2001.

[16] J. Kahle. “The IBM Power4 Processor,” in
Microprocessor Report, Oct 1999.

[17] J. Lu, H. Chen, P-C Yew, W-C. Hsu. “Design and
Implementation of a Lightweight Dynamic
Optimization System,” in The Journal of Instruction-
Level Parallelism, CFP-1, 2004.

[18] J. Dundas and T. Mudge. “Improving data cache
performance by preexecuting instructions under a cache
miss,” in Proc. of ICS-11, 1997.

[19] L. Hammond, B. Hubbert, M. Siu, M. Prabhu, M. Chen
and K. Olukotun. “The Stanford Hydra CMP,” in IEEE
Micro, Mar-Apr 2000.

[20] L. Spracklen, S. G. Abraham. “Chip Multithreading:
Opportunities and Challenges,” in Proc. of HPCA-11,
Feb 2005.

[21] M. Tremblay. “The MAJC Architecture: A Synthesis of
Parallelism and Scalability,” in IEEE Micro., Vol. 20,
No. 6, pp. 12-25, 2000

[22] M. Dubois. “Fighting the Memory Wall with Assisted
Execution,” in 2004 ACM Computing Frontiers
Conference, Ischia Italy.

[23] O. Mutlu, J. Stark, C. Wilkerson, and Y. N. Patt.
“Runahead Execution: An Alternative to Very Large
Instruction Windows for Out-Of-Order Processors,” in
Proc. of HPCA-9, 2003.

[24] P. H. Wang, J. D. Collins, H. Wang, D. Kim, B.
Greene, K.-M. Chan, A. B. Yunus, T. Sych and J. P.
Shen. “Helper Threads via Virtual Multithreading On
an Experimental Itanium 2 Machine”, in Proc. of
ASPLOS-XI, Oct 2004.

[25] P. H. Wang, H. Wang, J. D. Collins, E. Grochowski, R.
M. Kling, and J. P. Shen. “Memory Latency-tolerance
Approaches for Itanium Processors: Out-of-order
Execution vs. Speculative Precomputation,” in Proc. of
HPCA-8, Feb 2002.

[26] P. Marcuello, A. Gonzalez, and J. Tubella.
“Speculative Multi-threaded Processors,” in Proc. of
ICS-12, Jul 1998.

[27] Q. Jacobson, “UltraSPARC IV Processors,” in
Microprocessor Forum 2003, 2003.

[28] R. S. Chappell, S. P. Kim, S. K. Reinhardt, Y. N. Patt.
“Simultaneous Subordinate Microthreading (SSMT),”
in Proc. of ISCA-26, May 1999.

[29] S. S. W. Liao, P. H. Wang, H. Wang, G. Hoflehner, D.
Lavery, and J. P. Shen. “Post Pass Binary Adaptation
for Software Based Speculative Precomputation,” in
Proc. of PLDI’02, Jun 2002.

[30] T. Kistler, M. Franz, “Continuous Program
Optimization: Design and Evaluation”, in IEEE
Transaction on Computers, vol. 50, No. 6, June 2001.

[31] T. M. Chilimbi and M. Hirzel. “Dynamic Hot Data
Stream Prefetching for General-Purpose Programs,” In
Proc. of PLDI’02, June 2002.

[32] T. Sherwood, S. Sair, B. Calder. “Phase Tracking and
Prediction”, In Proc. of the 30th Symposium on
Computer Architecture, June 2003.

[33] V. Bala, E. Duesterwald, and S. Banerjia, “Dynamo: A
Transparent Runtime Optimization System,” in Proc.
of PLDI’00, 2002.

[34] V. Krishman and J. Torrellas, “A Chip-Multiprocessor
Architecture with Speculative Multithreading,” in
IEEE Trans. on Computers, pp. 866-880, 1999.

[35] Y. Solihin, J. Lee, and J. Torrellas. “Using a User-
Level Memory Thread for Correlating Prefetching,” in
Proc. of ISCA-29, May 2002.

Proceedings of the 38th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO’05)
0-7695-2440-0/05 $20.00 © 2005 IEEE

Authorized licensed use limited to: IEEE Xplore. Downloaded on January 8, 2009 at 08:55 from IEEE Xplore. Restrictions apply.

