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Abstract 

Data prefetching via helper threading has been 
extensively investigated on Simultaneous Multi-
Threading (SMT) or Virtual Multi-Threading (VMT) 
architectures. Although reportedly large cache 
latency can be hidden by helper threads at runtime, 
most techniques rely on hardware support to reduce 
context switch overhead between the main thread and 
helper thread as well as rely on static profile feedback 
to construct the help thread code. This paper develops 
a new solution by exploiting helper threaded pre-
fetching through dynamic optimization on the latest 
UltraSPARC Chip-Multiprocessing (CMP) processor. 
Our experiments show that by utilizing the otherwise 
idle processor core, a single user-level helper thread 
is sufficient to improve the runtime performance of the 
main thread without triggering multiple thread slices. 
Moreover, since the multiple cores are physically 
decoupled in the CMP, contention introduced by 
helper threading is minimal. This paper also discusses 
several key technical challenges of building a light-
weight dynamic optimization/software scouting system 
on the UltraSPARC/Solaris platform. 

1. Introduction 

Modern processors spend a significant fraction of 
overall execution time waiting for the memory systems 
to deliver cache lines. This observation has motivated 
copious research on hardware and software data 
prefetching schemes. Execution-based prefetching is a 
promising approach that aims to provide high 
prefetching coverage and accuracy. These schemes 
exploit the abundant execution resources that are 
severely underutilized following an L2 or L3 cache 
miss on contemporary processors supporting 
Simultaneous Multi-Threading (SMT) [8] or Virtual 
Multi-Threading (VMT) [24]. In hardware pre-
execution or scouting [3], [15], [18], [22], [23], [25], 

[26], [28], the processor checkpoints the architectural 
state and continues speculative execution that 
prefetches subsequent misses in the shadow of the 
initial triggering missing load. When the initial load 
arrives, the processor resumes execution from the 
checkpointed state. In software pre-execution (also 
referred to as helper threads or software scouting) [2], 
[4], [7], [10], [14], [24], [29], [35], a distilled version 
of the forward slice starting from the missing load is 
executed, minimizing the utilization of execution 
resources. Helper threads utilizing run-time 
compilation techniques may also be effectively 
deployed on processors that do not have the necessary 
hardware support for hardware scouting (such as 
checkpointing and resuming regular execution).  

Initial research on software helper threads 
developed the underlying run-time compiler 
algorithms or evaluated them using simulation. With 
the advent of processors supporting SMT and VMT, 
helper threading has been shown to be effective on the 
Intel Pentium-4 SMT processor and the Itanium-2 
processor [7], [13], [24], [25], [29]. In an SMT 
processor such as Pentium-4, many of the processor 
core resources such as L1 caches, issue queues are 
either partitioned or shared. Helper threads need to be 
constructed, deployed and monitored carefully so that 
the negative resource contention effects do not 
outweigh the gains due to prefetching. The VMT 
method used a novel combination of performance 
monitoring and debugging features of the Itanium-2 to 
toggle between the main thread and helper thread 
execution. However, on Itanium-2, the large overhead 
in toggling between these modes limits the number of 
cycles available for actual helper code execution to a 
couple of hundred cycles. Only a few missing loads 
can be launched in this short time interval. 

Almost all general-purpose processor chips are 
moving to Chip Multi-Processors (CMP) [19], [20], 
including the Gemini, Niagara, Panther chips from 
Sun, the Power4 and Power5 chips from IBM [16] and 
recent announcements from AMD/Intel. The IBM and 
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Sun CMPs have a single L2 cache shared by all the 
cores and private L1 caches for each of the cores. 
Since the cores do not share any execution or L1 
resources, helper thread execution on one core has 
minimal negative impact on main thread execution on 
another core. However, since the L2 cache is shared, 
the helper thread may prefetch data into the L2 cache 
on behalf of the main thread. Since such CMPs are 
soon going to be almost universal in the general-
purpose arena and since many single-thread 
applications are dominated by off-chip stall cycles, 
helper thread prefetching on CMPs is an attractive 
proposition that needs further investigation. 

The minimal sharing of resources between cores 
gives rise to unique issues that are not present in an 
SMT or VMT implementation. First, how does the 
main thread initiate helper thread execution for a 
particular L2 cache miss? In an SMT system, both 
threads are co-located on the same core enabling fast 
synchronization. Second, how does the main thread 
communicate register values to the helper thread? In 
the Itanium-2 VMT system, the register file is 
effectively shared between the main and helper 
threads. 

We have devised innovative mechanisms to 
address these issues, implemented a complete dynamic 
optimization system for helper thread based 
prefetching, and measured actual speedups on an 
existing Sun UltraSPARC IV+ CMP chip [27]. In our 
system, the main thread is bound to one core and the 
runtime performance monitoring code, the runtime 
optimizer and the dynamically generated helper code 
execute on the other core. Runtime performance 
monitoring selects program regions that have 
delinquent loads. The helper code generated for these 
regions is optimized to prefetch for delinquent loads. 
The main thread uses a mailbox in shared memory to 
communicate and initiate helper thread execution. The 
normal caching mechanism maintains this mailbox in 
the L2 cache and also in the L1 cache of the helper 
thread's core. We address many other implementation 
issues in this first evaluation of helper thread 
prefetching on a physical Chip-Multiprocessor and 
measure significant performance gains on several 
SPEC benchmarks and a real-world application. 

The remainder of this paper is organized as 
follows. Section 2 provides the background and related 
work. Section 3 discusses the helper thread model in 
our optimization framework, including code selection, 
helper thread dispatching, communication and 
synchronization. Section 4 introduces the dynamic 
optimization framework on the UltraSPARC system. 

Section 5 evaluates the performance of dynamic helper 
threading and Section 6 draws the conclusion. 

2. Background and Related Works 

Many researchers have proposed to use one or more 
speculative threads to warm up the shared resources, 
such as the caches and the branch prediction tables, to 
reduce the penalty of cache misses and branch mis-
predictions. These helper threads (also called scout 
threads) usually execute a code segment pre-
constructed at compile time by identifying the 
instructions on the execution path leading to the 
performance bottleneck [5]. 

2.1. SMT/VMT vs. CMP 

Pre-computation based helper threads have been 
evaluated on Pentium-4 with hyper-threading and on 
Itanium-2 system with special hardware support for 
VMT [7], [13], [15], [24], [29]. Other helper 
threading works such as Data-Driven Multi-Threading 
(DDMT) [3], Simultaneous Subordinate Micro-
threading (SSMT) [28] and Transparent Threads [10] 
target at achieving effective helper threaded 
prefetching on SMT processors. 

Unlike SMT and VMT, which share many critical 
resources, Chip Multi-processing (CMP) processors 
limit sharing, for example, to only the L2/L3 cache. 
While the restricted resource sharing moderates the 
benefit of helper threading to only L2/L3 cache 
prefetching, it also avoids the drawback of hard-to-
control resource contention encountered by helper 
threading on SMT. The impact of different resource 
sharing levels to thread communication cost on CMP 
as well as the corresponding performance margin for 
pre-execution have been quantitatively assessed by 
Brown and et al. on a research Itanium CMP [14]. 

2.2. Dynamic vs. Static Helper Threading 

Software-based dynamic optimization [6], [17], [30], 
[31], [33] adapts to the runtime behavior of a program 
due to the change of input data, and/or the underlying 
micro-architecture. Current dynamic optimizations 
include data prefetching, procedure inlining, partial 
dead code elimination, and code layout, which have 
been proven to be useful complements to static 
optimizations. Optimizations such as data cache 
prefetching and branch mis-prediction reduction are 
usually difficult to perform at compile time since 
cache miss and branch mis-prediction information 
may not be available. Furthermore, program hot spots 
may as well change under different input data sets or 
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on processors with different micro-architectures. For 
example, statically pre-constructed helper threads may 
incur performance degradation if the generated binary 
is executed under different inputs or on a non-CMP 
processor. For this reason, it is more desirable to 
generate helper threads dynamically. 

3. Helper Thread Model for CMP 

This paper focuses on the aspects of helper-threaded 
prefetching through dynamic optimization on a real 
CMP processor, UltraSPARC IV+ (code named 
“Panther”). Since each Panther processor encapsulates 
two identical cores, helper threads can run on the 
often under-utilized secondary core to prefetch data 
into the shared cache so as to improve the main thread 
performance. Unlike other helper threading schemes 
discussed for SMT [4], [7], [10], [13], [15], [29], 
thread communication for Panther has to be conducted 
through the L2 cache since the L2 cache is the closet 
level of shared caching. On the other hand, 
construction of helper threads on Panther is less 
constrained by resource contention as each core is a 
complete processing unit with its own functional units, 
TLB, L1 caches and register files; execution of the 
helper thread would have less negative impact on the 
main thread performance. 

3.1. Piggyback on the Optimizer Thread 

In Kim’s helper threading work [7], the main thread 
activates the helper thread in a master-slave fashion. 
Where there is no work for the helper thread, the SMT 
processor runs in Single-Threading (ST) mode to 
avoid performance degradation in the main thread. 
The overhead of switching from ST to MT, or vice 
versa, becomes a major concern if no hardware 
support is provided. To alleviate such cost, they 
prototyped several lightweight instructions for thread 

synchronization. Other research work on helper 
threading also faces the same issue. 

Our dynamic optimization system is based on the 
ADORE dynamic optimization framework [17], which 
spawns a secondary thread to collect runtime 
performance profile, detect phase changes, select hot 
regions and deploy optimizations to the original 
binary. This secondary thread is in sleep mode most of 
the time and it consumes very little system resources. 
To employ software scouting in our runtime 
optimization system, we piggy-back the helper thread 
on the dynamic optimization thread, meaning that the 
dynamic optimization thread communicates with the 
main thread to prefetch data in the post-optimizing 
stage. This design minimizes the cost of dynamically 
triggering helper threads and maintains a better 
control of helper threading at runtime.  

3.2. Task Dispatching 

Figure 1 shows the control flow of the merged 
dynamic optimization and helper thread. The control 
loop first waits for a new profile-window [17], upon 
which the phase detector is called to check for major 
changes in the behavior of the main program’s 
execution. Once a new phase becomes stable (Section 
4.3), the dynamic optimizer selects the hot regions as 
candidates for software scouting. The optimizer 
generates two code segments in the code cache, one 
for the main thread and the other for the helper 
thread. The code segment for the main thread 
communicates register values and synchronizes with 
the helper thread. It is patched to the binary of the 
main thread so that this code segment is executed 
prior to entering each hot region. The code segment 
for the helper thread prefetches data that may likely be 
needed in the hot region by the main thread.  Once a 
helper thread code is generated, the merged 
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Figure 1. Control flow of runtime optimization for helper threading on UltraSPARC CMP.
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optimization/helper thread enters a “scouting” mode. 
It checks a dispatching table (the mailbox) to see 
whether there are outstanding requests for scouting. 
Such requests are dynamically registered by the newly 
generated regions/loops. These requests carry the 
location of the code segment in the code cache that the 
helper thread should execute. 

In Dorai et al.’s work [10], each scouting task is a 
function. The optimized loop executed in the main 
thread passes the corresponding function pointer to the 
helper thread. We use a different approach by passing 
only the function ID to the helper thread while the 
function pointer is maintained in the dispatching table 
at entry <ID>. This gives more freedom to the runtime 
optimizer -- whenever the dynamic optimizer learns 
that the helper task for a certain region/loop is not 
helping (e.g. cache stalls are not reduced), it can 
simply change the addresses in the corresponding 
entry to point to a newly generated helper task.  

Figure 2 illustrates how the dispatching table 
works. Each of the three optimized hot loops passes its 
ID to the helper thread when executed. The helper 
thread will call Helper_Func_<ID> to perform its 
helper task. The first task on the list is an idle function 
that will be called when there is no task to perform. 
Finally, in a throughput computing environment, if all 
processor cores are busy running useful jobs, the 
scouting job may be skipped so that all the cores are 
available for increasing throughput.  

3.3. Loop-based Region Selection 

Most helper thread schemes for data cache prefetching 
focus on selecting hot loops as candidates because 1). 
For data cache prefetching, delinquent loads are likely 
found in frequently executed loops, and 2). Loops can 
amortize the cost of communication and minimize the 
cost for synchronization. Consequently, our runtime 
optimization system uses runtime profile to select hot 

loops and determine whether helper threading may be 
beneficial based on the information sampled from 
hardware performance counters. However, there are 
cases where loops may have been transformed into 
various shapes by compiler optimizations such as loop 
peeling and software pipelining; hence the loop 
structures observed at runtime can be obscure. To deal 
with this problem, our runtime loop selector searches 
in a broader context for loop structures to reduce the 
risk of missing important candidates1.

3.3.1. Loop Processing 

Once a stable phase is detected, the code selector scans 
a hot region for backward branches to delimit the 
rough boundary of a hot loop. The Sun UltraSPARC 
architecture provides a branch prediction bit for 
branch instructions. The compiler sets such prediction 
bits based on its best knowledge of the program 
structure or from profile feedback. Accordingly, our 
loop selector skips backward branches with a “not 
taken” hint to prevent the selected code from exiting 
the scouting loop prematurely that reduces the 
effectiveness of scouting. Each PC sample is a PC 
location associated with a sampled performance event. 
A loop is considered hot when there are a large 
number of PC samples occurring in it. To lower the 
cost incurred on optimizing less important regions, we 
select loops in sorted order, starting from the hottest 
PC, one by one until the accumulated PC samples of 
all selected loops exceed 90% of all samples. 

3.3.2. Region Selection 

Next, the code selector performs a quick profile-
assisted control flow analysis on each loop to check 
whether the critical path in the loop covers the 
majority of the loop’s PC samples. This is to reassure 
the quality of the selected loops. Additionally, some 
loops can overlap with each other as they are 
essentially portions of a large loop. Such loops will be 
merged. Selecting nested loop is another challenge. 
For most inner loops, fewer extra registers are 
required to perform inter-thread communication, 
whereas the cost of doing so might be unbearable if 
the inner loop iterates only a small number of times. 
Contrarily, such overhead can be well amortized in 
outer loops, yet getting extra registers for outer loops 
is often more costly. To make appropriate choice, our 
code selector estimates the relative execution time 
between the inner and the outer loop by computing the 
total number of PC samples and the minimal execution 
cycles of each loop. The minimum execution cycles is 

1  Some architectures support branch history information that 
simplifies this work.  
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Figure 2. Dispatching Table. 
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the un-stalled cycles of a single iteration plus cycle 
stalls from delinquent loads. We divide the PC sample 
count by minimum execution cycles to roughly figure 
out the relative trip count of each loop (Before that, 
the values of both metrics of the inner loop are 
subtracted from the outer loop). If the inner loop’s trip 
count is more than ∆T times (currently ∆T is 10) of that 
of the outer loop, the code selector would favor the 
inner loop, otherwise, it selects the outer loop.  

In the final step, loops selected from the above 
operations are decoded and assigned initial values, 
such as structural and performance properties. 

3.3.3. Delinquent Load Identification 

Delinquent loads refer to load operations causing 
heavy cache miss stalls. The libcpc library in Solaris 
(similar to pfmon [12] library in Linux/Itanium) 
enables the signal handler to collect cache miss events 
when the hardware performance counter overflows at 
the user-defined sampling rate. However, due to the 
delay in the pipeline, the event address acquired from 
the interrupts is often a few instructions past the actual 
event, which is called “interrupt skid”. Fortunately, 
this lag rarely spans across taken branches. Thus a 
simple back-scan is sufficient to find the real 
delinquent load, except when the interrupt hits on a 
branch, then the instruction in the branch delay slot is 
also examined. 

3.4. Helper-Thread Code Generation 

The scouting code in each helper task is constructed 
by selecting the backward slices [5] of the delinquent 
loads plus instructions that change the control flow. 
The main thread needs to pass live-in variables to the 
helper thread and maintain proper synchronizations 
with the helper thread. 

3.4.1. Stores, Prefetches and Non-Faulting Loads 

In the scouting code, memory stores are ignored as the 
helper thread is speculative in nature and should not 
modify the architecture state of the main thread. 
However, some computations may involve local 
variables on the main thread’s stack. Such memory 
dependences can be easily detected from their “[%SP 
+ off]” or “[%FP + off]” addressing patterns. These 
variables can be treated as registers and their 
corresponding references (load/store) can be selected 
as well. However, such references need to be converted 
into register references or private memory references 
since the stack pointer of the helper thread is different.  

On Panther, a cache missing load instruction 
blocks the pipeline whereas a prefetch instruction does 
not. Accordingly, delinquent loads in scout code 

should always be replaced by prefetches unless their 
result is used by subsequent computations. In the latter 
case, a bit in the IR (Intermediate Representation) of 
that load is set indicating its result is used by other 
selected instructions, so this delinquent load will be 
converted into a non-faulting load. It is quite often 
that load operations in the helper thread can be 
replaced by non-blocking prefetches. This conversion 
usually enables the helper thread to run ahead of the 
main thread even if the distilled slice is not much 
smaller than the original code in the main thread. 

3.4.2. Inter-Thread Communication 

Inter-thread communication refers to the operations of 
activating the helper thread and passing live-in 
variables. The latency of communication is important 
to the effectiveness of the prefetching because it takes 
time for the helper thread to run ahead of the main 
thread. The later the helper thread starts, the longer it 
takes to catch up with the main thread. It is difficult to 
schedule communication code far ahead of the loop 
entry due to the complexity of control and data 
dependences. Therefore, prior work propose hardware 
support for light-weight thread switching to trigger the 
helper thread and use shadow registers for passing 
live-in variables. Unfortunately, such support is not 
available on the Panther processor. In our system, we 
attach a shared memory buffer to each entry in the 
dispatching table to perform inter-thread 
communication. The live-in variables to be passed 
from the main thread to the helper thread include loop 
invariants and variants. Invariants only need to be 
passed once rather than at every synchronization point 
(see Section 3.4.3). 

The Solaris operating system randomly schedules 
user threads to any core/chip on a regular basis by 
default. To avoid losing the benefit from having the 
helper thread warm up the shared cache, the helper 
thread and main thread must be bound to different 
cores on the same chip. This is enforced by using the 
system call processor_bind at the beginning of each 
thread’s execution. 

The cost of inter-thread communication through 
memory can be minimized by the shared cache. On 

Machine Configuration Cost  in cycles 

Dual-core UltraSPARC IV+ with 
shared L2 Cache 

60  ~  65 

2-way single-core UltraSPARC III 450 ~ 500

Table 1. The cost of inter-threading 
communication via memory operation. 
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the Panther CMP, the one way communication latency 
is ~60 cycles. If the cache is not shared, however, it 
can be as high as 500 cycles (shown in Table 1). This 
low cost enables a large window for effective helper 
threaded prefetching as the helper thread can catch up 
and run ahead of the main thread easily. 

3.4.3. Synchronization 

Since the merged optimization/helper thread takes 
care of both dynamic optimization and helper thread 
prefetching, a well-managed scheduling scheme is 
needed. Once a helper task starts, it must finish within 
a certain time limit so that critical dynamic 
optimization tasks such as phase change detection can 
take place in a timely manner. Additionally, the 
dynamic optimizer must ensure that no incorrect 
control flow leads to run-away loops. Such run-away 
loops not only thwarts the merged optimizer/helper 
thread from gaining control to perform its continuous 
profiling and optimization jobs but also pollutes the 
data cache with useless data. To address this issue, the 
helper thread loop synchronizes with the main thread 
loop after a certain number of iterations [7]. In our 
system, we use an asynchronous protocol between the 
two threads to avoid cross-checking each other’s 
progress. In this protocol the helper thread maintains 
a single counter while every main thread loop 
maintains a private counter. All counters consist of 
three components: a task ID, a synchronization index 
and an iteration counter. The “iteration counter” is 
used in each loop to track the number of loop 
iterations. When it overflows a preset threshold, say 
128, the main thread and helper thread take different 
actions. The helper thread will terminate the current 
scouting work while the main thread passes updated 
values of live-in variables and increments the 
synchronization index to indicate the start of a new 
synchronization interval, before continuing normal 
execution. When the helper thread enters the helper 
function again, it compares the first two parts of its 
counter with the main thread loop’s counter. Equality 
of the comparison indicates this scouting task has been 
done, hence is skipped. Inequality means this is either 
a new task requested from a different loop or the old 
loop has entered a new synchronization interval so the 
helper thread should synchronize the counter and start 
the scouting work. This protocol minimizes the 
synchronization overhead in the main thread as it 
never waits for the helper thread. 

3.4.4. Qualification Test 

Helper threaded prefetching is meant to be applied to 
all loops experiencing external cache misses. 

However, some loops are particularly difficult for 
effective prefetching since the results of delinquent 
loads are needed on the loop’s critical path. The 
helper thread hence may not run faster than the main 
thread, making the prefetching useless. As a result, we 
apply a qualification test to rule out such loops at the 
end of code generation lest these loops degrade the 
performance. In this test, a set of metrics are used to 
assess the risk of applying helper threading, such as 
the loop size, the PC sample coverage and the lengths 
of misses’ dependence chains, etc. 

4. Dynamic Optimization Framework 

In this section, we briefly describe the effort of 
implementing a dynamic optimization system on the 
UltraSPARC architecture 2  and discuss architectural 
features that are important to runtime optimization; in 
particular, the new helper threaded prefetching. 

4.1. Startup of Runtime Optimizer 

Although the way to start-up a runtime optimization 
system varies across different implementations [6], 
[17], [30], [31], [33], it is commonly accepted that the 
runtime optimizer should be activated at the beginning 
of programs’ execution. A straightforward solution is 
to make the optimizer a dynamically linked library 
loaded by the runtime loader. On Sun’s Solaris 
operating system, an environment variable called 
LD_PRELOAD can be explicitly set to run library code 
right before program execution. We use this interface 
to start our dynamic optimizer as it is easy to control. 

4.2. Hardware Performance Monitoring 

Modern micro-processors provide hardware 
performance monitoring (HPM) capabilities and 
powerful counters that facilitate performance 
monitoring and profiling. For example, ADORE  [17] 
takes advantage of the comprehensive Itanium PMU to 
achieve low-overhead runtime optimization and in 
turn sped up many programs, including large 
applications.  

The libcpc library in Solaris is used to access the 
performance counters. Since the current UltraSPARC 
only implements two physical counters, monitoring 
multiple performance events must go through 
interleaving counters. The drawback of interleaving, 
however, is that the profiler receives fewer samples for 
each event if the sampling rate remains unchanged. 
To maintain the quality in dynamic profiling, we 
choose to dedicate one physical counter to the most 

2 Many of the issues are also applicable to other architectures. 
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important event (e.g. CYCLE_CNT), and use the 
second counter to interleave other important events. 
Additionally, a slight change to the Solaris kernel has 
been implemented to enable buffering the interrupts 
generated from event overflows. This buffering 
scheme significantly reduces the overhead of signal 
handling from 8-10% down to 1-2%. With the greatly 
reduced signal handling cost, the dynamic 
optimization system is able to afford a higher 
sampling rate for continuous performance monitoring. 

4.3. Phase Detection 

Running programs often exhibit time-varying behavior 
called phases, as the example shows in Figure 3. A 
phase-sensitive optimizer that adapts to phase changes 
is able to identify more optimization opportunities. 
Several phase detection schemes have been proposed 
[1], [32], yet most of them tend to capture fine-grain 
phases that may incur excessive overhead to software 
optimizations. Consequently, we decide to use 
ADORE’s low-cost PC-Centroid [17] approach to 
detect phase changes. 

First, the algorithm calculates the average PC 
address of all samples collected in a fixed time 
interval, called PC-Centroid, as a depiction of phase 
to reveal the pivot of code mass that the main program 
has executed. In actual computation, a few high bits in 
the PC address must be masked out to deal with the 
situations where frequent switches from the user code 
to the shared library code (shared library code often 
locate in high address range) may generate misleading 
centroids. 

Next, the expectation value E and the standard 
deviation D of n (n is a fixed value, e.g. 7) most recent 
PC-Centroids are calculated to form a tolerant space 
[E–D, E+D]. If the newly arrived PC-Centroid is 
shifting beyond the current tolerant space by some 
extent, a signal of phase change will be raised. To 
improve this scheme, a state machine has also been 

introduced to help capture important phases and 
ignore transient insignificant changes. 

4.4. Optimization 

4.4.1 Code Cache and Reachability Issue 

The code cache stores the optimized code of each 
running program, where the execution of the program 
can be re-directed to by patching the entry point to a 
code region with a branch. To be accessible within the 
same process, the code cache must be allocated in the 
same virtual address space. Direct branching on some 
platforms has limited branch range. For example, the 
largest range of branch distance on UltraSPARC is 
±8MB only. Therefore, the reachability issue arises if 
the code cache sits beyond the range of a single branch 
instruction. 

Figure 4 shows an application’s virtual address 
mapping on the UltraSPARC/Solaris system. Close 
investigation reveals many “holes” in this address 
space where the code cache can be safely allocated to 
maintain reachability. For instance, the space from 
address “00060000” to “0006E000” is a good 
candidate. There are other holes in the higher address 
space but all beyond the reachability of one direct 
branch from the text segment. If the code cache has to 
be positioned in those addresses, trampoline code that 
uses indirect branch is needed to assure reachability, 
although the trampoline code requires some unused 

Execution Time

Cache Stall

Average PC

CPI

 New  Incoming Phase

Figure 3. Three performance characteristics (L2-Stall, Average PC, and CPI) exhibit 
the runtime behavioral change of SPECINT benchmark mcf. The vertical lines 
represent new phases detected by the PC_Centroid approach. 

00010000  320K   r x   /home/a123948/a.out 
0006E000  24K    rwx   /home/a123948/a.out 
00074000  616K   rwx   [ heap ] 
FF100000  688K   r x   /usr/lib/libc.so.1 
FF1BC000  32K    rwx   /usr/lib/libc.so.1 
FF340000  16K    r x   /usr/lib/libmp.so.2 
FF354000  8K     rwx   /usr/lib/libmp.so.2 
FF370000  8K     rwx   [ anon ] 
FF3B0000  160K   r x   /usr/lib/ld.so.1 
FF3E6000  16K    rwx   /usr/lib/ld.so.1 
FFBD2000  120K   rw    [ stack ] 

Figure 4. An application’s runtime virtual address 
mapping on Solaris 10. 
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bytes in the text segment that are reachable by direct 
branches from the original code. Such code sequence 
is costly and should be avoided as much as possible. 

4.4.2 Weak/Strong Prefetch 

The Panther processor supports two variations of 
prefetch instructions: weak prefetch and strong
prefetch. Although their semantics are implementation 
dependent, the key difference is that the weak prefetch 
can be dropped when the prefetch queue is full, or 
when a TLB miss is encountered. In general, strong
prefetch should be used if many prefetches are needed 
to bring in useful data, and weak prefetch should be 
used when the prefetch is more speculative.  

Initially, we replaced delinquent loads with weak
prefetches in the helper thread, especially when 
control dependent instructions are not included (as 
suggested in some earlier research). However, as the 
two cores do not share TLB, a weak prefetch can get 
dropped in case of a TLB miss. Unlike in the main 
thread, where the regular loads will eventually bring 
in the missed TLB entries, the helper task may end up 
having all prefetches dropped due to TLB misses 
(since the regular loads are replaced by prefetches). 
We therefore decide to use strong prefetch in the 
helper thread code. Although this is generally a better 
code generation strategy, there are cases when weak
prefetch may yield better performance (Section 5.6). 

4.4.3 Register Allocation 

Runtime binary optimization often requires extra 
registers to perform computations. For helper 
threading on CMP processors, the main thread only 
needs to free up two to three registers for 
communication and synchronization; there is no other 
computation needing additional registers. Extra 
registers can be obtained by compiler through register 
pre-reservation or annotations indicating which 
registers are not used in a procedure or a loop nest. In 
ADORE [17], free registers are obtained by using the 

new IA64 instruction alloc to dynamically allocate 
registers from the register stack. On UltraSPARC, we 
decide to collect the register liveness information and 
spill unused or less-frequently used registers to 
memory. For instance, according to the SPARC ABI, 
some spaces are unused in the function’s activation 
record where a small number of registers can be safely 
spilled. Spilling and restoring registers inevitably adds 
overhead. Yet such overhead is normally negligible 
since the optimization for helper threading is targeted 
at hot loops. Finally, register allocation is not an issue 
for the helper functions as registers in the helper 
thread context are always available. 

4.5. Atomic Patching and Cache Coherence 

In a binary optimization system, patching refers to 
redirecting the original code execution to the 
optimized code in the code cache. This operation must 
be performed atomically in a multi-threading 
environment to ensure the execution will see either old 
code or new code, but never half-way patched 
instructions. In our runtime optimization system, 
patching involves using a 32-bit store to place a single 
branch instruction in the original code, which is 
atomic. In addition, the Panther CMP’s I-Cache 
snoops on stores issued from all processor cores so 
that the patched instruction will be brought into the I-
Cache, making it unnecessary to explicitly execute an 
iflush instruction. Other solutions about the cache 
coherence can be found in Brown et al.’s work [14]. 

5. Performance Evaluation 

5.1. Machine Configuration 

We implement our dynamic optimization system on a 
4-way Sun UltraSPARC IV+ (code named Panther)
machine [27] running Solaris 10. Each processor is a 
dual-core CMP sharing a 2MB on-chip L2-cache. The 
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Figure 5. Helper threaded prefetching on CPU2000 benchmarks compiled with base option and profile 
feedback.  6 programs have L2/L3 cache miss stall no less than 20%. 
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per-core L1-I/D Caches are 64 KB, 4-way set 
associative with 64B line size. Many other 
architectural enhancements have been added onto this 
new chip including a 32MB shared external cache, 
enhanced Branch Prediction Unit and support for 
weak/strong prefetches. 

5.2. Benchmarks 

To examine the effectiveness of helper threaded 
prefetching on programs encountering cache misses, 
we studied the CPU2000 benchmark suite (we believe 
CPU2006 would be more appropriate to study cache 
performance, but they are not available yet), as well as 
one real world application, Fluent (version 6.1.9), 
which is a large computational fluid dynamics 
software. All CPU2000 programs are compiled by Sun 
Forte Compiler using two options: 1) base + profile-
feedback, 2) peak. They all run reference input (the 
first input set if there are multiple sets). For Fluent,
we compiled it using the best option we could find and 
fed it with 9 different data input sets: 3 small (fl5s1-
3), 3 medium (fl5m1-3), and 3 large (fl5l1-3), obtained 
from the Fluent website [9]. 

5.3. Performance Results 

As shown in Figure 5 and Figure 6, stall on L2 and L3 
cache still dominates the performance of a few 

CPU2000 binaries 3 . However, with the 32MB L3 
cache, most CPU2000 programs suffer from only L2 
cache misses. Our runtime helper threaded prefetching 
was able to speed up four base binaries by as much as 
35% (mcf) and three peak binaries. Similarly, Figure 7 
shows that performance gain from 2% to 16% can be 
achieved from 4 out of the 9 input sets for the 
application fluent (with input data fl5s3, fl5m3, fl5l1,
and fl5l2). 

Figure 8 shows the change of cycle breakdown 
before/after applying help threaded prefetching. 
Helper threaded prefetching is particularly effective on 
hiding L3 cache miss latency, as shown in the figure. 
Since the helper threaded prefetching does not 
decrease L1 data cache miss penalty (shown as 
L2_hit_stall in Figure 8), we need to consider CMT 
type helper threading or in-thread prefetching if L1 
cache miss stall dominate the performance. Note that 
the working set sizes of CPU2000 programs may be 
less suitable to evaluate the effectiveness of a cache 
hierarchy of latest processors. The yet to be announced 
CPU2006 programs would have a working set size 
more representative of current and future applications. 
For those programs that do not benefit from helper 
threaded prefetching, there is only 1-2% extra 
overhead caused by the runtime optimizer.  

3 On the CMP processor, L1 cache is per-core, whose misses cannot 
be pre-fetched from other cores. 
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Figure 6. Helper threaded prefetching on CPU2000 benchmarks compiled with peak option. 
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In Figure 5 and Figure 6, our dynamic helper 
thread optimizer did not speed up some programs with 
high cache miss stalls. As an example, our optimizer 
failed to obtain sufficient registers for the 
transformation for wupwise (to avoid excessive 
spilling). For other programs, the tight data 
dependence from linked-list chasing prevents us from 
performing effective scouting. 

5.4. Effect of Control Flow Structures 

To ensure the prefetching accuracy of the helper 
thread, the scout code for each loop includes 
instructions that change the control flow, as discussed 
in Section 3.4. However, it would be interesting to 
understand the impact of not including such 
instructions. Would the removal of these instructions 
make the helper thread run faster and hide miss 
latency more effectively for the main thread? 

Figure 9 studies the effect measured on the four 
base binaries that we speedup using helper thread 
prefetching. Without the control flow instructions, 
only one program completely lost its performance gain 
(gap) while the other three still benefit from the 
software scouting, although the speedups now become 
less. This is because the helper thread missed some 
early exits of the loop by not computing the control 
flow, which causes a delay in reaching or entirely 
missing the next synchronization point. Additionally, 
without control flow computation the helper task runs 
the maximum number of iterations that is set as 
synchronization interval (e.g. 32, 128 and 512). If the 
actual iteration count in the main thread loop is much 
fewer, the helper thread might severely pollute the L2 
and L3 cache (as shown in Figure 9, w/o loop control 
+ 512 always renders the worst performance). As a 
result, our runtime optimizer by default selects control 
flow computations into the helper thread code for 
prefetching. 

5.5. Evaluation of Synchronization 

Since helper threads do not include store instructions, 
and may skip control dependent instructions, there is a 
risk that the helper thread loop runs out of control. 
Therefore, synchronization intervals are set between 
the main thread and the helper thread to keep run-
away loops under control. 

To find appropriate values, Figure 10 evaluates 
five intervals, at which the helper thread synchronizes 
with the main thread every: 4, 16, 64, 256, or 1024 
iterations. Since the instructions computing control 
flow are included and the external cache is large 
enough for the CPU2000 programs, there is not much 
performance degradation when large intervals like 
1024 are used. However, it is quite interesting that 
helper threading is still very effective even at a small 
interval of 4. At such a small interval size, one might 
expect that the helper thread cannot run considerably 
ahead of the main thread and initiate prefetches 
sufficiently early to hide the miss latency. In fact, 
while the main thread is stalled on the first cache miss 
in the interval, the helper thread uses prefetch 
instructions in place of some regular loads to initiate 
multiple misses. Thus, the helper threading scheme 
overlaps multiple misses achieving high Memory-
Level Parallelism (MLP) even when it is unable to run 
sufficiently ahead of the main thread to hide miss 
latency. Therefore, significant speed-up is achievable 
even with a smaller interval size. 

5.6. Weak vs. Strong Prefetches 

The relative benefits of using strong/weak
prefetches on the UltraSPARC CMP processor are 
evaluated here. As mentioned in Section 4.4.2, strong
prefetch is generally preferable in helper threading 
since the TLB is private per core and weak prefetches 
do not ensure that data is brought into the shared 
cache. Figure 11 demonstrates that when weak
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prefetches replace strong prefetches, performance 
gains of some programs (mgrid and fma3d) are 
diminished. Nevertheless, weak prefetch works better 
for some cases, such as mcf. There are two reasons for 
this. First, in mcf, the traversal of the linked-lists must 
use non-faulting loads, not prefetch instructions. As a 
result, TLB misses can be resolved by non-faulting 
loads as well, regardless the weak prefetches are 
dropped or not. Second, the strong prefetch could 
cause delay when the prefetch queue is full. For this 
reason, when TLB misses is less a concern and 
prefetch is more speculative, using weak prefetches 
may have an edge over strong prefetches in the helper 
thread to allow it to run faster. 

6. Conclusion and Future Work 

This paper presents the design and implementation 
of a dynamic optimization system capable of helper 
threaded prefetching on a state-of-art UltraSPARC 
CMP processor, where two on-chip processor cores 
share an on-chip L2 cache and an off-chip L3 cache. 
We have shown that effective helper threaded 
prefetches can be generated dynamically using 
runtime profiling based on hardware performance 
monitoring. By utilizing the otherwise idle processor 
core, the dynamic optimizer has a great potential to 
speed up single-threaded user applications, 
particularly those suffering significantly from L2 or 
external cache misses. For programs that helper 
threaded prefetching does not help, our system 
introduces negligible slowdown (< 2%) due to the 
light weight runtime profiling mechanism. This paper 
also discusses the critical issues of implementing 
efficient helper threaded prefetching, which include 
efficient synchonization/communication, whether 
control flow should be kept in the helper thread, and 
the impact of using different prefetch instruction in 
the helper thread. We believe this dynamic optimizer 
would have greater performance impact on the next 

generation benchmarks such as the CPU2006 with 
larger working set sizes.  

In the near future, we will focus on finding an 
arbitrator to decide whether to select helper threaded 
or in-thread cache prefetching optimizations based on 
profitability analysis. Specifically, since some 
programs sped up by helper threading can also be sped 
up by in-thread prefetching, the dynamic optimizer 
may favor in-thread optimization when the other on-
chip cores could be used to run other jobs. In-thread 
optimization should also be considered when the 
performance is dominated by private L1 cache misses. 
Although it seems that helper threaded prefetching on 
CMP may be inadequate in a throughput oriented 
computing environment, a number of transaction 
processing benchmarks show that some threads (such 
as log writer and DB writer) could be more time 
critical than others in attributing to the total 
performance. Hence helper threaded prefetching can 
be selectively applied to the time critical threads, even 
in a throughput computing environment.  

The thread synchronization mechanism requires 
further evaluation on the future CMP processors as 
well. The reason for this is that a faster 
synchronization mechanism (e.g. through shared L1-
Cache or hardware assist) will help utilizing the idle 
core more efficiently according to our current scheme, 
particularly when multiple main threads are involved. 
Other aspects that need enhancement include register 
allocation, region selection and undoing ineffective 
optimization to maximize the performance gain of 
dynamic help threaded prefetching. 
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