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Abstract. We introduce a dynamic technique for fast route planning in
large road networks. For the first time, it is possible to handle the prac-
tically relevant scenarios that arise in present-day navigation systems:
When an edge weight changes (e.g., due to a traffic jam), we can update
the preprocessed information in 2–40 ms allowing subsequent fast queries
in about one millisecond on average. When we want to perform only a
single query, we can skip the comparatively expensive update step and
directly perform a prudent query that automatically takes the changed
situation into account. If the overall cost function changes (e.g., due to a
different vehicle type), recomputing the preprocessed information takes
typically less than two minutes.

The foundation of our dynamic method is a new static approach that
generalises and combines several previous speedup techniques. It has
outstandingly low memory requirements of only a few bytes per node.

1 Introduction

Computing fastest routes in road networks is one of the showpieces of real-world
applications of algorithmics. In principle we could use Dijkstra’s algorithm. But
for large road networks this would be far too slow. Therefore, in recent years,
there has been considerable interest in speed-up techniques for route planning.
For an overview, we refer to [1]. The most successful methods are static, i.e.,
they assume that the network—including its edge weights—does not change.
This makes it possible to preprocess some information once and for all that can
be used to accelerate all subsequent point-to-point queries. Today, the static
routing problem in road networks can be regarded as largely solved.

However, real road networks change all the time. In this paper, we address
two such dynamic scenarios: individual edge weight updates, e.g., due to traffic
jams, and switching between different cost functions that take vehicle type, road
restrictions, or driver preferences into account.

1.1 Related Work

Bidirectional Search. simultaneously searches forward from s and backwards
from t until the search frontiers meet. Many speedup techniques (including ours)
use bidirectional search as an ingredient.
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Separators. Perhaps the most well known property of road networks is that
they are almost planar, i.e., techniques developed for planar graphs will often
also work for road networks.

Using O(n log2 n) space and preprocessing time, query time O(
√

n log n) can
be achieved [2,3] for directed planar graphs without negative cycles; edge weights
can be updated in amortised O(n2/3 log5/3 n) time per operation (provided that
all edge weights are positive).

A previous practical approach is the separator-based multi-level method [4,5,6].
Out of several existing variants, we mainly refer to [5, basic variant]. For a graph
G = (V, E) and a node set V ′ ⊆ V , a shortest-path overlay graph G′ = (V ′, E′)
has the property that E′ is a minimal set of edges such that each shortest-path
distance d(u, v) in G′ is equal to the shortest-path distance from u to v in G.
In the separator based approach, V ′ is chosen in such a way that the subgraph
induced by V \V ′ consists of small components of similar size. The overlay graph
can be constructed by performing a search in G from each separator node that
stops when all neighbouring separator nodes have been found. In a bidirectional
query algorithm, the components that contain the source and target nodes are
searched considering all edges. From the border of these components, i.e., from
the separator nodes, however, the search is continued considering only edges of
the overlay graph. By recursing on G′, this basic idea is generalised to multiple
levels.

Bauer [7] observes that if the weight of an edge within some component C
changes, we do not have to repeat the complete construction process of G′. It is
sufficient to rerun the construction step only from some separator nodes at the
boundary of C. No experimental evaluation is given. In a theoretical study on
the dynamisation of shortest-path overlay graphs [8], an algorithm is presented
that requires O(|V ′|(n+m) logn) preprocessing time and O(|V ′|(n+m)) space,
which seems impractical for large graphs.

Highway Hierarchies. Commercial systems use information on road cate-
gories to speed up search. ‘Sufficiently far away’ from source and target, only
‘important’ roads are used. This requires manual tuning of the data and a del-
icate tradeoff between computation speed and suboptimality of the computed
routes. In previous papers [9,10] we introduced the idea to automatically com-
pute highway hierarchies that yield optimal routes uncompromisingly quickly.
The basic idea is to define a neighbourhood for each node to consist of its H
closest neighbours. Now an edge (u, v) is a highway edge if there is some shortest
path 〈s, . . . , u, v, . . . t〉 such that neither u is in the neighbourhood of t nor v is
in the neighbourhood of s. This defines the first level of the highway hierarchy.
After contracting the network to remove low degree nodes—obtaining its so-
called core—, the same procedure (identifying the highway network at the next
level followed by contraction) is applied recursively. We obtain a hierarchy. The
query algorithm is bidirectional Dijkstra with restrictions on relaxing certain
edges. Roughly, far away from source or target, only high level edges need to be
considered.



68 D. Schultes and P. Sanders

Reach-Based Routing [11,12] is a speed-up technique that is similar to high-
way hierarchies. A dynamic version that handles a set of edge weight changes
is presented in [7]. The basic idea is to rerun the construction step only from
nodes within a certain area, which has to be identified first. So far, the con-
cept of shortcuts [9,12], which is important to get competitive construction and
query times, has not been integrated in the dynamic version. No experimental
evaluation for the dynamic scenario is given in [7].

Transit Node Routing. [13] is based on the following observation: “When you
drive to somewhere ‘far away’, you will leave your current location via one of only
a few ‘important’ traffic junctions [transit nodes ]”. Distances from each node to
all neighbouring transit nodes and between all transit nodes are precomputed so
that a non-local shortest-path query can be reduced to a small number of table
lookups. Currently, transit node routing provides the best query times on road
networks, but so far no dynamic version is available.

Goal Direction. Another interesting property of road networks is that they
allow effective goal directed search using A∗ search [14]: lower bounds define a
vertex potential that directs search towards the target. This approach was shown
to be very effective if lower bounds are computed using precomputed shortest-
path distances to a carefully selected set of about 20 Landmark nodes [15] using
the Triangle inequality (ALT ). In [15] it is also briefly mentioned that in case of
an edge weight increase, the query algorithm stays correct even if the landmarks
and the landmark distances are not updated. To cope with drastic changes or
edge weight decreases, an update of the landmark distances is suggested. In [16],
these ideas are pursued leading to an extensive experimental study of landmark-
based routing in various dynamic scenarios. For a comparison to our approach,
see Section 5.

1.2 Overview and Main Contributions

Our first main contribution is the generalisation of the separator-based multi-
level method to highway-node routing where overlay graphs are defined using
arbitrary node sets V ′ ⊆ V rather than separators. This requires new algorithms
for preprocessing and queries since removing V ′ will in general not partition the
graph into small components. Section 2 lies the ground for these new algorithms
by systematically investigating the graph theoretical problem of finding all nodes
from V ′ that can be reached on a shortest path from a given node without passing
another node from V ′. In Section 3 we apply the results to static highway-node
routing. The main remaining difficulty is to choose the highway nodes. The
idea is that important nodes used by many shortest paths will lead to overlay
graphs that are more sparse than for the separator-based approach. This will
result in faster queries and low space consumption. The intuition behind this
idea is that the number of overlay graph edges needed between the separator
nodes bordering a region grows quadratically with the number of border nodes
(see also [6]). In contrast, important nodes are uniformly distributed over the
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network and connected to only a small number of nearby important nodes (see
also [13]). Indeed, our method is so far the most space-efficient preprocessing
technique that allows query times several thousand times faster than Dijkstra’s
algorithm. A direct comparison to the separator-based variant is difficult since
previous papers use comparatively small graphs1 and it is not clear how the
original approach scales to very large graphs.

While there are many ways to choose important nodes, we capitalise on pre-
vious results and use highway hierarchies to define all required node sets. There
is an analogy to transit node routing where we also used highway hierarchies to
find important nodes.

On the first glance, our approach to highway-node routing looks like a round-
about way to achieve similar results as with the direct application of highway hi-
erarchies. However, by factoring out all the complications of highway hierarchies
into a pre-preprocessing step, we simplify data structures, the query algorithm,
and, most importantly, dynamic variants. The idea is that in practice, a set of
nodes important for one weight function will also contain most of the important
nodes for another ‘reasonable’ weight function. The advantage is obvious when
the cost function is redefined—all we have to do is to recompute the edge sets
of the overlay graphs. Section 4 discusses two variants of the scenario when a
few edge weights change: In a server setting, the overlay graphs are updated so
that afterwards the static query algorithm will again yield correct results. In a
mobile setting, the data structure are not updated. Rather, the query algorithm
searches at lower levels of the node hierarchy, (only) where the information at
the higher levels might have been compromised by the changed edges.

Together with [16], we are the first to present an approach that tackles such
dynamic scenarios and to demonstrate its efficiency in an extensive experimental
study using a real-world road network, which is summarised in Section 5.

2 Covering Nodes

Dijkstra’s Algorithm can be used to solve the single-source shortest-path
problem, i.e., to compute the shortest paths from a single source node s to all
other nodes in a given graph. Starting with the source node s as root, Dijkstra’s
algorithm grows a shortest-path tree T that contains shortest paths from s to
all other nodes. During this process, each node of the graph is either unreached,
reached, or settled. A node that already belongs to the tree is settled. If a node
u is settled, a shortest path P ∗ from s to u has been found and the distance
d(s, u) = w(P ∗) is known. A node that is adjacent to a settled node is reached.
Note that a settled node is also reached. If a node u is reached, a path P from
s to u, which might not be the shortest one, has been found and a tentative
1 For a subgraph of the European road network with about 100 000 nodes, [6] gives

a preprocessing time of “well over half an hour [plus] several minutes” and a query
time 22 times faster than Dijkstra’s algorithm. For a comparison, we take a subgraph
around Karlsruhe of a very similar size, which we preprocess in seven seconds. Then,
we obtain a speedup of 94.
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distance δ(u) = w(P ) is known. Reached but not settled nodes are also called
queued. Nodes that are not reached are unreached.

Problem Definition. During a Dijkstra search from s, we say that a settled
node u is covered by a node set V ′ if there is at least one node v ∈ V ′ on the path
from the root s to u. A queued node is covered if its tentative parent is covered.
The current partial shortest-path tree T is covered if all currently queued nodes
are covered. All nodes v ∈ V ′ ∩ T that have no parent in T that is covered are
covering nodes, forming the set CG(V ′, s).

The crucial subroutine of all algorithms in the subsequent sections takes a
graph G, a node set V ′, and a root s and determines all covering nodes CG(V ′, s).
We distinguish between four different ways of doing this.

Conservative Approach. The conservative variant (Fig. 1 (a)) works in the
obvious way: a search from s is stopped as soon as the current partial shortest-
path tree T is covered. Then, it is straightforward to read off all covering nodes.
However, if the partial shortest-path tree contains one path that is not covered
for a long time, the tree can get very big even though all other branches might
have been covered very early. In our application, this is a critical issue due to
long-distance ferry connections.

Aggressive Approach. As an overreaction to the above observation, we might
want to define an aggressive variant that does not continue the search from
any covering node, i.e., some branches might be terminated early, while only
the non-covered paths are followed further on. Unfortunately, this provokes two
problems. First, we can no longer guarantee that T contains only shortest paths.
As a consequence, we get a superset CG(V ′, s) of the covering nodes, which
still can be used to obtain correct results. However, the performance will be
impaired. In Section 3, we will explain how to reduce a given superset rather
efficiently in order to obtain the exact covering node set. Second, the tree T
can get even bigger since the search might continue around the covering nodes
where we pruned the search.2 In our example (Fig. 1 (b)), the search is pruned
at u so that v is reached using a much longer path that leads around u. As a
consequence, w is superfluously marked as a covering node.

Stall-in-Advance Technique. If we decide not to prune the search immedi-
ately, but to go on ‘for a while’ in order to stall other branches, we obtain a
compromise between the conservative and the aggressive variant, which we call
stall-in-advance. One heuristic we use prunes the search at node z when the path
explored from s to z contains p nodes of V ′ for some tuning parameter p. Note
that for p := 1, the stall-in-advance variant corresponds to the aggressive vari-
ant. In our example (Fig. 1 (c)), we use p := 2. Therefore, the search is pruned

2 Note that the query algorithm of the separator-based approach virtually uses the
aggressive variant to compute covering nodes. This is reasonable since the search
can never ‘escape’ the component where it started.
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Fig. 1. Simple example for the computation of covering nodes. We assume that all
edges have weight 1 except for the edges (s, v) and (s, x), which have weight 10. In
each case, the search process is started from s. The set V ′ consists of all nodes that are
represented by a square. Thick edges belong to the search tree T . Nodes that belong
to the computed superset CG(V ′, s) of the covering nodes are highlighted in grey. Note
that the actual covering node set contains only one node, namely u.

not until w is settled. This stalls the edge (s, v) and, in contrast to (b), the node
v is covered. Still, the search is pruned too early so that the edge (s, x) is used
to settle x.

Stall-on-Demand Technique. In the stall-in-advance variant, relaxing an
edge leaving a covered node is based on the ‘hope’ that this might stall an-
other branch. However, our heuristic is not perfect, i.e., some edges are relaxed
in vain, while other edges which would have been able to stall other branches,
are not relaxed. Since we are not able to make the perfect decision in advance,
we introduce a fourth variant, namely stall-on-demand. It is an extension of the
aggressive variant, i.e., at first, edges leaving a covered node are not relaxed.
However, if such a node u is reached later via another path, it is woken up and a
breadth-first search (BFS) is performed from that node: an adjacent node v that
has already been reached by the main search is inserted into the BFS queue if we
can prove that the best path P found so far is suboptimal. This is certainly the
case if the path from s via u to v is shorter than P . All nodes encountered dur-
ing the BFS are marked as stalled. The main search is pruned at stalled nodes.
Furthermore, stalled nodes are never marked as covering nodes. The stalling pro-
cess cannot invalidate the correctness since only nodes are stalled that otherwise
would contribute to suboptimal paths. In our example (Fig. 1 (d)), the search is
pruned at u. When v is settled, we assume that the edge (v, w) is relaxed first.
Then, the edge (v, u) wakes the node u up. A stalling process (a BFS search) is
started from u. The nodes v and w are marked as stalled. When w is settled, its
outgoing edges are not relaxed. Similarly, the edge (x, w) wakes the stalled node
w and another stalling process is performed.

3 Static Highway-Node Routing

Multi-Level Overlay Graph. For given highway-node sets V =: V0 ⊇ V1 ⊇
... ⊇ VL, we give a definition of the multi-level overlay graph G = (G0, G1, ..., GL)



72 D. Schultes and P. Sanders

that is almost equivalent to the definition in [5]: G0 := G and for each � > 0,
we have G� := (V�, E�) with E� := {(s, t) ∈ V� × V� | ∃ shortest path P =
〈s, u1, u2, . . . , uk, t〉 in G�−1 s.t. ∀i : ui �∈ V�}.

Node Selection. We can choose any highway-node sets to get a correct pro-
cedure. However, this choice has a big impact on preprocessing and query per-
formance. Roughly speaking, a node that lies on many shortest paths should
belong to the node set of a high level. In a first implementation, we use the set
of level-� core nodes of the highway hierarchy of G as highway-node set V�. In
other words, we let the construction procedure of the highway hierarchies decide
the importance of the nodes.

Construction. The multi-level overlay graph is constructed in a bottom-up
fashion. In order to construct level � > 0, we determine for each node s ∈ V�

its covering node set C := CG�−1(V� \ {s}, s). For each u ∈ C, we add an edge
with weight d(s, u) to E�. The stall-in-advance and the stall-on-demand variant
introduced in Section 2 are efficient algorithms for computing a superset of C,
implying that they add some superfluous edges. Optionally, we can apply the
following reduction step to eliminate those edges: for each node u ∈ V�, we
perform a search in G� (instead of G�−1) until all adjacent nodes have been
settled. For any node v that has been settled via a path that consists of more
than one edge, we can remove the edge (u, v) since a (better) alternative that
does not require this edge has been found.

Query. The query algorithm is a symmetric bidirectional procedure so that it
suffices to describe the forward search, which works in a bottom-up fashion. For
conciseness, we only describe the variant based on stall-on-demand. We perform
a modified Dijkstra search from s in (V, E0∪· · ·∪EL). From a node whose highest
level is i, only edges in Ei ∪· · ·∪EL are relaxed. When an edge in E0 ∪· · ·∪Ei−1
reaches a node v in Vi, v is ‘woken up’ and performs a BFS in the shortest path
tree to stall nodes that are not on shortest paths.

Forward and backward search are interleaved. We keep track of a tentative
shortest-path length resulting from nodes that have been settled in both search
directions. We abort the forward (backward) search when all keys in the forward
(backward) priority queue are greater than the tentative shortest-path length.

4 Dynamic Highway-Node Routing

When a small set of edges change their weight, we can distinguish between a
server scenario and a mobile scenario: In the former, a server has to react to
incoming events by updating its data structures so that any point-to-point query
can be answered correctly; in the latter, a mobile device has to react to incoming
events by (re)computing a single point-to-point query taking into account the
new situation. In the server scenario, it pays to invest some time to perform the
update operation since a lot of queries depend on it. In the mobile scenario, we
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do not want to waste time for updating parts of the graph that are irrelevant to
the current query.

Server Scenario. Similar to an exchange of the cost function, when a single
or a few edge weights change, we keep the highway-node sets and update only
the overlay graphs. In this case, however, we do not have to repeat the complete
construction from scratch, but it is sufficient to perform the construction step
only from nodes that might be affected by the change. Certainly, a node v whose
partial shortest-path tree of the initial construction did not contain any node u
of a modified edge (u, x) is not affected: if we repeated the construction step from
v, we would get exactly the same partial shortest-path tree and, consequently,
the same result.

During the first construction (and all subsequent update operations), we man-
age sets A�

u of nodes whose level-� preprocessing might be affected when an
outgoing edge of u changes: when a level-� construction step from some node
v is performed, for each node u in the partial shortest-path tree3, we add v to
A�

u. Note that these sets can be stored explicitly (as we do it in our current
implementation) or we could store a superset, e.g., by some kind of geometric
container (a disk, for instance). Figure 2 contains the pseudo-code of the update
algorithm.

input: set of edges Em with modified weight;
define set of modified nodes: V m

0 := {u | (u, v) ∈ Em};
foreach level �, 1 ≤ � ≤ L, do

V m
� := ∅; R� :=

⋃
u∈V m

�−1
A�

u;
foreach node v ∈ R� do

repeat construction step from v;
if something changes, put v to V m

� ;

Fig. 2. The update algorithm that deals with a set of edge weight changes

Mobile Scenario. In the mobile scenario, we only determine the sets of poten-
tially unreliable nodes by using a fast variant of the update algorithm (Fig. 2),
where from the last two lines only the “put v to V m

� ” is kept. (Note that in
particular the construction step is not repeated.) Then, for each node u ∈ V , we
define the reliable level r(u) := min{i − 1 | u ∈ Ri} with min ∅ := ∞. In order
to get correct results without updating the data structures, the query algorithm
has to be modified. First, we do not relax any edge (u, v) that has been created

3 When the stall-in-advance technique is used, some nodes are only added to the tree
to potentially stall other branches. Upon completion of the construction step, we can
identify nodes that have been added in vain, i.e., that were not able to stall other
branches. Those nodes had no actual influence on the construction and, thus, can
be ignored at this point.
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during the construction of some level > r(u). Second, if the search at some node
u has already reached a level � > r(u), then the search at this node is downgraded
to level r(u). In other words, if we arrive at some node from which we would
have to repeat the construction step, we do not use potentially unreliable edges,
but continue the search in a sufficiently low level to ensure that the correct path
can be found.

Note that the update procedure, which is also used to determine the sets of
potentially unreliable nodes, is performed in the forward direction. Its results
cannot be directly applied to the backward direction of the query. It is simple
to adjust the first modification to this situation (by considering r(v) instead of
r(u) when dealing with an edge (u, v)). Adjusting the second modification would
be more difficult, but fortunately we can completely omit it for the backward
direction. As a consequence, the search process becomes asymmetric. While the
forward search is continued in lower levels whenever it is necessary, the backward
search is never downgraded. If ‘in doubt’, the backward search stops and waits
for the forward search to finish the job.

5 Experiments

Environment and Instances. The experiments were done on one core of a
single AMD Opteron Processor 270 clocked at 2.0 GHz with 8 GB main memory
and 2 × 1 MB L2 cache, running SuSE Linux 10.0 (kernel 2.6.13). The program
was compiled by the GNU C++ compiler 4.0.2 using optimisation level 3.

We deal with the road network of Western Europe4, which has been made
available for scientific use by the company PTV AG. It consists of 18 029 721
nodes and 42 199 587 directed edges. The original graph contains for each edge
a length and a road category. There are four major road categories (motorway,
national road, regional road, urban street), which are divided into three subcat-
egories each. In addition, there is one category for forest and gravel roads. We
assign average speeds (130, 120, . . ., 10 km/h) to the road categories, compute for
each edge the average travel time, and use it as weight. We call this our default
speed profile. Experiments which we did on a US and Canadian road network of
roughly the same size (provided by PTV as well) show exactly the same relative
behaviour as in [10], namely that it is slightly more difficult to handle North
America than Europe (e.g., 20% slower query times). Due to space constraints,
we give detailed results only for Europe.

For now, we report the times needed to compute the shortest-path distance
between two nodes without outputting the actual route. Note that we could
also output full path descriptions using the techniques from [17], expecting a
similar performance as in [17]. The query times are averages based on 10 000
randomly chosen (s, t)-pairs. In addition to providing average values, we use
the methodology from [9] in order to plot query times against the ‘distance’
of the target from the source, where in this context, the Dijkstra rank is used
as a measure of distance: for a fixed source s, the Dijkstra rank of a node t

4 14 countries: at, be, ch, de, dk, es, fr, it, lu, nl, no, pt, se, uk.
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Fig. 3. Query performance against Dijkstra rank for the default speed profile, with
edge reduction. Each box represents the three quartiles [18, box-and-whisker plot].

is the rank w.r.t. the order which Dijkstra’s algorithm settles the nodes in.
Such plots are based on 1 000 random source nodes. After performing a lot of
preliminary experiments, we decided to apply the stall-in-advance technique to
the construction and update process (with p := 1 for the construction of level 1
and p := 5 for all other levels) and the stall-on-demand technique to the query.

Highway Hierarchy Construction. In order to determine the highway node
sets, we construct seven levels of the highway hierarchy using our default speed
profile and neighbourhood size5 H = 70. This can be done in 16 minutes. For
all further experiments, these highway-node sets are used.

Static Scenario. The first data column of Tab. 1 contains the construction
time of the multi-level overlay graph and the average query performance for the
default speed profile. Figure 3 shows the query performance against the Dijkstra
rank. The disk space overhead of the static variant is 8 bytes per node to store
the additional edges of the multi-level overlay graph and the level data associated
with the nodes. Note that this overhead can be further reduced to as little as 2.0
bytes per node yielding query times of 1.55ms (Tab. 4). The total disk space6 of
32 bytes per node also includes the original edges and a mapping from original
to internal node IDs (that is needed since the nodes are reordered by level).

Changing the Cost Function. In addition to our default speed profile, Tab. 1
also gives the construction and query times for a few other selected speed profiles
(which have been provided by the company PTV AG) using the same highway-
node sets. Note that for most road categories, our profile is slightly faster than
5 For details on the highway hierarchy construction and the definition of neighbourhood

size, we refer to [9,10].
6 The main memory usage is somewhat higher. However, we cannot give exact numbers

for the static variant since our implementation does not allow to switch off the
dynamic data structures.
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Table 1. Construction time of the overlay graphs and query performance for different
speed profiles using the same highway-node sets. For the default speed profile, we also
give results for the case that the edge reduction step (Section 3) is applied.

speed profile default (reduced) fast car slow car slow truck distance
constr. [min] 1:40 (3:04) 1:41 1:39 1:36 3:56
query [ms] 1.17 (1.12) 1.20 1.28 1.50 35.62
#settled nodes 1 414 (1 382) 1 444 1 507 1 667 7 057

Table 2. Update times per changed edge [ms] for different road types and different
update types: add a traffic jam (+), cancel a traffic jam (−), block a road (∞), and
multiply the weight by 10 (×). Due to space constraints, some columns are omitted.

any road type motorway national regional urban
|change set| + − ∞ × + − ∞ × + ∞ + ∞ + ∞

1 2.7 2.5 2.8 2.6 40.0 40.0 40.1 37.3 19.9 20.3 8.4 8.6 2.1 2.1
1000 2.4 2.3 2.4 2.4 8.4 8.1 8.3 8.1 7.1 7.1 5.3 5.3 2.0 2.0

Table 3. Query performance depending on the number of edge weight changes (select
only motorways, multiply weight by 10). For ≤ 100 changes, 100 different edge sets
are considered; for ≥ 1 000 changes, we deal only with one set. For each set, 1 000
queries are performed. We give the average percentage of queries whose shortest-path
length is affected by the changes, the average number of settled nodes (also relative to
zero changes), and the average query time, broken down into the init phase where the
reliable levels are determined and the search phase.

affected #settled nodes query time [ms]
|change set| queries absolute relative init search total

1 0.6 % 2 347 (1.7) 0.3 2.0 2.3
10 6.3 % 8 294 (5.9) 1.9 7.2 9.1

100 41.3 % 43 042 (30.4) 10.6 36.9 47.5
1 000 82.6 % 200 465 (141.8) 62.0 181.9 243.9

10 000 97.5 % 645 579 (456.6) 309.9 627.1 937.0

PTV’s fast car profile. The last speed profile (‘distance’) virtually corresponds to
a distance metric since for each road type the same constant speed is assumed.
The performance in case of the three PTV travel time profiles is quite close to the
performance for the default profile. Hence, we can switch between these profiles
without recomputing the highway-node sets. The constant speed profile is a
rather difficult case. Still, it would not completely fail, although the performance
gets considerably worse. We assume that any other ‘reasonable’ cost function
would rank somewhere between our default and the constant profile.

Updating a Few Edge Weights (Server Scenario). In the dynamic sce-
nario, we need additional space to manage the affected node sets A�

u. Further-
more, the edge reduction step is not yet supported in the dynamic case so that
the total disk space usage increases to 56 bytes per node. In contrast to the static
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Table 4. Comparison between pure highway hierarchies [17], three variants of highway-
node routing (HNR), and dynamic ALT-16 [16]. ‘Space’ denotes the average disk space
overhead. We give execution times for both a complete recomputation using a similar
cost function and an update of a single motorway edge multiplying its weight by 10.
Furthermore, we give search space sizes after 10 and 1 000 edge weight changes (mo-
torway, ×10) for the mobile scenario. Time measurements in parentheses have been
obtained on a similar, but not identical machine.

preprocessing static queries updates dynamic queries
time space time #settled compl. single #settled nodes

method [min] [B/node] [ms] nodes [min] [ms] 10 chgs. 1000 chgs.
HH pure 17 28 1.16 1 662 17 – – –
StHNR 19 8 1.12 1 382 3 – – –
StHNR mem 24 2 1.55 2 453 8 – – –
DynHNR 18 32 1.17 1 414 2 37 8 294 200 465
DynALT-16 (85) 128 (53.6) 74 441 (6) (2 036) 75 501 255 754

variant, the main memory usage is considerably higher than the disk space usage
(around a factor of two) mainly because the dynamic data structures maintain
vacancies that might be filled during future update operations.

We can expect different performances when updating very important roads
(like motorways) or very unimportant ones (like urban streets, which are usually
only relevant to very few connections). Therefore, for each of the four major
road categories, we pick 1 000 edges at random. In addition, we randomly pick
1 000 edges irrespective of the road type. For each of these edge sets, we consider
four types of updates: first, we add a traffic jam to each edge (by increasing the
weight by 30 minutes); second, we cancel all traffic jams (by setting the original
weights); third, we block all edges (by increasing the weights by 100 hours,
which virtually corresponds to ‘infinity’ in our scenario); fourth, we multiply the
weights by 10 in order to allow comparisons to [16]. For each of these cases,
Tab. 2 gives the average update time per changed edge. We distinguish between
two change set sizes: dealing with only one change at a time and processing 1 000
changes simultaneously.

As expected, the performance depends mainly on the selected edge and hardly
on the type of update. The average execution times for a single update operation
range between 40ms (for motorways) and 2 ms (for urban streets). Usually, an
update of a motorway edge requires updates of most levels of the overlay graph,
while the effects of an urban-street update are limited to the lowest levels. We get
a better performance when several changes are processed at once: for example,
1 000 random motorway segments can be updated in about 8 seconds. Note that
such an update operation will be even more efficient when the involved edges
belong to the same local area (instead of being randomly spread), which might
be a common case in real-world applications.

Updating a Few Edge Weights (Mobile Scenario). Table 3 shows for
the most difficult case (updating motorways) that using our modified query
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algorithm we can omit the comparatively expensive update operation and still
get acceptable execution times, at least if only a moderate amount of edge weight
changes occur. Additional experiments have confirmed that, similar to the results
in Tab. 2, the performance does not depend on the update type (add 30 minutes,
multiply by 10, . . .), but on the edge type (motorway, urban street, . . .) and, of
course, on the number of updates.

Comparisons. Highway-node routing has similar preprocessing and query
times as pure highway hierarchies [17, w/o distance table], but (in the static
case) a significantly smaller memory overhead. Table 4 gives detailed numbers,
and it also contains a comparison to the dynamic ALT approach [16] with 16
landmarks. We can conclude that as a stand-alone method, highway-node rout-
ing is (clearly) superior to dynamic ALT w.r.t. all studied aspects.7

6 Conclusion

Combining and considerably extending ideas of several previous static point-to-
point route planning techniques yields a new static approach with extremely
low space requirements, fast preprocessing, and very good query times. More
important and innovative, however, is the fact that the approach can be extended
to work in dynamic scenarios: we can efficiently react to events like traffic jams.
Furthermore, we deal with the case that different cost functions are handled.

There is room to improve the performance both at the implementation and at
the algorithmic level. In particular, better ways to select the highway-node sets
might be found. The memory consumption of the dynamic variant can be con-
siderably reduced by using a more space-efficient representation of the affected
node sets. There is also room for additional functionality. For instance, we can
adapt the algorithm from [19] to work with the new approach in order to support
many-to-many shortest-path computations for exchangeable cost functions. An
extension to a time-dependent scenario—where the edge weights depend on the
time of day according to some function known in advance—is an important open
problem.
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