
Dynamic History-Length Fitting:

A third level of adaptivity for branch prediction

Toni Juan Sanji Sanjeevan Juan J. Navarro

Depart. of Computer Architecture
Univ. Politkcnica de Catalunya

08034 Barcelona (Spain)
antonioj@ac.upc.es

Abstract

Accurate branch prediction is essential for obtaining

high pegormance in pipelined superscalar processors that
execute instructions speculatively. Some of the best current
predictors combine a part of the branch address with a$xed
amount of global history of branch outcomes in order to
make a prediction. These predictors cannot per$orm uni-
formly well across all workloads because the best amount
of history to be used depends on the code, the input data and
the frequency of context switches. Consequently, all predic-

tors that use a$xed history length are therefore unable to
pe$orm up to their maximum potential.

We introduce a method -called DHLF- that dynami-
cally determines the optimum history length during execu-
tion, adapting to the specific requirements of any code, in-
put data and system workload. Our proposal adds an extra
level of adaptivity to two-level adaptive branch predictors.
The DHLF method can be applied to any one of the predic-
tors that combine global branch history with the branch ad-
dress. We apply the DHLF method to gshare (dhlf-gshare)
andobtain near-optimal resultsforall ~P~~int95 bench-
marks, with and without context switches. Some results are
also presentedfor gskewed (dhlf-gskewed), confirming that
other predictors can beneJitfrom our proposal.

1. Introduction

Branch prediction is a key performance component for
wide-issue superscalar and deeply pipelined processors,
where several wrong-path instructions can be in-flight be-
fore a branch is resolved. To reduce the number of lost
cycles due to speculative execution of wrong-path instruc-
tions, branch prediction has evolved from static to more
flexible predictors. These predictors try to adapt to dynamic
program behavior in order to improve their performance. A

first level of adaptivity has been the use of 2-bit saturating

counters [121. An additional level of adaptivity has been in-

troduced using other sources of branch information such as
the history of branch outcomes and the correlation between
branches [161, [lo], [171, [191, or even choosing among sev-
eral predictors designed for different kinds of branch behav-
ior [7], [3].

Some of the best current predictors are based on the two-
level adaptive or correlated schemes proposed in [161 and
[lo]. They combine fixed amounts of global history and
program counter (PC) bits to generate an index to one or
several pattern history tables (PHT) of 2-bit saturating coun-
ters. Several parameters influence the performance of these

predictors such as the size of the predictor tables, the way
the branch history and PC bits are combined, the way the
PHT is updated as well as the amount of history and PC
information used.

Motivation

To illustrate the effect of history length on branch pre-
dictor performance, Figure la plots the misprediction rates
for three two-level adaptive branch predictors: gshare [7]
and the recently proposed agree [131 and gskewed [8]. The
benchmarks used are go and li from SPECint95. The
area occupied by each predictor is 8Kbits for gshare, and
12Kbitsi for agree and gskewed. All three perform very
much alike for li and even though their performance for
go is different, all display the same kind of dependence
on the history length. In Figure 1 b we plot the same re-
sults as in Figure la, showing with shaded bars the range
of misprediction rates when varying the history length for
the three predictors. For all predictors, there is a signifi-
cant range of variation in misprediction rate depending on

‘ccpee has the same PHT as phure (8Kbits) but has 4Kbits extra for
the bi% bit and J$WW~ has three banks of 2.bit saturating counters, each
indexed with I I bits. 12Kbits was the closest value greater or equal to
8Kbits that could be used.

1063-6897/98 $10.00 0 1998 IEEE
155

w 0.30

0.25

s
2 0.20
c
0

'$ 0.15

s?

.4 0.10
I

0.05

(W
-TcfF-j

History length (SK bits) (IZK bits) (IZK bits) History length

Figure 1. Misprediction rates of three different
two-level predictors that use global history,
using a la-bit index (11-bit for gskewed), for
go and Ii. a: Effect of the history length. b:

Misprediction range for each benchmark and
predictor.

the history length (e.g gshare on go varies from 20% to
27% and from 4% to 13% for 1 i). Two interesting obser-
vations can be made from the misprediction ranges of go:
First, even though the agree predictor has lower variation
as a function of the history length, when optimal history
lengths are compared, gshare and gskewed perform better.
Second, gskewed achieves the best misprediction rate with
a history length of four bits. However, its performance for

more than half of all possible history lengths is inferior to
that of the best gshare configuration, despite the fact that it
occupies 50% more area.

From Figure 1 we can conclude that

l the history length used for a particular code has a sig-
nificant impact on predictor performance,

l determining the best predictor, for some codes, de-
pends on the history length used,

l for a given predictor, achieving the best prediction ac-
curacy requires the use of different history lengths for
each code. All predictors that use a fixed history length
are therefore unable to perform up to their maximum
potential, and

l the performance of two-level branch predictors can
be further optimized by adapting the history length to
each code.

Dynamic selection of the history length

We present a new method that, when applied to exist-
ing two-level predictors, performs very close to the best

(b)

0.25

Figure 2. Misprediction rates of two
SPECint95 benchmarks (go and Ii) using
a gshare predictor with a 12-bit index. a:
Effect of the history length. b: History length

optimized for go, Ii and using our DHLF
method (striped bar).

case with fixed history lengths on all SPECint95 bench-
marks. Our proposal adds another level of adaptivity, try-
ing to better fit the number of history bits needed by each
benchmark and input data at execution time. This method
can be applied to any member of the family of predictors
that combine global branch history with PC bits to form
an index to one or several PHTs such as gshure [7], gse-

lecf [lo], gskewed [8], agree [13] and bi-mode [6]. We call
this method Dynamic History-length Fitting or DHLF.

As an illustration, Figure 2a shows the same results as

Figure la but only for gshure. The PHT is indexed using
12 bits of the branch address xor-ed with global history bits
varied from 0 to 12. Increasing the history length improves
the performance for 1 i. Whereas for go, the misprediction
rate reaches a minimum with a history length of 3 and as the
number of history bits is increased, the performance rapidly

degrades. The arrows indicate the optimum for each code.

Figure 2b shows what happens when gshure uses history

lengths optinrul for go (3 bits) or li (10 bits). In each
case, optimizing for one code results in poor performance
in the other. Finally, the striped bar of Figure 2b shows
the performance achieved with the DHLF method applied
to gshure, that we propose and evaluate in this paper. Note
that nearly optimal results are obtained for both benchmarks
with our method.

We will show that when context switches are considered,
the history length becomes more critical for performance.
The DHLF method is able to obtain the best results even in
this environment.

156

2-bit

n 2 counters

Figure 3. Detail of the gshare implementation

evaluated

Simulation methodology

The simulations have been conducted using ATOM [2] to
obtain a trace of conditional branches from all SPECint9 5

benchmarks using reference inputs. The benchmarks were
instrumented with ATOM and then executed on a DEC

21164 workstation running Digital UNIX V4.OA. We first
looked at the results of simulating 10, 100, 200, 500
and 1000 million dynamic conditional branches for several
benchmarks. Since the results were stable after 100 million,
we carried out all our simulations up to 200 million condi-
tional branches. Throughout the paper we will use the term
‘branches’ to refer to ‘conditional branches’.

In all branch predictors simulated, the branch history

register and the PHTs are immediately updated with the true
outcome of the branch instead of using the predicted out-

come or waiting for the outcome to be known -it has been
shown in [181 that this has little overall effect on prediction
accuracy.

The study is carried out with gshure as described in [7].
Figure 3 shows how the M bits of global history are xor-ed
with the m higher-order bits of the n low-order bits of the
PC (after discarding the 2 lowest bits) to generate the index
into the PHT. The PHT consists of 2” two-bit saturating
counters initialized to saturated taken.

Due to lack of space, we exhaustively study the effect of

different parameters on predictor performance using only
two of the SPECint95 benchmarks -go and li. These
two benchmarks were chosen since they represent two dis-
tinct types of variation in performance with changing his-
tory lengths. After analizing these results, we fix some of
the parameters and present the results for the rest of the
benchmarks. More detailed results for all SPECint95

codes are available as a technical report [5].

Paper organization

In section 2, we study the effect of the history length on

misprediction rates for gshare as a function of predictor size
in the absence of context switches. Section 3 describes our
DHLF method and evaluates it’s performance. The effect
of context switches on predictor performance is studied and

evaluated in section 4. In section 5 we apply our method
to gskewed and present some results. Section 6 discusses
related work and section 7 provides some concluding re-
marks.

2. Effect of history length on predictor perfor-

mance

To understand the effect of history length on prediction
accuracy, we simulated gshure on all SPECint95 bench-
marks for PHTs indexed with 10, 12, 14 and 16 bits and
history lengths ranging from 0 to the number of index bits.
The misprediction rate on each benchmark is presented in
Figure 4. Each curve represents a particular predictor size.
All graphs are plotted within a window ranging from 0%
to 20% of misprediction rate, except for go that is plotted

from 12% to 32%. Since for all plots the size of the mispre-
diction range shown is the same, the differences in mispre-

diction rates between any curve can be directly compared
across the benchmarks.

From Figure 4 we can identify three different behaviors
observing how the code predictability evolves when the his-
tory length is increased: the predictability for compress and
li improves as more history is used. ijpeg, m88ksim and
especially pet-1 show some irregular behavior for different
history lengths. Finally, prediction accuracy for gee, go and

vorrex improves with more history bits but quickly starts

to degrade. These different behaviors depend on the num-
ber of static branches that account for most of the dynamic
branches, the degree of correlation between branches and
the predictor size.

The range of predictor sizes studied -up to 128K bits-
covers the predictor sizes for present and near future pro-
cessors: from the MIPS RlOOOO that has 5 12 entries of 2-bit
counters (1 Kbit) indexed only with the PC [151 up to the re-
cently announced DEC AXP 2 1264 that will have a hybrid
predictor with an estimated area of 35Kbits [4]. To the best
of our knowledge, except for the 21264, all processors use

the equivalent of 16Kbits or less area for their predictors.
When the index size of the predictor reaches 16 bits

(PHT of 128Kbits), the optimal results for all benchmarks
are achieved with history lengths close to the maximum.
However, this requires having very big predictors, four
times larger than the biggest one announced at present
(DEC AXP 2 1264). In section 4 we show that in a more
realistic environment, where context switches happen quite

157

compress

0.16

0 2 4 6 6 10 12 14 16

History length

0.16

g
5 0.12

.i 0.06

$

0.04

0.16

0 2 4 6 6 10 12 14 16 0 2 4 6 6 IO 12 14 lf 0 2 4 6 6 10 12 14 If

History length History length History length History length

0.16

:,Ll
0 2 4 6 6 10 12 14 16

0.24

0.16

0.12

0 2 4 6 6 10 12 14 16

0.16 0.16

0.12 0.12

0.06 0.06

0 2 4 6 6 10 12 14 16

History length History length History length

0.16

Figure 4. Effect of history length on the misprediction rate for all SPECint95 benchmarks using a
gshare predictor indexed with 10, 12,14 and 16 bits.

often and most of the PHT information is lost frequently,
even the big predictors behave similar to the small and
medium sized predictors presented in this section.

3. Dynamic history-length fitting

In the previous section it has been shown that each code
requires a specific amount of history to give the best results.
All known implementations of two-level dynamic predic-
tors that combine global history and PC bits have a fixed
amount of history length. Consequently, none of these pre-
dictors can give the best results across all benchmarks.

We propose and evaluate a new implementation of

gshare called dhlf-gshare that, instead of always xor-ing a
fixed number of history bits, is able to xor any number of
history bits with the PC bits of the branch instruction. This
predictor will try to dynamically find the amount of history
that performs best for each code and input data at execution
time. It will do this by using the best history length required
for different phases of the code execution.

The extra hardware required to select the number of his-
tory bits to be xor-ed with the PC is very small. The Branch
History Register (BHR) size has to be equal to the maxi-
mum history length envisaged. The number of entries of the
PHT desired determines the number of PC bits that have to

be used by the predictor (log,[PHTentries]). All bits of
the BHR are xor-ed with the PC but a decoder and a set of
two bit multiplexers select the desired number of bits of the

BHR that hold the past history information. Figure 5a de-
picts a normal BHR at the bit level and Figure 5b shows the

modifications required to select any number of consecutive

BHR bits (from 0 to all of them). This additional logic is
used in parallel with the xor and therefore does not intro-
duce any extra delay in the index generation.

DHLF works on the basis of monitoring the mispredic-
tions during program execution and changing the history
length accordingly. We define an ‘interval’ to consist of
a fixed number of consecutive dynamic branches. We call
this number step. During the execution of the program the
misprediction for each interval is computed using a fixed
history length. At the end of each interval the history length

to be used for the next interval is determined based on the
current number of mispredictions and the minimum value
encountered so far.

3.1. Structure and operation

The components of the DHLF control consist of:

l A misprediction table with as many entries as the num-
ber of bits of index to the PHT. Entry n holds the

158

Figure 5. Hardware at the bit level to gener-
ate a 6-bit index to a PHT. a: for gshare with
a fixed history length of 4 bits. b: for dhlf-
gshare, 6 bits of PC can be xor-ed with any
number of history bits between 0 and 6.

number of mispredictions that occured the last inter-
val when a history length of n was used.

A pointer to the table entry that corresponds to the
number of history bits currently in use.

A pointer to the table entry that contains the minimum
misprediction count.

A misprediction counter that counts the mispredictions
for the current interval.

A branch counter that counts the number of predicted

branches in the current interval. When this counter

reaches a value of step it indicates the end of an in-
terval.

When the program starts execution, all entries of the mis-
prediction table, the misprediction counter and the branch
counter are initialized to zero. The number of history bits to
be used is also set to zero.

During each interval of step branches, the history length
remains fixed in order to determine the number of mispre-
dictions for the current phase of execution with the current

history length.
At the end of the interval the current number of mispre-

dictions is stored in its associated entry in the misprediction
table and compared with the minimum number recorded in
there. If the current number of mispredictions is less than or
equal to the minimum in the misprediction table, the history
length is not changed for the next interval. If it is greater,
then the history length is changed. Finally, the mispredic-
tion and branch counters are reset before starting a new in-
terval

Changing the history length could be done in different
ways. One way would be to directly set the history length

to the one corresponding to the minimum in the mispredic-
tion table. Another possibility would be to move towards it,
increasing or decreasing by one the current history length.
The latter option has been chosen because it enables the

testing of history lengths in-between that may not have been
tried for some time and might even yield lower mispredic-
tions.

Updating the pointer to the entry of the misprediction
table that contains the minimum number of mispredictions
can be done easily. During each interval all entries of the

misprediction table remain unchanged. At smaller periods
(each step/index-bits for instance) the control can test one
of the entries so that when step branches have completed,
the entry of the misprediction table that has the minimum is
already known.

Note that all possible history lengths will be tested at
least once because all table entries are initialized to zero.

Each time the history length is changed, the index value
generated for a given branch PC xor-ed with the same pat-
tern of history bits changes. This means that a different

entry of the PHT will be used to make the prediction, intro-
ducing aliases in the PHT. For this reason, when the history
length is changed, most of the state in the PHT is lost and
must be regenerated before reaching a stable state.

The increased amount of aliasing in the PHT immedi-
ately after a history length change introduces extra mispre-
dictions that would corrupt the true performance of the cur-
rent history length. The solution would be to allow some
adequate warm-up time before starting to count the mispre-
dictions for the current history length. After testing various

values we chose this warm-up time to be equal to that of
an interval, step. Consequently, the control treats the inter-
val immediately after a change in history length in a special
way. During this interval, the misprediction counter and
table are not updated. At the end of this interval no compar-
ison is made between the current number of mispredictions
and the minimum value in the misprediction table. Then, a
normal interval begins with the same history length.

Figure 6 shows how the history length evolves over time
during the execution of go and 1 i, using dhlf-gshare. The
PHT is indexed with 12 bits and the step value is 16K. For
both benchmarks, there are several history length changes
during the initial phase of execution. This stabilizes around
the optimal static history length during the latter phase of
execution. On the right of this figure is a histogram that
shows the percentage of branches predicted at each history
length.

3.2. Tradeoffs

The step parameter controls the number of branches be-
tween possible history length changes. Using a small step
value allows the DHLF to react to small changes in the pre-

159

10
g* ,

5
6 6 6

3 I 4 4

2 2

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 160 190 200 0.0 0.2 0.4 0.6 0.6 1.0

Branch number (in millions)

O:O 0.2 0.4 0.6 0.6 1.0

Percentage of branches

Figure 6. Evolution of the history length during the execution of go and Ii when DHLF is applied to
gshare with an index of 12 bits and a step value of 16K. Also shown is the percentage of total time
spent at each possible history length.

dictability of the code. In case the program has several
phases that require the predictor to adapt to differing re-
quirements, it could even behave better than gshare with
the best fixed history length. Moreover, with a small step
value the optimum history length can be determined faster.
However, the step value has to be big enough to be able
to count the mispredictions within a representative part of
the code. Large PHTs require a large number of updates to
reach a stable state. This implies that for larger predictor
tables, larger step values will perform better.

The extra mispredictions due to a history-length change
can reduce the benefits of DHLF. Therefore, the DHLF con-
trol has to test all history lengths as many times as possible
to find the best one, but at the same time, as few times as
possible so that the extra mispredictions are minimized.

It is possible that the control algorithm described in sub-
section 3.1 could lead to stagnation at a local optimum.
In order to avoid this, we have added to the control the
ability to move randomly to any history-length value when
the history length hasn’t changed for a large number of
steps. However, in case it was at the global optimum, the
end-result would be extra mispredictions due to the history
length changes. For the simulated benchmarks this did not
alter the results.

3.3. DHLF area requirements

The DHLF control mechanism increases the area re-

quired to implement gshare. For an index of 10 bits and
a step value of 16K, it requires a misprediction table with
11 entries that are each 13 bits wide (assuming that the mis-
prediction rate will be lower than 50%). This works out to
11 * 13 = 143 bits extra, which is less than a 7% increase in
area. For the case of an index of 16 bits, the extra area will
be 17 * 13 = 221 bits, an increase in predictor area of less
than 0.02%.

For small PHTs (e.g 10 bits of index) the area required
for the control can be minimized by storing the number of

mispredictions divided by a power of two. We tested this by
storing values divided by 2,4, 8 up to 64, and there were no
significant differences in the results.

Another way to reduce the area required to implement
DHLF would be to reduce the number of history lengths
allowed. For example, by using only even history lengths
the number of entries in the misprediction table is halved
with little effect on DHLF performance.

160

OJ2 -IF-
0.26

%

i

p-

; 0.24
,o 1
8 ,$s

‘u % 0.20

3

0.16

90 + 4K

3 o6K
9 016K -
a I 32K

8 x 64K
D 126K

0.12 Ib
Index length

0.20
Ii

0.16

j

- - - - 0.12

0.06 -

i

+ - -

0.04 A a ;

0.00 ~&
10 12 14 16

Index length

Figure 7. Misprediction rate of dhlf-gshare
for several step values compared to the mis-
prediction range of gshare with fixed history

lengths. The results are presented for go and

Ii with 10,12,14 and 16 index bits.

3.4. DHLF evaluation

The parameter that has to be determined for the DHLF
control is the step value. In Figure 7 we have plotted the
results of dhlf-gshare for step values starting at 4K up to

128K applied to go and li. The shaded bars represent the
range of misprediction values obtained using only gshare
with fixed history lengths. The maximum and minimum
misprediction rates are obtained by running the simulation
each time with a different history length, up to the number
of index bits (see Figure 4). Also marked are the arithmetic
mean values for the range of misprediction rates. On the
shaded bars we have superimposed the misprediction rates
obtained using DHLF for different step values. From Fig-
ure 7 it can be seen that the step value has no impact for all
predictor sizes for li. In the case of go, as the predictor
size increases, the effect of the step value on performance
is more noticeable. In general, large predictors will need
a longer warm-up time after a history length change and
hence will benefit from larger step values. In order to sim-
plify the presentation we selected the step value to be 16K
for the rest of the simulations even though this is not the
best choice for large predictors.

The DHLF method can effectively overcome the signifi-
cant dependence on history length that prevents current pre-
dictors from achieving the best performance. DHLF intro-

duces a new parameter, step. As shown, the ch&en value
for sfep -above a certain threshold- does not affect the
overall performance.

In Figure 8, we plot the dhlf-gshure results for all
SPECint95 benchmarks, using a step value of 16K. As
in Figure 7, we have superimposed the dhlf-gshare mispre-
diction rate over the range computed for a gshare predictor.

In almost all benchmarks, dhlf-gshare obtains near-optimal
results in comparison to using gshare with the best fixed his-
tory length for each benchmark (labeled min). The heuris-
tic search for the best history length and the extra mispre-

dictions due to history-length changes prevents achieving

the optimal performance in some cases’. In two particu-

lar cases (compress with a 16-bit index and m88ksim

with a 12-bit index) the performance is even better than for
any fixed length gshure. This confirms our intuition that
in some cases, the DHLF method can respond better to the
history length requirements of different phases of the execu-
tion of the same benchmark. Only per1 exhibits irregular
behavior and optimal results are obtained for just one pre-
dictor size (14-bit index). The reason for this could be the
non-uniform variance of history length requirements of this
benchmark as shown by the spikes in Figure 4.

4. Considering context switches

In real-world computing environments, context switches
occur due to end of quantum, I/O, etc. It has been shown
that the performance of even very accurate branch predic-
tors degrades considerably when context switches are con-
sidered [3], [9]. The main reason for this is that the in-
formation maintained by the PHT is lost periodically with

every context switch. Large PHTs and long history lengths
require longer warm-up times because more PHT entries

are indexed by each static branch. Predictors with shorter
warm-up times will have a higher prediction accuracy im-
mediately after a context switch.

Context switches introduce an additional restriction to
these predictors that use fixed amounts of history. The best
history length for a given code can also change depending
on the frequency of context switches. Since the frequency
of context switches depends on many unknown factors, such
as the load of the system at a given time, it would be impos-
sible to design a single predictor that uses a fixed history
length and that always achieves optimum performance for
even one benchmark. This highlights the importance of hav-
ing the flexibility to dynamically change the history length
of predictors. The results presented in the next section show
that the DHLF method is able to find the best history length
independent of the code, input data and context switch fre-
quency for all predictor sizes.

4.1. Simulation methodology

To simulate the effect of context switches we flush the
contents of the PHT each time a context switch occurs as
in [3], reinitializing the PHT entries to saturated taken. We

*In [S1 we present one way to reduce the mispredictions due to history

length changes that we call reverse-gshare. It is also possible to improve
the performance by utilizing better search algorithms.

161

Step value 16K

0.00 -I
10 12 14 16

Index length

0.20
Ii

0.16-

u
z
co.12-- - - -
.g
g

2 0.08- -
::
r

.-x- - - -

0.04 - A Y Y

4

0.00 1
10 12 14 16

Index length

0.20
- WC

0.16 ..+

10 12 14 16

-

10 12 14 16

Index length Index length

10 12 14 16

Index length

- -
x

0.04

ii, -

- Y -
- x

-
0.00

10 12 14 16

Index length

4
0.16 0.16 -

I-

O.OO j7G7x
Index length

I - -
= I

Index length

Figure 8. Misprediction rate of all SPECint95 codes using dhlf-gshare with a step value of 16K
compared to the misprediction range of gshare with fixed history lengths (no context switches).

also tested reinitializing the PHT entries with random val-
ues and the results were very similar.

We define context-switch distance as the number of
branches executed between context switches. The context-
switch distance depends on the percentage of branches in
the code, the system configuration and its load at execution
time. It could even change during the execution of a code
under real conditions. However, to simplify the evaluation
we study the effect of fixed context-switch distances, from
8K up to 256K. For SPECint95 codes this translates to
between 40K and more than 3000K instructions between
context switches (we have found that from 5% up to 12% of
the instructions in the dynamic instruction stream are condi-
tional branches). The context-switch distances selected are
similar to those used in [3].

4.2. Effect of history length on predictor perfor-
mance

Figure 9 shows the effect of context-switch distance on
the misprediction rate for go and 1 i, using the gshare pre-

dictor. The PHT is indexed with 16 bits while the history
length varies statically from 0 up to 16 bits. Each curve
corresponds to a different context-switch distance, ranging
from 8K up to 256K. The gray curve shows the perfor-

mance for the same predictor when context switches are not

considered. The curves show the same dependence on the
context-switch distance for all history lengths. As expected,
the worst performance is obtained when the context-switch
distance is the lowest.

We have plotted Figure 9 for the case of a PHT indexed
with 16 bits to highlight the effect of context switches for
big predictors. The arrows indicate the best history length
for each context-switch distance. The best history length
for go with the same input data varies from 2 up to 12
bits depending on the context-switch distance. Moreover,
there is a large variation in performance depending on the
context-switch distance and the history length (14% mispre-
diction rate for go with no context switches compared to
36% for the same history length and a context switch each
8K branches -the latter data point is off the scale).

In Figure 10 we present the effect of context switches on
misprediction rates for all SPECint95 benchmarks using
gshare. As before, the index lengths studied are 10, 12, 14
and 16 bits and the history lengths are varied from 0 to the
number of index bits for each curve. We fix the context-
switch distance at 64K in order to simplify our presentation

since it is an intermediate value. Unlike in Figure 4 (the non
context-switch case) gee, go and vortex now show the
same behavior for all predictor sizes. As before, all codes

162

0 26 0.16

g
s 0.24 0.12

-

B
E :: 020 0.08

5

0 16 0.04

012 0 00

0 2 4 6 8 10 12 14 16 0 2 4 6 6 10 12 14 16

H~slory length History length

Figure 9. Effect of history length on the mis-
prediction rate of go and Ii using a gshare
predictor indexed with 16 bits. The num-
ber of conditional branches between context
switches varies from 8K up to 256K. Also
shown is the misprediction rate when there
are no context switches (labeled inf.).

have differing history length requirements but now this as-

pect holds for all predictor sizes studied. It can also be seen

that for some codes, increasing the predictor size brings no
improvement because of the overhead introduced by context
switches.

4.3. DHLF operation under context switching

The DHLF method applied to the case where there are
context switches retains the same predictor control de-
scribed in section 3. There are a few extra items to consider
in order to allow dhlf-gshare to find the best history length

across context switches

l the current value in the misprediction counter has to be
discarded when a context switch occurs in the middle
of an interval and is not stored in the misprediction
table.

l The misprediction table and the current history length
must be saved each time a context switch occurs. This
means saving from 143 bits for a IO-bit index up to
22 1 bits for a 16-bit index, assuming a step value of
16K that requires 13 bits’ for the misprediction counter
(i.e, the equivalent of saving four 64-bit registers).

l Additionally, the first step branches after a context
switch will not be considered to avoid the effect of
the PHT reconstruction, as is done immediately after
a history length change.

‘assuming that the misprediction rate will always be lower than 50%

4.4. Evaluation

Figure 11 shows the performance of dhlf-gshare for all

SPECint95 codes using 10, 12, 14 and 16 index bits.

The history length was dynamically adjusted every 16K
branches as in previous figures. Once more, we have su-

perimposed the dhlf-gshare results over the range of values
obtained for gshure. The context-switch distance used was
70K because the behavior is almost the same as for 64K but
is not a multiple of l6K, the step value used by dhlf-gshure.
This allows us to test dhlf-gshure under negative conditions
and shows that having a context switch within an interval

does not reduce the performance of the method.
From Figure 11 we see that near-optima1 results are ob-

tained for all benchmarks except for perl. It should be
noted that dhlf-gshure achieves the best performance in
most codes for all predictor sizes considered with the same
step value.

5. Applicability to other predictors

The DHLF method can be applied to any predictor
that combines history and PC bits, even to hybrid predic-

tors [7],[3]. As an example we present some results for

one of the latest predictors, gskewed. The skewed branch
predictor uses an odd number of PHTs and indexes each
PHT using a different and independent hash function. All
hash functions are computed from the same vector of PC
and global history information. Predictions are read from
each PHT and a majority vote decides the final outcome.
Details about the predictor and the hash functions can be
found in [8].

We evaluated gskewed with three PHTs and a partial up-
date policy on go and li. Since gskewed requires three

tables we have studied the performance for indices of 9, 1 1,
13 and 15 bits. This represents predictor sizes from 3K bits
up to 192K bits, similar to the sizes used for gshare in pre-
vious sections.

The shaded bars in Figure 12 show the range of misprc-
diction rates for gskewed depending on the history length
used to calculate the indices into the PHTs in the absence
of context switches. As we saw in previous sections for
gshure, gskewed also exhibits a significant range of mispre-
diction values for a given predictor size due to the effect of

history length. We have superimposed the dhlfgskewed re-
sults with a step value of 16K branches over the gskewed
range. For li dhlf-gskewed always achieves the optimal
performance for all predictor sizes. Applied to go, dhlf
gskewed achieves near-optimal performance with small and
medium sized predictors. For bigger predictors the perfor-
mance obtained with dhlf-gskewed is quite good but not op-
timal. This is mainly because we use the same step value for
all predictor sizes. Better accuracy is obtained for big pre-

163

History length History length History length

History length History length History length

o.oo LI
0 2 4 6 8 10 12 14 16

History length

0.20

Figure 10. Effect of history length on the misprediction rates of all SPECint95 benchmarks using
a gshare predictor with 10, 12, 14 and 16 bits of index and context switches occurring every 64K
conditional branches.

dictors by using a larger step value -such as 32K or even
64K. In [5] the results for all SPECint 9 5 benchmarks for
different step values are presented.

Figure 13 is similar to Figure 12 with the exception that

we simulate context switches every 70K branches. As we
pointed out before, context switching has a bigger negative
impact on large predictors. Note that when context switches
are simulated, dhlf-gskewed performs near-optimally for all
predictor sizes in both benchmarks.

6. Related work

Several studies have looked at the effect of using differ-
ent history lengths. Our DHLF proposal tries to find the best
history length to be used dynamically at execution time. To
the best of our knowledge, only two proposals [l] and [141
have tried to adjust the amount of history used.

l In [l] the static branches are classified depending on
the bias of their behavior. The highly biased branches
require a few bits of history whereas the less biased
branches require a large history length. They propose
using a hybrid predictor with two components, one
with a few history bits and another with a large num-

ber. Only two possible values for history length are
considered and further, these values are fixed. Their
alternate proposal consists of profile-guided static pre-

diction for highly-biased branches and dynamic pre-

diction for the rest.

l The study in [141 extends the work of [l] and tries
to determine the exact history length for each static
branch at compile time.

These proposals are different from our proposal in sig-
nificant ways: Since they focus on each specific branch in-
struction both studies require a complex profiling step to

determine the amount of history to be used for each static
branch. Further, both proposals would require modifica-
tions to the instruction set to be able to use the information
gathered in the profiling phase at execution time. Finally,
neither one of these proposals will be able to react to differ-
ent input data or system workloads.

Other articles such as [7], [111, [8], [6], have studied the
effect of history length to find the best static combination of
PC and history or to better understand the behavior of their
predictors.

In general, almost all studies based on two-level adap-
tive branch predictors assume that the final implementation

164

Step value 16K

Contex-switch 70K

O.OO + O.OO *
Index length Indexlength

O.OO 57F--mz O.OO 5L-3T-x
Indexlength Indexlength

0.16

0.32
90

- -

0.16

1

0.12 i

10 12 14 16

Index length

10 12 14 16

Index length

0.20
tipeg

0.16

I-

0.12 * i 2 Je

0.00

10 12 14 16

Indexlength

vortex

0.16
i

0.00 A
10 12 14 16

Indexlength

Figure 11. Misprediction rate of all SPECint95 codes using dhlf-gshare with a step of 16K compared
to the misprediction range of gshare with all possible fixed history lengths. The PHT is flushed every
70K conditional branches to account for the effect of context switches.

will have a fixed number of history bits and usually select

as many history bits as index bits. As we have seen in Fig-
ures 4 and IO this can be the worst case for benchmarks
such as gee, go or vortex.

7. Summary

Almost all recently proposed predictors combine, in a
fixed way, information from the branch address with the his-
tory of the branch outcomes to predict the direction of con-
ditional branches. We have shown that the performance of
this type of predictors, for different codes, displays signifi-
cant variations depending on the history length used. These
predictors that combine PC and history in a fixed way are
losing a large part of their potential performance because
the best history length depends on several factors that are
only known at execution time. Some of these factors are
the code to be executed, the input data and the number of
conditional branches that can be executed between context
switches in time-shared environments.

time, with and without context switches. The evaluation of

DHLF has been carried out by applying it to g&are (dhlf-
g&are). All SPECint95 codes were run with this new
predictor and the results confirm that it is able to achieve
performances very close to optimum, compared to the best
fixed history &rare configuration, for each code. DHLF
can be applied to any predictor that combines global his-
tory with PC bits. As an example we show a few results

with dhlf-gskewed where DHLF also obtains near-optimal
performance for each specific benchmark.

DHLF has low area cost, does not affect the predictor
critical path and does not require profiling nor instruction
set modification.

We believe that using DHLF on any one of the two-
level branch predictors will yield better prediction accura-
cies across a variety of codes, input data and context switch
frequencies.

Acknowledgements

Before choosing one or another predictor it is more im- We would like to thank Jose Gonzalez and Roger Espasa
portant to use the best history length for each code for any who gave us insightful comments on drafts of this paper. We
given predictor. We have presented DHLF, a method that wish to also thank the anonymous referees for their valuable
finds the best history length for a given code at execution comments on the paper.

165

1 Step

x
-

value 16K

-

-
x

0101 , , , , -
9 11 13 15

Index length

0.00

9 11 13 15

Index length

Figure 12. Misprediction rate of go and Ii

using dhlf-gskewed with a step value of

16K compared to the misprediction range
of gskewed with all possible fixed history
lengths.

This work was supported by the Ministry of Education

of Spain under contract CICYT TIC-0429/95 and by the

CEPBA.

References

[I] P.-Y. Chang, E. Hao, T.-Y. Yeh, and Y. Patt. Branch classi-
fication: a new mechanism for improving branch predictor
performance. In 27th lnt. Syrnp. on Microarchitecture, pages
22-3 1, Nov. 1994.

[2] A. Eustace and A. Srivastava. ATOM: A flexible interface
for building high performance program analysis tools. In

Proceedings of the Winter 1995 USENIX Conference, pages
303-314, Jan. 1995.

[3] M. Evers, P-Y. Chang, and Y. N. Patt. Using hybrid branch

predictors to improve branch prediction accuracy in the pres-

ence of context switches. In 23d Annual Int. Sytnp. on Com-
puter Architecture, pages 3-1 I, May 1996.

[4] L. Gwennap. Digital 21264 sets new standard. Micropro-
cessor Report, lO(14), Oct. 1996.

[5] T. Juan, S. Sanjeevan, and J. J. Navarro. A third level of
adaptivity for branch prediction. Technical Report UPC-
DAC-1998-4, Computer Architecture Department, UPC,
Barcelona, March 1998.

[6] C.-C. Lee, I.-C. K. Chen, and T. N. Mudge. The Bi-Mode

branch predictor. In 30th Annual Int. Syrnp. on Microarchi-

tecture, Dec. 1997.

[7] S. McFarling. Combining branch predictors. Technical Note
TN-36, Western Research Laboratory, DEC. June 1993.

[Sl P. Michaud, A. Seznec, and R. Uhlig. Trading conflict and
capacity aliasing in conditional branch predictors. In 24th
Annual Int. Symp. on Computer Architecture, pages 292-
303, June 1997.

[9] R. Nair. Dynamic path-based branch correlation. In 28th
Int. Symp. on Microarchitecture, pages 15-23, Nov. 1995.

V.0”
-

0.26 - -

Q
; 0.22

E
r ii it.

6
e % 0.18
.-
I

Step value 16K
0.14

o~lo+
Index length

0.20
Ii

0.16

0.12 - - - -

/ -

006 I
- -

0.04
+ x x c

-I
0.00 +

9 11 13 15

Index length

Figure 13. Misprediction rate of go and Ii

using dhlf-gskewed with a step value of

16K compared to the misprediction range
of gskewed with all possible fixed history
lengths. The PHT is flushed each 70K con-
ditional branches to account for the effect of
context switches.

[IO] S.-T. Pan, K. So, and J. T. Rahmeh. Improving the accu-

racy of dynamic branch prediction using branch correlation.

In 5th Int. Con5 on Architectural Support for Programming

Languages and Operating Systems, pages 76-84, Oct. 1992.
[111 S. Sechrest, C.-C. Lee, and T. Mudge. Correlation and alias-

ing in dynamic branch predictors. In 23d Annual Int. Symp.
on Computer Architecture, pages 22-32, May 1996.

121 J. E. Smith. A study of branch prediction strategies. In
8th Annual Int. Symp. on Computer Architecture, pages 13%
148, May 1981.

131 E. Sprangle, R. S. Chappell, M. Alsup, and Y. N. Patt. The
agree predictor: A mechanism for reducing negative branch

history interference. In 24th Annual lnt. Symp. on Computer
Architecture, June 1997.

[141 M.-D. Tarlescu, K. B. Theobald, and G. R. Gao. Elastic his-

tory buffer: A low cost method to improve branch prediction

accuracy. In Proceedings of the 1997 IEEE International
Conference on Computer Design, pages 82-87, Oct. 1997.

[151 K. C. Yeager. The MIPS RlOOOO superscalar microproces-
sor. IEEE Micro, 16(2):28-40, Apr. 1996.

[161 T.-Y. Yeh and Y. N. Patt. Two-level adaptive training branch

prediction. In 24th Annual Int. Symp. on Microarchitecture,
pages 51-61, Nov. 1991.

[171 T.-Y. Yeh and Y. N. Patt. Alternative implementations
of two-level adaptive branch prediction. In 19th Annual

Int. Symp. on Computer Architecture, pages 124-134, May
1992.

[181 T.-Y. Yeh and Y. N. Patt. A comprehensive instruction fetch

mechanism for a processor supporting speculative execu-
tion. In 25th Annual Int. Symp. on Microarchitecture, pages
129-139, Nov. 1992.

[191 T.-Y. Yeh and Y. N. Patt. A comparison of dynamic branch
predictors that use two levels of branch history. In 20th An-
nual Int. Symp. on Computer Architecture, pages 257-266,
May 1993.

