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Abstract 

Accurate branch prediction is essential for obtaining 

high pegormance in pipelined superscalar processors that 
execute instructions speculatively. Some of the best current 
predictors combine a part of the branch address with a$xed 
amount of global history of branch outcomes in order to 
make a prediction. These predictors cannot per$orm uni- 
formly well across all workloads because the best amount 
of history to be used depends on the code, the input data and 
the frequency of context switches. Consequently, all predic- 

tors that use a$xed history length are therefore unable to 
pe$orm up to their maximum potential. 

We introduce a method -called DHLF- that dynami- 
cally determines the optimum history length during execu- 
tion, adapting to the specific requirements of any code, in- 
put data and system workload. Our proposal adds an extra 
level of adaptivity to two-level adaptive branch predictors. 
The DHLF method can be applied to any one of the predic- 
tors that combine global branch history with the branch ad- 
dress. We apply the DHLF method to gshare (dhlf-gshare) 
andobtain near-optimal resultsforall ~P~~int95 bench- 
marks, with and without context switches. Some results are 
also presentedfor gskewed (dhlf-gskewed), confirming that 
other predictors can beneJitfrom our proposal. 

1. Introduction 

Branch prediction is a key performance component for 
wide-issue superscalar and deeply pipelined processors, 
where several wrong-path instructions can be in-flight be- 
fore a branch is resolved. To reduce the number of lost 
cycles due to speculative execution of wrong-path instruc- 
tions, branch prediction has evolved from static to more 
flexible predictors. These predictors try to adapt to dynamic 
program behavior in order to improve their performance. A 

first level of adaptivity has been the use of 2-bit saturating 

counters [ 121. An additional level of adaptivity has been in- 

troduced using other sources of branch information such as 
the history of branch outcomes and the correlation between 
branches [ 161, [lo], [ 171, [ 191, or even choosing among sev- 
eral predictors designed for different kinds of branch behav- 
ior [7], [3]. 

Some of the best current predictors are based on the two- 
level adaptive or correlated schemes proposed in [ 161 and 
[lo]. They combine fixed amounts of global history and 
program counter (PC) bits to generate an index to one or 
several pattern history tables (PHT) of 2-bit saturating coun- 
ters. Several parameters influence the performance of these 

predictors such as the size of the predictor tables, the way 
the branch history and PC bits are combined, the way the 
PHT is updated as well as the amount of history and PC 
information used. 

Motivation 

To illustrate the effect of history length on branch pre- 
dictor performance, Figure la plots the misprediction rates 
for three two-level adaptive branch predictors: gshare [7] 
and the recently proposed agree [ 131 and gskewed [8]. The 
benchmarks used are go and li from SPECint95. The 
area occupied by each predictor is 8Kbits for gshare, and 
12Kbitsi for agree and gskewed. All three perform very 
much alike for li and even though their performance for 
go is different, all display the same kind of dependence 
on the history length. In Figure 1 b we plot the same re- 
sults as in Figure la, showing with shaded bars the range 
of misprediction rates when varying the history length for 
the three predictors. For all predictors, there is a signifi- 
cant range of variation in misprediction rate depending on 

‘ccpee has the same PHT as phure (8Kbits) but has 4Kbits extra for 
the bi% bit and J$WW~ has three banks of 2.bit saturating counters, each 
indexed with I I bits. 12Kbits was the closest value greater or equal to 
8Kbits that could be used. 
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Figure 1. Misprediction rates of three different 
two-level predictors that use global history, 
using a la-bit index (11-bit for gskewed), for 
go and Ii. a: Effect of the history length. b: 

Misprediction range for each benchmark and 
predictor. 

the history length (e.g gshare on go varies from 20% to 
27% and from 4% to 13% for 1 i). Two interesting obser- 
vations can be made from the misprediction ranges of go: 
First, even though the agree predictor has lower variation 
as a function of the history length, when optimal history 
lengths are compared, gshare and gskewed perform better. 
Second, gskewed achieves the best misprediction rate with 
a history length of four bits. However, its performance for 

more than half of all possible history lengths is inferior to 
that of the best gshare configuration, despite the fact that it 
occupies 50% more area. 

From Figure 1 we can conclude that 

l the history length used for a particular code has a sig- 
nificant impact on predictor performance, 

l determining the best predictor, for some codes, de- 
pends on the history length used, 

l for a given predictor, achieving the best prediction ac- 
curacy requires the use of different history lengths for 
each code. All predictors that use a fixed history length 
are therefore unable to perform up to their maximum 
potential, and 

l the performance of two-level branch predictors can 
be further optimized by adapting the history length to 
each code. 

Dynamic selection of the history length 

We present a new method that, when applied to exist- 
ing two-level predictors, performs very close to the best 

(b) 

0.25 

Figure 2. Misprediction rates of two 
SPECint95 benchmarks (go and Ii) using 
a gshare predictor with a 12-bit index. a: 
Effect of the history length. b: History length 

optimized for go, Ii and using our DHLF 
method (striped bar). 

case with fixed history lengths on all SPECint95 bench- 
marks. Our proposal adds another level of adaptivity, try- 
ing to better fit the number of history bits needed by each 
benchmark and input data at execution time. This method 
can be applied to any member of the family of predictors 
that combine global branch history with PC bits to form 
an index to one or several PHTs such as gshure [7], gse- 

lecf [lo], gskewed [8], agree [13] and bi-mode [6]. We call 
this method Dynamic History-length Fitting or DHLF. 

As an illustration, Figure 2a shows the same results as 

Figure la but only for gshure. The PHT is indexed using 
12 bits of the branch address xor-ed with global history bits 
varied from 0 to 12. Increasing the history length improves 
the performance for 1 i. Whereas for go, the misprediction 
rate reaches a minimum with a history length of 3 and as the 
number of history bits is increased, the performance rapidly 

degrades. The arrows indicate the optimum for each code. 

Figure 2b shows what happens when gshure uses history 

lengths optinrul for go (3 bits) or li (10 bits). In each 
case, optimizing for one code results in poor performance 
in the other. Finally, the striped bar of Figure 2b shows 
the performance achieved with the DHLF method applied 
to gshure, that we propose and evaluate in this paper. Note 
that nearly optimal results are obtained for both benchmarks 
with our method. 

We will show that when context switches are considered, 
the history length becomes more critical for performance. 
The DHLF method is able to obtain the best results even in 
this environment. 
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Simulation methodology 

The simulations have been conducted using ATOM [2] to 
obtain a trace of conditional branches from all SPECint9 5 

benchmarks using reference inputs. The benchmarks were 
instrumented with ATOM and then executed on a DEC 

21164 workstation running Digital UNIX V4.OA. We first 
looked at the results of simulating 10, 100, 200, 500 
and 1000 million dynamic conditional branches for several 
benchmarks. Since the results were stable after 100 million, 
we carried out all our simulations up to 200 million condi- 
tional branches. Throughout the paper we will use the term 
‘branches’ to refer to ‘conditional branches’. 

In all branch predictors simulated, the branch history 

register and the PHTs are immediately updated with the true 
outcome of the branch instead of using the predicted out- 

come or waiting for the outcome to be known -it has been 
shown in [ 181 that this has little overall effect on prediction 
accuracy. 

The study is carried out with gshure as described in [7]. 
Figure 3 shows how the M bits of global history are xor-ed 
with the m higher-order bits of the n low-order bits of the 
PC (after discarding the 2 lowest bits) to generate the index 
into the PHT. The PHT consists of 2” two-bit saturating 
counters initialized to saturated taken. 

Due to lack of space, we exhaustively study the effect of 

different parameters on predictor performance using only 
two of the SPECint95 benchmarks -go and li. These 
two benchmarks were chosen since they represent two dis- 
tinct types of variation in performance with changing his- 
tory lengths. After analizing these results, we fix some of 
the parameters and present the results for the rest of the 
benchmarks. More detailed results for all SPECint95 

codes are available as a technical report [5]. 

Paper organization 

In section 2, we study the effect of the history length on 

misprediction rates for gshare as a function of predictor size 
in the absence of context switches. Section 3 describes our 
DHLF method and evaluates it’s performance. The effect 
of context switches on predictor performance is studied and 

evaluated in section 4. In section 5 we apply our method 
to gskewed and present some results. Section 6 discusses 
related work and section 7 provides some concluding re- 
marks. 

2. Effect of history length on predictor perfor- 

mance 

To understand the effect of history length on prediction 
accuracy, we simulated gshure on all SPECint95 bench- 
marks for PHTs indexed with 10, 12, 14 and 16 bits and 
history lengths ranging from 0 to the number of index bits. 
The misprediction rate on each benchmark is presented in 
Figure 4. Each curve represents a particular predictor size. 
All graphs are plotted within a window ranging from 0% 
to 20% of misprediction rate, except for go that is plotted 

from 12% to 32%. Since for all plots the size of the mispre- 
diction range shown is the same, the differences in mispre- 

diction rates between any curve can be directly compared 
across the benchmarks. 

From Figure 4 we can identify three different behaviors 
observing how the code predictability evolves when the his- 
tory length is increased: the predictability for compress and 
li improves as more history is used. ijpeg, m88ksim and 
especially pet-1 show some irregular behavior for different 
history lengths. Finally, prediction accuracy for gee, go and 

vorrex improves with more history bits but quickly starts 

to degrade. These different behaviors depend on the num- 
ber of static branches that account for most of the dynamic 
branches, the degree of correlation between branches and 
the predictor size. 

The range of predictor sizes studied -up to 128K bits- 
covers the predictor sizes for present and near future pro- 
cessors: from the MIPS RlOOOO that has 5 12 entries of 2-bit 
counters (1 Kbit) indexed only with the PC [ 151 up to the re- 
cently announced DEC AXP 2 1264 that will have a hybrid 
predictor with an estimated area of 35Kbits [4]. To the best 
of our knowledge, except for the 21264, all processors use 

the equivalent of 16Kbits or less area for their predictors. 
When the index size of the predictor reaches 16 bits 

(PHT of 128Kbits), the optimal results for all benchmarks 
are achieved with history lengths close to the maximum. 
However, this requires having very big predictors, four 
times larger than the biggest one announced at present 
(DEC AXP 2 1264). In section 4 we show that in a more 
realistic environment, where context switches happen quite 

157 



compress 

0.16 

0 2 4 6 6 10 12 14 16 

History length 

0.16 

g 
5 0.12 

.i 0.06 

$ 

0.04 

0.16 

0 2 4 6 6 10 12 14 16 0 2 4 6 6 IO 12 14 lf 0 2 4 6 6 10 12 14 If 

History length History length History length History length 

0.16 

:,Ll 
0 2 4 6 6 10 12 14 16 

0.24 

0.16 

0.12 

0 2 4 6 6 10 12 14 16 

0.16 0.16 

0.12 0.12 

0.06 0.06 

0 2 4 6 6 10 12 14 16 

History length History length History length 

0.16 

Figure 4. Effect of history length on the misprediction rate for all SPECint95 benchmarks using a 
gshare predictor indexed with 10, 12,14 and 16 bits. 

often and most of the PHT information is lost frequently, 
even the big predictors behave similar to the small and 
medium sized predictors presented in this section. 

3. Dynamic history-length fitting 

In the previous section it has been shown that each code 
requires a specific amount of history to give the best results. 
All known implementations of two-level dynamic predic- 
tors that combine global history and PC bits have a fixed 
amount of history length. Consequently, none of these pre- 
dictors can give the best results across all benchmarks. 

We propose and evaluate a new implementation of 

gshare called dhlf-gshare that, instead of always xor-ing a 
fixed number of history bits, is able to xor any number of 
history bits with the PC bits of the branch instruction. This 
predictor will try to dynamically find the amount of history 
that performs best for each code and input data at execution 
time. It will do this by using the best history length required 
for different phases of the code execution. 

The extra hardware required to select the number of his- 
tory bits to be xor-ed with the PC is very small. The Branch 
History Register (BHR) size has to be equal to the maxi- 
mum history length envisaged. The number of entries of the 
PHT desired determines the number of PC bits that have to 

be used by the predictor (log,[PHTentries]). All bits of 
the BHR are xor-ed with the PC but a decoder and a set of 
two bit multiplexers select the desired number of bits of the 

BHR that hold the past history information. Figure 5a de- 
picts a normal BHR at the bit level and Figure 5b shows the 

modifications required to select any number of consecutive 

BHR bits (from 0 to all of them). This additional logic is 
used in parallel with the xor and therefore does not intro- 
duce any extra delay in the index generation. 

DHLF works on the basis of monitoring the mispredic- 
tions during program execution and changing the history 
length accordingly. We define an ‘interval’ to consist of 
a fixed number of consecutive dynamic branches. We call 
this number step. During the execution of the program the 
misprediction for each interval is computed using a fixed 
history length. At the end of each interval the history length 

to be used for the next interval is determined based on the 
current number of mispredictions and the minimum value 
encountered so far. 

3.1. Structure and operation 

The components of the DHLF control consist of: 

l A misprediction table with as many entries as the num- 
ber of bits of index to the PHT. Entry n holds the 
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Figure 5. Hardware at the bit level to gener- 
ate a 6-bit index to a PHT. a: for gshare with 
a fixed history length of 4 bits. b: for dhlf- 
gshare, 6 bits of PC can be xor-ed with any 
number of history bits between 0 and 6. 

number of mispredictions that occured the last inter- 
val when a history length of n was used. 

A pointer to the table entry that corresponds to the 
number of history bits currently in use. 

A pointer to the table entry that contains the minimum 
misprediction count. 

A misprediction counter that counts the mispredictions 
for the current interval. 

A branch counter that counts the number of predicted 

branches in the current interval. When this counter 

reaches a value of step it indicates the end of an in- 
terval. 

When the program starts execution, all entries of the mis- 
prediction table, the misprediction counter and the branch 
counter are initialized to zero. The number of history bits to 
be used is also set to zero. 

During each interval of step branches, the history length 
remains fixed in order to determine the number of mispre- 
dictions for the current phase of execution with the current 

history length. 
At the end of the interval the current number of mispre- 

dictions is stored in its associated entry in the misprediction 
table and compared with the minimum number recorded in 
there. If the current number of mispredictions is less than or 
equal to the minimum in the misprediction table, the history 
length is not changed for the next interval. If it is greater, 
then the history length is changed. Finally, the mispredic- 
tion and branch counters are reset before starting a new in- 
terval 

Changing the history length could be done in different 
ways. One way would be to directly set the history length 

to the one corresponding to the minimum in the mispredic- 
tion table. Another possibility would be to move towards it, 
increasing or decreasing by one the current history length. 
The latter option has been chosen because it enables the 

testing of history lengths in-between that may not have been 
tried for some time and might even yield lower mispredic- 
tions. 

Updating the pointer to the entry of the misprediction 
table that contains the minimum number of mispredictions 
can be done easily. During each interval all entries of the 

misprediction table remain unchanged. At smaller periods 
(each step/index-bits for instance) the control can test one 
of the entries so that when step branches have completed, 
the entry of the misprediction table that has the minimum is 
already known. 

Note that all possible history lengths will be tested at 
least once because all table entries are initialized to zero. 

Each time the history length is changed, the index value 
generated for a given branch PC xor-ed with the same pat- 
tern of history bits changes. This means that a different 

entry of the PHT will be used to make the prediction, intro- 
ducing aliases in the PHT. For this reason, when the history 
length is changed, most of the state in the PHT is lost and 
must be regenerated before reaching a stable state. 

The increased amount of aliasing in the PHT immedi- 
ately after a history length change introduces extra mispre- 
dictions that would corrupt the true performance of the cur- 
rent history length. The solution would be to allow some 
adequate warm-up time before starting to count the mispre- 
dictions for the current history length. After testing various 

values we chose this warm-up time to be equal to that of 
an interval, step. Consequently, the control treats the inter- 
val immediately after a change in history length in a special 
way. During this interval, the misprediction counter and 
table are not updated. At the end of this interval no compar- 
ison is made between the current number of mispredictions 
and the minimum value in the misprediction table. Then, a 
normal interval begins with the same history length. 

Figure 6 shows how the history length evolves over time 
during the execution of go and 1 i, using dhlf-gshare. The 
PHT is indexed with 12 bits and the step value is 16K. For 
both benchmarks, there are several history length changes 
during the initial phase of execution. This stabilizes around 
the optimal static history length during the latter phase of 
execution. On the right of this figure is a histogram that 
shows the percentage of branches predicted at each history 
length. 

3.2. Tradeoffs 

The step parameter controls the number of branches be- 
tween possible history length changes. Using a small step 
value allows the DHLF to react to small changes in the pre- 

159 



10 
g* , 

5 
6 6 6 

3 I 4 4 

2 2 

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 160 190 200 0.0 0.2 0.4 0.6 0.6 1.0 

Branch number (in millions) 

O:O 0.2 0.4 0.6 0.6 1.0 

Percentage of branches 

Figure 6. Evolution of the history length during the execution of go and Ii when DHLF is applied to 
gshare with an index of 12 bits and a step value of 16K. Also shown is the percentage of total time 
spent at each possible history length. 

dictability of the code. In case the program has several 
phases that require the predictor to adapt to differing re- 
quirements, it could even behave better than gshare with 
the best fixed history length. Moreover, with a small step 
value the optimum history length can be determined faster. 
However, the step value has to be big enough to be able 
to count the mispredictions within a representative part of 
the code. Large PHTs require a large number of updates to 
reach a stable state. This implies that for larger predictor 
tables, larger step values will perform better. 

The extra mispredictions due to a history-length change 
can reduce the benefits of DHLF. Therefore, the DHLF con- 
trol has to test all history lengths as many times as possible 
to find the best one, but at the same time, as few times as 
possible so that the extra mispredictions are minimized. 

It is possible that the control algorithm described in sub- 
section 3.1 could lead to stagnation at a local optimum. 
In order to avoid this, we have added to the control the 
ability to move randomly to any history-length value when 
the history length hasn’t changed for a large number of 
steps. However, in case it was at the global optimum, the 
end-result would be extra mispredictions due to the history 
length changes. For the simulated benchmarks this did not 
alter the results. 

3.3. DHLF area requirements 

The DHLF control mechanism increases the area re- 

quired to implement gshare. For an index of 10 bits and 
a step value of 16K, it requires a misprediction table with 
11 entries that are each 13 bits wide (assuming that the mis- 
prediction rate will be lower than 50%). This works out to 
11 * 13 = 143 bits extra, which is less than a 7% increase in 
area. For the case of an index of 16 bits, the extra area will 
be 17 * 13 = 221 bits, an increase in predictor area of less 
than 0.02%. 

For small PHTs (e.g 10 bits of index) the area required 
for the control can be minimized by storing the number of 

mispredictions divided by a power of two. We tested this by 
storing values divided by 2,4, 8 up to 64, and there were no 
significant differences in the results. 

Another way to reduce the area required to implement 
DHLF would be to reduce the number of history lengths 
allowed. For example, by using only even history lengths 
the number of entries in the misprediction table is halved 
with little effect on DHLF performance. 
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3.4. DHLF evaluation 

The parameter that has to be determined for the DHLF 
control is the step value. In Figure 7 we have plotted the 
results of dhlf-gshare for step values starting at 4K up to 

128K applied to go and li. The shaded bars represent the 
range of misprediction values obtained using only gshare 
with fixed history lengths. The maximum and minimum 
misprediction rates are obtained by running the simulation 
each time with a different history length, up to the number 
of index bits (see Figure 4). Also marked are the arithmetic 
mean values for the range of misprediction rates. On the 
shaded bars we have superimposed the misprediction rates 
obtained using DHLF for different step values. From Fig- 
ure 7 it can be seen that the step value has no impact for all 
predictor sizes for li. In the case of go, as the predictor 
size increases, the effect of the step value on performance 
is more noticeable. In general, large predictors will need 
a longer warm-up time after a history length change and 
hence will benefit from larger step values. In order to sim- 
plify the presentation we selected the step value to be 16K 
for the rest of the simulations even though this is not the 
best choice for large predictors. 

The DHLF method can effectively overcome the signifi- 
cant dependence on history length that prevents current pre- 
dictors from achieving the best performance. DHLF intro- 

duces a new parameter, step. As shown, the ch&en value 
for sfep -above a certain threshold- does not affect the 
overall performance. 

In Figure 8, we plot the dhlf-gshure results for all 
SPECint95 benchmarks, using a step value of 16K. As 
in Figure 7, we have superimposed the dhlf-gshare mispre- 
diction rate over the range computed for a gshare predictor. 

In almost all benchmarks, dhlf-gshare obtains near-optimal 
results in comparison to using gshare with the best fixed his- 
tory length for each benchmark (labeled min). The heuris- 
tic search for the best history length and the extra mispre- 

dictions due to history-length changes prevents achieving 

the optimal performance in some cases’. In two particu- 

lar cases (compress with a 16-bit index and m88ksim 

with a 12-bit index) the performance is even better than for 
any fixed length gshure. This confirms our intuition that 
in some cases, the DHLF method can respond better to the 
history length requirements of different phases of the execu- 
tion of the same benchmark. Only per1 exhibits irregular 
behavior and optimal results are obtained for just one pre- 
dictor size (14-bit index). The reason for this could be the 
non-uniform variance of history length requirements of this 
benchmark as shown by the spikes in Figure 4. 

4. Considering context switches 

In real-world computing environments, context switches 
occur due to end of quantum, I/O, etc. It has been shown 
that the performance of even very accurate branch predic- 
tors degrades considerably when context switches are con- 
sidered [3], [9]. The main reason for this is that the in- 
formation maintained by the PHT is lost periodically with 

every context switch. Large PHTs and long history lengths 
require longer warm-up times because more PHT entries 

are indexed by each static branch. Predictors with shorter 
warm-up times will have a higher prediction accuracy im- 
mediately after a context switch. 

Context switches introduce an additional restriction to 
these predictors that use fixed amounts of history. The best 
history length for a given code can also change depending 
on the frequency of context switches. Since the frequency 
of context switches depends on many unknown factors, such 
as the load of the system at a given time, it would be impos- 
sible to design a single predictor that uses a fixed history 
length and that always achieves optimum performance for 
even one benchmark. This highlights the importance of hav- 
ing the flexibility to dynamically change the history length 
of predictors. The results presented in the next section show 
that the DHLF method is able to find the best history length 
independent of the code, input data and context switch fre- 
quency for all predictor sizes. 

4.1. Simulation methodology 

To simulate the effect of context switches we flush the 
contents of the PHT each time a context switch occurs as 
in [3], reinitializing the PHT entries to saturated taken. We 

*In [S1 we present one way to reduce the mispredictions due to history 

length changes that we call reverse-gshare. It is also possible to improve 
the performance by utilizing better search algorithms. 
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Figure 8. Misprediction rate of all SPECint95 codes using dhlf-gshare with a step value of 16K 
compared to the misprediction range of gshare with fixed history lengths (no context switches). 

also tested reinitializing the PHT entries with random val- 
ues and the results were very similar. 

We define context-switch distance as the number of 
branches executed between context switches. The context- 
switch distance depends on the percentage of branches in 
the code, the system configuration and its load at execution 
time. It could even change during the execution of a code 
under real conditions. However, to simplify the evaluation 
we study the effect of fixed context-switch distances, from 
8K up to 256K. For SPECint95 codes this translates to 
between 40K and more than 3000K instructions between 
context switches (we have found that from 5% up to 12% of 
the instructions in the dynamic instruction stream are condi- 
tional branches). The context-switch distances selected are 
similar to those used in [3]. 

4.2. Effect of history length on predictor perfor- 
mance 

Figure 9 shows the effect of context-switch distance on 
the misprediction rate for go and 1 i, using the gshare pre- 

dictor. The PHT is indexed with 16 bits while the history 
length varies statically from 0 up to 16 bits. Each curve 
corresponds to a different context-switch distance, ranging 
from 8K up to 256K. The gray curve shows the perfor- 

mance for the same predictor when context switches are not 

considered. The curves show the same dependence on the 
context-switch distance for all history lengths. As expected, 
the worst performance is obtained when the context-switch 
distance is the lowest. 

We have plotted Figure 9 for the case of a PHT indexed 
with 16 bits to highlight the effect of context switches for 
big predictors. The arrows indicate the best history length 
for each context-switch distance. The best history length 
for go with the same input data varies from 2 up to 12 
bits depending on the context-switch distance. Moreover, 
there is a large variation in performance depending on the 
context-switch distance and the history length (14% mispre- 
diction rate for go with no context switches compared to 
36% for the same history length and a context switch each 
8K branches -the latter data point is off the scale). 

In Figure 10 we present the effect of context switches on 
misprediction rates for all SPECint95 benchmarks using 
gshare. As before, the index lengths studied are 10, 12, 14 
and 16 bits and the history lengths are varied from 0 to the 
number of index bits for each curve. We fix the context- 
switch distance at 64K in order to simplify our presentation 

since it is an intermediate value. Unlike in Figure 4 (the non 
context-switch case) gee, go and vortex now show the 
same behavior for all predictor sizes. As before, all codes 
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Figure 9. Effect of history length on the mis- 
prediction rate of go and Ii using a gshare 
predictor indexed with 16 bits. The num- 
ber of conditional branches between context 
switches varies from 8K up to 256K. Also 
shown is the misprediction rate when there 
are no context switches (labeled inf.). 

have differing history length requirements but now this as- 

pect holds for all predictor sizes studied. It can also be seen 

that for some codes, increasing the predictor size brings no 
improvement because of the overhead introduced by context 
switches. 

4.3. DHLF operation under context switching 

The DHLF method applied to the case where there are 
context switches retains the same predictor control de- 
scribed in section 3. There are a few extra items to consider 
in order to allow dhlf-gshare to find the best history length 

across context switches 

l the current value in the misprediction counter has to be 
discarded when a context switch occurs in the middle 
of an interval and is not stored in the misprediction 
table. 

l The misprediction table and the current history length 
must be saved each time a context switch occurs. This 
means saving from 143 bits for a IO-bit index up to 
22 1 bits for a 16-bit index, assuming a step value of 
16K that requires 13 bits’ for the misprediction counter 
(i.e, the equivalent of saving four 64-bit registers). 

l Additionally, the first step branches after a context 
switch will not be considered to avoid the effect of 
the PHT reconstruction, as is done immediately after 
a history length change. 

‘assuming that the misprediction rate will always be lower than 50% 

4.4. Evaluation 

Figure 11 shows the performance of dhlf-gshare for all 

SPECint95 codes using 10, 12, 14 and 16 index bits. 

The history length was dynamically adjusted every 16K 
branches as in previous figures. Once more, we have su- 

perimposed the dhlf-gshare results over the range of values 
obtained for gshure. The context-switch distance used was 
70K because the behavior is almost the same as for 64K but 
is not a multiple of l6K, the step value used by dhlf-gshure. 
This allows us to test dhlf-gshure under negative conditions 
and shows that having a context switch within an interval 

does not reduce the performance of the method. 
From Figure 11 we see that near-optima1 results are ob- 

tained for all benchmarks except for perl. It should be 
noted that dhlf-gshure achieves the best performance in 
most codes for all predictor sizes considered with the same 
step value. 

5. Applicability to other predictors 

The DHLF method can be applied to any predictor 
that combines history and PC bits, even to hybrid predic- 

tors [7],[3]. As an example we present some results for 

one of the latest predictors, gskewed. The skewed branch 
predictor uses an odd number of PHTs and indexes each 
PHT using a different and independent hash function. All 
hash functions are computed from the same vector of PC 
and global history information. Predictions are read from 
each PHT and a majority vote decides the final outcome. 
Details about the predictor and the hash functions can be 
found in [8]. 

We evaluated gskewed with three PHTs and a partial up- 
date policy on go and li. Since gskewed requires three 

tables we have studied the performance for indices of 9, 1 1, 
13 and 15 bits. This represents predictor sizes from 3K bits 
up to 192K bits, similar to the sizes used for gshare in pre- 
vious sections. 

The shaded bars in Figure 12 show the range of misprc- 
diction rates for gskewed depending on the history length 
used to calculate the indices into the PHTs in the absence 
of context switches. As we saw in previous sections for 
gshure, gskewed also exhibits a significant range of mispre- 
diction values for a given predictor size due to the effect of 

history length. We have superimposed the dhlfgskewed re- 
sults with a step value of 16K branches over the gskewed 
range. For li dhlf-gskewed always achieves the optimal 
performance for all predictor sizes. Applied to go, dhlf 
gskewed achieves near-optimal performance with small and 
medium sized predictors. For bigger predictors the perfor- 
mance obtained with dhlf-gskewed is quite good but not op- 
timal. This is mainly because we use the same step value for 
all predictor sizes. Better accuracy is obtained for big pre- 
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Figure 10. Effect of history length on the misprediction rates of all SPECint95 benchmarks using 
a gshare predictor with 10, 12, 14 and 16 bits of index and context switches occurring every 64K 
conditional branches. 

dictors by using a larger step value -such as 32K or even 
64K. In [5] the results for all SPECint 9 5 benchmarks for 
different step values are presented. 

Figure 13 is similar to Figure 12 with the exception that 

we simulate context switches every 70K branches. As we 
pointed out before, context switching has a bigger negative 
impact on large predictors. Note that when context switches 
are simulated, dhlf-gskewed performs near-optimally for all 
predictor sizes in both benchmarks. 

6. Related work 

Several studies have looked at the effect of using differ- 
ent history lengths. Our DHLF proposal tries to find the best 
history length to be used dynamically at execution time. To 
the best of our knowledge, only two proposals [l] and [ 141 
have tried to adjust the amount of history used. 

l In [l] the static branches are classified depending on 
the bias of their behavior. The highly biased branches 
require a few bits of history whereas the less biased 
branches require a large history length. They propose 
using a hybrid predictor with two components, one 
with a few history bits and another with a large num- 

ber. Only two possible values for history length are 
considered and further, these values are fixed. Their 
alternate proposal consists of profile-guided static pre- 

diction for highly-biased branches and dynamic pre- 

diction for the rest. 

l The study in [ 141 extends the work of [l] and tries 
to determine the exact history length for each static 
branch at compile time. 

These proposals are different from our proposal in sig- 
nificant ways: Since they focus on each specific branch in- 
struction both studies require a complex profiling step to 

determine the amount of history to be used for each static 
branch. Further, both proposals would require modifica- 
tions to the instruction set to be able to use the information 
gathered in the profiling phase at execution time. Finally, 
neither one of these proposals will be able to react to differ- 
ent input data or system workloads. 

Other articles such as [7], [ 111, [8], [6], have studied the 
effect of history length to find the best static combination of 
PC and history or to better understand the behavior of their 
predictors. 

In general, almost all studies based on two-level adap- 
tive branch predictors assume that the final implementation 
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Figure 11. Misprediction rate of all SPECint95 codes using dhlf-gshare with a step of 16K compared 
to the misprediction range of gshare with all possible fixed history lengths. The PHT is flushed every 
70K conditional branches to account for the effect of context switches. 

will have a fixed number of history bits and usually select 

as many history bits as index bits. As we have seen in Fig- 
ures 4 and IO this can be the worst case for benchmarks 
such as gee, go or vortex. 

7. Summary 

Almost all recently proposed predictors combine, in a 
fixed way, information from the branch address with the his- 
tory of the branch outcomes to predict the direction of con- 
ditional branches. We have shown that the performance of 
this type of predictors, for different codes, displays signifi- 
cant variations depending on the history length used. These 
predictors that combine PC and history in a fixed way are 
losing a large part of their potential performance because 
the best history length depends on several factors that are 
only known at execution time. Some of these factors are 
the code to be executed, the input data and the number of 
conditional branches that can be executed between context 
switches in time-shared environments. 

time, with and without context switches. The evaluation of 

DHLF has been carried out by applying it to g&are (dhlf- 
g&are). All SPECint95 codes were run with this new 
predictor and the results confirm that it is able to achieve 
performances very close to optimum, compared to the best 
fixed history &rare configuration, for each code. DHLF 
can be applied to any predictor that combines global his- 
tory with PC bits. As an example we show a few results 

with dhlf-gskewed where DHLF also obtains near-optimal 
performance for each specific benchmark. 

DHLF has low area cost, does not affect the predictor 
critical path and does not require profiling nor instruction 
set modification. 

We believe that using DHLF on any one of the two- 
level branch predictors will yield better prediction accura- 
cies across a variety of codes, input data and context switch 
frequencies. 
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