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Abstract— Face recognition (FR) systems in real-world appli-
cations need to deal with a wide range of interferences, such as
occlusions and disguises in face images. Compared with other
forms of interferences such as nonuniform illumination and pose
changes, face with occlusions has not attracted enough attention
yet. A novel approach, coined dynamic image-to-class warping
(DICW), is proposed in this work to deal with this challenge
in FR. The face consists of the forehead, eyes, nose, mouth, and
chin in a natural order and this order does not change despite
occlusions. Thus, a face image is partitioned into patches, which
are then concatenated in the raster scan order to form an ordered
sequence. Considering this order information, DICW computes
the image-to-class distance between a query face and those of an
enrolled subject by finding the optimal alignment between the
query sequence and all sequences of that subject along both the
time dimension and within-class dimension. Unlike most existing
methods, our method is able to deal with occlusions which exist in
both gallery and probe images. Extensive experiments on public
face databases with various types of occlusions have confirmed
the effectiveness of the proposed method.

Index Terms— Face recognition, occlusion, image-to-class
distance, dynamic time warping, biometrics.

I. INTRODUCTION

FACE recognition (FR) is one of the most active research

topics in computer vision and patten recognition over the

past few decades. Nowadays, automatic FR system achieves

significant progress in controlled conditions. However, the

performance in unconstrained conditions (e.g., large variations

in illumination, pose, expression, etc.) is still unsatisfactory.

In the real-world environments, faces are easily occluded by

facial accessories (e.g., sunglasses, scarf, hat, veil), objects in

front of the face (e.g., hand, food, mobile phone), extreme

illumination (e.g., shadow), self-occlusion (e.g., non-frontal

pose) or poor image quality (e.g., blurring). The difficulty of
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occluded FR is twofold. Firstly, occlusions distort the discrim-

inative facial features and increases the distance between two

face images of the same subject in the feature space. The

intra-class variations are larger than the inter-class variations,

which results in poorer recognition performance. Secondly,

when facial landmarks are occluded, large registration errors

usually occur and degrade the recognition rate [1].

Note that there are two related but different problems to FR

with occlusions: occluded face detection and occluded face

recovery. The first task is to determine whether a face image

is occluded or not [2], which can be used for automatically

rejecting the occluded images in applications such as passport

image enrolment. This rejection mechanism is not always

applicable in some scenarios (e.g., surveillance) where no

alternative image can be obtained due to the lack of user

cooperation. The second task is to restore the occluded region

in face images [3], [4]. It can recover the occluded area but is

unable to directly contribute to recognition since the identity

information can be contaminated during inpainting.

An intuitive idea for handling occlusions in FR is to detect

the occluded region first and then perform recognition using

only the unoccluded part. Min et al. [5] adopted a SVM

classifier to detect the occluded region in a face image then

used only the unoccluded area of a probe face (i.e., query

face) as well as the corresponding area of the gallery faces

(i.e., reference faces) for recognition. But note that the occlu-

sion types in the training images are the same as those in the

testing images. Jia and Martinez [6], [7] used a skin colour

based mask to remove the occluded area for recognition.

However, the types of occlusions are unpredictable in practical

scenarios. The location, size and shape of occlusions are

unknown, hence increasing the difficulty in segmenting the

occluded region from the face images. Currently most of the

occlusion detectors are trained on faces with specific types

of occlusions (i.e., the training is data-dependent) and hence

generalise poorly to various types of occlusions in the real-

world environment.

In this paper, we focus on performing recognition in the

presence of occlusions. There are two main categories of

approaches in this direction. The first is the reconstruction

based approaches which treat occluded FR as a reconstruction

problem [6], [8]–[13]. The sparse representation based classi-

fication (SRC) [8] is a representative example. A clean image

is reconstructed from an occluded probe image by a linear

combination of gallery images. Then the occluded image is

assigned to the class with the minimal reconstruction error.

1556-6013 © 2014 IEEE. Translations and content mining are permitted for academic research only. Personal use is also permitted,
but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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TABLE I

THREE TYPICAL OCCLUSION CASES

The reconstruction based approaches usually require a large

number of samples per subject to represent a probe image.

However, a sufficient number of samples are not always

available in practical scenarios.

The second category is the local matching based

approaches [14]–[17]. Facial features are extracted from local

areas of a face, for example, overlapping or non-overlapping

patches of an image, so the affected and unaffected parts of

the face can be analysed in isolation. In order to minimise

matching errors due to occluded parts, different strategies

such as local subspace learning [14], [15], partial distance

learning [16] and multi-task sparse representation learning [17]

are performed. Our method belongs to this category but does

not require training.

In addition to the above approaches, which focus on

improving the robustness during the recognition stage, recently

many researchers [18], [19] also pay attention to the image

presentation stage and attempt to extract stable, occlusion-

insensitive features from face images. Since the forms of

occlusions in real-world scenarios are unpredictable, it is still

difficult to find a suitable representation which is insensitive

to the variations in occlusions.

Most of the current methods assume that occlusions only

exist in the probe images and the gallery or training images

are clean. In practical scenarios, occlusions may occur in both

gallery and probe images [6], [7], [20]. When the number of

gallery/training images is limited, excluding these occluded

images would, on the one hand, lead to small sample size (SSS)

problem [21], and on the other hand, ignore useful information

for recognition [20]. We summarise three occlusion cases in

Table I, which a FR system may encounter in the real-world

applications. Most of the current methods rely on a clean

gallery or training set and only consider the first case. The

latter two cases would also occur in real environment but have

not yet received much attention.

We propose a local matching based method, Dynamic

Image-to-Class Warping (DICW), for occluded FR.

DICW is motivated by the Dynamic Time Warping (DTW)

algorithm [22] which allows elastic match of two time

sequences. It has been successfully applied to the area of

speech recognition [22]. In our work, an image is partitioned

into patches, which are then concatenated in the raster scan

order to form a sequence. In this way, a face is represented

by a patch sequence which contains the order information of

facial features. DICW calculates the Image-to-Class distance

between a query face and those of an enrolled subject by

finding the optimal alignment between the query sequence

and all enrolled sequences of that subject. Our method allows

elastic match in both time and with-class directions.

Most of the existing works that simply treat occluded FR as

a signal recovery problem or just employ the framework for

general object classification, neglect the inherent structure of

the face. Wang et al. proposed a Markov Random Field (MRF)

based method [23] for FR and confirmed that the contextual

information between facial features plays an important role

in recognition. In this paper, we propose a novel approach

that takes the facial order, which contains the geometry infor-

mation of the face, into account when recognising partially

occluded faces. In uncontrolled environments with uncooper-

ative subjects, the occlusion preprocessing and the collection

of sufficient and representative training samples are generally

very difficult. Our method which performs recognition directly

in the presence of occlusions and does not require training, is

hence feasible for realistic FR applications.

This paper is built upon our preliminary work reported

in [24] and [25]. The remainder of this paper is organised

as follows. The proposed Dynamic Image-to-Class Warping

method, from image representation, modelling to implementa-

tion, is described in Section II. Extensive experiments includ-

ing discussions are presented in Section III. Further analysis

about why the proposed method works; when and why it will

fail and how to improve it is discussed in Section IV. Finally

the work is concluded in Section V.

II. DYNAMIC IMAGE-TO-CLASS WARPING

A. Image Representation

An image is partitioned into J non-overlapping patches of

d ×d ′ pixels. Those patches are then concatenated in the raster

scan order (i.e., from left to right and top to bottom) to form a

single sequence. The reason for doing so is that the forehead,

eyes, nose, mouth and chin are located in the face in a natural

order, which does not change despite occlusions or imprecise

registration. This spatial facial order, which is contained in

the patch sequence, can be viewed as the temporal order in

the time sequence. In this way, a face image can be viewed

as a time sequence so the image matching problem can be

handled by the time series analysis technique like DTW [22].

Let f (x, y) be the intensity of the pixel at coordinates (x, y)

and f j (x, y) be the j -patch. A difference patch △ f j (x, y) is

computed (Fig. 1) by subtracting f j (x, y) from its immediate
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Fig. 1. Image representation of DICW.

neighbouring patch f j+1(x, y) as:

△ f j (x, y) = f j+1(x, y) − f j (x, y) (1)

where j ∈ {1, 2, . . . , J − 1}. Note that here the length of the

difference patch sequence is J − 1.

A difference patch △ f j (·) actually can be viewed as the

approximation of the first-order derivative of adjacent patch

f j+1(·) and f j (·). The salient facial features which represent

textured regions such as eyes, nose and mouth can be enhanced

since the first-order derivative operator is sensitive to edges.

We use 3,200 occluded-unoccluded image pairs of the same

class and different classes from the AR database [26], respec-

tively (6,400 pairs in total) to calculate the image distance

distributions.1 As shown in Fig. 2, the distance distributions

of the same and different classes are separated more widely

when using the difference patches (Fig. 2b).

B. Modelling

Face matching is implemented by defining a distance mea-

surement between sequences and using the distance as the

basis for classification. Generally, a small distance is expected

if two sequences are similar to each other. DICW is based on

the classical DTW algorithm [22] which is used to compute the

distance between two time sequences. Here we use an example

to quickly illustrate the main idea of DTW (more details of

the algorithm can be found in [22]). As shown in Fig. 3, there

are two sequences (each digit indicates a data point):

A = (a1, a2, a3, a4, a5) = (3, 1, 10, 3, 2)

B = (b1, b2, b3, b4, b5) = (3, 1, 2, 10, 3).

The Euclidean distance (i.e., using point-wise matching,

Fig. 3a) between them is
√

(a1 − b1)2 + · · · + (a5 − b5)2 =√
0 + 0 + 64 + 49 + 1 ≈ 10.68 which is a bit large for

these two similar sequences. However, if we warp these two

sequences in a non-linear way by shrinking or expanding

them along the time axis during matching (i.e., allows flexible

correspondences), the distance between A and B can be

largely reduced2 to 2 (Fig. 3b). DTW, which is based on this

idea, calculates the distance between two time sequences by

finding the optimal alignment between them with the minimal

overall cost. This will help to reduce the distance error

caused by some noise data points and ensure that the distance

1We use Euclidean distance as measurement. The image size is
83 × 60 pixels and the patch size is 5 × 5 pixels.

2Computation details see [22].

between similar sequences is relatively small. In addition,

the temporal order is considered during matching, thus

cross-matching (which reverses the order of data points) is

not allowed even it can lead to shorter distance (Fig. 3c).

Especially for FR, this is reasonable since the order of facial

features should not be turned back.

Adopting this idea for FR, we want to find the optimal

alignment between face sequences while minimising the dis-

tance caused by occluded patches. In this work, instead of

finding the alignment between two sequences, we seek the

alignment between a sequence and the sequence set of a

given class (i.e., subject). A probe image consisting of M

patch features is denoted by P = ( p1, . . . , pm , . . . , pM ).

Here P is an ordered list where each element pm is a

patch feature vector (e.g., △ f (·) in Section II-A). The gallery

set of a given class containing K images is denoted by

G = {G1, . . . , Gk, . . . , GK }. The k-th gallery image is

similarly represented as a sequence of N patch features as

Gk = (g1k, . . . , gnk, . . . , gNk ) where gnk represents a patch

feature vector like pm . Note that the number of patches in the

probe image and that in the gallery image can be different (i.e.,

the values of M and N can be different) since the DTW model

is able to deal with sequences with different lengths [22].

A warping path W indicating the matching correspondence

of patches between P and G with T warping steps in time

axis is defined as W = (w(1), . . . , w(t), . . . , w(T )) with:

w(t) = (m, n, k) : {1, 2, . . . , T } → {1, 2, . . . , M}
×{1, 2, . . . , N} × {1, 2, . . . , K } (2)

where × indicates the Cartesian product operator and

max{M, N} � T � M + N − 1. w(t) = (m, n, k) is a triple

indicating that patch pm is matched to patch gnk at step t .

Similar to the DTW model [22], W in DICW satisfies the

following four constraints:

1) Boundary: w(1) = (1, 1, k) and w(T ) = (M, N, k ′). The

path starts at matching p1 to g1k and ends at matching

pM to gNk′ . Note that no restrictions are placed on

k and k ′. From step 1 to T , k and k ′ can be any value

from 1 to K since the probe patch can be matched with

patches from all K gallery images.

2) Monotonicity: Given w(t) = (m, n, k), the preceding

triple w(t − 1) = (m′, n′, k ′) satisfies that m′ � m and

n′ � n. The warping path preserves the temporal order

and increase monotonically.

3) Continuity: Given w(t) = (m, n, k), the preceding triple

w(t − 1) = (m′, n′, k ′) satisfies that m − m′ � 1 and

n − n′ � 1. The indexes of the path increase by 1 in

each step, which means that each step makes smooth

transitions along the time dimension.

4) Window constraint: Given w(t) = (m, n, k), it satisfies

|m − n| � l where l ∈ N
+ is the window width [22].

The window constraint is designed to reduce the compu-

tational cost of DICW. But it is also meaningful for the

specific FR problem since a probe patch (e.g., eye) should

not match to a patch (e.g., mouth) too far away. The

window with a width l is able to constrain the warping

path within an appropriate range.
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Fig. 2. Distributions of face image distance of the same and different classes. Using the difference patch (b), the distance distribution of the same class and
that of the different classes are separated more widely compared with those using the original patch (a).

Fig. 3. Various ways of sequence matching. a) Point-wise matching, b) DTW
matching, and c) cross matching.

These constraints are extended from the constraints of the

DTW algorithm. However, they are also very meaningful in

the context of FR with the image representation defined in

Section II-A. Our method represents a face image as a patch

sequence thus here the image matching problem can be solved

by the time series analysis technique.

In order to explain the concept of warping path, we take the

aforementioned sequences A and B as an example. In Fig. 4a,

each grid on the right hand side indicates a possible matching

correspondence. The indexes of the red grids indicate the

matching between A and B by DTW (i.e., the optimal warping

path with the minimal matching cost) as shown in the left

part (here T = 6). Likewise, the same procedure of DICW is

shown in Fig. 4b. Compared with DTW, an additional index

is added in the warping step of DICW to index different

gallery sequences. In this way, the warping is performed

in two directions: 1) a probe sequence P is aligned to a

set of gallery sequences G according to the time dimension

(maintaining the facial order) and 2) simultaneously, at each

warping step, each patch in P can be matched with any patch

among all gallery sequences along the within-class dimension.

Our method allows elastic match in both of the aforementioned

two directions.

We define the local distance [22] Cm,n,k = d( pm , gnk) as

the distance between two patches pm and gnk . d(·) can be any

distance measurement such as the Euclidean distance or the

Cosine distance. The overall matching cost of W is the sum

of the local distance of each warping step:

S(W) =
T

∑

t=1

Cwt (3)

The optimal warping path W∗ (i.e., the red grid path in Fig. 4b)

is the path that minimises S(W). The Image-to-Class distance

between P and G is simply the overall cost of W∗:

distDI C W (P, G) = min
W

T
∑

t=1

Cwt (4)

After computing distDI C W between P and each enrolled

subject in the database, a classifier such as the Nearest

Neighbour classifier can be adopted for classification based

on distDI C W .

C. Implementation Through Dynamic Programming

To compute distDI C W (P, G) in (4), one could test every

possible warping path but with a high computational cost.

Fortunately, (4) can be solved efficiently by Dynamic Pro-

gramming. A three-dimensional matrix D ∈ R
M×N×K is

created to store the cumulative distance. The element Dm,n,k

stores the cost of the optimal warping path of matching

the first m probe patches to the set of first n patches of

each gallery sequence and at the same time the m-th patch

pm is matched to the patch from the k-th gallery image. The

calculation of the final optimal cost distDI C W (P, G) is based

on the results of a series of predecessors. D can be computed

recursively as:

Dm,n,k = min

{

D{(m−1,n−1)}×{1,2,...,K },
D{(m−1,n)}×{1,2,...,K },
D{(m,n−1)}×{1,2,...,K }

}

+ Cm,n,k (5)

where the initialisation is done by extending D as

an (M + 1) × (N + 1) × K matrix and setting

D0,0,· = 0, D0,n,· = Dm,0,· = ∞. Thus, distDI C W (P, G) can

be obtained as follows:

distDI C W (P, G) = min
k∈{1,2,...,K }

{DM,N,k } (6)
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Fig. 4. An illustration of warping path in (a) DTW and the (b) proposed DICW. The arrows indicate the matching correspondence. The dashed line marks
the optimal warping path. Black blocks indicate the occluded patches.

Fig. 5. The illustration of (a) the Image-to-Image and (b) the Image-to-Class

comparison. Matched features are indicated by the same symbol.

Different from the point-wise matching (here each patch

is viewed as a data point), our method tries every possible

warping path under the temporal constraints then selects the

one with minimal overall cost. So the warping path with

large distance error will not be selected. The Image-to-Class

distance is the globally optimal cost for matching. Although

occlusions are not directly removed, avoiding large distance

error by warping is helpful for classification from our experi-

mental results (see Section III).

In addition, a patch of the probe image can be matched

to patches of K different gallery images of the same class.

Because the chance that all patches at the same location of the

K images are occluded is low, the chance that a probe patch

is compared to an unoccluded patch at the same location is

thus higher. When occlusions occur in probe or/and gallery

images, the Image-to-Image distance may be large. However,

our model is able to exploit the information from different

gallery images and reduce the effect of occlusions (Fig. 5).

Algorithm 1 summarises the procedure of computing the

Image-to-Class distance between a probe image and a

class. l is the window width and usually set to 10%

of max {M, N} [22]. Computational complexity is analysed

in Section III-D6.

Algorithm 1 Dynamic Image-to-Class Warping Distance

DICW(P, G, l)

Input:
P : a probe sequence with M patches;
G: a set of K gallery sequences (each with N patches) of a given
class;
l : the window width;

Output:
distDI C W : the Image-to-Class distance between P and G;

1: Set each element in D to ∞;
2: D[0, 0, 1 : K ] = 0;
3: l = max{l, |M − N |};
4: Compute the local distance matrix C;
5: for m = 1 to M do
6: for n = max {1, m − l} to min {N, m + l} do

7: minNeighbour=min

⎧

⎨

⎩

D[m − 1, n − 1, 1 : K ],
D[m − 1, n, 1 : K ],
D[m, n − 1, 1 : K ]

⎫

⎬

⎭

;

8: for k = 1 to K do
9: D[m, n, k] =minNeighbour+C[m, n, k];

10: end for
11: end for
12: end for
13: distDI C W = min {D[M, N, 1 : K ]};
14: return distDI C W ;

III. EXPERIMENTAL ANALYSIS

In this Section, we evaluate the proposed method using four

databases (FRGC [27], AR [26], TFWM [28] and LFW [29]).

We perform identification tasks according to the three cases

(i.e., Uvs.O, Ovs.U and Ovs.O) described in Section I. We first

consider the scenario with occlusions occur only in probe

images (i.e., Uvs.O) and test our method using different

number of gallery images per subject. We will demonstrate

that our method works well even when a very limited number
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of images are available for each subject. Next, we consider

the situation that occlusions exist in gallery images, which is

a case most of the current works do not take account. We fix

the number of gallery images per subject and conduct experi-

ments step by step: firstly the probe images are not occluded

(i.e., Ovs.U); and then both the gallery and probe images are

occluded (i.e., Ovs.O). Note that, for comparison purpose, the

experiments on the FRGC and the AR databases also include

the case that no occlusion is presented in both gallery and

probe images to confirm that DICW is also effective in general

conditions. In addition, we also extend DICW to verification

tasks with faces containing large uncontrolled variations.

Note that in all experiments, the gallery image set is disjoint

with all probe sets. Considering that the gallery and probe

images are at the same scale, in the experiments, the probe

images and the gallery images are partitioned into the same

number of patches, i.e., M = N as defined in Section II-B.

As recommended in the work [30], the Euclidean distance and

the Cosine distance are used as local distance measurements

for the pixel intensity feature and the LBP feature [31],

respectively.

We quantitatively compare DICW with some representative

methods in the literature: the supervised linear SVM [32]

using PCA [33] for feature extraction (PCA + LSVM), the

reconstruction based SRC [8] as introduced in Section I, the

Image-to-Class distance based Naive Bayes Nearest Neigh-

bour (NBNN) [34] as ours, and the baseline, Hidden Markov

models (HMM) [35] which also considers the order informa-

tion in a face. We use the difference patch representation as

defined in Section II-A in NBNN and DICW. For comparison

purpose, we also report the results of using the original patche

(referred to OP-NBNN and OP-Warp, respectively).

Note that NBNN is a local patch based method which also

exploits the Image-to-Class distance. But it does not consider

the spatial relationship between patches like ours. To improve

the performance, a location weight α [34] is used in NBNN

to constrain matching patches according to their locations.

We tested different values of α and found that the performance

of NBNN is highly dependent on the value of α and different

testing data (e.g., different occlusion level, location) requires

different value even within the same database. So we also

reported the best result for each test with the optimal α

value (as OP-NBNN-ub and NBNN-ub). The performance of

OP-NBNN-ub and NBNN-ub can be seen as the upper bound

of the performance of NBNN, which is a competitive compar-

ison for DICW.

A. Face Identification With Randomly Located Occlusions

We first evaluate the proposed method using the Face

Recognition Grand Challenge (FRGC) database [27] with

randomly located occlusions. Note that in each image, the

locations of occlusions are randomly chosen and unknown to

the algorithm. Especially, in the Ovs.O scenario, the locations

of occlusions in the gallery images are different from those in

the probe images. We use these images with randomly located

occlusions to evaluate the effectiveness of DICW when there

is no prior knowledge of the occluded location.

Fig. 6. Sample images from the FRGC database with randomly located
occlusions.

The FRGC database contains 8,014 images from 466 sub-

jects in two sessions. These images contain variations such as

illumination and expression changes, time-lapse, etc. Similar

to the work in [7], an image set of 100 subjects (eight images

in two sessions are selected for each subject), is used in

experiments. To simulate the randomly located occlusions,

we create an occluded image set by replacing a randomly

located square patch (size of 10% to 50% of the original

image) from each image in the original image set with a

black block (Fig. 6). We design experiments according to

the three occlusion scenarios: Uvs.O, Ovs.U and Ovs.O.

There are 2,400 testing samples for each scenario. All images

are cropped and re-sized to 80 × 65 pixels and the patch

size is 6 × 5 pixels (the effect of patch size is discussed

in Section III-D1).

1) Uvs.O: For each subject, we select K = 1, 2, 3 and 4

unoccluded images respectively to form the gallery sets and

use the other four images with synthetic occlusions as the

probe set. Fig. 7 shows the recognition results with different

values of K . The correct identification rates of all methods

increase when more gallery images are available (i.e., greater

value of K ). When there are multiple gallery images per class

and no occlusion (level = 0%) in images, HMM performs

better than the supervised method SVM and the local matching

based NBNN. But its performance is significantly affected by

the increasing occlusions. In addition, when K = 1, HMM

performs worst among all methods since there are not enough

gallery images to train a HMM for each class. For NBNN

and DICW, using the difference patch achieves better results

than using the original patch (i.e., OP-NBNN and OP-Warp).

Especially, by comparing DICW with OP-Warp, and NBNN

with OP-NBNN, it can be found that difference patches

improve the results of DICW more significantly than that of

NBNN. As introduced in Section II-A, the difference patches

are generated by the spatially continuous patches so they

enhance the order information within a patch sequence, which

is compatible with DICW. With the optimal location weights,

NBNN-ub and OP-NBNN-ub perform better than SVM. When

K = 1, 2, 3 and 4, the average rates for the six occlusion levels

of DICW are 2.3%, 4.3%, 5.5% and 4.4% better than that of

NBNN-ub, respectively. When the occlusion level = 0%, the

performance of SRC is better than DICW. However, the perfor-

mance drops sharply when the degree of occlusion increases.

When K = 1, the Image-to-Class distance degenerates to the

Image-to-Image distance. DICW, which allows time warping

during matching, still achieves better results while the level of

occlusion increases.

2) Ovs.U and Ovs.O: We fix the value of K to 4 and con-

sider that occlusions exist in the galley set. For each occlusion

level (from 0% to 50%), we conduct experiments with the
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Fig. 7. Uvs.O: identification results on the FRGC database with different number of gallery images per subject: a) K = 1, b) K = 2, c) K = 3 and d) K = 4.

Fig. 8. a) Ovs.U and b) Ovs.O: identification results on the FRGC database with occlusions in gallery or/and probe sets.

following settings: 1) 400 occluded images (four images per

subject) from the original set as the gallery set and 400 images

from the unoccluded set as the probe set (Ovs.U) and 2) 400

occluded images as the gallery set and 400 occluded images

as the probe set (Ovs.O). Note that the images in the gallery

set are different from those in the probe sets. Fig. 8 shows the
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recognition results. The methods (e.g., HMM, SVM, SRC)

which include occluded gallery images for training/modelling

perform poorly in these two cases. NBNN does not perform

consistently in Ovs.U and Ovs.O. Using the original patch

(i.e., OP-NBNN) performs better than using the difference

patch (i.e., NBNN) in Ovs.U. For DICW, using the differ-

ence patch is always better than using the original patch

(i.e., OP-Warp). This confirms that the difference patch works

better with DICW, as analysed before. DICW outperforms the

best of NBNN (i.e., NBNN-ub) by a larger margin of 5.5%

(Fig. 8a) and 8.1% (Fig. 8b) on average than that (4.4% in

Fig. 7d) in the Uvs.O tested with K = 4. These results confirm

the effectiveness and robustness of DICW when the gallery

and probe images are occluded. On the whole, our method

performs consistently and outperforms other methods in all

three occlusion cases.

B. Face Identification With Facial Disguises

We next test the proposed method on the AR database [26]

which contains real occlusions. First, we consider that no

occlusion is present in both gallery and probe sets. Next, we

conduct experiments according to the three occlusion cases.

DICW does not rely on the prior knowledge of occlusions.

We will demonstrate that it works well in both general and

difficult situations later.

The AR database contains over 4,000 colour images

of 126 subjects’ faces. For each subject, 26 images in

total are taken in two sessions (two weeks apart). These

images suffer from different variations in facial expres-

sions, illumination conditions and occlusions (i.e., sunglasses

and scarf, as shown in Fig. 5). Similar to the works

in [6]–[8], [20], [36], and [37], a subset of the AR database

(50 men and 50 women) is used [38]. All images are cropped

and re-sized to 83×60 pixels and the patch size is 5×5 pixels.

1) Without Occlusion: We have evaluated the performance

of DICW when no occlusion exists in both gallery and probe

sets in Section III-A (i.e., occlusion level = 0% in the

experiments). In this section, we adopt the setting in [8]

using images without occlusions to further test DICW. For

each subject, 14 images are chosen (four neutral faces with

different illumination conditions and three faces with different

expressions in each session). Seven images from Session 1 are

used as the gallery set and the other seven from Session 2

as the probe set. Table II shows the identification rates.

HMM does not perform as good as others. This may be

due to other variations such as illumination and expression

changes in the training images. Again, the difference patch

does not improve NBNN comparing with the original patch

(i.e., OP-NBNN). With the optimal location weights, the dif-

ference patch (i.e., NBNN-ub) is 3.7% better than the original

patch (i.e., OP-NBNN-ub). For DICW, using the difference

patch is 3.1% better than using the original patch (OP-Warp).

As analysed in Section III-A, the difference patch can enhance

the relative order of adjacent patches, the results in Table II

also indicates that the difference patch is more compatible with

these methods which considers the order information. When

there is no occlusion in the gallery and probe images, both

TABLE II

IDENTIFICATION RESULTS ON THE AR DATABASE

WITHOUT OCCLUSIONS (K = 7)

reconstruction based method (e.g., SRC) and local matching

based methods (e.g., NBNN and DICW) achieve relatively

satisfactory results. DICW significantly outperforms NBNN

and is still slightly better than the upper bound of NBNN

(i.e., NBNN-ub).

2) Uvs.O: The unoccluded frontal view images with various

expressions are used as the gallery images (eight images per

subject). For each subject, we select K = 1, 2, 4, 6 and

8 images to form the gallery sets, respectively. Two separate

image sets (200 images each) containing sunglasses (cover

about 30% of the image) and scarves (cover about 50% of

the image) respectively are used as probe sets. Fig. 9 shows

the recognition results. The correct identification rates increase

when more gallery images are available. HMM and SVM are

generic training based methods and are unable to deal with

unseen occlusions in the probe images. In the scarf testing set,

the performance of SRC deteriorates significantly compared

with that on the sunglasses set due to the occluded area is

much larger. Local matching based NBNN and DICW perform

better than others on the whole. With the optimal location

weights, NBNN-ub achieves very comparable performance to

DICW. But DICW is slightly superior. Even at K = 1, DICW

still achieves 90% and 83% on the sunglasses set and scarf

set, respectively.

With the same experimental setting, we also compare DICW

with the state-of-the-art algorithms (using eight gallery images

per subject, K = 8). The results are shown in Table III.

Only the pixel intensity feature is used except the MLERPM

method. MLERPM, which is also a local matching based

method as ours, uses SIFT [39] and SURF [40] features to

handle the misalignment of images. Note that compared with

other methods, DICW does not require training. It achieves

comparable or better recognition rates among these meth-

ods and with a relatively low computational complexity

(see Section III-D6). In the scarf set, albeit the fact that nearly

half of the face is occluded, only 2% images are misclassified

by DICW. To the best of our knowledge, this is the best result

achieved on the scarf set under the same experimental setting.

3) Ovs.U and Ovs.O: For the Ovs.U scenario, we select

four images with sunglasses and scarves to form the gallery set

and eight unoccluded images as the probe set. For the Ovs.O

scenario, we conduct two experiments: 1) two images with
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Fig. 9. Uvs.O: identification results on the AR database with (a) sunglasses occlusion and (b) scarf occlusion.

TABLE III

UVS.O: COMPARISON OF DICW AND THE-STATE-OF-THE-ART METHODS (K = 8)

Fig. 10. Ovs.U and Ovs.O: identification results on the AR database with
occlusions in gallery or/and probe sets.

scarves as the gallery set and two images with sunglasses as

the probe set; 2) vice versa. Note that with this setting, in each

test the occlusion type in the gallery set is different from that

in the probe set, which is very challenging for recognition.

The results are shown in Fig. 10. On the gallery set which

contains occluded faces, the results of HMM and SVM are

much worse than others as expected. In the Ovs.O testing,

there are only two gallery images per subject. It is very difficult

for SRC to reconstruct an unoccluded probe image with

such limited number of gallery images. Local matching based

Fig. 11. Sample images from the TFWM database.

NBNN and DICW perform better. Comparing OP-NBNN with

OP-NBNN-ub, and NBNN with NBNN-ub, it can be found

that the performance of NBNN is highly dependent on the

optimal location weights. Overall, DICW consistently outper-

forms the best of NBNN (i.e., NBNN-ub) by about 4% on

average.

C. Face Identification With General Occlusions

in Realistic Environment

In this Section, we test our method on the The Face We

Make (TFWM) [28] database captured under natural and arbi-

trary conditions. It has more than 2,000 images which contains

frontal view faces of strangers on the streets with uncon-

trolled lighting. The sources of occlusions include glasses,

sunglasses, hat, hair and hand on the face. Besides occlusions,

these images also contain expression, pose and head rotation

variations. In our experiments, we use images of 100 subjects
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Fig. 12. Identification rates (%) on the TFWM database.

(ten images per subject) containing various types of occlusions

(Fig. 11). For each subject, we choose K = 1, 3, 5 and 8

unoccluded images as gallery sets, respectively, and the

remaining two images as the probe set. Occlusions occur at

random in the gallery or probe set or in both. This includes

all the three occlusion scenarios in Section I. The face area

of each image is cropped from the background and re-sized

to 80 × 60 pixels and the patch size is 5 × 5 pixels. Only the

pixel intensity feature is used in all methods.

The recognition results are shown in Fig. 12. Note that

the images used in the experiments are not well aligned due

to the uncontrolled variations. Some occlusions (e.g., hand)

have very similar texture as the face, which are difficult to

be detected by skin colour based models [42]. NBNN, which

only relies on the texture similarity without considering the

structural constraint of a face, does not achieve comparable

performance as ours. As more gallery images are available,

the accuracies of all methods increase. When K = 8, most

methods reach a bottleneck with the rate around 65%. DICW

outperforms these methods by a notable margin.

D. Discussion

1) The Effect of Patch Size: To investigate this the impact

of patch size on the performance, we use 400 unoccluded

images (size of 80×65 pixels) of 100 subjects from the FRGC

database as the gallery set and 400 images in each of six probe

sets, which contain randomly located occlusions from 0% to

50% level, respectively. We test DICW with the patch sizes

from 3 × 3 pixels to 10 × 10 pixels. Note that we employ

this dataset because the location and size of the occlusions is

independent to the patch size.

The correct identification rates with respect to the patch size

are shown as Fig. 13. There is no sharp fluctuation in each

of the rate curve when the patch size is less than or equal

to 6 × 5 pixels. Our method is robust to different patch sizes

in an appropriate range despite the ratio of occlusions. The

relatively smaller patches lead to better recognition rate since

they provide more flexibility to use spatial information than the

larger ones. Based on the experimental results, sizes smaller

than 6 × 5 pixels are recommended.

Fig. 13. Identification rates (%) with respect to the patch size.

Fig. 14. Identification rates (%) with respect to the overlap ratio comparing
with using the difference patches.

2) The Effect of Patch Overlap: In the previous experiments

we used the difference patch to enhance the textured features

in patches. It is interesting to see if the overlapping patch has

this similar effect. We conducted experiments on the AR data-

base to investigate this since it contains real occlusions with

different textures. We selected four unoccluded images from

Session 1 for each subject as the gallery set and two images

with sunglasses and scarves from Session 2 as the probe set

so the testing dataset contains variations of occlusions and

illumination changes. We tested the use of different patch sizes

(4×4 to 16×15 pixels) with different overlap ratios (0%, 25%,

50%, 75%) and compared their results with that of using the

difference patch. 25% ratio means the adjacent patches have

a 25% horizontal overlap. So the larger the ratio is, the larger

the number of patches will be in each image sequence. Note

that 0% overlap ratio means using the original patches (with

intensity features).

Fig. 14 shows the recognition results. On the whole, large

overlap ratio leads to better accuracy. Note that higher overlap

ratio also increases the number of patches in each image

sequence, which leads to a higher computational cost. For

small patch sizes (i.e., 4×4, 5×5 and 8×6 pixels), using the

difference patch yields significantly better results than using
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Fig. 15. Identification rates (%) of using different image descriptors and the
difference patches.

the overlapping patch. This is compatible with our analysis in

Section II-A. A difference patch is the approximation of the

first-order derivative of adjacent small patches. The first-order

derivative operator is sensitive to edges, which is able to

enhance the textured regions. When the patch becomes large

(i.e., 10×10, 10×15 and 16×15 pixels), the advantage of using

the difference patch is not obvious. This is reasonable since the

texture in a large patch is less uniform. Note that the overall

performance of using the small patch is better than that of

using the large patch. DICW is compatible with the small patch

as analysed in Section III-D1 so in the experiments we used

the best one, the difference patch instead of the overlapping

patch.

3) The Effect of Image Descriptor: In Section III-D2, our

experiments indicate that the difference patch leads to better

accuracy since it is able to enhance the textured regions in

a face image. In this section we will carry out experiments

to compare the discriminative power of the proposed dif-

ference patches and other local image descriptors such as

2D-DCT (Discrete Cosine Transform coefficients), Gabor [43],

LBP [31] and dense SIFT [44]. We use the same dataset in

Section III-D2 and test both small patch size (i.e., 5×5 pixels)

and large patch size (i.e., 16 × 15 pixels).

Fig. 15 shows the recognition results. The 2D-DCT feature

is not as discriminative as others so it performs worst. For large

patch size, as we analysed before, the difference patch does

not perform very well. For small patches, the performance of

difference patch is comparable with that of SIFT and LBP. The

Gabor features do not perform better than the difference patch

since the patch is too small to extract discriminative features.

Note that the computation of difference patch is much simpler

than other images descriptors. From Fig. 15 we can see, the

local image descriptor is able to strengthen DICW when the

image contains uncontrolled variations such as illumination

changes and occlusions. When dealing with the uncontrolled

data, applying these local features can further improve the

performance of DICW.

4) Robustness to Misalignment: The face registration error

can largely degrade the recognition performance [1] as we

mentioned in Section I. To evaluate the robustness of DICW

Fig. 16. Sample images of the same subject from the AR database without
alignment (AR-VJ).

TABLE IV

IDENTIFICATION RATE (%) ON THE AR-VJ DATASET

to the misalignment of face images, we use a subset of the AR

database with 110 subjects (referred to AR-VJ) used in the

work in [45]. The faces in AR-VJ are automatically detected

by the Viola & Jones detector [46] and cropped directly from

the images without any alignment. Different from the images

in the original AR database which are well cropped (Fig. 5),

these images contain large crop and alignment errors as shown

in Fig. 16.

Following the same experimental setting in [45],

seven images of each subject from the first session are

used as the gallery set and the other seven images from the

second session as the probe set. All images are re-sized to

65 × 65 pixels and the patch size is 5 × 5 pixels. As analysed

in the last section, we use the LBPu2
8,2 descriptor [31] for

feature extraction to handle the illumination variations.

The recognition results are shown in Table IV. DICW

outperforms other methods and achieves very close result to

P2DW-FOSE [45], which is also a training-free method like

ours. But different from DICW, which performs warping on

the patch level, P2DW-FOSE is a pseudo 2D warping method

on the pixel level and its time complexity is quadratic in the

number of pixels [45].

5) Extension to Face Verification in the Wild: In this

Section, we extend DICW for face verification tasks using the

Labeled Faces in the Wild (LFW) database [29], which is the

most active benchmark for FR. The task of face verification

under the LFW database’s protocol is to determine if a pair of

face images belongs to the same subject or not. Note that in the

verification of each pair, it is a Image-to-Image comparison.

So the experiments on the LFW database can be considered as

an evaluation for the effectiveness of DICW when only time

warping is used (no within-class warping).

The LFW database contains 13,233 face images of

5,749 subjects collected from the Internet. These images

are captured in uncontrolled environments and contain large

variations in pose, illumination, expression, time-lapse and

various types of occlusions (Fig. 17). Following the testing



2046 IEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITY, VOL. 9, NO. 12, DECEMBER 2014

Fig. 17. Sample images from the LFW database (six matched image pairs
for six subjects).

protocol of View 2, we use the most difficult experimental

setting: restricted unsupervised setting where no class label

information is available. In View 2, there are 3,000 matched

(i.e., positive) and 3,000 mismatched (i.e., negative) image

pairs. They are equally divided into ten randomly generated

sets and the final verification performance is evaluated by

the ten-fold cross-validation. Here image pairs are classified

into the same subject or different subjects by thresholding

on their distance. We use the LFW-a version and LBPu2
8,2

as feature descriptor. All images are cropped and re-sized to

150 × 80 pixels and the patch size is 3 × 3 pixels.

Chen et al.’s work [49] produces very competitive results on

the LFW database by using the high-dimensional LBP feature.

It is confirmed that features sampled at facial landmarks lead

to better recognition performance than those sampled from

regular grids. Motivated by this, we also select 25 land-

marks [50] of the inner face and follow the similar process

as in [49]: 1) normalise the unaligned images according to

2 facial landmarks (i.e., the tip of the nose and the centre of

the mouth), and 2) extract image blocks (size of 30×30 pixels)

centred around 25 facial landmarks from each image. Each

block is partitioned into 3 × 3 pixels patches which are

then concatenated to form a sequence. The original DICW

algorithm is performed according to each block (i.e., sequence)

and a corresponding distance is generated respectively. The

sum of these distances is the final distance for each image

pair. We refer our method with this strategy (i.e., sampling

features around landmarks) as DICW-L and the original DICW

(i.e., sampling features from regular grids) as DICW-G.

LFW is an extremely challenging database containing large

uncontrolled variations, especially pose changes. As presented

in [51], the first several principal components (PCs) usually

capture these uncontrolled variations in the principal compo-

nent analysis (PCA) subspace [33]. Therefore, we adopt the

component analysis process in [51] to remove the first several

PCs for performance improvement by:

F′ = F − X i XT
i F (7)

where F is the original feature vector of an image by

concatenating all the patch features of the image sequence

(i.e., P or Gk in Section II-B) and X i is the first i components

in the PCA subspace. We quantitatively test the value of i

using the View 1 dataset provided by the LFW database and set

the optimal value i = 8. F′ is the improved feature vector used

in the experiments for the LFW database. In this way, the large

uncontrolled variations can be reduced to some extent. At the

same time, different from the general dimension reduction

operation (i.e., the original PCA), the topological structure of

Fig. 18. ROC curves of the-state-of-the-art methods and DICW on the LFW
database.

TABLE V

AREA UNDER ROC CURVE (AUC) ON THE LFW DATABASE

UNDER UNSUPERVISED SETTING

each image is still maintained so our patch based DICW can be

performed directly on the improved features by this process.

We compare DICW with other methods under the same

testing protocol without outside training data. In the exper-

iments, only LBPu2
8,2 descriptor [31] is used. We draw the

the ROC (Receiver Operating Characteristic) curves of DICW

and other state-of-the-art methods in Fig. 18. It shows the

performance of DICW-G is better than other methods which

use only single feature such as SD-MATCHES (SIFT [39]),

H-XS-40 (LBP [31]), GJD-BC-100 (Gabor [43]), LARK

(locally adaptive regression kernel descriptor [52]) and LHS

(local higher-order statistics [53]). When extracting features

around facial landmarks, the performance of DICW is further

improved with a large margin. The area under the ROC curve

(AUC) of DICW-L is 0.874 as shown in Table V, which

is the best among all methods. These experimental results

confirm the effectiveness of DICW even only time warping

is performed.

6) Computational Complexity and Usability Analysis: From

Algorithm 1 in Section II-C we can see that the time com-

plexity of DICW for computing the distance between a query

image and an enrolled class is O(max {M, N}l K ), where

M, N are the numbers of patches in each probe sequence

and gallery sequence, respectively. l is the window width

as mentioned in Section II-B. For better readability, here

we use M ′ to represent max{M, N}. The number of gallery

images per class K is very small compared with the number
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TABLE VI

COMPARISON OF AVERAGE RUNTIME (S)

of patches M ′ in each sequence (i.e., K ≪ M ′). Thus

the complexity is represented as O(M ′l). Note that usually

l = 10%M ′, so the warping distance can be obtained very

efficiently. On the other hand, the computational cost of the

reconstruction based method SRC is very high [8]. To facilitate

intuitive comparisons, Table VI shows the runtime of DICW

and SRC3 for classifying a query image under the same setting

as the experiments of Table III using Matlab implementation

(running on a platform with quad-core 3.10GHz CPUs and

8 GB memory). DICW is about 15 times faster than SRC [8]

when classifying a query image.

Compared with the reconstruction based approaches, which

represent a query image using all enrolled images, DICW

computes the distance between the probe image and each

enrolled class independently. So in the real FR applications,

the distance matrix can be generated in parallel and the

enrolled database can be updated incrementally. This is very

practical for the real-world applications.

IV. FURTHER ANALYSIS AND IMPROVEMENT

In the previous sections, we evaluate DICW using exten-

sive experiments with face images with various uncontrolled

variations. In this section we will further analysis why the

DICW works compared with similar methods, and when and

why it will fail. We also discuss the idea for improving the

performance of DICW.

NBNN [34] presented in the previous sections is a similar

method to ours. It also calculates the Image-to-Class distance

between a probe patch set and a gallery patch set from a given

class. The difference is that it does not consider the spatial

relationship between patches like ours and each probe patch

can be matched to any patches from any location in the gallery

patch set. Fig. 19 is an illustration example. The occluded

probe image is from class 74 but is incorrectly classified to

the class 5 by NBNN. Actually the images from class 74

and class 5 are not alike. But the texture of sunglasses is

very similar to that of beard in class 5. Without the location

constraint, the beard patches are wrongly matched to the

sunglasses thus the distance is affected by this occlusion.

On the other hand, DICW keeps the order information and

matches patches within a proper range which leads to correct

classification.

NBNN calculates the distance between two patch sets and

the overall distance is the sum of patch-pair distances. On the

other hand, in DICW, the probe and gallery patch set are

ordered. The spatial relationship between patches is encoded.

When a probe patch is matched to a gallery patch, the

following probe patches will only be matched to the gallery

3We use the l1_ls package for implementation. http://www.stanford.edu/~
boyd/l1_ls/

Fig. 19. (a) The probe image from class 74. (b) Classification result (class 5)
by NBNN. (c) Classification result (class 74) by DICW. Distance to each class
computed by (d) NBNN and by (e) DICW.

patches within a proper range. This is guaranteed by the four

constraints mentioned in Section II-B. In addition, with the

help of Dynamic Programming, DICW actually tries every

possible combination of matching correspondence of patch

pairs so the final matching is the global optimum for the

probe patch set and the gallery patch set. Compared with

NBNN, DICW considers both the texture similarity and the

geometry similarity of patches. The work in [23] points out

that the contextual information between facial features plays

an important role in recognition. Our work confirms their

observation. Although a location weight can be adopted in

NBNN, the weight needs to be manually set for different

testing dataset as analysed before, which is not suitable

for practical applications. In DICW, the order constraint is

naturally encoded during distance computation.

DICW represents a face image as a patch sequence which

maintains the facial order of a face. To some extent, the

geometric information of a face is reduced from 2D to 1D.

However, the direct 2D image warping is an NP-complete

problem [55]. P2DW-FOSE mentioned in Section III-D4 is a

pseudo 2D warping method but with a remarkably large com-

putational cost (i.e., quadratic in the number of pixels) [45].

DICW incurs a lower computational cost due to its patch

sequence representation. In addition, each patch still contains

the local 2D information which is helpful for classification.
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Fig. 20. (a) A probe image from class 51. (b) The wrong class (class 72)
classified by DICW. (c) The gallery image from class 51.

Fig. 21. Random selection and majority voting scheme for improving the
performance of DICW.

A. Improving the Performance With Random

Selection and Majority Voting Scheme

Fig. 20 shows a fail example which can not be correctly

classified by both DICW and NBNN. The discriminative eyes

region is occluded by sunglasses, which makes recognition

difficult. In addition, a probe face with sunglasses (Fig. 20a)

is more similar to a gallery face with glasses (Fig. 20b) in the

feature space, which leads to misclassification.

Looking back to the definition of DICW in Section II-B,

although warping is helpful for avoiding large distance error

caused by occlusions, the occluded area is not directly

removed during matching. Here we employ a simple but very

effective scheme for improving the performance of DICW.

As shown in Fig. 21, we do not use all patches in a probe

sequence for warping, instead, we randomly select a subset of

patch set then compute the Image-to-Class distance based on

this subset. We repeat this n times and generate a class label

(the class with the shortest distance) each time according to

the calculated distance. Finally, the final class label is decided

by majority voting by n experts. With random selection, it is

possible to skip the occluded patches. It is also possible

that the occluded patches are chosen but this effect will be

eliminated by the majority voting strategy since we assume

that the occluded areas only take up a small part of a

face. This assumption is reasonable since if most parts of

a face are occluded, even a human being will feel difficult

to recognise it. Different from the occlusion detection based

methods which attempt to detect and remove occlusion area

as we mentioned before, this simple strategy does not rely on

any prior knowledge nor any data-dependent training.

Here we use the same setting to Section III-D2.

We randomly select 15% patches in a sequence each

time as an expert and select n = 50 experts in total. Since

this scheme is based on random selection, we repeat the whole

classification process ten times and calculate the average

identification rate. The results are shown in Table VII. The

performance of DICW is improved by 2% on average by using

only 50 experts (Note that for each expert, the computation of

TABLE VII

IDENTIFICATION RATES (%) OF DICW AND THE IMPROVEMENT

SCHEME ON THE AR DATABASE

DICW is much faster than before since the number of subset

patches is much smaller than that of the whole sequence).

Generally, more experts will lead to higher accuracy since

this increases the diversity of decision views, which is more

robust to different variations. But this will also raise the

whole computational cost, which needs to be considered

to keep a balance between accuracy and computation. The

improvement is more obvious when the number of image per

class is limited. A preliminary study of using this scheme to

improve DICW when K = 1 is discussed in [56].

V. CONCLUSION AND FUTURE WORK

We have addressed the problem of face recognition with

occlusions in uncontrolled environments. Different from most

of the current works, we consider the situation that occlusions

exist in both gallery and probe sets. We proposed a novel

approach, Dynamic Image-to-Class Warping (DICW), which

considers the contextual order of facial components, for the

recognition of occluded faces. We first represent a face image

as an ordered sequence, then treat the image matching problem

as the process of finding optimal alignment between a probe

sequence and a set of gallery sequences. Finally, we employ

the Dynamic Programming technique to compute the Image-

to-Class distance for classification. Extensive experiments on

the FRGC, AR, TFWM and LFW face databases show that

DICW achieves promising performance when handling various

types of occlusions. In the most challenging cases where

occlusions exist in both gallery and probe sets and only

a limited number of gallery images are available for each

subject, DICW still performs satisfactorily. DICW can be

applied directly to face images without performing occlusion

detection in advance and does not require a training process.

All of these make our approach more applicable in real-world

scenarios. Given its merits, DICW is applicable and extendible

to deal with other problems caused by local deformations

in FR (e.g., the facial expression problem), as well as other

object recognition problems where the geometric relationship

or contextual information of features should be considered.
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