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Abstract 
 

Analytical queries defined on data warehouses are 

complex and use several join operations that are very 

costly, especially when run on very large data 

volumes. To improve response times, data warehouse 

administrators casually use indexing techniques. This 

task is nevertheless complex and fastidious. In this 

paper, we present an automatic, dynamic index 

selection method for data warehouses that is based on 

incremental frequent itemset mining from a given 

query workload. The main advantage of this approach 

is that it helps update the set of selected indexes when 

workload evolves instead of recreating it from scratch. 

Preliminary experimental results illustrate the 

efficiency of this approach, both in terms of 

performance enhancement and overhead. 

 

1. Introduction 
 

A data warehouse is generally modeled by a star-

like schema that contains a central, typically very large 

fact table, and several dimension tables that describe 

the facts [1]. An analytical query over such a model 

necessitates very costly join operations between the 

fact table and dimension tables. 

Selecting suitable physical structures that improve 

system performance is the role of data warehouse 

administrators. However, given the wide development 

of data warehouses, as well as their structural and 

operational complexity, minimizing the administration 

function is a crucial issue. 

In this context, we have proposed an automatic 

bitmap join index selection method based on frequent 

itemset mining from a given query workload [2]. 

Attributes that frequently appear together in queries 

indeed constitute good candidate indexes; and bitmap 

join indexes are particularly appropriate to data 

warehouses [3]. However, this approach is static: if the 

input workload significantly evolves with time, we 

must rerun the whole process to preserve performance. 

In this paper, we improve our approach by two 

aspects. First, we replace the frequent itemset mining 

technique we used (namely, Close [4]) with an 

incremental frequent itemset mining technique, so that 

the selected index configuration can be updated instead 

of being recreated from scratch. Second, instead of 

mining closed frequent itemsets, we mine maximal 

frequent itemsets that are less numerous and help build 

better indexes. Finally, to the best of our knowledge, 

this is the first attempt at dynamically selecting indexes 

in data warehouses. 

The remainder of this paper is organized as follows. 

We present the state of the art regarding both index 

selection in data warehouses and incremental frequent 

itemset mining in Section 2. Then, we detail our 

approach in Section 3 and discuss related experimental 

results in Section 4. We finally conclude this paper and 

provide research perspectives in Section 5. 

 

2. Related work 
 

2.1. Index selection in data warehouses 
 

The index selection problem has been studied for 

many years in databases, but adaptations to data 

warehouses are few. In this particular context, research 

studies may be clustered into two families: algorithms 

that optimize maintenance cost and algorithms that 

optimize query response time. In both cases, 

optimization is realized under storage space constraint. 

In this paper, we are particularly interested in the 

second family of approaches, which may be classified 

with respect to the way a set of candidate indexes and 

the final configuration of indexes are built. 

A set of candidate indexes may be built manually 

by the administrator, according to his expertise of the 

workload [5, 6]. This is both subjective and quite hard 



to achieve when the number of workload 

queries is very large. In opposition, 

candidate indexes may also be extracted 

automatically by syntactically analyzing 

the workload [7, 8, 9].  

There are also several methods for 

building the final index configuration from 

candidate indexes. Typically, greedy 

algorithms increasingly select indexes 

minimizing workload cost until it does not 

decrease anymore [5, 6, 7]. Classical 

optimization algorithms have also been 

used to solve this problem, such as 

knapsack resolution [8] and genetic 

algorithms [10]. 

 

2.2. Incremental frequent itemset 

mining 
 

Many algorithms have been proposed in 

the literature for incrementally mining 

frequent itemsets. They reuse the frequent 

itemsets discovered before transaction 

database update to compute new frequent 

itemsets. Updating the set of frequent 

itemsets is very costly, though. 

To reduce the problem’s dimensionality, 

closed or maximal frequent itemsets may 

be mined instead of all frequent itemsets. A 

frequent itemset I is closed if it contains all 

the items that occur in every transaction in 

which I is present. A maximal frequent 

itemset is a frequent itemset that has no frequent 

superset. 

Most closed frequent itemset mining algorithms 

exploit concept lattices. The main incremental 

approach [11] manages lattice updates (unchanged, 

updated and inserted nodes into the lattice). However, 

its complexity is quadratic with respect to the number 

of elements in the concept lattice [12] and the number 

of closed frequent itemsets may become very large 

with respect to database size [13]. 

To the best of our knowledge, the only incremental 

maximal itemset frequent mining approach, GenMax, 

exploits a backtracking algorithm to prune the search 

space as soon as possible with respect to previous 

iterations [14]. This algorithm also improves support 

computation and optimizes short term mining. 

 

3. Dynamic index selection strategy 
 

In this section, we present the extension of our 

automatic join index selection method based on 

frequent itemset mining [2]. Its principle is to exploit 

transaction logs (i.e., the set of all queries processed by 

the system) to recommend an index configuration 

improving data access time. 

This new approach is subdivided into six steps 

(Figure 1): (1) a workload Q we suppose 

representative of system usage is extracted from 

system logs; (2) so-called indexable attributes are 

extracted from Q and structured in a suitable data 

mining context QA; (3) incremental frequent itemset 

mining is applied on QA, exploiting a knowledge base 

P that stores information regarding previous 

executions of this step; (4) emerged (new) frequent 

itemsets are analyzed to generate new candidate 

indexes; declined (now infrequent) itemsets 

correspond to indexes to be dropped; retained (still 

frequent) itemsets correspond to candidate indexes to 

retain; the whole set of candidate indexes is labeled IC; 

(5) since disk space is constrained, IC is pruned using 

cost models; (6) the resulting index configuration I is 

finally effectively updated. The whole process then 

reiterates after a period of time set by the 

Figure 1. Dynamic index selection strategy 



administrator. We detail its steps in the following 

sections. 

 

3.1. Workload extraction 
 

System workload is typically accessible from the 

host database management system’s transaction log. A 

given workload Q is supposed representative if it has 

been measured during a time period the warehouse 

administrator judges sufficient to anticipate upcoming 

transactions. 

Since we are more particularly interested in 

analytical query performance and not warehouse 

maintenance, we only consider interrogation query 

workloads in this paper. These queries are typically 

composed of join operations between the fact table and 

dimensions, restriction predicates, and aggregation and 

grouping operations. More formally, an analytic query 

q may be expressed as follows in relational algebra:  

q = πG, M σR (F >< D1 >< … >< Dn); where G is the set 

of attributes from dimensions D1, …, Dn that are 

present in q's grouping clause, M is a set of aggregate 

measures from fact table F and R a conjunction of 

predicates over dimension attributes. 

 

3.2. Workload analysis 
 

Attributes aj that may support indexes belong to the 

sets G and R defined in Section 3.1 [7, 8, 9]. We 

reference them in a “query-attribute” binary matrix QA 

whose rows represent workload queries qi ∈ Q and 

whose columns are indexable attributes aj. The general 

term QAij of this matrix is equal to one if attribute aj is 

present in query qi, and to zero otherwise. This data 

structure or extraction context directly corresponds to 

attribute-value tables that are exploited by data mining 

algorithms. 

 

3.3. Maximal frequent itemset mining 
 

In the static version of our approach, we have used 

the Close closed frequent itemset mining algorithm [4] 

to obtain a set of candidate indexes IC. In this dynamic 

extension, we replace it by the GenMax incremental, 

maximal frequent itemset mining algorithm [14]. 

In our context, workload Q can be very large and 

evolves with time. We selected GenMax because it can 

determine, in a short time, all maximal frequent 

itemsets from large databases, by optimizing support 

computation and infrequent itemset pruning through a 

backtracking process. Moreover, queried data from Q 

are typically correlated, which leads to a dense 

extraction context QA. Since incremental frequent 

itemset mining may produce a number of closed 

frequent itemsets exponentially greater than the 

number of maximal frequent itemsets [13], GenMax 

helps produce a smaller quantity of candidate indexes, 

which reduces the dimensionality of index selection 

and improves scalability. 

In summary, GenMax, in a first iteration, exploits 

an input transaction database D to produce a 

knowledge base P that stores, e.g., the list of maximal 

frequent itemsets from D, non-maximal, but frequent 

itemsets, the number of transactions in D, etc. P is then 

exploited and updated in the next iterations. At each of 

these iterations, the list of new transactions d+ and the 

list of deleted transactions d– are used to compute the 

updated transaction database ∆ = (D ∪ d+) – d–. 

Frequent itemset computation is then performed on ∆, 

using P, to minimize accesses to D. 

 

3.4. Candidate indexes generation 
 

The application of GenMax onto matrix QA helps 

obtain: a set I+ of emerged frequent itemsets, which 

were infrequent in P but become frequent in ∆; a set I– 

of declined frequent itemsets, which were frequent in 

P but become infrequent in ∆; and a set I0 of retained 

frequent itemsets, which are frequent in both P and ∆. 

Then, the set of candidate indexes is IC = (I ∪ I+) – I–, 

where I is the current index configuration. Note that I0 

is not used to compute IC, but is nonetheless recorded 

in P. 

 

3.5. Candidate indexes selection 
 

The number of candidate indexes in IC is generally 

proportional to the size of workload Q. Thus, it is not 

feasible to build all the proposed indexes because of 

system limitations (e.g., a limited number of indexes 

per table) or storage space constraints. To circumvent 

these limitations, we exploit cost models that help 

greedily select the most advantageous indexes. These 

models estimate storage space occupied by bitmap join 

indexes, data access cost whether using these indexes 

or not, and index maintenance cost. Due to space 

constraints, we cannot elaborate on these cost models 

in this paper, but the interested reader can refer to [2] 

for complete details. 

 

3.6. Index configuration update 
 

Applying index selection (Section 3.5) on IC outputs 

a new index configuration I’. To update the current 

index configuration I, we must eventually: create all 

indexes i ∈ I’ such that i ∉ I, i.e., all emerged indexes 



i ∈ (I’ – I); drop all indexes i ∈ I such that i ∉ I’, i.e., 

all declined indexes i ∈ (I – I’); and reset I to I’. 

 

4. Experiments 
 

4.1. Experimental conditions 
 

To illustrate the advantage of our dynamic index 

selection approach over our static one, we ran tests on 

a 1 GB data warehouse implemented within Oracle 9i, 

on a Pentium Dual Core 1.6 GHz PC with 1 GB RAM 

and a 120 GB IDE disk under Windows XP Pro. Our 

test data warehouse is derived from Oracle's, whose 

classical sales star schema is composed of one fact 

table and five dimensions. We have defined an initial 

workload Q1 of 30 analytical queries involving 

aggregation operations and multiple joins between the 

fact table and dimension tables. Then, we defined four 

evolutions of Q1 (Q2 to Q5), so that some frequent 

attribute sets emerge, some decline, and others remain 

frequent. Due to space constraints, we reproduce here 

neither the full data warehouse schema nor the detail 

of each workload, but they are available on demand. 

 

4.2. Results 
 

We ran our tests for each workload Q1 to Q5; 

without indexing (for reference), with static and 

dynamic indexing; and for an arbitrary minimum 

support value (when mining frequent itemsets) of 0.05 

that is low enough to produce a fair number of 

candidate indexes. In each of these tests, we measured 

index selection time (with both our static and dynamic 

approaches), index creation (static approach) or update 

(dynamic approach) time under Oracle, and workload 

execution time. The results we obtained are plotted in 

Figures 2, 3 and 4, respectively. All three figures 

feature workloads (Q1 to Q5) on the X axis and 

execution times on the Y axis (in milliseconds, seconds 

and minutes, respectively). 

Figure 2 shows that the overhead of our dynamic 

approach, in term of index selection alone, is about 5.2 

times greater than that of our static approach, on an 

average. However, this is not due to the algorithms’ 

intrinsic complexity, but to our implementations. The 

static approach has been implemented and optimized in 

PHP, while our newer, dynamic approach is 

implemented in Java (which appears slower than PHP 

on a standalone workstation) and not optimized yet. 

Both their execution times remain in the same order of 

magnitude (hundreds of milliseconds here), though. 

On the other hand, Figure 3 shows that index 

update time is about 9.5 faster with our dynamic 

approach on an average, and even about 11.5 times 

faster if Q1’s execution (and thus initial index 

configuration creation) is excluded from computation. 

Since index update runs in tens of seconds in our 

examples, the main overhead of our method lies here, 

and the enhancement brought by dynamicity is 

obvious. 

Figure 4 eventually shows that exploiting maximal 

frequent itemsets (dynamic approach) instead of closed 

frequent itemsets (static approach) helps select more 

pertinent indexes, since response time is slightly better 

(about 13% on an average) in the dynamic case. This is 

presumably because fewer candidate indexes are 

generated and then selected, which simplifies index 

choice at query optimization time. 
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Figure 3. Index creation/update time 
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5. Conclusion and perspectives 
 

In this paper, we have presented a dynamic bitmap 

join index selection method for data warehouses that is 

based on incremental frequent itemset mining from a 

given query workload. The main advantage of this 

approach is that it helps update the set of selected 

indexes when workload evolves instead of recreating it 

from scratch. 

Our first experiments (which we aim to extend, 

notably by scaling them up, to complete our 

approach’s validation) indeed show that introducing 

dynamicity helps reduce index maintenance overhead. 

Furthermore, exploiting maximal instead of closed 

frequent itemsets also helps improve the index 

configuration’s quality, and hence query response 

time. 

Furthermore, note that our approach is purposely 

modular and generic. Each step (frequent itemset 

mining, candidate indexes selection…) exploits 

interchangeable tools. The data mining technique and 

cost models we use are indeed not related to any 

system in particular and could easily be replaced by 

other, more efficient methods if necessary. 

Eventually, a critical issue when using automatic, 

dynamic optimization strategies is to master system 

overhead, and in particular determine when the 

administrator should run the incremental index update 

process. Pursuing this lead is our main research 

perspective. Studies related to session detection that 

are based on entropy computation [15] could be very 

useful for this sake. 
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