
 Open access Proceedings Article DOI:10.1109/IIT.2007.4430394

Dynamic index selection in data warehouses — Source link

Stéphane Azefack, Kamel Aouiche, Jérôme Darmont

Institutions: Université du Québec à Montréal, University of Lyon

Published on: 01 Nov 2007 - International Conference on Innovations in Information Technology

Topics: Data warehouse, Overhead (computing) and Workload

Related papers:

 Vertical fragmentation of data warehouses using the FP-Max algorithm

 DEMON: mining and monitoring evolving data

 New approach in data stream association rule mining based on graph structure

 Mining frequent itemsets in distributed and dynamic databases

 A parameterised algorithm for mining association rules

Share this paper:

View more about this paper here: https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-
2t346ufo1d

https://typeset.io/
https://www.doi.org/10.1109/IIT.2007.4430394
https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-2t346ufo1d
https://typeset.io/authors/stephane-azefack-1kyx8wh3qp
https://typeset.io/authors/kamel-aouiche-17vkvs4d2e
https://typeset.io/authors/jerome-darmont-erg11osbvo
https://typeset.io/institutions/universite-du-quebec-a-montreal-31o443ny
https://typeset.io/institutions/university-of-lyon-3slbrcfo
https://typeset.io/conferences/international-conference-on-innovations-in-information-a62ij2j5
https://typeset.io/topics/data-warehouse-23jn8ac2
https://typeset.io/topics/overhead-computing-1ddqien5
https://typeset.io/topics/workload-mbpwkbqz
https://typeset.io/papers/vertical-fragmentation-of-data-warehouses-using-the-fp-max-5egwejw13w
https://typeset.io/papers/demon-mining-and-monitoring-evolving-data-1pl4eznt9a
https://typeset.io/papers/new-approach-in-data-stream-association-rule-mining-based-on-2f439fjjxk
https://typeset.io/papers/mining-frequent-itemsets-in-distributed-and-dynamic-ydz0m0j4sa
https://typeset.io/papers/a-parameterised-algorithm-for-mining-association-rules-1zsxnng8o5
https://www.facebook.com/sharer/sharer.php?u=https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-2t346ufo1d
https://twitter.com/intent/tweet?text=Dynamic%20index%20selection%20in%20data%20warehouses&url=https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-2t346ufo1d
https://www.linkedin.com/sharing/share-offsite/?url=https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-2t346ufo1d
mailto:?subject=I%20wanted%20you%20to%20see%20this%20site&body=Check%20out%20this%20site%20https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-2t346ufo1d
https://typeset.io/papers/dynamic-index-selection-in-data-warehouses-2t346ufo1d

HAL Id: hal-00320640
https://hal.archives-ouvertes.fr/hal-00320640

Submitted on 11 Sep 2008

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Dynamic index selection in data warehouses
Stéphane Azefack, Kamel Aouiche, Jérôme Darmont

To cite this version:
Stéphane Azefack, Kamel Aouiche, Jérôme Darmont. Dynamic index selection in data warehouses.
4th International Conference on Innovations in Information Technology (Innovations 07), 2006, Dubai,
United Arab Emirates. pp.34-28842. ฀hal-00320640฀

https://hal.archives-ouvertes.fr/hal-00320640
https://hal.archives-ouvertes.fr

Dynamic index selection in data warehouses

Stéphane Azefack
1
, Kamel Aouiche

2
 and Jérôme Darmont

1

1
Université de Lyon (ERIC Lyon 2)

5 avenue Pierre Mendès-France

69676 Bron Cedex

France

jerome.darmont@univ-lyon2.fr

2
Université du Québec à Montréal (LICEF)

100 rue Sherbrooke Ouest

Montréal (Québec) H2X 3P2

Canada

kamel.aouiche@gmail.com

Abstract

Analytical queries defined on data warehouses are

complex and use several join operations that are very

costly, especially when run on very large data

volumes. To improve response times, data warehouse

administrators casually use indexing techniques. This

task is nevertheless complex and fastidious. In this

paper, we present an automatic, dynamic index

selection method for data warehouses that is based on

incremental frequent itemset mining from a given

query workload. The main advantage of this approach

is that it helps update the set of selected indexes when

workload evolves instead of recreating it from scratch.

Preliminary experimental results illustrate the

efficiency of this approach, both in terms of

performance enhancement and overhead.

1. Introduction

A data warehouse is generally modeled by a star-

like schema that contains a central, typically very large

fact table, and several dimension tables that describe

the facts [1]. An analytical query over such a model

necessitates very costly join operations between the

fact table and dimension tables.

Selecting suitable physical structures that improve

system performance is the role of data warehouse

administrators. However, given the wide development

of data warehouses, as well as their structural and

operational complexity, minimizing the administration

function is a crucial issue.

In this context, we have proposed an automatic

bitmap join index selection method based on frequent

itemset mining from a given query workload [2].

Attributes that frequently appear together in queries

indeed constitute good candidate indexes; and bitmap

join indexes are particularly appropriate to data

warehouses [3]. However, this approach is static: if the

input workload significantly evolves with time, we

must rerun the whole process to preserve performance.

In this paper, we improve our approach by two

aspects. First, we replace the frequent itemset mining

technique we used (namely, Close [4]) with an

incremental frequent itemset mining technique, so that

the selected index configuration can be updated instead

of being recreated from scratch. Second, instead of

mining closed frequent itemsets, we mine maximal

frequent itemsets that are less numerous and help build

better indexes. Finally, to the best of our knowledge,

this is the first attempt at dynamically selecting indexes

in data warehouses.

The remainder of this paper is organized as follows.

We present the state of the art regarding both index

selection in data warehouses and incremental frequent

itemset mining in Section 2. Then, we detail our

approach in Section 3 and discuss related experimental

results in Section 4. We finally conclude this paper and

provide research perspectives in Section 5.

2. Related work

2.1. Index selection in data warehouses

The index selection problem has been studied for

many years in databases, but adaptations to data

warehouses are few. In this particular context, research

studies may be clustered into two families: algorithms

that optimize maintenance cost and algorithms that

optimize query response time. In both cases,

optimization is realized under storage space constraint.

In this paper, we are particularly interested in the

second family of approaches, which may be classified

with respect to the way a set of candidate indexes and

the final configuration of indexes are built.

A set of candidate indexes may be built manually

by the administrator, according to his expertise of the

workload [5, 6]. This is both subjective and quite hard

to achieve when the number of workload

queries is very large. In opposition,

candidate indexes may also be extracted

automatically by syntactically analyzing

the workload [7, 8, 9].

There are also several methods for

building the final index configuration from

candidate indexes. Typically, greedy

algorithms increasingly select indexes

minimizing workload cost until it does not

decrease anymore [5, 6, 7]. Classical

optimization algorithms have also been

used to solve this problem, such as

knapsack resolution [8] and genetic

algorithms [10].

2.2. Incremental frequent itemset

mining

Many algorithms have been proposed in

the literature for incrementally mining

frequent itemsets. They reuse the frequent

itemsets discovered before transaction

database update to compute new frequent

itemsets. Updating the set of frequent

itemsets is very costly, though.

To reduce the problem’s dimensionality,

closed or maximal frequent itemsets may

be mined instead of all frequent itemsets. A

frequent itemset I is closed if it contains all

the items that occur in every transaction in

which I is present. A maximal frequent

itemset is a frequent itemset that has no frequent

superset.

Most closed frequent itemset mining algorithms

exploit concept lattices. The main incremental

approach [11] manages lattice updates (unchanged,

updated and inserted nodes into the lattice). However,

its complexity is quadratic with respect to the number

of elements in the concept lattice [12] and the number

of closed frequent itemsets may become very large

with respect to database size [13].

To the best of our knowledge, the only incremental

maximal itemset frequent mining approach, GenMax,

exploits a backtracking algorithm to prune the search

space as soon as possible with respect to previous

iterations [14]. This algorithm also improves support

computation and optimizes short term mining.

3. Dynamic index selection strategy

In this section, we present the extension of our

automatic join index selection method based on

frequent itemset mining [2]. Its principle is to exploit

transaction logs (i.e., the set of all queries processed by

the system) to recommend an index configuration

improving data access time.

This new approach is subdivided into six steps

(Figure 1): (1) a workload Q we suppose

representative of system usage is extracted from

system logs; (2) so-called indexable attributes are

extracted from Q and structured in a suitable data

mining context QA; (3) incremental frequent itemset

mining is applied on QA, exploiting a knowledge base

P that stores information regarding previous

executions of this step; (4) emerged (new) frequent

itemsets are analyzed to generate new candidate

indexes; declined (now infrequent) itemsets

correspond to indexes to be dropped; retained (still

frequent) itemsets correspond to candidate indexes to

retain; the whole set of candidate indexes is labeled IC;

(5) since disk space is constrained, IC is pruned using

cost models; (6) the resulting index configuration I is

finally effectively updated. The whole process then

reiterates after a period of time set by the

Figure 1. Dynamic index selection strategy

administrator. We detail its steps in the following

sections.

3.1. Workload extraction

System workload is typically accessible from the

host database management system’s transaction log. A

given workload Q is supposed representative if it has

been measured during a time period the warehouse

administrator judges sufficient to anticipate upcoming

transactions.

Since we are more particularly interested in

analytical query performance and not warehouse

maintenance, we only consider interrogation query

workloads in this paper. These queries are typically

composed of join operations between the fact table and

dimensions, restriction predicates, and aggregation and

grouping operations. More formally, an analytic query

q may be expressed as follows in relational algebra:

q = πG, M σR (F >< D1 >< … >< Dn); where G is the set

of attributes from dimensions D1, …, Dn that are

present in q's grouping clause, M is a set of aggregate

measures from fact table F and R a conjunction of

predicates over dimension attributes.

3.2. Workload analysis

Attributes aj that may support indexes belong to the

sets G and R defined in Section 3.1 [7, 8, 9]. We

reference them in a “query-attribute” binary matrix QA

whose rows represent workload queries qi ∈ Q and

whose columns are indexable attributes aj. The general

term QAij of this matrix is equal to one if attribute aj is

present in query qi, and to zero otherwise. This data

structure or extraction context directly corresponds to

attribute-value tables that are exploited by data mining

algorithms.

3.3. Maximal frequent itemset mining

In the static version of our approach, we have used

the Close closed frequent itemset mining algorithm [4]

to obtain a set of candidate indexes IC. In this dynamic

extension, we replace it by the GenMax incremental,

maximal frequent itemset mining algorithm [14].

In our context, workload Q can be very large and

evolves with time. We selected GenMax because it can

determine, in a short time, all maximal frequent

itemsets from large databases, by optimizing support

computation and infrequent itemset pruning through a

backtracking process. Moreover, queried data from Q

are typically correlated, which leads to a dense

extraction context QA. Since incremental frequent

itemset mining may produce a number of closed

frequent itemsets exponentially greater than the

number of maximal frequent itemsets [13], GenMax

helps produce a smaller quantity of candidate indexes,

which reduces the dimensionality of index selection

and improves scalability.

In summary, GenMax, in a first iteration, exploits

an input transaction database D to produce a

knowledge base P that stores, e.g., the list of maximal

frequent itemsets from D, non-maximal, but frequent

itemsets, the number of transactions in D, etc. P is then

exploited and updated in the next iterations. At each of

these iterations, the list of new transactions d+ and the

list of deleted transactions d– are used to compute the

updated transaction database ∆ = (D ∪ d+) – d–.

Frequent itemset computation is then performed on ∆,

using P, to minimize accesses to D.

3.4. Candidate indexes generation

The application of GenMax onto matrix QA helps

obtain: a set I+ of emerged frequent itemsets, which

were infrequent in P but become frequent in ∆; a set I–

of declined frequent itemsets, which were frequent in

P but become infrequent in ∆; and a set I0 of retained

frequent itemsets, which are frequent in both P and ∆.

Then, the set of candidate indexes is IC = (I ∪ I+) – I–,

where I is the current index configuration. Note that I0

is not used to compute IC, but is nonetheless recorded

in P.

3.5. Candidate indexes selection

The number of candidate indexes in IC is generally

proportional to the size of workload Q. Thus, it is not

feasible to build all the proposed indexes because of

system limitations (e.g., a limited number of indexes

per table) or storage space constraints. To circumvent

these limitations, we exploit cost models that help

greedily select the most advantageous indexes. These

models estimate storage space occupied by bitmap join

indexes, data access cost whether using these indexes

or not, and index maintenance cost. Due to space

constraints, we cannot elaborate on these cost models

in this paper, but the interested reader can refer to [2]

for complete details.

3.6. Index configuration update

Applying index selection (Section 3.5) on IC outputs

a new index configuration I’. To update the current

index configuration I, we must eventually: create all

indexes i ∈ I’ such that i ∉ I, i.e., all emerged indexes

i ∈ (I’ – I); drop all indexes i ∈ I such that i ∉ I’, i.e.,

all declined indexes i ∈ (I – I’); and reset I to I’.

4. Experiments

4.1. Experimental conditions

To illustrate the advantage of our dynamic index

selection approach over our static one, we ran tests on

a 1 GB data warehouse implemented within Oracle 9i,

on a Pentium Dual Core 1.6 GHz PC with 1 GB RAM

and a 120 GB IDE disk under Windows XP Pro. Our

test data warehouse is derived from Oracle's, whose

classical sales star schema is composed of one fact

table and five dimensions. We have defined an initial

workload Q1 of 30 analytical queries involving

aggregation operations and multiple joins between the

fact table and dimension tables. Then, we defined four

evolutions of Q1 (Q2 to Q5), so that some frequent

attribute sets emerge, some decline, and others remain

frequent. Due to space constraints, we reproduce here

neither the full data warehouse schema nor the detail

of each workload, but they are available on demand.

4.2. Results

We ran our tests for each workload Q1 to Q5;

without indexing (for reference), with static and

dynamic indexing; and for an arbitrary minimum

support value (when mining frequent itemsets) of 0.05

that is low enough to produce a fair number of

candidate indexes. In each of these tests, we measured

index selection time (with both our static and dynamic

approaches), index creation (static approach) or update

(dynamic approach) time under Oracle, and workload

execution time. The results we obtained are plotted in

Figures 2, 3 and 4, respectively. All three figures

feature workloads (Q1 to Q5) on the X axis and

execution times on the Y axis (in milliseconds, seconds

and minutes, respectively).

Figure 2 shows that the overhead of our dynamic

approach, in term of index selection alone, is about 5.2

times greater than that of our static approach, on an

average. However, this is not due to the algorithms’

intrinsic complexity, but to our implementations. The

static approach has been implemented and optimized in

PHP, while our newer, dynamic approach is

implemented in Java (which appears slower than PHP

on a standalone workstation) and not optimized yet.

Both their execution times remain in the same order of

magnitude (hundreds of milliseconds here), though.

On the other hand, Figure 3 shows that index

update time is about 9.5 faster with our dynamic

approach on an average, and even about 11.5 times

faster if Q1’s execution (and thus initial index

configuration creation) is excluded from computation.

Since index update runs in tens of seconds in our

examples, the main overhead of our method lies here,

and the enhancement brought by dynamicity is

obvious.

Figure 4 eventually shows that exploiting maximal

frequent itemsets (dynamic approach) instead of closed

frequent itemsets (static approach) helps select more

pertinent indexes, since response time is slightly better

(about 13% on an average) in the dynamic case. This is

presumably because fewer candidate indexes are

generated and then selected, which simplifies index

choice at query optimization time.

0

1000

2000

3000

4000

5000

6000

Q1 Q2 Q3 Q4 Q5

(m
s
)

Static Dynamic

Figure 2. Index selection time

0

20

40

60

80

100

120

140

160

180

200

Q1 Q2 Q3 Q4 Q5

(s
)

Static Dynamic

Figure 3. Index creation/update time

0

20

40

60

80

100

120

140

160

180

200

Q1 Q2 Q3 Q4 Q5

(m
in

)

No index Static Dynamic

Figure 4. Workload execution time

)
(m

in
)

5. Conclusion and perspectives

In this paper, we have presented a dynamic bitmap

join index selection method for data warehouses that is

based on incremental frequent itemset mining from a

given query workload. The main advantage of this

approach is that it helps update the set of selected

indexes when workload evolves instead of recreating it

from scratch.

Our first experiments (which we aim to extend,

notably by scaling them up, to complete our

approach’s validation) indeed show that introducing

dynamicity helps reduce index maintenance overhead.

Furthermore, exploiting maximal instead of closed

frequent itemsets also helps improve the index

configuration’s quality, and hence query response

time.

Furthermore, note that our approach is purposely

modular and generic. Each step (frequent itemset

mining, candidate indexes selection…) exploits

interchangeable tools. The data mining technique and

cost models we use are indeed not related to any

system in particular and could easily be replaced by

other, more efficient methods if necessary.

Eventually, a critical issue when using automatic,

dynamic optimization strategies is to master system

overhead, and in particular determine when the

administrator should run the incremental index update

process. Pursuing this lead is our main research

perspective. Studies related to session detection that

are based on entropy computation [15] could be very

useful for this sake.

References

[1] R. Kimball, and M. Ross, The Data Warehouse Toolkit,

Second edition, John Wiley & Sons, Hoboken, 2002.

[2] K. Aouiche, J. Darmont, O. Boussaïd, and F. Bentayeb,

“Automatic Selection of Bitmap Join Indexes in Data

Warehouses”, 7th International Conference on Data

Warehousing and Knowledge Discovery (DaWaK 05),

Copenhagen, Denmark; LNCS, Vol. 3589, Springer,

Heidelberg, 2005, pp. 64-73.

[3] S. Sarawagi, “Indexing OLAP Data”, Data Engineering

Bulletin, Vol. 20, No. 1, IEEE Computer Society, Los

Alamitos, 1998, pp. 36-43.

[4] N. Pasquier, Y. Bastide, R. Taouil, and L. Lakhal,

“Efficient mining of association rules using closed itemset

lattices”, Information Systems, Vol. 24, No. 1, Elsevier,

Amsterdam, 1999, pp. 25-46.

[5] M.R. Frank, E. Omiecinski, and S.B. Navathe, “Adaptive

and automated index selection in RDBMS”, 3rd International

Conference on Extending Database Technology (EDBT 92),

Vienna, Austria; LNCS, Vol. 580, Springer, Heidelberg,

1992, pp. 277-292.

[6] S. Choenni, H.M. Blanken, and T. Chang, “On the

selection of secondary indices in relational databases”, Data

Knowledge Engineering, Vol. 11, No. 3, Elsevier,

Amsterdam, 1993, pp. 207-238.

[7] S. Chaudhuri, and V.R. Narasayya, “An efficient cost-

driven index selection tool for Microsoft SQL server”, 23rd

International Conference on Very Large Data Bases

(VLDB 97), Santiago de Chile, Chile, Morgan Kaufmann,

San Francisco, 1997, pp. 146-155.

[8] G. Valentin, M. Zuliani, D. Zilio, G. Lohman, and

A. Skelley, “DB2 advisor: An optimizer smart enough to

recommend its own indexes”, 16th International Conference

on Data Engineering (ICDE 00), San Diego, USA, IEEE

Computer Society, Los Alamitos, 2000, pp. 101-110.

[9] M. Golfarelli, S. Rizzi, and E. Saltarelli, “Index selection

for data warehousing”, 4th International Workshop on Design

and Management of Data Warehouses (DMDW 02), Toronto,

Canada; CEUR Workshop Proceedings, Vol. 58, CEUR-

WS.org, Aachen, 2002, pp. 33-42.

[10] J. Kratika, I. Ljubic, and D. Tosic, “A genetic algorithm

for the index selection problem”, Applications of

Evolutionary Computing (EvoWorkshops 03), Essex, UK;

LNCS, Vol. 2611, Springer, Heidelberg, 2003, pp. 281-291.

[11] P. Valtchev, R. Missaoui, R. Godin, and M. Meridji,

“Generating frequent itemsets incrementally: two novel

approaches based on Galois lattice theory”, Journal of

Experimental & Theoretical Artificial Intelligence, Vol. 14,

Taylor & Francis, London, 2002, pp. 115-142.

[12] P. Valtchev, R. Missaoui, M.Rouane-Hacene, and

R. Godin, “Incremental maintenance of association rule

bases”, 2nd Workshop on Discrete Mathematics and Data

Mining, San Francisco, USA, 2003.

[13] M.J. Zaki, and K. Gouda, “Fast Vertical Mining Using

Diffsets”, 9th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining (KDD 03),

Washington DC, USA, ACM, New York, 2003, pp. 326-335.

[14] K. Gouda, and M.J. Zaki, “GenMax: An Efficient

Algorithm for Mining Maximal Frequent Itemsets”, Data

Mining and Knowledge Discovery, Vol. 11, Springer,

Heidelberg, 2005, pp 1-20.

[15] Q. Yao, J. Huang, and A. An, “Machine Learning

Approach to Identify Database Sessions Using Unlabeled

Data”, 7th International Conference on Data Warehousing

and Knowledge Discovery (DaWaK 05), Copenhagen,

Denmark; LNCS, Vol. 3589, Springer, Heidelberg, 2005,

pp. 254-255.

