Dynamic Indexing for Multidimensional
Non-ordered Discrete Data Spaces Using a
Data-Partitioning Approach

GANG QIAN

University of Central Oklahoma

QIANG ZHU

The University of Michigan - Dearborn
QIANG XUE and SAKTI PRAMANIK
Michigan State University

Similarity searches in multidimensional Non-ordered Discrete Data Spaces (NDDS) are becoming
increasingly important for application areas such as bioinformatics, biometrics, data mining and
E-commerce. Efficient similarity searches require robust indexing techniques. Unfortunately, ex-
isting indexing methods developed for multidimensional (ordered) Continuous Data Spaces (CDS)
such as the R-tree cannot be directly applied to an NDDS. This is because some essential geo-
metric concepts/properties such as the minimum bounding region and the area of a region in a
CDS are no longer valid in an NDDS. Other indexing methods based on metric spaces such as
the M-tree and the Slim-trees are too general to effectively utilize the special characteristics of
NDDSs, resulting in non-optimized performance. In this paper, we propose a new dynamic data-
partitioning-based indexing technique, called the ND-tree, to support efficient similarity searches
in an NDDS. The key idea is to extend the relevant geometric concepts as well as some indexing
strategies used in CDSs to NDDSs. Efficient algorithms for ND-tree construction and techniques
to solve relevant issues such as handling dimensions with different alphabets in an NDDS are pre-
sented. Our experimental results on synthetic data and real genome sequence data demonstrate
that the ND-tree outperforms the linear scan, the M-tree and the Slim-trees for similarity searches
in multidimensional NDDSs. A theoretical model is also developed to predict the performance of
the ND-tree for random data.

Categories and Subject Descriptors: H.2.2 [Database Management|: Physical Design— Access
methods

General Terms: Algorithms, Performance, Theory

Additional Key Words and Phrases: Non-ordered discrete data spaces, Hamming distance, simi-
larity search, multidimensional index tree

This is a preliminary release of an article accepted by ACM Transactions on Database Systems.
The definitive version is currently in production at ACM and, when released, will supersede this
version.

Research supported by the US National Science Foundation (under grants # IIS-0414576 and #
11S-0414594), Michigan State University and The University of Michigan.

Authors’ current addresses: G. Qian, Department of Computer Science, University of Cen-
tral Oklahoma, Edmond, OK 73034, USA; email: ggian@Qucok.edu; Q. Zhu, Department
of Computer and Information Science, The University of Michigan, Dearborn, MI 48128,
USA; email: qgzhu@umich.edu; Q. Xue and S. Pramanik, Department of Computer Sci-
ence and Engineering, Michigan State University, East Lansing, MI 48824, USA; email:
{xueqiang,pramanik } @cse.msu.edu.

Permission to make digital/hard copy of all or part of this material without fee for personal
or classroom use provided that the copies are not made or distributed for profit or commercial
advantage, the ACM copyright/server notice, the title of the publication, and its date appear, and
notice is given that copying is by permission of the ACM, Inc. To copy otherwise, to republish,
to post on servers, or to redistribute to lists requires prior specific permission and/or a fee.

© 2006 ACM 0362-5915/2006,/0300-0001 $5.00

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006, Pages 1-41.

2 . Gang Qian et al.

1. INTRODUCTION

There is an increasing demand for similarity searches in multidimensional Non-
ordered Discrete Data Spaces (NDDS) from application areas such as bioinformat-
ics, biometrics, data mining and E-commerce. For example, in genome sequence
databases, sequences with alphabet A = {a, g,t,c} are broken into substrings (also
called intervals) of some fixed-length d for similarity searches [Kent 2002; Xue
et al. 2004]. Each interval can be considered as a vector in a d-dimensional data
space. For example, interval “aggcggtgatctgggccaatactga” is a vector in the 25-
dimensional data space, where the i-th character is a letter chosen from alphabet
A in the i-th dimension. The main characteristic of such a data space is that the
data values in each dimension are discrete and have no ordering. Other examples
of non-ordered discrete values in a dimension of an NDDS are discrete data types
such as gender, complexion, profession and user-defined enumerated types. The
databases that require searching information in an NDDS can be very large (e.g.,
the well-known genome sequence database, GenBank, contains over 80 GB genomic
data). To support efficient similarity searches in such databases, robust indexing
techniques are needed.

Many multidimensional indexing methods have been proposed for Continuous
Data Spaces (CDS), where data values in each dimension are continuous and can
be ordered along an axis. These techniques can be classified into two categories:
data-partitioning-based and space-partitioning-based. The techniques in the first
category such as the R-tree [Guttman 1984], the R*-tree [Beckmann et al. 1990],
the SS-tree [White and Jain 1996], the SR-tree [Katayama and Satoh 1997] and the
X-tree [Berchtold et al. 1996] split an overflow node by partitioning the set of its
indexed data objects (according to their distribution). The techniques in the second
category such as the K-D-B tree [Robinson 1981] and the LSD”-tree [Henrich 1998],
on the other hand, split an overflow node by partitioning its representing data space
(typically via a splitting point in a dimension). The Hybrid-tree that incorporates
the strengths of indexing methods in both categories was proposed in [Chakrabarti
and Mehrotra 1999]. However, all the above techniques rely on a crucial property
of a CDS; that is, the data values in each dimension can be ordered and labeled on
an axis. Some essential geometric concepts such as rectangle, sphere, region area,
and so on are no longer valid in an NDDS, where data values in each dimension
cannot even be labeled on an (ordered) axis. Hence the above techniques cannot
be directly applied to an NDDS.

If the alphabet for every dimension in an NDDS is the same, a vector in such
a space can be considered as a string over the alphabet. In this case, traditional
string indexing methods, such as the Tries [Knuth 1973; Clement et al. 2001], the
Prefix B-tree [Bayer and Unterauer 1977] and the String B-tree [Ferragina and
Grossi 1999], can be utilized. However, most of these string indexing methods
like the Prefix B-trees and the String B-trees were designed for exact searches
rather than similarity searches. The Tries does support similarity searches, but its
memory-based feature makes it difficult to apply to large databases. Moreover, if
the alphabets for different dimensions in an NDDS are different, vectors in such a
space can no longer be considered as strings over an alphabet. The string indexing
methods are inapplicable in this case.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 3

A number of so-called metric trees have been introduced in recent years [Uhlmann
1991; Chiueh 1994; Brin 1995; Bozkaya and Ozsoyoglu 1997; Ciaccia et al. 1997;
Chavez et al. 2001; Traina et al. 2002; Dohnal et al. 2003; Zhou et al. 2003; Skopal
et al. 2004]. These trees only consider relative distances of data objects to orga-
nize and partition the search space and apply the triangle inequality property of
distances to prune the search space. These techniques, in fact, could be applied
to support similarity searches in an NDDS. However, most of such trees are static
and require costly reorganizations to prevent performance degradation in case of
insertions and deletions [Uhlmann 1991; Chiueh 1994; Brin 1995; Bozkaya and Oz-
soyoglu 1997]. On the other hand, these techniques are very generic with respect
to the underlying data spaces. They only assume the knowledge of relative dis-
tances of data objects and do not effectively utilize the special characteristics, such
as occurrences and distributions of dimension values, of data objects in a specific
data space. Hence, even for dynamic indexing techniques of this type, such as the
M-tree [Ciaccia et al. 1997] and its variants [Traina et al. 2002; Zhou et al. 2003;
Skopal et al. 2004], their retrieval performance is not optimized.

To support efficient similarity searches in an NDDS, we propose a new indexing
technique, called the ND-tree. The key idea is to extend the essential geometric
concepts (e.g., minimum bounding rectangle and area of a region) as well as some
effective indexing strategies (e.g., node splitting heuristics in the R*-tree) in CDSs
to NDDSs. There are several technical challenges for developing an indexing method
for an NDDS. They are due to: (1) no ordering of values on each dimension in
an NDDS; (2) non-applicability of popular continuous distance measures such as
Euclidean distance and Manhattan distance to an NDDS; (3) high probability of
vectors to have the same value on a particular dimension in an NDDS; and (4) the
limited choices of splitting points on each dimension. The ND-tree is developed in
such a way that these difficulties are properly addressed. Our extensive experiments
and theoretical analysis demonstrate that the ND-tree can support efficient searches
in NDDSs.

The rest of this paper is organized as follows. Section 2 introduces the essential
concepts and notation for the ND-tree. Section 3 discusses the details of the ND-tree
including the tree structure, its associated algorithms and a performance estimation
model. Section 4 presents our experimental results. Section 5 gives the conclusions
and future work.

2. CONCEPTS AND NOTATION

As mentioned above, to develop the ND-tree, some essential geometric concepts in
CDSs need to be extended to NDDSs. These extended concepts are introduced in
this section.

Let A; (1 < i < d) be an alphabet consisting of a finite number of letters/elements.
It is assumed that there is no ordering among letters in A;. A d-dimensional non-
ordered discrete data space (NDDS) Qg4 is defined as the Cartesian product of d
alphabets: Q4 = A1 X As X ... x Ag. A; is called the i-th dimension alphabet of Q4.
The area (or size) of space Qg is defined as: area(Qq) = |A1]*|Asz| ... x| Aql|, which
in fact indicates the number of vectors in the space. Note that, in general, A;’s may
be different for different dimensions. For simplicity, we assume that the alphabets

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

4 . Gang Qian et al.

for all the dimensions are the same unless stated otherwise. However, as we will
see in Section 3.2.7, our discussion can be easily extended to handle the situation
where alphabets of the dimensions in an NDDS are different. If all the dimensions
of space 24 have the same alphabet A, we simply term A as the alphabet of Q.

Let a; € A; (1 < i < d). The tuple o = (a1,as,...,aq) (or simply “ajas...aq”)
is called a vector in Q4. Let S; C A; (1 < i < d). A discrete rectangle R in g
is defined as the Cartesian product: R = S7 X Sy X ... X Sg. S; is called the i-th
(dimension) component set of R. The length of the i-th dimension edge of R is
length(R,i) = |S;|. The area of R is defined as: area(R) = |Sy| * |Sa| * ... * |Sql.

Let R =51 xSy x ... x Sgand R' = 5] x S5 x ... x 8 be two discrete rectangles in
Qg. The overlap RN R’ of R and R’ is the Cartesian product: RN R’ = (S1NS]) x
(S2NS%) x ... x (SaNSY). Clearly, area(RNR') = |S1 N S| *[S2NS5|*...%]|SgN S,
If R=RNR (ie, S; €S, for 1 <i<d), R issaid to be contained in (or covered
by) R'. Based on this containment relationship, the discrete minimum bounding
rectangle (DMBR) of a set of given discrete rectangles G = { Ry, Ra, ..., R, } can
be defined as follows:

DMBR(G) =min{ R | Ris a discrete rectangle containing
every R e G (1<i<mn)} (1)

where
R’ if area(R') < area(R")

R" otherwise

min{R', R"} = {

for discrete rectangles R’ and R”. In fact, if R; = Sij1 X Si2 X ... X S;q, the DMBR
of set G can be calculated as follows:

DMBR(G) = (U?leil) X (U?:lsig) X ... X (U?leid). (2)

The distance measure between two vectors in a data space is important for build-
ing a multidimensional index tree. Unfortunately, those widely-used continuous
distance measures such as the Fuclidean distance cannot be applied to an NDDS.
One might think that a simple solution to this problem is to map the letters in
the alphabet for each dimension to a set of (ordered) numerical values, and then
apply the Euclidean distance. For example, one could map ‘a’, ‘g’, ‘¢’ and ‘¢’ in
the alphabet for a genome sequence database to numerical values 1, 2, 3 and 4,
respectively. However, this approach would change the semantics of the elements
in the alphabet. For example, the above mapping for the genomic bases (letters)
would make the distance between ‘a’ and ’¢g’ closer than that between ’a’ and ’¢’,
which is not the original semantics of the genomic bases. Hence, unless it is for
exact match, such a transformation approach is not a proper solution.

One suitable distance measure for NDDSs is the Hamming distance. That is, the
distance dist(aq, as) between two vectors o1 and g in an NDDS is the number of
dimensions on which the corresponding components of «; and as are different. From
the Hamming distance, the (minimum) distance between a vector a = (a1, ag, ..., aq)
and a discrete rectangle R = 57 X Sg X ... X S4 can be defined as:

d
dist(co, R) = Z f(ai, Ss) (3)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 5

where

0 ’Lf a; €8S;
1 otherwise.

flai, Si) —{

This distance measures how many components of vector a are not contained in the
corresponding component sets of rectangle R.

Using the Hamming distance, a range query range(og,rq) can be defined as
{ a | «aisawvector in the underlying NDDS and dist(cg, o) < rq }, where o,
and 7, are the given query vector and search distance (range), respectively. An
exact query is a special case of a range query when r, = 0. A range query with
rq > 0 gives a similarity search, i.e., retrieving the vectors with at most r, different
components from the query vector. Distance formula (3) is used to check if the
DMBR of a tree node may contain vectors that are within the search range of a
given query vector.

ExAMPLE 1. Consider a genome sequence database. Assume that the sequences
in the database are broken into intervals of length 25 for similarity searches. As we
mentioned before, each interval can be considered as a vector in a 25-dimensional
NDDS Q5. The alphabets for all dimensions in {95 are the same, ie., 4; =
A = {a,g,t,c}(1 < i < 25). The space size: area(Q2;) = 425 ~ 1.126 x 10%°.
R = {g,t,c} x {g,t} x ... x {t,c} and R’ = {a,t,c} x {a,c} x ... x {c} are two
discrete rectangles in o5, with areas 3 % 2 % ... x 2 and 3 % 2 % ... x 1, respectively.
The overlap of R and R' is: RN R’ = {t,c} x § X ... x {c}, where (} denotes the
empty set. Given vector a = “aggcggtgatctgggccaatactga” in a5, range query
range(a, 2) retrieves all vectors that differ from « on at most 2 dimensions from
the database. The distance dist(«, R) between « and R is: 0+1+4...40. O

Note that, although the editor distance has been used for searching genome sequence
databases, lately the Hamming distance is also used for searching large genome
sequence databases in a filtering step [Kent 2002; Xue et al. 2004].

3. THE ND-TREE

The ND-tree is designed for NDDSs. It is inspired by some popular multidimen-
sional indexing techniques including the R-tree and its variants (the R*-tree in
particular). Hence it has some similarities to the R-tree and the R*-tree. It is a
data-partitioning-based indexing technique. The distinctive feature of the ND-tree
is that it is based on the NDDS concepts such as discrete rectangles and their areas
and overlaps defined in Section 2. Furthermore, its development takes some special
characteristics of NDDSs into consideration as we will see.

3.1 The Tree Structure

Assume that the keys to be indexed for a database are the vectors in an NDDS
Qg over an alphabet A. A leaf node in an ND-tree contains an array of entries of
the form (op, key), where key is a vector in Q4 and op is a pointer to the object
represented by key in the database. A non-leaf node N in an ND-tree contains an
array of entries of the form (e¢p, DM BR), where cp is a pointer to a child node
N’ of N in the tree and DM BR is the discrete minimum bounding rectangle of
N’. The DMBR of a leaf node N” is the DMBR of vectors indexed in N”; that

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

6 . Gang Qian et al.

is, each component set of the DMBR consists of all elements of the vectors on the
corresponding dimension. The DMBR of a non-leaf node N’ is the DMBR of the
set of DMBRs of the child nodes of N’, following Formula (2).

Let M and m (2 < m < [M/2]) be the maximum number and the minimum
number of entries allowed in each node of an ND-tree, respectively. Note that,
since the spaces required for an entry in a leaf node and an entry in a non-leaf
node are usually different while the space allocated to each node (i.e., block size)
is assumed to be the same, in practice, the maximum number M; (the minimum
number m;) for a leaf node can be different from the maximum number M,, (the
minimum number m,,) for a non-leaf node. To simplify the description of the tree
construction algorithms, we use the same M (m) for both leaf and non-leaf nodes.
However, our discussions are still valid if M (m) is assumed to be M; (m;) when a
leaf node is considered and M,, (m,,) when a non-leaf node is considered.

An ND-tree is a balanced tree satisfying the following conditions: (1) the root
has at least two children unless it is a leaf, and it has at most M children; (2) every
non-leaf node has between m and M children unless it is the root; (3) every leaf
node contains at least m entries unless it is the root, and it contains at most M
entries; (4) all leaves appear at the same level. Figure 1 shows an example of the
ND-tree for a genome sequence database.

Level 1 (root): ‘ AAAAAA ‘ {ag}x{acg.}x.. ‘ {t.c}x{acgt}x.. ‘ ‘
Level 2: ‘ ‘ {agtx{g,.c}x.. ‘ {agtx{at}x... ‘ ‘ ‘ ‘ {t}x{cg}x.. ‘ {c}x{ac,g)x...‘ ‘
Level 3 (leaves): ... ‘ 444444 ‘ "at.." |"ga.." ‘ ‘ ‘ ‘ "t ‘ ‘

Fig. 1. An example of the ND-tree

3.2 Building the ND-Tree

To build an ND-tree, algorithms to insert/delete/update a data object (vector in
q) into/from/in the tree are needed. In this paper, our discussion is focused
on the insertion issues and its related algorithms. However, for completeness, a
deletion algorithm for the ND-tree is also described. The update operation can be
implemented by a deletion followed by an insertion.

3.2.1 Insertion Procedure. The task of the insertion procedure is to insert a
new vector a into a given ND-tree. It determines the most suitable leaf node for
accommodating « by invoking Algorithm ChooseLeaf. If the chosen leaf node
overflows after accommodating «, Algorithm SplitNode is invoked to split it into
two new nodes. The split propagates up the ND-tree if the splitting of the current
node causes the parent node to overflow. If the root overflows, a new root is created
to accommodate the two nodes resulting from the splitting of the old root. The
DMBRs of all affected nodes are adjusted in a bottom-up fashion accordingly.

As a dynamic indexing method, the two algorithms ChooseLeaf and SplitNode
invoked in the above insertion procedure are very important. The strategies used

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 7

in these algorithms determine the data organization in the tree and are crucial to
the performance of the tree. The details of these algorithms will be discussed in
the following subsections.

3.2.2 Choosing Leaf Node. The purpose of Algorithm ChooseLeaf is to find
an appropriate leaf node to accommodate a new vector. It starts from the root
node and follows a path to the identified leaf node. At each non-leaf node, it has to
decide which child node to follow. We have applied several heuristics for choosing
a child node in order to obtain a tree with good performance.

Let Ey, Es, ..., E, be the entries in the current non-leaf node N, where m <p <
M. The overlap of an entry Ej (1 < k < p) with other entries is defined as:

P
overlap(Ex.DMBR) = Z area(Ey. DMBRN E;.DM BR).
i=1,i#k
One major problem in high dimensional indexing methods for CDSs is that as
the number of dimensions becomes larger, the amount of overlapping among the
bounding regions in the tree structure increases significantly, leading to a dramatic
degradation of the retrieval performance of the tree [Berchtold et al. 1996; Li 2001].
Our experiments (see Section 4) have shown that NDDSs also have a similar prob-
lem. Hence we give the highest priority to the following heuristic:

IH; : Choose a child node corresponding to the entry with the least enlargement
of overlap(E,.DM BR) after the insertion.

Unlike a multidimensional index tree in a CDS, possible values for the overlap
of an entry in the ND-tree (for an NDDS) are limited, which implies that ties may
occur frequently. Therefore, other heuristics should be applied to resolve ties. Based
on our experiments (see Section 4), we have found that the following heuristics,
which were used in some existing multidimensional indexing techniques [Beckmann
et al. 1990], are also effective in improving the performance of an ND-tree:

IHy : Choose a child node corresponding to the entry Ej with the least enlargement
of area(E,.DM BR) after the insertion.

IH3 : Choose a child node corresponding to the entry Ej with the minimum
area(Ey.DMBR).

Using the above heuristics, Algorithm ChooseLeaf is given as follows:

ALGORITHM 3.1. : ChooseLeaf
Input: (1) vector a to be inserted; (2) root node T of an ND-tree.
Output: leaf node N chosen for accommodating o.
Method:
let N =1T;
while N is not a leaf node do
let S7 be the set of child nodes of N determined by I Hj;
if |S1| =1 then
let N be the unique child node in Si;
else if |S2| = 1 where Sy C S; determined by IHy then
let N be the unique child node in So;

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

NSt W=

8 . Gang Qian et al.

8. else if |S3| = 1 where S3 C Sy determined by [H3 then
9. let N be the unique child node in Ss;

10. else let N be a child node randomly chosen from Ss;
11. end if;

12. end while;

13. return N.

3.2.3 Splitting Overflow Node. Let N be an overflow node with a set of M +
1 entries ES = {E1, Ea, ..., Epr11}. A partition P of N is a pair of entry sets
P = {ESl,ESg} such that: 1) ES, UES, = ES; 2) ESiNESy = (Z); and 3)
m < |ESi|, m < |ESs|. Let ES;.DMBR and ES2.DMBR be the two DMBRs
for the DMBRs of the entries in ES; and ESs, respectively. If area(overlap(P)) =
area(ES1.DMBRNES;.DMBR) =0, P is said to be overlap-free.

Algorithm SplitNode takes an overflow node N as the input and splits it into
two new nodes N7 and N, whose entry sets are from a partition defined above. Since
there are usually many possible partitions for a given overflow node, a good partition
that leads to an efficient ND-tree should be chosen for splitting the overflow node.
The node splitting procedure is described as follows:

ALGORITHM 3.2. : SplitNode
Input: overflow node N of an ND-tree.
Output: two new nodes N7 and No.
Method:
1. invoke Algorithm ChoosePartitionSet on N to find a set A of candidate
partitions for V;
2. invoke Algorithm ChooseBestPartition to choose a best partition BP
from A;
3. generate two new nodes N and Na that contain the two entry sets of BP,
respectively;
4. return N; and Ns.

In the above procedure, Algorithm ChoosePartitionSet determines a set of can-
didate partitions to consider, while Algorithm ChooseBestPartition chooses the
best partition from the candidates based on several heuristics. The details of these
two algorithms are given below.

3.2.4 Choosing Candidate Partitions. To find a good partition for splitting an
overflow node IV, we need to consider a set of candidate partitions. It is worth noting
that, in a CDS, some partitions can be easily ruled out as good candidates based
on the ordering and continuous properties of the space. However, in an NDDS,
a similar judgment cannot be made due to lack of the corresponding properties.
For example, assume that we want to split a leaf node with 4 entries/vectors (the
associated database object pointers are omitted here): a; = (z1,91), a2 = (z2,y2),
as = (x3,y3) and g4 = (24, y4) in a 2-dimensional space Hs into two nodes with 2
entries in each (assuming the minimum space utilization is 35%). If Hy is a CDS
and x1 < T3 < 3 < T4; Y1 < Y2 < Y3 < ya (see Figure 2), one can easily determine
that the only overlap-free (good) partition is P = {{a1, a2}, {as,as}} and no
other partition needs to be considered, based on the ordering of the given values in
each dimension. However, if Hy is an NDDS and the component values (i.e., z; 's

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 9

M Partition P= {{al, a2}, {a3, a4}} Partition P= {{al, a2}, {a3, a4}}

ad(x4,yd)
DMBR2: { (x3y3), (x3,y4), (x4,y3), (x4,y4) }

(for the 2nd entry set)

MBR2

a3(x3,y3)
DMBR1: { (x1y1), (x1y2), (x2,y1), (x2,y2) }
a2(x2,y2)
MBR1 (for the 1st entry set)
al(x1yl)
X
Partition Pand its MBRsinaCDS Partition P and its DMBRs in an NDDS

Fig. 2. Comparison of partitions in CDS and NDDS

and y; ’s) of the 4 given vectors are distinct in each dimension, any partition with
2 entries in each entry set is overlap-free. In other words, entries (vectors) can be
grouped in any way without causing overlap in this case. Hence an NDDS provides
less information to reduce the number of candidate partitions for consideration,
leading to a harder splitting task in general.

One exhaustive way to generate all possible candidate partitions for an overflow
node N is as follows. For each permutation of the M + 1 entries in N, first j
(m < j < M —m+1) entries are put in the first entry set of a partition P;, and
the remaining entries are put in the second entry set of P;. Even for a small M,
say 50, this approach would have to consider 51! ~ 1.6 x 106 permutations of the
entries in V. Although this approach is guaranteed to find an optimal partition, it
is not feasible in practice. A more efficient method to generate a (smaller) set of
candidate partitions is required.

We notice that the size of alphabet A for an NDDS is usually small. For example,
|A] = 4 for a genome sequence database. Let I1,ls,...,14) be the letters of alphabet
A. A permutation of A is a (ordered) list of letters in A: < I, liy, .oy by >
where [;, € A and 1 < k < |A|. For example, for A = {a,g,t,c} for a genome
sequence database, < g,c,a,t > and < t,a,c, g > are two permutations of A. Since
|A| = 4, there are only 4! = 24 permutations of A. Based on this observation,
we have developed the following more efficient algorithm for generating candidate
partitions.

ALGORITHM 3.3. : ChoosePartitionSet I
Input: overflow node N of an ND-tree for an NDDS €, over alphabet A.
Output: a set A of candidate partitions.
Method:

1. let A =0

2. for dimension D =1 to d do

3. for each permutation 8:< Iy, 12, ...,{|4 > of A do

4. set up an array of buckets (lists): bucket[l .. 4 % |A]];
// bucket[(i — 1) x4 + 1], ..., bucket[(i — 1) * 4 + 4] are for letter I;
/] (1< < |A]
5. for each entry E in N do
6. let I; be the foremost letter in § that the D-th component set (Sp) of

DMBR of E has;
7. if Sp contains only /; then

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

10 : Gang Qian et al.

8. put E into bucket[(i — 1) x4 + 1];

9. else if Sp contains only /; and ;11 then

10. put E into bucket[(i — 1) * 4 + 4];

11. else if Sp contains both [; and [;41 together with at least one other
letter then

12. put E into bucket[(i — 1) * 4 + 3];

13. else put E into bucket[(i — 1) x4 + 2];
// Sp has l; and at least one non-I;11 letter

14. end if;

15. end for;

16. sort entries within each bucket alphabetically by 8 based on their

D-th component sets;
17. concatenate bucket[1], ..., bucket[4 x | A|] into one list PN
< Fq,FEo, ..., EM+1 >,

18. for j=mtoM —-m+1do

19. generate a partition P from PN with entry sets: ES| = {En, ..., E;}
and ESQ = {Ej+1, ...,EMJrl};

20. let A =AU{P};

21. end for;

22. end for;

23. end for;

24. return A.

For each dimension (Step 2), Algorithm 3.3 determines one ordering of entries
in the overflow node (Steps 4 - 17) for each permutation of alphabet A (Step 3).
Each ordering of entries generates M — 2m + 2 candidate partitions (Steps 18 - 21).
Hence a total number of dx (M —2m+2)* (] A|!) candidate partitions are considered
by the algorithm. Since |A| is usually small, this algorithm is much more efficient
than the previous exhaustive approach. For example, if d = 25, M = 50, m = 10
and |A| = 4, Algorithm 3.3 considers only 1.92 x 10* partitions. In fact, only half
of all permutations of A need to be considered since a permutation and its reverse
will yield the same set of candidate partitions by the algorithm. Using this fact,
the efficiency of the algorithm can be further improved.

Given a dimension D, to determine the ordering of entries in the overflow node
based on a permutation 3:< Iy,lz,...,[j4) > of A, Algorithm 3.3 employs a bucket
ordering technique (Steps 4 - 17). The goal is to choose an ordering of entries
that has a better chance to generate good partitions (i.e., small overlap). Greedy
strategies are adopted here to achieve this goal. Essentially, the algorithm groups
the entries according to their foremost (based on () letters in their D-th component
sets. The entries in a group sharing a foremost letter I; are placed before the entries
in a group sharing a foremost letter [; if ¢ < j. In this way, if the splitting point of
a partition is at the boundary between two groups, it is guaranteed that the D-th
component sets of entries in the second entry set ESs of the partition do not have
the foremost letters in the D-th component sets of entries in the first entry set ES;.
Furthermore, each group is divided into four subgroups (buckets) according to the
rules implemented by Steps 7 - 14. The greedy strategy used here is to (1) put
entries from the current group that contain the foremost letter of the next group

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 11

as close to the next group as possible, and (2) put entries from the current group
that contain only its foremost letter close to the previous group. In this way, a
partition with the splitting point at the boundary between two buckets in a group
is locally optimized with respect to the current as well as its neighboring groups.
The alphabetical ordering (based on the given permutation) is then used to sort
entries in each bucket based on their D-th component sets. Note that the last and
the second last groups have at most one and two non-empty subgroups (buckets),
respectively. Considering all permutations for a dimension increases the chance
to obtain a good partition of entries based on that dimension, while examining all
dimensions increases the chance to obtain a good partition of entries across multiple
dimensions.

For the comparison purpose, we also tested the approach to use the alphabetical
ordering to sort all entries directly and found that it usually also yields a satisfac-
tory performance. However, there are cases in which the bucket ordering is more
effective.

EXAMPLE 2. Consider an ND-tree for a genomic data set in the 25-dimensional
NDDS with alphabet A = {a,g,t,¢}. The maximum and minimum numbers of
entries allowed in a tree node are 10 and 3, respectively. Assume that, for a given
overflow node N with 11 entries E1, Fs, ..., E11, Algorithm 3.3 is checking the 5th
dimension (Step 2) at the current time. The 5th component sets of the DMBRs of
the 11 entries are listed as follows, respectively:

{t}, {gct {c}, {ac}, {c}, {age}, {t}, {at}, {a}, {c}, {a}

The total number of permutations of alphabet A is | A|!=24. As mentioned before,
only half of all the permutations need to be considered. Assume that the algorithm
is checking one of the 12 permutations, say < ¢, a,t,g > (Step 3). The non-empty
buckets obtained from Steps 4 - 15 are:

bucket[l] = {Es, E5, E19}, bucket[2] = {E2}, bucket[3] = {Fs},
bucket[4] = {E4}, bucket[5] = {Fo, E11}, bucket[8] = {Es},
bucket[9] = {E1, Er}, unlisted buckets = {).

Thus the entry list obtained at Step 17 is shown in Figure 3. Based on the en-

<BE K EE EEEE EEE->

A R
P, P, P, P P, P

Fig. 3. Entry list and partitions

try list, Steps 18 - 21 generate candidate partitions P} ~ PFPs whose splitting
points are also illustrated in Figure 3. For example, partition P> consists of
ESl = {Eg, E5, Elo, Eg} and ESQ = {EG, E4, Eg, E117 Eg, El, E7} These parti—
tions comprise part of result set A returned by Algorithm 3.3. Note that if we
replace the 5th component set {at} of Eg with {t}, Ps would be an overlap-free
partition.

One may notice that the sorting of entries based on a particular permutation of
the alphabet may not treat all entries symmetrically. For example, if we have two

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

12 : Gang Qian et al.

more entries with the 5th component sets {ct} and {ag} in the given tree node, we
can see that entries with {ct} and {cg} would be put into the same bucket (i.e.,
bucket[2]); while entries with {at} and {ag} would be put into two different buckets
(i.e., bucket[8] and bucket[6], respectively). Intuitively, one would think that the
degree of difference (“distance”) between {ct} and {cg} is similar to that between
{at} and {ag}. The reason why the above two pairs are treated differently is that
a local greedy strategy to minimize overlapping is applied in our sorting, which
separates groups of component sets with different degrees of involvement of two
neighboring letters. For the given permutation < ¢, a,t,g >, neither ‘¢’ nor ‘g’ is
next to ‘c’. On the other hand, ‘¢’ is next to ‘a’, while ‘g’ is not. Hence {ct} and
{cg} are considered to be more similar to each other than {at} and {ag} when
this permutation is considered. To mitigate the bias, Algorithm 3.3 considers all
permutations (Step 3). When permutation < a,c¢,t,g > is considered, the case in
which {at} and {ag} are put into the same bucket is considered. [

Note that Algorithm 3.3 not only is efficient but also possesses a desirable prop-
erty, which is stated as follows:

PROPOSITION 3.1. If there exists at least one overlap-free partition for the over-
flow node, Algorithm 8.3 will find such a partition.

PROOF. Based on the assumption, there exists an overlap-free partition PN =
{ESl,ESQ}. Let ESlDMBR = Sll X 512 X ..o X Sld and ESQDMBR = 521 X
S22 X ... X Saq. Since area(ES1.DMBR N ES3.DMBR) = 0, there exists a
dimension D (1 < D < d) such that S1p N Sap = 0. Since Algorithm 3.3 examines
every dimension, dimension D will be checked. Without loss of generality, assume
S1p U Sep = A, where A is the alphabet for the underlying NDDS.

Consider the following permutation of A: PA =< ly1, ..., 115,21, ..., l2¢ > where
li; € S1p (1 <i<s),ly € Sap (1 <j<t),and s+t = |A. Enumerate all
entries of the overflow node based on PA in the way described in Steps 4 - 17 of
Algorithm 3.3. We have the entry list EL =< Fq, Es, ..., Epr41 > shown in Figure
4. Since S1p N Sap = 0, all entries in Part 1 do not contain letters in Sap on the

D-th dimension of the DMBRs ‘i/

Ei1.DMBR: ... x{ i, ..} X s

E2.DMBR: ... x{ lu,.}x...
Par[l

Ej.DMBR: ... X{ lis, .} X e

Ej+s1 .DMBR: ... x {121, ...} Xoon

Part2 < -
Ewm+«1 . DMBR: ... x{ lae, ..} Xueen
Fig. 4. A permutation of entries (1 <j < M +1)

D-th dimension, and all entries in Part 2 do not contain letters in S1p on the D-th
dimension. In fact, Partl = ES; and Part2 = ES5, which yields the partition
PN. Since the algorithm examines all permutations of A, such a partition will be
put into the set of candidate partitions. O

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 13

The time complexity of Algorithm 3.3 can be obtained from the following analysis.
In the worst case, Steps 5 - 15 require a time complexity of O((M + 1) = |A]); Step
16 requires a time complexity of O((M + 1) * log(M + 1)); Step 17 requires a
time complexity of O(4 * |A|); and Steps 18 - 21 require a time complexity of
O(M — 2m + 2). Hence the worst-case time complexity of Algorithm 3.3 is: O(d
(JA]Y) « [(M + 1) * |A] + (M + 1) * log(M + 1) + 4 = |A| + (M — 2m + 2)]), namely,

Time(ChoosePartitionSet I) = O(d x (|A]!) * M = (JA| + logM)). (4)

The main space required by Algorithm 3.3 is the array of buckets. Note that,
although finding a set of candidate partitions and choosing a best partition from the
candidate set are presented as two steps in Algorithm 3.2 for conceptual simplicity,
they can be implemented in a pipelining fashion. Thus we need only one array of
buckets (i.e., the space for one candidate partition) in Algorithm 3.3. The array
has 4 % |A] items (bucket heads). Each bucket (list) can have up to M + 1 entries.
However, the total number of entries in all the buckets remains M + 1. Besides, the
buckets only need to store the current dimension D and the relevant entry number
Eid for each entry. Using D and Fid, the corresponding DMBR and its D-th
component set can be found in the given overflow node of the ND-tree (outside the
algorithm). Therefore, the space complexity of Algorithm 3.3 is: O(4 x |A| 4+ 2
(M + 1)), namely,

Space(ChoosePartitionSet I) = O(|A| + M). (5)

It is possible that alphabet A for some NDDS is large. In this case, the number of
possible permutations of A may be too large to be efficiently used in Algorithm 3.3.
We have, therefore, developed another algorithm to efficiently generate candidate
partitions in such a case. The key idea is to use some strategies to intelligently
determine one ordering of entries in the overflow node for each dimension rather
than consider |A|! orderings determined by all permutations of A for each dimension.
This algorithm is described as follows:

ALGORITHM 3.4. : ChoosePartitionSet 11
Input: overflow node N of an ND-tree for an NDDS Q, over alphabet A.
Output: a set A of candidate partitions
Method:

1. let A =0

2. for dimension D =1 to d do

3. auxiliary tree T' = build_aux_tree(N, D);

4 D-th component sets list CS = sort_csets(T);

5 replace each component set in CS with its associated entries to get entry

list PN;
6. forj=mtoM —-m+1do
7. generate a partition P from PN with entry sets: ES; = {En, ..., E;} and
ES2 = {Ej+1, ceey EM+1};
8. let A =AU{P};
9. end for;
10. end for;
11. return A.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

14 : Gang Qian et al.

For each dimension (Step 2), Algorithm 3.4 first builds an auxiliary tree by
invoking Function build_auz_tree (Step 3) and then uses the tree to sort the D-
th component sets of the entries by invoking Function sort_csets (Step 4). The
position of each entry in the ordering is determined by its D-th component set
in the sorted list CS (Step 5). Note that, if multiple entries have the same D-th
component set, a random order is chosen among them. Using the resulting entry
list, the algorithm generates M — 2m + 2 candidate partitions. Hence the total
number of candidate partitions considered by the algorithm is d * (M — 2m + 2).

The algorithm also possesses a desirable property; that is, it generates an overlap-
free partition if there exists one. This property is achieved by building an auxiliary

tree in Function build_auz_tree. Each node T in the auxiliary tree has three data
fields:

—T.sets — the group (set) of the D-th component sets represented by the subtree
rooted at T,

—T.freq — the total frequency of sets in T.sets, where the frequency of a (D-th
component) set is defined as the number of entries having the set,

—T.letters — the set of letters appearing in any set in 7'.sets.

The D-th component set groups represented by the subtrees at the same level are
disjoint in the sense that a component set in one group does not share any letter
with any component set in another group. Hence, if a root T" has subtrees 17, ..., T},
(n > 1) and T.sets = Ty.setsU...UT,.sets, then we find the disjoint groups T;.sets,
..y Ty sets of all D-th component sets. By placing the entries with the component
sets in the same group together, an overlap-free partition can be obtained by using a
splitting point at the boundary between two groups. The auxiliary tree is obtained
by repeatedly merging the component sets that directly or indirectly intersect with
each other, as described as follows:

FUNCTION 1. auziliary_tree = build_aux_tree(N, D)
1. find set L of letters appearing in at least one D-th component set;
2. initialize forest F' with single-node trees, one tree T for each [€ L and
set T.letters = {l}, T.sets =0, T.freq = 0;
3. sort all D-th component sets by size in ascending order and break ties by
frequency in descending order into set list SL;
for each set S in SL do
if there is only one tree T' in F' such that T.lettersN S # () then
6. let T.letters = T.lettersU S, T.sets = T.sets U {S},
T.freq =T.freq+ frequency of S,

o

7. elselet Ty, ..., T, (n > 1) be trees in F whose Tj.lettersNS # 0 (1 <i < n);
8. create a new root T with each T; as a subtree;
9. let T.letters = (U T;.letters) U S, T.sets = (Ul T;.sets) U{S},

T.freq= (>, Ti.freq) + frequency of S;
10. replace T, ..., T, by T in F;
11. end if;
12. end for;
13. if F has 2 or more trees T4, ..., T, (n > 1) then
14. create a new root 1" with each T; as a subtree;

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 15

15. let T.letters = U}, T;.letters, T.sets = U] T;.sets,
T.freq="Y ., T;.freg;

16. else let T be the unique tree in F

17. end if;

18. return 7T

The time complexity of Function build_auzx_tree can be obtained from the follow-
ing analysis. In the worst case, Step 1 requires a time complexity of O((M +1)x*|A|);
Step 2 requires a time complexity of O(]A|); Step 3 requires a time complexity of
O((M +1)*log(M +1)); Steps 5 and 7 require a time complexity of O(|A|?); Step 6
requires a time complexity of O(|A|+ (M +1)+1); Step 8 requires a time complexity
of O(JA]); Step 9 requires a time complexity of O(|A| * (JA| +1) + (M + 1) = (|A| +
1) + (JA] + 1)); Step 10 requires a time complexity of O(]A]); Steps 4 - 12 require
a time complexity of O((M + 1) * [|A]* + |A| * (JA| + 1) + (M + 1) = (JA] + 1)]);
Step 13 requires a time complexity of O(]A|); Step 14 requires a time complexity
of O(|A|); Step 15 requires a time complexity of O(JA| = (|A| + M + 2)); Step 16
requires a time complexity of O(1). Hence the worst-case time complexity of Func-
tion build_aux_tree is O(M + 1) * [|A|> + |A] * (JA| + 1) + (M + 1) % (JA] + 1)]),
namely,

Time(build_aux_tree) = O(M x |A] x (JA| + M)). (6)

The main space required by Function build_aux_tree is for the auxiliary tree that
it builds. For each auxiliary tree node N, in the worst case, N.letters requires a
space complexity of O(|A]); N.freq requires a space complexity of O(1); N.sets
requires a space complexity of O(M + 1) assuming every D-th component set is
represented by the current dimension D and the corresponding entry number Eid
as in Algorithm 3.3. Hence the worst-case space required for each auxiliary tree
node is O(JA| + M). From Step 2, the maximum number Max_# leaf(T) of leaf

nodes in an auxiliary tree 7T is:
Max_#leaf(T) = O(JA]|). (7)

From Steps 4, 8 and 14, the maximum number Maxz_#_nonleaf(T) of non-leaf
nodes in an auxiliary tree T is O(M + 2), namely,

Max_# _nonleaf(T) = O(M). (8)
Therefore, the worst-case space complexity of Function build_aux_tree is
Space(build_auz_tree) = O((|A] + M)?). 9)

Using the auxiliary tree generated by Function build_aux_tree, Algorithm 3.4 in-
vokes Function sort_csets to determine the ordering of all D-th component sets. To
do that, starting from the root node T, sort_csets first determines the ordering of
the component set groups represented by all subtrees of T' and put them into a list
ml with each group as an element. The ordering decision is based on the frequencies
of the groups/subtrees. The principle is to put the groups with smaller frequen-
cies in the middle of ml to increase the chance to obtain more diverse candidate
partitions. For example, assume that the auxiliary tree identifies 4 disjoint groups
G1, ..., G4 of all component sets with frequencies 2, 6, 6, 2, respectively, and the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

16 : Gang Qian et al.

minimum space requirement for the ND-tree is m = 3. If list < G1, G2, G3,Gy4 >
is used, we can obtain only one overlap-free partition (with the splitting point at
the boundary between G5 and G3). If list < G2, G1, G4, G3 > is used, we can have
three overlap-free partitions (with splitting points at the boundaries between Go
and G1, G71 and G4, and G4 and G, respectively).

There may be some component sets in T.sets that are not represented by any
of its subtrees (since they may contain letters in more than one subtree). Such
a component set is called a crossing set. If current list ml has n elements (after
removing empty group elements if any), there are n 4+ 1 possible positions for a
crossing set e. After e is put at one of the positions, there are n+2 gaps/boundaries
between two consecutive elements in the list. However, the leftmost and rightmost
boundaries have all the elements on one of their two sides. For the remaining n
boundaries, placing a splitting point at such a boundary will result in a non-trivial
partition. For each of these n partitions, we can calculate the number of common
letters (i.e., intersection on the D-th dimension) shared between the left component
sets and the right component sets. We place e at a position with the minimal sum
of the sizes of above D-th intersections at the n boundaries.

Each group element in ml is represented by a subtree. To determine the ordering
among the component sets in the group, the above procedure is recursively applied
to the subtree until the height of a subtree is 1. In that case, the corresponding
(component set) group element in ml is directly replaced by the component set (if
any) in the group. Once the component sets within every group element in ml are
determined, the ordering among all component sets is obtained.

FUNCTION 2. setlist = sort_csets(T)

1. if height of tree T = 1 then

2. if T.sets # () then

3. put the sets in T.sets into list set_list;

4. else set set_list to null;

5. end if;

6. else set lists Ly = Lo = (;

7. let weight, = weights = 0;

8. while there is an unconsidered subtree of T' do
9. get such subtree 7" with highest frequency;
10. if weight; < weights then

11. let weight, = weight, + T". freq;

12. add T’.sets to the end of Lq;

13. else let weighty = weights + T freq;

14. add T".sets to the beginning of Lo;

15. end if;

16. end while;

17. concatenate L; and Lo into ml;

18. let S be the set of crossing sets in T'.sets;
19. for each set e in S do

20. insert e into a position in ml with the minimal sum of the sizes of all
D-th intersections;
21. end for;

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 17

22. for each subtree 7' of T, do

23. set_list’ = sort_csets(T");

24, replace group 1”.sets in ml with set_list’;
25. end for;

26. set_list = ml;

27. end fif;

28. return set_list.

Since the above merge-and-sort procedure allows Algorithm 3.4 to make an intel-
ligent choice of candidate partitions, our experiments demonstrate that the per-
formance of an ND-tree obtained from this algorithm is comparable to that of an
ND-tree obtained from Algorithm 3.3 (see Section 4).

The time complexity of Function sort_csets can be obtained from the following
analysis. We notice that the algorithm segment Steps 1 - 5 is applied to each leaf
node of the input auxiliary tree. In the worst case, Steps 1 - 2 require a time
complexity of O(1); Step 3 requires a time complexity of O(M + 1); Steps 4 - 5
require a time complexity of O(1). Hence, Steps 1 - 5 require a time complexity of
O(M + 1), which is the worst-case time needed for each leaf node. From Formula
(7), the worst-case time needed for all leaf nodes of the input auxiliary tree is:

Time_for_all_leaves = O(|A] x M). (10)

On the other hand, the algorithm segment Steps 6 - 27 (except 23) is applied to
each non-leaf node of the given auxiliary tree. In the worst case, Steps 6 - 7 require
a time complexity of O(1); Step 9 requires a time complexity of O(|A|); Steps 10
- 15 require a time complexity of O(1); Steps 8 - 16 require a time complexity
of O(|A|?); Step 17 requires a time complexity of O(1); Step 18 requires a time
complexity of O((M + 1)? * |A|); Step 20 requires a time complexity of O((|A| +
M +2) x [(JA] + M +1)? x |A| + (JA| + M + 1) + 1]) because there are no more
than O(|A| + M + 1) elements in list ml; Steps 19 - 21 require a time complexity of
O((M +1)x(JA|+ M +2)+[(|A|+ M +1)?% |A|+ (JA] + M +1) +1]); Step 24 requires
a time complexity of O(|A| * (JA| + M + 1)); Steps 22 - 25 (except 23) require a
time complexity of O(|A|? x (JA| + M + 1)); Step 26 requires a time complexity of
O(1). Note that Step 23 is the place where the function extends its computation to
the child nodes of the current non-leaf node. Hence the worst-case time needed for
each non-leaf node (excluding its children) is O(((M + 1) x (JA| + M + 2) = [(JA] +
M +1)2%| Al + (|A] + M + 1) +1]), namely, O(M * (JA|+ M)3 % |A|). From Formula
(8), the worst-case time needed for all non-leaf nodes of the input auxiliary tree is:

Time_for_all_nonleaves = O(M? x (|A] + M)? x | A|) (11)

From Formulas (10) and (11), the worst-case time complexity of Function sort_csets
is

Time(sort_csets) = O(M? x (JA| + M)? x |A]). (12)

The main space required by Function sort_csets is the list ml, which has no

more than O(|A| + M + 1) elements. Each element has no more than O(M + 1)

component sets. As before, assume that each component set is represented by the
current dimension D and the corresponding entry number Eid. Hence the worst-

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

18 : Gang Qian et al.

1.letters: {a}, 1.freq: 1, 1.sets: {{a}}
2.letters: {b}, 2.freq: 1, 2.sets {{b}}
3.letters: {c}, 3.freq: 1, 3.sets: {{c}}
4 letters: {d}, 4.freq: 0, 4.sets:
FO O O® & O e 5.letters: {e}, 5.freq: 2, 5.sets: {{e}}

T, T, T, T, T, T, 6.letters: {f}, 6.freq: 1, 6.sets: {{f}}
etes o) e s s ORI e o)
2.lett b}, 2.freq: 0, 2.set: : ’ . - . 2=

ers (b}, 2freq s 9.letters: {ade}, 9.freq: 6, 9.sets: {{a},{e},{ae},{de},{ade}}
6.letters: {f}, 6.freq: 0, 6.sets & 10.letters: {abcdef}, 10.freq: 11, 10.sets: all sets that appears
Fig. 5. Initial forest F’ Fig. 6. Final auxiliary tree T'

case space complexity of Function sort_csets is:
Space(sort_csets) = O(M * (|A| + M)). (13)

ExaMPLE 3. Consider an ND-tree with alphabet A = {a,b,¢,d, e, f} for a 20-
dimensional NDDS. The maximum and minimum numbers of entries allowed in a
tree node are 10 and 3, respectively. Assume that, for a given overflow node N
with 11 entries F1, Es, ..., F11, Algorithm 3.4 is checking the 3rd dimension (Step
2) at the current time. The 3rd component sets of the DMBRs of the 11 entries
are listed as follows, respectively:

{c}, {ade}, {0}, {ae}, {f},{e}, {cf}, {de}, {e}, {cf}, {a}

The initial forest F' generated at Step 2 of Function build_aux_tree is illustrated
in Figure 5. The auxiliary tree T obtained by the function is illustrated in Figure
6. Note that non-leaf node of T" is numbered according to its order of merging.

Using auxiliary tree T', recursive Function sort_csets is invoked to sort the com-
ponent sets. List ml in Function sort_csets evolves as follows:

<{{a}. {e}, {ac}, {de}, {ade}}, {{b}}. {{e} {F}{ef}}>:
< {de},{ade},{e},{ae}, {a}{{0}}, {{c} {/} . {c/}}>;

< {de},{ade},{e}, {ae}, {a}, {0}, {{c}, {/}, {c/}}>;

< {de},{ade}, {e}, {ae}, {a}, {b}, {c}, {cf}, {f} >

Based on the set list returned by Function sort_csets, Step 5 in Algorithm 3.4 pro-
duces the following sorted entry list PN: < Eg, Fo, Fg, Ey, E4, F11, E3, v, Fr,
Fio, E5 >.

Based on PN, Algorithm 3.4 generates candidate partitions in the same way as
Example 2, which comprise part of result set A returned by Algorithm 3.4. Note
that the two partitions with splitting points at the boundary between Fq; and Fs
and the boundary between Fs and E; are overlap-free partitions. [

The time complexity of Algorithm 3.4 can be obtained from the following analysis.
In the worst case, Step 5 requires O(M + 1); Steps 6 - 9 require O(M — 2m + 2).

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 19

From Formulas (6) and (12), the worst-case time complexity of Algorithm 3.4 is:
Time(ChoosePartitionSet IT) = O(d + M? x |A| x (|A] + M)3). (14)

Unlike Formula (4), the above time complexity does not contain the factor (|A[!).
Algorithm 3.4 is more efficient for a large alphabet.

The main space required by Algorithm 3.4 is for the auxiliary tree generated by
Function build_aux_tree, the component sets list returned by Function sort_csets
and a entry list (of length O(M + 1)) used in the main body of the algorithm.
Therefore, the worst-case space complexity of the algorithm is:

Space(ChoosePartitionSet IT) = O((|A| + M)?). (15)

Comparing to Formula (5), the space requirement of Algorithm 3.4 is higher than
that of Algorithm 3.3.

3.2.5 Choosing the Best Partition. Once a set of candidate partitions are gen-
erated, we need to select the best one from them based on some heuristics. As
mentioned before, due to the limited size of an NDDS, many ties may occur for
one heuristic. Hence multiple heuristics are required. After evaluating heuristics in
some popular indexing methods (such as the R*-tree, the X-tree and the Hybrid-
tree), we have identified the following effective heuristics for choosing a partition
(i.e., a split) of an overflow node of an ND-tree in an NDDS:

SH; : Choose a partition that generates a minimum overlap of the DMBRs of the
two new nodes after splitting (“minimize overlap”).

SHy : Choose a partition that splits on the dimension where the edge length of
the DMBR of the overflow node is the largest (“maximize span”).

SHjs : Choose a partition that has the closest edge lengths of the DMBRs of the
two new nodes on the splitting dimension after splitting (“center split”).

SH, : Choose a partition that minimizes the total area of the DMBRs of the two
new nodes after splitting (“minimize area”).

From our experiments (see Section 4), we observed that heuristic SH; is the most
effective one in an NDDS, but many ties may occur as expected. Heuristics SH
and SHs can effectively resolve ties in such cases. Heuristic SHy is also effective.
However, it is expensive to use since it has to examine all dimensions of a DMBR.
In contrast, heuristics SH; - SH3 can be met without examining all dimensions.
For example, SH; is met as long as one dimension is found to have no overlap
between the corresponding component sets of the new DMBRs; and SHs is met
as long as the splitting dimension is found to have the maximum edge length |A]
for the current DMBR. Hence the first three heuristics are suggested to be used in
choosing the best partition for an ND-tree as follows:

ALGORITHM 3.5. : ChooseBestPartition
Input: set A of candidate partitions for overflow node N of an ND-tree in an
NDDS over alphabet A.
Output: chosen partition BP of overflow node N.
Method:
1. let BP = {ES1, ES2} be any partition in A with splitting dimension D;

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

20 : Gang Qian et al.

let BP_overlap = area(ES1.DMBRN ESy;.DM BR);

let BP_span = length(BP.DM BR, D);

let BP_balance = abs(length(ES1.DMBR, D) — length(ES2.DM BR, D));

let A=A —{BP};

while A is not empty and not(BP_overlap = 0 and BP_span = |A| and
BP_balance = 0) do

7. let CP ={ESi, ESs} be any partition in A with splitting dimension D;

8. let CP_overlap = area(ES;.DMBRN ES>.DM BR);

9. let CP_span = length(BP.DM BR, D);

10. let CP_balance = abs(length(ES1.DM BR, D) — length(ES2. DM BR, D));

11. let A=A - {CP};

12. if CP_overlap < BP_overlap then

13. let BP = CP:

O U N

14. let BP _overlap = C'P_overlap;

15. let BP_span = C'P_span;

16. let BP_balance = C'P_balance;

17. else if CP_overlap = BP_overlap then
18. if CP_span < BP_span then

19. let BP = CP;

20. let BP_span = C'P_span,;

21. let BP_balance = C'P_balance;

22. else if CP_span = BP_span then
23. if CP_balance < BP _balance then
24. let BP = CP;

25. let BP_balance = C'P_balance;
26. end if;

27. end if;

28. end if;

29. end while;
30. return BP.

As mentioned before, the computation of area(ES;.DMBR N ES3.DM BR) at
Steps 2 and 8 ends once the overlap on one dimension is found to be zero. The
second condition at Step 6 is also used to improve the algorithm performance; that
is, if the current best partition meet all three heuristics, no need to check other
partitions.

3.2.6 Deletion Procedure. The deletion algorithm for the ND-tree adopts a rein-
sertion strategy similar to that of the R-tree [Guttman 1984]. If the removal of an
entry does not cause any underflow of its corresponding node, the entry is simply
removed from the tree. Otherwise, the underflow node will be removed from the
tree and all its remaining entries (subtrees) are reinserted. Like the insertion proce-
dure, the deletion operation may propagate up to the root of the tree. The affected
DMBRs of the deletion operation are adjusted accordingly. The deletion algorithm
is described as follows:

ALGORITHM 3.6. : Deletion
Input: (1) vector a to be deleted; (2) an ND-tree with root node N for the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 21

underlying database.

Output: modified ND-tree (may be empty) with a deleted.
Method:
starting from the root N, locate the leaf CN containing «;
if CN does not exist then

return;
end if;
remove the entry of a from CN;
initialize set reinst_buf to hold entries to be reinserted;
while CN underflows and CN is not the root do

put remaining entries in CN into reinst_buf;

let P be the parent of CN;
10. remove the entry for CN from P;
11. CN = P;
12. end while;
13. if CN is not the root then
14. adjust the DMBRs up to the root as necessary;
15. end if;
16. if reinst_buf is not empty then
17. reinsert all entries from reinst_buf into the ND-tree at their proper levels;
18. end if;
19. if the root of the adjusted tree has only a single child SN then
20. let SN be the new root of the tree;
21. end if;
22. return.

© PN O D=

In the worst case, the removal of entries in Algorithm 3.6 can involve all levels of
the tree. The reinserted entries that are collected in reinst_buf may be either leaf
node entries or non-leaf node entries, which must be inserted at the appropriate
levels in the tree. With some minor modifications, the insertion procedure discussed
previously can directly insert a non-leaf node entry (subtree) into an ND-tree at an
appropriate level. Specifically, using the same set of heuristics, Algorithm Choose-
Leaf can be revised to locate a non-leaf node for accommodating a given non-leaf
node entry. Directly inserting non-leaf entries into a tree improves the performance
of the deletion procedure, comparing to the way inserting leaf node entries (vectors)
all the time. The reinsertion strategy allows the ND-tree to have an opportunity
to improve its performance through reconstruction.

Note that the deletion procedure is not unique. An alternative way to handle
underflow is to merge sibling nodes. Unlike a CDS, the non-ordering property of
an NDDS makes it possible to merge nodes that are at the same level but not nec-
essary to be directly next to each other, which increase the chance for performance
improvement. However, the tree reorganization through merging is relatively local,
comparing to the reconstruction through reinsertion. The performance of the tree
obtained by the merging strategy is usually not as good as the reinsertion strategy.
On the other hand, the deletion procedure adopting the merging strategy is more
efficient since it requires less efforts.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

22 : Gang Qian et al.

Similar to many indexing techniques in CDSs, choosing effective and efficient
deletion strategies for an index tree in NDDSs deserves further studies.

3.2.7 Handling NDDSs with Different Alphabets on Dimensions. In the previous
discussion, the alphabets for all dimensions in an NDDS are assumed to be the same.
In this subsection, we discuss how to generalize the ND-tree to handle an NDDS
with various alphabets on different dimensions.

Let Qg = A; x Ay x ... X Ag be an NDDS, where alphabets A;’s (1 < i < d)
may be different from each other. If alphabet sizes |A1| = |As| = ... = |Aq4l, no
change is needed for the ND-tree building algorithms except that the corresponding
alphabet A; should be considered when we process the i-th component element/set
of a vector/DMBR. However, if |A;| # |A;| for some i # j, a new issue arises — that
is, how to properly calculate the corresponding discrete geometrical measures such
as the length (therefore, the area and the overlap).

A straightforward way to handle this case is to still apply the concepts defined
in Section 2 directly in the ND-tree. For example, for a discrete rectangle R =
S1 X 83X ... X Sq in Qg4, where S; C A; (1 <14 <d), the length of the i-th dimension
edge of R is defined as length(R,i) = |S;| and, hence, the area of R is defined as
area(R) = |S1| * |S2| * ... * |Sql, as discussed in Section 2.

However, as the alphabet sizes are different, the above edge length definition may
be improper. For example, assume |A;| = 50, |As| = 4 and d = 2. Let discrete
rectangle R’ = S; x S5 be the DMBR for an overflow node in an ND-tree, where
S1 = {a,b,¢,d,e} C Ay and Sy = {1,2,3,4} = As. From the above edge length
definition, length(R',1) = 5 > length(R’,2) = 4. Using the “maximize span”
heuristic for splitting the DMBR of an overflow node (i.e., SHs), we need to choose
the 1st dimension to split R’, i.e., splitting its 1st component set S; into two smaller
component sets S1; and Sz, resulting in two smaller DMBRs R1; = S11 X Sz and
Ri2 = Sj2 x S3. Notice that S; contains only 10% of the elements in Ay (i.e.,
already having a strong pruning power), while Sy contains 100% of the elements in
As (i.e., having no pruning power at all). To gain a better overall pruning power,
the ND-tree would prefer to split the DMBR, on the 2nd dimension. For instance,
if we split Sy into two smaller component sets So1 = {1,2} and Sao = {3,4}, we
would achieve a 50% pruning power (instead of none) on the 2nd dimension for
resulting DMBRs Ra; = 57 X S21 and Rao = 57 X Soo. If we want to search vectors
within Hamming distance 1 from a query vector (g, 2), for example, we can prune
the subtree with DMBR R obtained from the 2nd split, while we cannot prune
any subtree with DMBR R;; or Rjs obtained from the 1st split. This example
shows that an element from A; should not receive the same weight as that for
an element in As for the length measure due to the various alphabet sizes for the
different dimensions. Hence the above edge length definition may not allow us to
make a fair comparison during constructing an index tree. In general, this direct
approach has the problem to create an unsolicited bias among different dimensions
when their alphabet sizes are different.

One way to solve the problem is to normalize the length measure of a dis-
crete rectangle for each dimension with the corresponding alphabet size. In other
words, we define the length of the i-th dimension edge of discrete rectangle R
as length(R,i) = |S;|/|4;:|. The area and overlap are then calculated based on

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 23

the normalized length values. For example, the area of R can be defined as
area(R) = (|S1]/|A1]) * (]S2|/|Az2]) * ... * (]S4|/|Ag|). Using the normalization ap-
proach, length measures for different dimensions are comparable — leading to a
fair comparison during the tree construction. For example, for the aforementioned
DMBR R/, since length(R’,1) = 5/50 < length(R',2) = 4/4 based on the new
length measure, the ND-tree will split R’ on the 2nd dimension as desired. In fact,
as we will see from experimental results in Section 4, the normalization approach
is generally better than the direct one. The degree of improvement depends on the
difference among the alphabet sizes. It is observed that the more the difference
(variance of alphabet sizes), the better is the normalization approach.

A more general way to solve the problem is as follows. Assume that the distribu-
tion of data elements in each dimension for a given application is known. In other
words, each element a in alphabet A; for the i-th dimension has a probability p(a)
to occur as the i-th component of a vector in the application. For each dimension

Z pla) = 1.

a€A;

For a given discrete rectangle R = S1 X.S2X...x Sq in 4, where S; C A; (1 < < d),
the length of the i-th dimension edge of R can be defined as:

length(R,i) = Z p(a)
acsS;

and the area of R is defined as |R| = length(R, 1) x length(R,2) * ... x length(R, d).
The advantage of this approach is that it takes the data distributions into consid-
eration. A component set containing elements with higher occurring probabilities
should have a larger length and, therefore, contribute more to the area measure of
the corresponding discrete rectangle. This approach is especially suitable for those
NDDSs with large alphabets of skewed element distributions. In such a case, this
new length definition should be used even for an NDDS with alphabets of the same
size for all dimensions.

One disadvantage of this approach is that the distribution of data elements on
each dimension may not be known in practice. In this case, the frequencies of sample
data may be employed in the above formulas as the estimates of their probabilities.

In fact, the previous normalization approach is a special case of this probability-
based approach, in which the distribution of data elements is uniform, i.e., assuming
a probability of 1/|A;| for each element in alphabet A; (1 < ¢ < d). This simple
approach can be applied when the distribution of data elements is uniform or un-
known.

3.3 Range Query Processing

After an ND-tree is created for a database in an NDDS, a range query range(ag, rq)
can be efficiently evaluated using the tree. The main idea is to start from the root
node and prune away the nodes whose DMBRs are out of the query/search range
until the leaf nodes containing the desired vectors are found. The search algorithm
is given as follows:

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

24 : Gang Qian et al.

ALGORITHM 3.7. : RangeQuery
Input: (1) range query range(ay,rq); (2) an ND-tree with root node N for the
underlying database.
Output: set VS of vectors within the query range.

Method:
1. let V.S = 0;
2. push N into a stack NStack of nodes;
3. while NStack # () do
4. let CN = pop(N Stack);
5. if CN is a leaf node then
6. for each vector v in CN do
7. if dist(ayg,v) <71y thenlet VS =VSU{v};
8. end for;
9. else
10. for each entry E in CN do
11. if dist(ag, EEDMBR) < rq then
push each child node pointed to by F into N Stack;
12. end if;
13. end for;
14. end if;

15. end while;
16. return VS.

3.4 Performance Model

To analyze the performance of the ND-tree, we conducted both empirical and the-
oretical studies. The results of the empirical study will be reported in Section 4.
In this subsection, we present a theoretical model for estimating the performance
of the ND-tree. With this model, we can predict the performance behavior of the
ND-tree for different input parameter values.

Let Q4 be a given NDDS, T be an ND-tree built for a set V of vectors in g,
and @ be a similarity (range) query to search for qualified vectors from V. For
simplicity, we assume that: (1) vectors in V' are uniformly distributed in Qg4 (i.e.,
random data); (2) there is no correlation among different dimensions for vectors in
V; and (3) the same alphabet A is assumed for all the dimensions of Q4. The input
parameters for our performance estimation model are given in Table I.

Table I. Input Parameters of a Performance Estimation Model for ND-tree

Symbol | Description
|A| the size of alphabet A
d the number of dimensions of 24
V| the total number of vectors indexed in ND-tree T'
M, the maximum number of vectors allowed in a leaf node of T'
M, the maximum number of non-leaf entries allowed in a non-leaf node of T'
h the Hamming distance used for query @

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 25

PROPOSITION 3.2. For given parameters |A|, d, |V|, My, M,, and h listed in
Table I, the expected total number of disk 1/0’s for using ND-tree T' to perform
similarity query Q on a set V' of vectors in space g can be estimated as:

H-1
0=1+ (ni-Pp), (16)
=0

where

4
[l o iz,
g 2f1092fnzvif—llﬂ for 1<i<H,

H = [logy no],
b = 9lioga MnJ7
(B)* - (BY)™ for h=0,
Pun = Sk [C(di k) - C(d b — K) - (BYE - (1 = Byt - (BYyt+h-
- (L=B)" M+ Pp for h>1,
d =d—d
d! = |(loga n;) mod d|,
B; = s;/|Al,
, Si s if (log2 ny)/d < 1,
8 = % , otherwise,
ol—5—]
Bj = si/|Al,
§f — _ Su
i 2[“’9+"q ’
|A|
S; = Z] : Ti,j;
j=1
S (O - for j=1,
W CUALG) - [= TIZHCGR) - S - Tl /(AN for 2<j <|A],

w; = [|V]/ng].
Here C(m,n) denotes the number of n-combinations of a set of m distinct elements.
PROOF. See Appendix. [
As we will see in Section 4, experimental results agree well with theoretical esti-
mates obtained from this model.
3.5 Nearest Neighbor Query Processing

Nearest neighbor (NN) queries are another type of similarity queries. Given a query
vector ag, an NN query returns the vector(s) that is closest to ag in the data set.
For an NDDS, due to its discrete nature, a query vector is very likely to have more

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

26 : Gang Qian et al.

than one NN in a database. Although the focus of this paper is to use the ND-tree
for range queries, the ND-tree also supports NN queries. For completeness, an NN
query algorithm is described in this section.

Our NN query algorithm is based on a similar idea found in the branch-and-
bound algorithm proposed for the R-tree in [Roussopoulos et al. 1995]. The two
distance metrics, namely, MINDIST and MINMAXDIST, in [Roussopoulos et al.
1995] are extended from a CDS to an NDDS. MINDIST provides the minimum
possible distance between a query vector a, and a vector in a DMBR R, which
has been defined as dist(agq, R) by Formula (3) in Section 2. MINMAXDIST, on
the other hand, gives the minimum value of all the maximum distances between a
query vector a4 and vectors on each of the dimensions of a DMBR R respectively.
For a d-dimensional NDDS, we define MINMAXDIST (mmdist) between a vector
o = aias...aqg and a DMBR R =57 x S3 x ... x §4 as:

. d
mmdist(c, R) = {2rta { fm(ar, Sk) + Z fa(ai, Si)} (17)
i=1,i7k

where

0if ap € Sk

1 otherwise

Jm(ak, Sk) = { and

0 if {a;} =5

1 otherwise.

fu(as, Si) —{

Similar to its counterpart for a CDS in [Roussopoulos et al. 1995], MINDIST
dist(cyg, R) between oy and R has the following property: VYo € R, dist(cag, R) <
dist(ayg,). We also have the property that MINMAXDIST mmdist(cg, R) be-
tween o, and R is the minimum guaranteed distance such that: Ja € R, dist(ag,) <
mmdist(ag, R). This property can be proven in a similar way to that in [Rous-
sopoulos et al. 1995]. The above two properties of MINDIST and MINMAXDIST
are exploited in our NN query algorithm to prune unnecessary branches in the
underlying tree as follows:

ALGORITHM 3.8. : NNQuery
Input: (1) query vector ag; (2) an ND-tree with root node N for the underlying
database.
Output: set V.S of vectors that are the NN of a.
Method:

1. let VS = 0;

2. let NQueue be a priority queue of tree nodes, which is sorted first by node
level number in the descending order and then by dist(ay, R) in the
ascending order, where R denotes the DMBR of the corresponding node in
NQueue;

put root NV into NQueue;
let NN _dist = oo;
while NQueue # 0 do
dequeue the first node CN in NQueue;
7. let Reny be the DMBR of CN;

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

O U W

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 27

8. if dist(ay, Ron) > NN_dist then // current node should be pruned

9. continue; // try next node in the queue

10. end if;

11. if CN is a leaf node then

12. for each vector v in CN do

13. if dist(aq,v) < NN _dist then

14. let V.S ={v};

15. let NN _dist = dist(ag,v);

16. else if dist(aq,v) == NN_dist then

17. let VS =VSU{v};

18. end if;

19. end for;

20. else

21. for each entry F in CN do

22. if dist(cq, E.DM BR) < NN_dist then put the corresponding child
into NQueue;

23. if mmdist(oq, E.DMBR) < NN _dist then

24. let V.S = 0;

25. let NN _dist = mmdist(oaq, E.DMBR);

26. end if;

27. end for;

28. end if;

29. end while;
30. return V' S.

Algorithm 3.8 utilizes a priority queue to determine the access order of the tree
nodes (Step 2). A node at a lower tree level is given a higher priority. Among those
nodes at the same tree level, the one with a smaller MINDIST dist(a, DM BR)
is given a higher priority. The search starts from the root node; i.e., the priority
queue has the root node first (Step 3). For each node dequeued from the priority
queue, its children are added into the queue (Steps 21 and 22). Based on the
property of MINDIST, any node N with dist(ag, DM BR_of_N) greater than the
current NN distance NN _dist is pruned (Steps 8 and 22). Based on the property
of MINMAXDIST, NN _dist is updated if a smaller mmdist(ay, DM BR) is found
(Step 23). NN _dist is also updated if a smaller distance between query vector oy
and an indexed vector in a leaf node is found (Steps 13 - 15). The reason why a
higher priority is given to a node at a lower tree level is to use the indexed vectors
in a leaf node to reduce NN _dist as early as possible. The resulting NN vector(s)
for o is found at Steps 14 and 17. The algorithm terminates when the priority
queue is empty.

Algorithm 3.8 represents one approach for NN queries in an NDDS. Our studies
on NN query processing in NDDSs are ongoing. The related issues that are under
investigation are alternative strategies for NN queries, k-nearest neighbor (k-NN)
query processing, approximate k-NN query processing, and alternative distance
measures for NDDSs.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

28 : Gang Qian et al.

4. EXPERIMENTAL RESULTS

To determine effective heuristics for building an ND-tree and evaluate its perfor-
mance for various NDDSs, we conducted extensive experiments using both real
data (bacteria genome sequences extracted from the GenBank of National Center
for Biotechnology Information) and synthetic data (generated with the uniform
distribution). The experimental programs were implemented in C++ on a PC
with a Pentium 4 (2.26 GHz) CPU and 256 MB memory under operating system
(OS) Linux Kernel 2.4.20. To save space for an ND-tree, we employed a bitmap
compression scheme to compress DMBRs in non-leaf nodes. No separate buffering
strategy was employed in the experimental programs besides the buffering mech-
anism provided by the underlying OS. Each node of an index tree is saved in one
disk block/page.

4.1 Evaluation of Strategies for Tree Construction Algorithms

One set of experiments were conducted to determine effective strategies for building
an efficient ND-tree. Typical experimental results are reported in Tables IT ~ V.
The performance data shown in the tables is based on the average number (io) of
disk I/O’s (blocks) for executing 100 random test queries. r, denotes the Hamming
distance range for the test queries. key# indicates the number of database vectors
indexed by the ND-tree. The maximum number M of entries allowed for each node
in a tree was set to 50. The minimum number m of entries required for each node
was set to 15 (i.e., the minimum space utilization was set to 30%). A 25-dimensional
genome sequence data set was used in Tables IT ~ IV. 10-dimensional random data
sets were used in Table V.

Table IT shows the performance comparison among the following three versions

Table II. Performance effect of heuristics for choosing insertion leaf node
rq=1 rq =2 rqg =3

key# | io | 1o 70 10 70 i0 i0 10 10

Va ‘/b VC Va Vb Vc Va Vb VC
13927 | 14 | 18 | 22 48 57 68 115 | 129 | 148
29957 | 17 | 32 | 52 67 | 108 | 160 | 183 | 254 | 342
45088 | 18 | 47 | 80 75 | 161 | 241 | 215 | 383 | 515
56963 | 21 | 54 | 103 | 86 | 191 | 308 | 252 | 458 | 652
59961 | 21 | 56 | 108 | 87 | 198 | 323 | 258 | 475 | 685

of algorithms for choosing a leaf node for insertion, based on different combinations
of heuristics in the given order to break ties:

—Version V,: wusing IHy, IHy, I Hs;

—Version Vi using [Ho, IHgs;

—Version V.: using I Ho

From the table, we can see that all the heuristics are effective. In particular,
heuristic IH; can significantly improve query performance (see the performance

difference between V, (with IH;) and V4, (without IH;)). In other words, the
increased overlap in an ND-tree may greatly degrade the performance. Hence we

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 29

should keep the overlap in an ND-tree as small as possible. It is also noted that
the larger the database size, the more improved is the query performance.
Table ITI shows the performance comparison between Algorithm 3.3 (permutation

Table III. Performance comparison between permutation and merge-and-sort approaches

rq=1 rg =2 rqg =3

key# 70 70 0 0 i0 i0

permu. | m&s | permu. | m&s | permu. | m&s
29957 16 16 63 63 171 172
45088 18 18 73 73 209 208
56963 20 21 82 83 240 242
59961 21 21 84 85 247 250
68717 21 22 88 89 264 266
77341 21 22 90 90 271 274

approach) and Algorithm 3.4 (merge-and-sort approach) to choose candidate parti-
tions for splitting an overflow node. From the table, we can see that the performance
of the permutation approach is slightly better than that of the merge-and-sort ap-
proach since the former takes more partitions into consideration. However, the
performance of the latter is not much inferior and, hence, can be used for an NDDS
with a large alphabet size when the computational overhead of the former is large.

Table IV shows the performance comparison among the following five versions

Table IV. Performance effect of heuristics for choosing best partition for rq = 3
key# 70 70 i0 i0 70

il Va | Va | Va | Vs

13927 | 181 | 116 | 119 | 119 | 105

29957 | 315 | 194 | 185 | 182 | 171

45088 | 401 | 243 | 224 | 217 | 209

56963 | 461 | 276 | 254 | 245 | 240

59961 | 477 | 288 | 260 | 255 | 247

of algorithms for choosing the best partition for Algorithm SplitNode based on
different combinations of heuristics with their correspondent ordering to break ties:

—Version V;: using SHy;

—Version Vs: using SHy, SHy;

—Version V3: using SHy, SHo;

—Version Vy: using SHy, SHa, SHs;
—Version Vs: using SHy, SHa, SHs, SHy.

Since the overlap in an ND-tree may greatly degrade the performance, as seen from
the previous experiments, heuristic SH; (“minimize overlap”) is applied in all the
versions. Due to the space limitation, only the results for r, = 3 are reported here.
From the table we can see that heuristics SHs ~ SHy are all effective in improving
performance. Although version V5 is most effective, it may not be feasible in practice
since heuristic SHy has a lot of overhead as we mentioned in Section 3.2.5. Hence
the best practical version is Vj, which is not only very effective but also efficient.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

30 : Gang Qian et al.

Table V shows the performance comparison between the direct and normalization

Table V. Performance comparison between direct and normalization approaches for rq = 3
var = 1.1 var = 36.7 var = 90.0

key# 10 i0 i0 i0 i0 70

direct | norm | direct | norm | direct | norm

20000 144 143 211 135 265 130

40000 205 203 311 201 423 196

60000 291 296 416 284 606 272

80000 315 314 468 309 726 301

100000 357 355 516 346 890 342

approaches for NDDSs with different alphabets on each dimension. Experimental
results based on three 10-dimensional data sets with different variances of alphabet
sizes are presented. Alphabet sizes used range from 2 to 20. From Table V, we
can see that when the difference (variance) among dimensions is small, the nor-
malization approach performs similarly to the direct approach. As the difference
increases, the normalization approach becomes increasingly better than the direct
approach. From the experimental results, we conclude that, to index NDDSs with
various alphabet sizes on different dimensions, the normalized values of geometrical
measures, such as length, area and overlap, are better to be used in the construction
algorithms of the ND-tree.

4.2 Performance Analysis of the ND-tree

We also conducted another set of experiments to evaluate the overall performance
of the ND-tree for data sets in different NDDSs. Both genomic data and synthetic
data were used in the experiments. The effects of the dimensionality and alphabet
size of an NDDS on the performance of an ND-tree were examined. As before,
the query performance was measured based on the average number of I/Os for
executing 100 random test queries for each case. We compared the performance of
the ND-tree with that of the linear scan as well as several dynamic metric trees.
The disk block size was assumed to be 4 KB for all the access methods, which, in
turn, determines the maximum number of entries allowed in a node (block) when
the considered access method is an index tree. The minimum space utilization of a
node for the ND-tree was set to 30% as before.

4.2.1 Performance Comparison with Linear Scan. To perform range queries on
a database in an NDDS, a straightforward method is to employ the linear scan. We
compared the performance of our ND-tree with that of the linear scan. To make
a fair comparison, we assume that the linear scan is well-tuned with data being
placed on disk sequentially without fragments, which boosts its performance by a
factor of 10. In other words, the performance of the linear scan for executing a
query is assumed to be only 10% of the number of disk I/O’s for scanning all the
disk blocks of the data file. This benchmark was also used in [Chakrabarti and
Mehrotra 1999; Weber et al. 1998]. We will refer to this benchmark as the 10%
linear scan in the following discussion.

Figure 7 shows the performance comparison of the two search methods for the

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 31

x10°

1500

T
T T T T T T T T T data set
—— 10% linear —+ ND-tree

© ND-tree (query range=1)
%~ ND-tree (query range=2)
A - ND-tree (query range=3)

o
T

1000

number of I/Os
I @
T T

w
T

500

space complexity (in KBytes)

0] i . . . 1
0 0.2 0.4 0.6 0.8 1 12 1.4 16 18 2 0 0.2 0.4 0.6 0.8 1 12 14 16 18 2
number of indexed vectors x10° number of indexed vectors

Fig. 7. Performance comparison between ND-

Fig. 8. lexity of ND-t
tree and 10% linear scan for genomic data ig. 8. Space complexity o ree

bacteria genomic data set in an NDDS with 25 dimensions. From the figure, we
can see that the performance of the ND-tree is usually better than that of the
10% linear scan. For a query with a large range on a small database, the ND-
tree may not outperform the 10% linear scan, which is normal since an indexing
method is usually not superior to the linear scan for a small database, and the
larger the selectivity a query has, the less the benefit an index tree could gain. As
the database size becomes larger, the ND-tree is increasingly more efficient than
the 10% linear scan as shown in the figure. In fact, the ND-tree scales well with the
size of the database. For example, the ND-tree, on the average, is about 2.4 times
more efficient than the 10% linear scan for queries with range 3 on a genomic data
set of 2M (million) vectors. Figure 8 shows the space complexity of the ND-tree.
From the figure, we can see that the size of the tree is almost always about 1.46
times more than the size of the data set, which indicates an average disk space
utilization of 68.5%.

We also observed the (average) execution time, which reflects not only the 1/0
costs but also the CPU and buffering effects, for the two search methods. Although
the execution time measure depends heavily on a particular underlying environ-
ment, it shows the actual performance behaviors of the access methods in the given
environment and may help to identify some important factors. We notice that,
for a given database size, the execution time of the linear scan increases gradually,
rather than staying unchanged (like its I/O cost), as the query range increases. For
example, for a genomic data set of 1M vectors, the execution times of the linear
scan for queries with ranges 1, 2 and 3 are 0.140 sec., 0.163 sec. and 0.186 sec, re-
spectively. This is because the CPU overhead increases when larger search ranges
are evaluated based on the Hamming distance. The execution times of the ND-tree
for queries with ranges 1, 2 and 3 on the same data set are 0.005 sec., 0.024 sec.
and 0.080 sec., respectively. The increase of the execution time of the ND-tree for
larger query ranges is mainly caused by the increase of its I/O cost although its
CPU overhead is also increasing. When the number of disk blocks accessed by the
ND-tree becomes relatively large compared with the size of the underlying data set,

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

32 Gang Qian et al.

the linear scan can surpass the ND-tree in performance. For example, for the above
data set of 1M vectors, the execution time of the linear scan becomes better than
that of the ND-tree (0.258 sec. vs 0.337 sec.) when the query range reaches 5. In

general, the larger the data set, the larger the query range at which the number of
disk blocks accessed by the ND-tree becomes relatively large.

4.2.2 Performance Comparison with the M-tree and the Slim-trees. As men-
tioned in Section 1, a dynamic metric tree, such as the popular M-tree [Ciaccia
et al. 1997], can also be used to perform range queries in an NDDS. We compared
the performance of our ND-tree with that of the M-tree as well as one of its recent
variants — the Slim-tree [Traina et al. 2002]. The generalized hyperplane version
(mM_RAD_2) of the M-tree and the min-max version of the Slim-tree, which were
reported to have the best performance in [Ciaccia et al. 1997] and [Traina et al.
2002] respectively, were used in our experiments. Besides, the Slim-down algorithm
[Traina et al. 2002], which post-processes the Slim-tree to further enhance its query
performance, was also included in our comparisons.

Figures 9 and 10 show the comparisons of performance, in terms of disk I/Os,
among the ND-tree, the M-tree, the Slim-tree I (without slimming-down) and the

6000

6000

T T . .
-A- ND-tree -A- ND-tree B
s M-tree e M-tree L
*: Slim-tree | *: Slim-tree | P
- Slim-tree Il 4 Slim-tree I e
5000 imotee 5000 IR |
query range=3 . query range=3)});/ e
- * A
4000 - R 4000 A
- Phd R -
5 e - 8 54 ,’,
2 e L X
5 P 5 et e
5 3000 x . 5 3000 S,
2 - - 2 e -
5 Y e E et e
3 T 2 R
B BRIt
2000 X . 20001 L H
Rt xl .
R L
. - ‘ ks
e X
1000 Rt 4 1000 5 s
o 3 ‘»i,; %
X‘::,A.A———A—A———‘__—A___‘ i 2
0 n °
0 1 2 3 6 7 8 9 10 (] 1 2 3 7 8 9

4 5
number of indexed vectors

Fig. 9. Performance comparison between ND-
tree and metric trees for genomic data (disk
1/0s vs. various DB sizes)

4 5 6
number of indexed vectors X 10
Fig. 10. Performance comparison between ND-
tree and metric trees for binary data (disk I/Os
vs. various DB sizes)

s

Slim-tree IT (with slimming-down) for range queries (range = 3) with various data
set sizes on a 25-dimensional genomic data set as well as a 40-dimensional binary
data set (i.e., alphabet = {0, 1}). From the figures, we can see that the ND-tree
significantly outperforms the M-tree and the Slim-trees. For example, the ND-tree,
on the average, is about 12.3, 10.5 and 9.3 times faster than the M-tree, the Slim-
tree I and the Slim-tree II, respectively, in terms of disk I/Os on a genomic data set
of 1M vectors. Furthermore, the larger the data set, the more is the performance
improvement achieved by the ND-tree.

To examine the CPU and buffering effects on query performance of the index
trees, the average execution time of the same set of 100 random test queries for
each data set size was also measured. The results are shown in Figures 11 and 12,
which demonstrate again that the ND-tree significantly outperforms the M-tree and

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach 33
18 T T 3 T T
A~ ND-tree A~ ND-tree
+ M-tree + M-tree
1.6H % Slim-tree| - * Slim-tree |
—# Slim-tree Il 25H —# Slim-tree Il

141 query range=3 B & 1 query range=3
_ 12 1 2F
@) @)
e - 18
= = c15
5 : 5
Sos8 1%
o} o o}

0.6 = g 1

04 - i"’;‘:::* ==

‘ LT 05 TS
I r e
0.2 e == b e
o= A el
— oA ——"a
I o A N P 1o sty G ‘ ‘ ‘ ‘

number of indexed vectors X 10° number of indexed vectors X 10°
Fig. 12. Performance comparison between ND-
tree and metric trees for binary data (execution
time vs. various DB sizes)

Fig. 11. Performance comparison between ND-
tree and metric trees for genomic data (execu-
tion time vs. various DB sizes)

the Slim-trees. For example, the ND-tree, on the average, is about 20.6, 6.6 and
6.3 times faster than the M-tree, the Slim-tree I and the Slim-tree II, respectively,
in terms of execution time on a genomic data set of 1M vectors. However, it is
also observed that the relative difference of execution time between a Slim-tree
and an ND-tree is smaller, comparing to their relative difference of I/O counts.
This could be because: (1) the Slim-trees usually have a better space utilization
(e.g., for the genomic data set of 1M vectors, the space utilization of the Slim-tree
I is about 83.3%, comparing to 72.0% for the ND-tree), which leads to a more
effective use of the underlying OS buffering mechanism; (2) the Slim-trees store
some pre-computed distances to allow some subtrees to be pruned without much
CPU cost. On the other hand, although the M-tree also makes use of pre-computed
distances to save some CPU cost, its space utilization is low (e.g., about 21.7% for
the genomic data set of 1M vectors) and progressively deteriorates with the increase
of the database size, leading to a large and fast-growing file for the tree on the disk
(comparing to other trees). Since reading (random) blocks from a large data file
is slower than reading blocks from a small data file due to larger disk seek time
and a smaller success rate of pre-fetching hits, the execution time of an M-tree
deteriorates rapidly as the database size increases.

Figures 13 and 14 show the performance comparisons among the ND-tree, the M-
tree and the Slim-trees for queries with various ranges on the same 25-dimensional
genomic data set of 1M vectors. From the figures, we can see that the ND-tree
always outperforms the M-tree, and it outperforms the Slim-trees for query ranges
within a certain Hamming distance (e.g., < 8). As the query range gets larger, the
performance of every index tree quickly degrades to a saturated point where the
entire tree has to be scanned when processing such a query. In that case, the Slim-
trees require a slightly less number of 1/Os than the ND-tree since the Slim-trees
usually have a better space utilization. However, in such a case, the pre-computed
distances stored in the Slim-trees usually cannot help in pruning subtrees, i.e., the
distances between the query vector and the centers of subtrees almost always have
to be calculated during the search. Furthermore, in such a case, checking useless

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

34 : Gang Qian et al.

x10°

: T
A~ ND-tree A~ ND-tree
« M-tree + M-tree
35 % Slm-treel . e 4H = Slim-tree |
- Slim-tree I R - Slim-tree Il
of indexed vectors: 1,000,000 35H # of indexed vectors: 1,000,000 | .-

N
o
T

number of I/0Os
~
~
T

execution time (sec)

-
o
T

query range query range

Fig. 13. Performance comparison between ND- Fig. 14. Performance comparison between ND-
tree and metric trees for genomic data (disk tree and metric trees for genomic data (execu-
1/0s, various query ranges) tion time, various query ranges)

pre-computed distances incurs extra CPU overhead. As a result of balancing CPU
and I/0 costs, the execution time of a Slim-tree is comparable to that of the ND-
tree after the saturated point. From Figure 14, we can see that Figure 11 actually
demonstrates one of the optimal cases (i.e., queries of range 3) favoring the ND-tree
over the Slim-trees.

As pointed out earlier, the ND-tree is more efficient than other trees primarily
because it makes use of more geometric information of an NDDS for optimization
to gain more pruning power for searches. Although the M-tree and the Slim-trees
demonstrated a less competitive performance for range queries in NDDSs, they
were designed for a more general purpose and can be applied to more applications.

4.2.3 Scalability of the ND-tree for Dimensionality and Alphabet Size. To an-
alyze the scalability of the ND-tree for the dimensionality and alphabet size, we
conducted experiments using synthetic data sets with various parameter values for
an NDDS. Figures 15 and 16 show experimental results for varying dimensionalities
and alphabet sizes. From the figures, we see that the ND-tree scales well with both
the dimensionality and the alphabet size. For a fixed alphabet size and data set
size, increasing the number of dimensions for an NDDS does not significantly affect
the performance of the ND-tree for range queries. This is due to the effectiveness
of the overlap-reducing heuristics used in our tree construction. However, the per-
formance of the 10% linear scan degrades significantly since a larger dimensionality
implies larger vectors and hence more disk blocks. For a fixed dimensionality and
data set size, increasing the alphabet size for an NDDS has some effect on the per-
formance of the ND-tree. As mentioned before, our implementation of the ND-tree
employed a bitmap compression scheme to compress non-leaf nodes, which makes
the fan-out (number of entries) of each non-leaf node decreasing as the alphabet
size increases. Decreasing the fan-out of a non-leaf node causes the performance of
the ND-tree to degrade. On the other hand, since a larger alphabet size provides
more choices for splitting an overflow node, a better tree can be constructed. This
positive impact and the previous negative impact from increasing the alphabet size

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 35

350

T T T T T 350

T
—+ 10% linear

= 10% linear
—% ND-tree (query range = 2) —%- ND-tree (query range = 2)
300{ alphabet size: 10 1 300 #of dimensions: 40 1
of indexed vectors: 100,000 # of indexed vectors: 100,000
250 1 2500]
0 @
Q 2001 4 Q200 4
S S
é 3
£ 150 1 Eusor 7]
2 2
1001 4 100f]
Ll R N
s0(- 1 %1 S *]
0 0 ,
20 40 60 80 100 120 0 5 10 15 20 25 30 35
number of dimensions alphabet size

Fig. 15. Scalability of ND-tree on dimensional- Fig. 16. Scalability of ND-tree on alphabet size
ity

are balanced initially. But the former dominates the performance of the tree as the
alphabet size becomes large, as shown in Figure 16. Note that our C++ imple-
mentation of the ND-tree assumes that the input database is not compressed and,
hence, nor are its vectors indexed in the leaf nodes of an ND-tree, which makes the
number of vectors in a leaf node not affected by the change of the alphabet size.
Under this assumption, the performance of the 10% linear scan stay the same as
the alphabet size increases.

4.3 Verification of the Performance Model

We also verified our theoretical performance estimation model using the experimen-
tal data. The experimental setup was assumed to be the same as in Section 4.2.
Figures 17 and 18 show the comparisons between the theoretical and experimental

600

T T T T T T T T
-8 theoretical (query range=1) -8 theoretical (query range=1) ¥

—6 experimental (query range=1) R ARRUEHRTE 4 ~6 experimental (query range=1)
—x~ theoretical (query range=2) LA —x~ theoretical (query range=2) LZTITITNTRPRNY - ST
—%— experimental (query range=2) O —%— experimental (query range=2) S
500 theoretical (query range=3) ot 7 500 theoretical (query range=3) A 7
(query range=3) o experimental (query range=3) ¢
. A
Vo A
a Voo
400 b 400 . b
3 A
3 P .
Q N Q S
5 A 5 v
5 3001 R AT 4 1 5300F A R
€ A € 3
2 o 2 v
2 2 &
45 ¥
2001 b 200 b
& &
i § P 4
LA — L & P *
L =7 | L -l == |
100 e 100 -
e T w7 e
gox o ™
*
o i = = . \ \ , \ . oLeEeY T : | I ! . | .
0 1 2 3 4 5 6 7 8 9 10 0 02 04 06 0.8 1 12 14 16 18 2
number of indexed vectors x10° number of indexed vectors x10°

Fig. 17. Comparison between theoretical and Fig. 18. Comparison between theoretical and
experimental results for binary data experimental results for genomic data

results for the 40-dimensional synthetic binary data set and the 25-dimensional real
genomic data set, respectively. Figures 19 and 20 show the comparisons between
the theoretical and experimental results for varying dimensionalities and alphabet

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

36 : Gang Qian et al.

sizes, respectively, on synthetic data sets. From the figures, we can see that the
predicted numbers of disk I/O’s from the theoretical model are very close to those
from the experimental results, which corroborates the correctness of the model.
Note that although the genomic data set does not strictly follow the uniformly
distribution, the theoretical model can still predict the query performance of the
ND-tree well as shown in Figure 18.

350

T T
—+ theoretical results

—— theoretical results
—* experimental results

—%- experimental results
300H query range = 2 7 300 query range = 2

alphabet size: 10 # of dimensions: 40
of indexed vectors: 100,000 # of indexed vectors: 100,000

250 4 as0b

N
S
3

T

N

S

3

number of 1/0Os

.,
=
3
T

number of I/Os

o
Q
3

100

-

]

3
T

50

@
S
T

. I . 1 . .
0 20 40 60 80 100 120 0 5 10 15 20 25 30 35
number of dimensions alphabet size

Fig. 19. Comparison between theoretical and Fig. 20. Comparison between theoretical and
experimental results for varying dimensionali- experimental results for varying alphabet sizes
ties

5. CONCLUSIONS

There is an increasing demand for supporting efficient similarity searches in NDDSs
from applications such as genome sequence databases. Unfortunately, existing
indexing methods either cannot be directly applied to an NDDS (e.g., the R-
tree, the K-D-B-tree and the Hybrid-tree) due to lack of essential geometric con-
cepts/properties or have suboptimal performance (e.g., the metric trees) due to
their generic nature. We have proposed a new dynamic indexing method, i.e., the
ND-tree, to address these challenges.

The ND-tree is inspired by several popular multidimensional indexing methods
including the R*-tree, the X-tree and the Hybrid tree. However, it is based on
some essential geometric concepts/properties that we extend from a CDS to an
NDDS. Development of the ND-tree takes into consideration some characteristics,
such as limited alphabet sizes and data distributions, of an NDDS. As a result,
strategies such as the permutation and the merge-and-sort approaches to gener-
ating candidate partitions for an overflow node, the multiple heuristics to break
frequently-occurring ties, the efficient implementation of some heuristics, the nor-
malization and probability-based approaches to handling varying alphabet sizes for
different dimensions, and the space compression scheme for tree nodes are incor-
porated into the ND-tree construction. In particular, it has been shown that both
the permutation and the merge-and-sort approaches can guarantee generation of
an overlap-free partition if there exists one. Our complexity analysis also shows

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 37

that the permutation approach is more suitable for NDDSs with small alphabets,
while the merge-and-sort is more suitable for NDDSs with large alphabets.

A set of heuristics that are effective for indexing in an NDDS are identified and
integrated into the tree construction algorithms. This is done after carefully eval-
uating the heuristics in existing multidimensional indexing methods via extensive
experiments. For example, minimizing overlap (enlargement) is found to be the
most effective heuristic to achieve an efficient ND-tree, which is similar to the case
for index trees in a CDS. On the other hand, minimizing area is found to be an
expensive heuristic for an NDDS although it is also effective.

Our extensive experiments on synthetic and genome sequence data have demon-
strated that:

—The ND-tree outperforms the linear scan, the M-tree and the Slim-trees for ex-
ecuting queries with reasonable ranges in an NDDS. In fact, the larger the data
set, the more is the improvement in performance.

—The ND-tree scales well with the database size, the alphabet size as well as the
dimension for an NDDS.

We have also developed a performance estimation model to predict the perfor-
mance behavior of the ND-tree for random data. It can be used to estimate the
performance of an ND-tree for various input parameters. Experiments on synthetic
and real data sets have demonstrated that this model is quite accurate. In addition,
for completeness, we have presented a deletion algorithm and a nearest-neighbor
query processing algorithm for the ND-tree.

In summary, our study provides a foundation for developing indexing techniques
for large databases with non-ordered discrete data. However, our work is just the be-
ginning of the research to support efficient similarity searches in NDDSs. In future
work, we plan to further explore more heuristics/strategies for building and main-
taining an index tree in NDDSs and further study techniques/issues for supporting
efficient NN searches in NDDSs. It is worth noting that, after this work on the ND-
tree, we recently proposed another NDDS indexing technique, called the NSP-tree
[Qian et al. 2006]. In contrast to the ND-tree, which is a data-partitioning-based
indexing technique, the NSP-tree employs a space-partitioning-based scheme. The
work on the NSP-tree is an effort to explore the possibility of adopting a guaranteed
overlap-free indexing structure to improve search efficiency in NDDSs. It has been
shown that the NSP-tree has a better search performance for skewed data sets,
while the ND-tree is advantageous in guaranteeing the minimum space utilization.
We also plan to extend our indexing techniques to support queries in hybrid data
spaces that include both continuous and non-ordered discrete dimensions.

APPENDIX

In this appendix, we sketch the derivation of the performance estimation model
given in Proposition 3.2. In the following discussion, if a node N of an ND-tree is
at level j (1 < j < H + 1), we also say N is at layer (H — j + 1), where H is the
height of the tree. In other words, the leaf nodes are at layer 0, the parent nodes
of the leaves are at layer 1, ..., and the root node is at layer H. We still use the
symbols defined in Table I.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

38 : Gang Qian et al.

Based on the uniform distribution assumption and the tree building heuristics, an
ND-tree grows in the following way. Before a leaf node splits due to overflowing, all
leaf nodes contain about the same number of indexed vectors. They are getting filled
up at about the same pace. During this period (before any leaf node overflows), we
say that the leaf nodes are in the accumulating stage. When one leaf node overflows
and splits (into two), the other leaf nodes will also start to overflow and split one
by one in quick succession until all leaf nodes have split. We say the leaf nodes are
in the splitting transition in this period. Comparing to the accumulating stage, the
splitting transition is relatively short. Each new leaf node is about half full right
after the splitting transition. The ND-tree grows by repeating the above process.

Let n be the number of leaf nodes in an ND-tree. From the above observation,
we have:

V]

oltea:[F 111 _) pliogaTRT

When n equals the right end, the leaf nodes of the ND-tree are in the accumulating
stage. Otherwise, the tree is in the splitting transition. Since the splitting transition
is relatively short, we can consider the accumulating stage only for our performance
estimation model. Hence the following formula is used to estimate the number of
leaf nodes in the ND-tree:
vl
ng = 2/l (18)
A similar analysis can be applied to the parent nodes of the leaves (i.e., nodes
at layer 1). In other words, when the parent nodes are in the accumulating stage,
their number can be estimated as:

ny = 2”092“&—1-\-\) (19)

Since the splitting transition is relatively short, Formula (19) can be used to es-
timate the number of non-leaf nodes of the ND-tree at layer 1. In general, the
number of non-leaf nodes of the ND-tree at layer 7 can be estimated as follows:

n; = olloga[5111 7 (1<i<H), (20)
where H = [logy ng]| and b = 2lleg2Mnl,
From (18) ~ (20), the expected number of vectors indexed in a node (subtree)
at layer ¢ of the ND-tree is:

wi = [[V]/ni] , (0<i<H). (21)

During the growth of an ND-tree, some dimensions are chosen to be split and
there could also exist other dimensions that have never been split yet. We call such
dimensions as unsplit dimensions and the edges on those unsplit dimensions of a
DMBR are called unsplit edges. Under the assumptions of the uniform distribution
and the independence among dimensions, the expected lengths of unsplit edges of
the DMBR of a node of the ND-tree are about the same. Note that we still consider
the dominant accumulating stage. The probability for the length of an unsplit edge
of the DMBR of a node at layer i to be 1 is:

Tia = |Al/(1AD" = 1/(A" (22)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 39

Based on Equation (22), the probability for the length of an unsplit edge to be j
(2 < j <]A]) can be computed as:

5 = CALD) - 1 = Y (CUR) - gt TVAD™ @< < 1] . (23)
k=1 ’

Hence the expected length of an unsplit edge of the DMBR of a node at layer 7 can
be computed as:

|A|

si=» j-Tij. (24)
j=1

In particular, s,, is the expected length of each edge (since no split) of the DMBR
of the root node of the ND-tree.

Based on the uniform distribution assumption and heuristics SHy (“maximize
span”) and SHs (“center split”), we can assume that a sequence of n node splits
will split on the 1st dimension, the 2nd dimension, ..., the last (d-th) dimension,
then back to the 1st dimension, ..., until n splits are done. Each split will divide
the component set of a DMBR on the relevant dimension into two equal-sized
component subsets.

To obtain n; (0 < i < H) nodes at layer i of the ND-tree (in the accumulating
stage), the expected number of splits needed is logs n; (starting from splitting the
root node). Let

d! = |(log2 n;) mod d| , (25)
d;=d-d . (26)

The DMBR of a node N at layer ¢ has the following expected edge length:
s = — o (27)

K3 2 l— loggd n; -‘
on d; dimensions. It has the following expected edge length:

R if (1092' n;)/d < 1, (28)
§i = oo otherwise
e
on d; dimensions. Note that the first case in (28) represents the situation when the
d}; dimensions of the DMBR have never been split yet so that Equation (24) can be
applied.
For node N, the probability for a component of a query vector a,; to be covered

by the corresponding component set of the DMBR of N is given as:
B =s/|A] (29)

or
B} = s]/|A| (30)

depending on the relevant dimension. Hence the probability for a node N at layer
i to be accessed by range query range(ag,0) for Hamming distance 0 can be cal-
culated as:

Pio = (B)" - (B/)" . (31)

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

40 : Gang Qian et al.

Using (31), the probability for node N to be accessed by range query range(ay, h)
for Hamming distance h can be evaluated recursively as:

h
P =Y [C(d}, k) - C(d!,h—k) - (B)~F - (1= BYF - (BY)"+E=" (1 — B)hH]
k=0
+ H,h—l . (32)

Therefore, the expected total number of disk I/O’s for using the ND-tree to perform
range query range(ag, h) for Hamming distance h can be estimated as:

H—-1
0=1+> (ni*Piy) . (33)
1=0

ACKNOWLEDGMENTS

The authors would like to thank the anonymous reviewers for their valuable com-
ments and constructive suggestions for improving the paper. The preliminary work
of this paper was presented at the 29th International Conference on Very Large
Data Bases (VLDB’03), Berlin, Germany, September 9-12, 2003 [Qian et al. 2003].

REFERENCES

BAYER, R. AND UNTERAUER, K. 1977. Prefix B-trees. ACM Trans. on Database Syst. 2, 1, 11-26.
BECKMANN, N., KRIEGEL, H., SCHNEIDER, R., AND SEEGER, B. 1990. The R*-tree: an efficient
and robust access method for points and rectangles. In Proc. of SIGMOD. 322-331.

BercHTOLD, S., KEIM, D. A.; AND KRIEGEL, H.-P. 1996. The X-tree: an index structure for
high-dimensional data. In Proc. of VLDB. 28-39.

BozkayA, T. AND OzsoyoGLU, M. 1997. Distance-based indexing for high-dimensional metric
spaces. In Proc. of SIGMOD. 357-368.

BRIN, S. 1995. Near neighbor search in large metric spaces. In Proc. of VLDB. 574-584.

CHAKRABARTI, K. AND MEHROTRA, S. 1999. The hybrid tree: an index structure for high dimen-
sional feature spaces. In Proc. of ICDE. 440-447.

CHAVEZ, E., NAVARRO, G., BAEZ-YATES, R., AND MARROQUIN, J. L. 2001. Searching in metric
spaces. ACM Computing Surveys 33, 3, 273-321.

CHIUEH, T. 1994. Content-based image indexing. In Proc. of VLDB. 582-593.

CIACCIA, P., PATELLA, M., AND ZEZULA, P. 1997. M-tree: an efficient access method for similarity
search in metric spaces. In Proc. of VLDB. 426-435.

CLEMENT, J., FLAJOLET, P., AND VALLEE, B. 2001. Dynamic sources in information theory: a
general analysis of trie structures. Algorithm 29, 1/2, 307-369.

DoOHNAL, V., GENNARO, C., SAVINO, P., AND ZEZULA, P. 2003. D-index: Distance searching index
for metric data sets. Multimedia Tools Appl 21, 1, 9-33.

FERRAGINA, P. AND GROSssI, R. 1999. The String B-tree: a new data structure for string search
in external memory and its applications. J. ACM 46, 2, 236-280.

GUTTMAN, A. 1984. R-trees: a dynamic index structure for spatial searching. In Proc. of SIGMOD.
47-57.

HeNRICH, A. 1998. The LSD”-tree: an access structure for feature vectors. In Proc. of ICDE.
362-369.

KATAYAMA, N. AND SATOH, S. 1997. The SR-tree: an index structure for high-dimensional nearest
neighbor queries. In Proc. of SIGMOD. 369-380.

KeEnT, W. J. 2002. BLAT — the BLAST-like aligment tool. Genome Research 12, 656-664.
KNuTH, D. E. 1973. The Art of Computer Programming, Vol. 3. Addison-Wesley, Reading, Mass.

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

Dynamic Indexing for NDDSs Using a Data-Partitioning Approach : 41

L1, J. 2001. Efficient similarity search based on data distribution properties in high dimension.
In Ph.D. Dissertation, Michigan State University.

QIAN, G., ZHU, Q., XUE, Q., AND PRAMANIK, S. 2003. The ND-tree: a dynamic indexing technique
for multidimensional non-ordered discrete data spaces. In Proc. of VLDB. 620-631.

Q1aN, G., Zuu, Q., XUE, Q., AND PRAMANIK, S. 2006. A space-partitioning-based indexing method
for multidimensional non-ordered discrete data spaces. ACM Trans. on Information Syst. 23,
(to appear).

RoBiNsON, J. T. 1981. The K-D-B-tree: a search structure for large multidimensional dynamic
indexes. In Proc. of SIGMOD. 10-18.

RoussopouLos, N., KELLEY, S., AND VINCENT, F. 1995. Nearest neighbor queries. In Proc. of
SIGMOD. 71-79.

SKOPAL, T., POKORNY, J., AND SNASEL, V. 2004. PM-tree: pivoting metric tree for similarity
search in multimedia databases. In Proc. of Dateso 2004 Annual Int’l Workshop on DAtabases,
TEzuxts, Specifications and Objects (DATESO’04). 27-37.

TrAINA, C., TRAINA, A., FALOUTSOS, C., AND SEEGER, B. 2002. Fast indexing and visualization
of metric data sets using slim-trees. IEEE Trans. on Knowl. and Data Eng. 14, 2, 244-260.
UHLMANN, J. K. 1991. Satisfying general proximity/similarity queries with metric trees. Inf.

Proc. Lett. 40, 4, 175-179.

WEBER, R., SCHEK, H.-J., AND BLOTT, S. 1998. A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In Proc. of VLDB. 357-367.

WHITE, D. AND JAIN, R. 1996. Similarity indexing with the SS-tree. In Proc. of ICDE. 516-523.

XUE, Q., QIAN, G., COLE, J. R., AND PRAMANIK, S. 2004. Investigation on approximate g-gram
matching in genome sequence databases. In Tech. Report, Michigan State Univ.

Znou, X., WANG, G., YU, J. X., AND YU, G. 2003. M*-tree: a new dynamical multidimensional
index for metric spaces. In Proc. of the 14th Australasian Database Conf. 161-168.

Received December 2004; revised August 2005; accepted November 2005

ACM Transactions on Database Systems, Vol. 31, No. 2, June 2006.

