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Dynamic information routing in complex networks
Christoph Kirst1,2,3,4,5, Marc Timme1,3,4 & Demian Battaglia6

Flexible information routing fundamentally underlies the function of many biological and

artificial networks. Yet, how such systems may specifically communicate and dynamically

route information is not well understood. Here we identify a generic mechanism to route

information on top of collective dynamical reference states in complex networks. Switching

between collective dynamics induces flexible reorganization of information sharing and

routing patterns, as quantified by delayed mutual information and transfer entropy measures

between activities of a network’s units. We demonstrate the power of this mechanism

specifically for oscillatory dynamics and analyse how individual unit properties, the network

topology and external inputs co-act to systematically organize information routing. For

multi-scale, modular architectures, we resolve routing patterns at all levels. Interestingly, local

interventions within one sub-network may remotely determine nonlocal network-wide

communication. These results help understanding and designing information routing patterns

across systems where collective dynamics co-occurs with a communication function.
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A
ttuned function of many biological or technological
networks relies on the precise yet dynamic
communication between their subsystems. For instance,

the behaviour of cells depends on the coordinated information
transfer within gene-regulatory networks1,2 and flexible
integration of information is conveyed by the activity of
several neural populations during brain function3. Identifying
general mechanisms for the routing of information across
complex networks thus constitutes a key theoretical challenge
with applications across fields, from systems biology to the
engineering of smart distributed technology4–6.

Complex systems with a communication function often
show characteristic dynamics, such as oscillatory or synchronous
collective dynamics with a stochastic component7–11. Information
is carried in the presence of these dynamics within and
between neural circuits12,13, living cells14,15, ecological or social
groups16,17 as well as technical communication systems, such as
ad hoc sensor networks18,19. While such dynamics could simply
reflect the properties of the interacting unit’s, emergent collective
dynamical states in biological networks can actually contribute to
the system’s function. For example, it has been hypothesized that
the widely observed oscillatory phenomena in biological networks
enable emergent and flexible information routing12. Yet, what are
the precise mechanism by which collective dynamics contribute
to organizing communication in networks? Moreover, how do the
intrinsic dynamics of units, their interaction topology and
function as well as external driving signals and noise create
specific patterns of information routing?

In this article, we derive a theory for information routing in
complex networked systems, revealing the joint impact of all
these elements. We identify a generic mechanism to dynamically
route information in complex networked systems by conveying
information in fluctuations around a collective dynamical
reference state. Propagation of information then depends on
the underlying reference dynamics and switching between
multiple stable states induces flexible rerouting of information,
even if the physical network stays unchanged. For oscillatory
dynamics, analytic predictions show precisely how the physical
coupling structure, the units’ properties and the dynamical state
of the network co-act to generate a specific communication
pattern, quantified by time-delayed mutual information
(dMI)20,21 and transfer entropy22 curves between time-series of
the network’s units. Resorting to a collective phase description23,
our theory further resolves communication patterns at all levels
of multi-scale, modular topologies24,25, as ubiquitous, for
example, in the brain connectome and biochemical regulatory
networks26–29. Interestingly, local interventions within one sub-
network may remotely modify information transfer between
other seemingly unrelated sub-networks. Finally, a combinatorial
number of information routing patterns (IRPs) emerge if several
multi-stable subsystems are combined into a larger modular
network. These relations between multi-scale connectivity,
collective network dynamics and flexible information routing
have potential applications in the reconstruction and design of
gene-regulatory circuits15,30, wireless communication
networks4,19 or to the analysis of cognitive functions31–35,
among others. Moreover, these results offer generic insights
into mechanisms for flexible and self-organized information
routing in complex networked systems.

Results
Information routing via collective dynamics. To better under-
stand how collective dynamics may contribute to specifically
distribute bits of information from external or locally computed
signals through a network or to it s downstream components we

first consider a generic stochastic dynamical system. It evolves in
time t according to

d

dt
x ¼ f xð Þþ n ð1Þ

where x¼ (x1,y, xN) denotes the variables of the network
nodes, f describes the intrinsic dynamics of the network. The key
premise is that the information to be routed through the network
is carried in the stochastic external input n¼ (x1,y,xN) driving
instantaneous state variable fluctuations. To access the role of
collective dynamics in routing this information we consider a
deterministic intrinsic reference state x(ref) (t) solving (2) in the
absence of signals (n¼ 0).

We use information theoretic measures that quantify the
amount of information shared and transferred between nodes,
independent of how this information is encoded or decoded.
More precisely, we measure information sharing between signal
xi(t) and the time d lagged signal xj(tþ d) of nodes i and j in the
network via the time-delayed mutual information (dMI)20,21

dMIi;jðdÞ ¼

ZZ

pi;j dð Þ tð Þlog
pi;j dð Þ tð Þ

pi tð Þpj tð Þ

� �

dxi tð Þdxj tþ dð Þ ð2Þ

Here pi(t) is the probability distribution of the variable xi(t) of
unit i at time t and pi,j(d)(t) the joint distribution of xi(t) and the
variable xj(tþ d) lagged by d. As a second measure, we use the
delayed transfer entropy (dTE)22 (cf. Methods) that genuinely
measures information transfer between pairs of units36.
Asymmetries in the curves dMIi,j(d) and dTEi-j(d) then
indicate the dominant direction in which information is shared
or transferred between nodes (cf. Supplementary Note 1).

To identify the role of the underlying reference dynamical state
x(ref)(t) for network communication a small-noise expansion in
the signals n turns a out to be ideally suited: while this expansion
limits the analysis to the vicinity of a specific reference state
which is usually regarded as a weakness of this technique, in the
context of our study, this property is highly advantageous as it
directly conditions the calculations on a particular dynamical
state and enables us to extract it s role for the emergent pattern of
information routing within the network. For white noise sources
n this method yields general expressions for the conditional
probabilities p(x(tþ d)|x(t)) that depend on x(ref)(t). Using this
result the expressions for the dMI (2) and dTE (7) dMIi,j(d) and
dTEi-j(d) become a function of the underlying collective
reference dynamical state (cf. Methods and Supplementary Note
2). The dependency on this reference state then provides a generic
mechanism to change communication in networks by manipula-
tion the underlying collective dynamics. In the following we show
how this general principle gives rise to a variety of mechanisms to
flexibly change information routing in networks. We focus on
oscillatory phenomena widely observed in networks with a
communication function32,34,35,37,38.

Information exchange in phase signals. Oscillatory synchroni-
zation and phase locking8,10 provide a natural way for the
temporal coordination between communicating units. Key
variables in oscillator systems are the phases fi(t) at time t of
the individual units i. In fact, a wide range of oscillating systems
display similar phase dynamics8,11 (cf. Supplementary Note 3)
and phase-based encoding schemes are common, for example, in
the brain32,34,35, genetic circuits37 and artificial systems38.

We first focus on systems in a stationary state with a stationary
distribution for which the expressions for the dMI and dTE
become independent of the starting time t and only depend on
the lag d and reference state /(ref)(t). To assess the dominant
direction of the shared information between two nodes, we
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quantify asymmetries in the dMI curve by using the difference
dMIi,j¼MIi-j�MIj-j between the integrated mutual
informations MIi!j ¼

R1
0 dMIi;j tð Þdt and MIj-i. If this is

positive, information is shared predominantly from unit i to j,
while negative values indicate the opposite direction. Analo-
gously, we compute the differences in dTE as dTEi,j (cf. Methods
and Supplementary Note 1). The set of pairs {dMIi,j} or {dTEi,j}

for all i, j then capture strength and directionality of information
routing in the network akin to a functional connectivity analysis
in neuroscience39. We refer to them as IRPs.

A range of networks of oscillatory units, with disparate
physical interactions, connection topologies and external
input signals support multiple IRPs. For instance, in a model of
a gene-regulatory network with two oscillatory sub-networks
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Figure 1 | Flexible information routing across networks. (a) Simple model of a gene-regulatory network of two coupled biochemical oscillators of

Goodwin type (yellow and blue). An additional molecule (purple) degrades the transcribed mRNA in one of the oscillators and thereby changes its intrinsic

frequency. Coupling strengths are gray coded (darker colour indicates stronger coupling), sharp arrows indicate activating and blunt arrows inhibiting

influences (cf. Methods). (b) Stochastic oscillatory dynamics of the concentrations of the systems components xi (mRNA), yi (enzyme), and zi (protein),

iA{1, 2}. (c) Fluctuations of the phases extracted from the full dynamics relative to a reference unit. (d) dMI (dMI1,2) between the phase signals. The

numerical data (dots) agrees well with the theoretical prediction (4) (solid lines). The asymmetry in the dMI curves around d¼0 indicates a directed

information sharing pattern summarized in the graphs (right). Arrow thickness indicates the strength of directed information sharing DMIi,j measured by

the positively rectified differences of the areas below the dMIi,j(d) curve for do0 and d40. (e–h) Same as in a–d but for a modular network of coupled

neuronal sub-populations consisting each of excitatory (triangle) and inhibitory (disk) populations (Wilson–Cowan-type dynamics) that undergo neuronal

oscillatory activity (cf. Methods). For the same network two different collective dynamical states accessed by different initial conditions give rise to two

different information sharing patterns (f–h top versus bottom). (f) Oscillatory activities vi of the N¼8 excitatory populations i. (i–l) As in a–d but for

generic oscillators close to a Hopf bifurcation (Stuart–Landau oscillators) each described by two-dimensional normal-form coordinates (xi,yi) connected to

a larger network of N¼ 25 oscillators with coupling coefficients ci,j
r (cf. Methods). In i and l, connectivity matrices are shown instead of graphs. Two different

network-wide IRPs arise (top versus bottom in j–l) by changing a small number of connection weights (purple entries in i and l).

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11061 ARTICLE

NATURE COMMUNICATIONS | 7:11061 | DOI: 10.1038/ncomms11061 | www.nature.com/naturecommunications 3

http://www.nature.com/naturecommunications


(Fig. 1a) dMI analysis reveals IRPs with different dominant
directions (Fig. 1b–d, upper versus lower). The change is
triggered by adding an external factor that degrades the
transcribed mRNA in one of the oscillators and thereby
changes its intrinsic frequency (see Methods). More complex
changes in IRPs emerge in larger networks, possibly with modular
architecture. In a network of interacting neuronal populations
(Fig. 1e), different initial conditions lead to different underlying
collective dynamical states. Switching between them induces
complicated but specific changes in the IRPs (Fig. 1f–h). Different
IRPs also emerge by changing a small number of connections in
larger networks. Fig. 1i–l illustrates this for a generic system of
coupled oscillators each close to a Hopf bifurcation.

In general, several qualitatively different options for modifying
network-wide IRPs exist, all of which are relevant in natural
and artificial systems: (i) changing the intrinsic properties
of individual units (Fig. 1a–d); (ii) modifying the system
connectivity (Fig. 1i–l); and (iii) selecting distinct dynamical
states of structurally the same system (Fig. 1e–h).

Theory of phase information routing. To reveal how different
IRPs arise and how they depend on the network properties and
dynamics, we derive analytic expressions for the dMI and dTE
between all pairs of oscillators in a network. We determine the
phase of each oscillator i in isolation by extending its phase
description to the full basin of attraction of the stable limit
cycle8,40. For weak coupling, the effective phase evolution
becomes

d

dt
fi ¼ oi þ

X

N

j¼1

gi;jðfi �fjÞþ
X

N

k¼1

Bi;kxk ð3Þ

where oi is the intrinsic oscillation frequencies of node i and the
coupling functions gi,j(�) depend on the phase differences only.
The final sum in (3) models external signals as independent
Gaussian white noise processes xk and a covariance matrix Bi,k.
The precise forms of gi,j(�) and Bi,k generally depend on the
specific system (Supplementary Note 3).

As visible from Fig. 1e–h, the IRP strongly depends on the
underlying collective dynamical state. We therefore decompose the
dynamics into a deterministic reference part f

ðrefÞ
i and a

fluctuating component f
ðfluctÞ
i . We focus on phase-locked config-

urations for the deterministic dynamics with constant phase offsets
Df

ðrefÞ
i;j ¼f

ðrefÞ
i �f

ðrefÞ
j . We estimate the stochastic part f

ðfluctÞ
i via a

small-noise expansion (Methods and Supplementary Note 4,
Theorem 1) yielding a first-order approximation for the joint
probabilities pi,j(d). Using (2) together with the periodicity of the
phase variables, we obtain the dMI

dMIi;jðdÞ ¼
ki;j dð Þ I1 ki;j dð Þ

� �

I0 ki;j dð Þ

� � � log I0 ki;j dð Þ

� �� �

ð4Þ

between phase signals in coupled oscillatory networks; here, In(k) is
the nth modified Bessel function of the first kind, and ki,j(d) is the
inverse variance of a von Mises distributions ansatz for pi,j(d). The
system’s parameter dependencies, including different inputs, local
unit dynamics, coupling functions and interaction topologies are
contained in ki,j(d). By similar calculations we obtain analytical
expressions for dTEi-j (Methods and Supplementary Note 4,
Theorem 2). Our theoretical predictions well match the numerical
estimates (Fig. 1d,h,l, see also Fig. 2c,d below and Supplementary
Figs 1 and 2). For independent input signals (Bi,k¼ 0 for iak) we
typically obtain similar IRPs determined either by the dMI or the
transfer entropy (Supplementary Fig. 1). Further, the results

remain valid qualitatively when the noise level increases
(Supplementary Fig. 2).

Mechanism of anisotropic information routing. To better
understand how a collective state gives rise to a specific routing
pattern with directed information sharing and transfer, consider
a network of two symmetrically coupled identical neural
population models (Fig. 2a). Because of permutation symmetry,
the coupling functions gi,j, obtained from the phase reduction
of the original Wilson–Cowan-type equations41 (Methods,
Supplementary Note 3), are identical. For biologically plausible
parameters this network in the noiseless-limit has two stable
phase-locked reference states (a and b). The fixed phase
differences Df

½a�
1;2 and Df

½b�
1;2 are determined by the zeros of the

anti-symmetric coupling �gðDfÞ ¼ gðDfÞ� gð�DfÞ with
negative slope (Fig. 2e). For a given level of (sufficiently weak)
noise, the system shows fluctuations around either one of these
states (Fig. 2b) each giving rise to a different IRP. Sufficiently
strong external signals can trigger state switching and
thereby effectively invert the dominant communication
direction visible from the dMI (Fig. 2c) and even more
pronounced from the dTE (Fig. 2d) without changing any
structural properties of the network.

The anisotropy in information transfer in the fully symmetric
network is due to symmetry broken dynamical states. For
independent noise inputs, Bi,k¼ Bidi,k, that are moreover small, the
evolution of f

ðfluctÞ
i , iA{1,2}, near the reference state a reduces to

d

dt
f
ðfluctÞ
i ¼ g

a½ �
i f

fluctð Þ
i �f

fluctð Þ
j

� �

þ Bixi ð5Þ

with coupling constants g
a½ �
1 ¼g0ðDf

a½ �
1;2Þ, g

a½ �
2 ¼ � g0ð2p�Df

a½ �
1;2Þ

(Methods). As g
a½ �
2 � 0 (Fig. 2e), the phase f

ðfluctÞ
2 essentially freely

fluctuates driven by the noise input B2x2. This causes the system to

deviate from the equilibrium phase difference Df
a½ �
1;2. At the same

time, the strongly negative coupling g
a½ �
1 dominates over the noise

term B1x1 and unit 1 is driven to restore the phase difference by

reducing f
ðfluctÞ
1 �f

ðfluctÞ
2

�

�

�

�

�

�. Thus, f
ðfluctÞ
1 is effectively enslaved to

track f
ðfluctÞ
2 and information is routed from unit 2 to 1, reflected in

the dMI and dTE curves. The same mechanism accounts for the
reversed anisotropy in communication when the system is near
state b as the roles of units 1 and 2 are exchanged. Calculating the
peak of the dMI curve in this example also provides a time scale

d
½a�
� � � log 2ð Þ=g

a½ �
1 at which maximal information sharing is

observed (Methods, equation (10), see also Supplementary Note 4).
It furthermore becomes clear that the directionality of the
information transfer in general need not be related to the order
in which the oscillators phase-lock because the phase-advanced
oscillator can either effectively pull the lagging one, or, as in this
example, the lagging oscillator can push the leading one to restore
the equilibrium phase-difference.

In summary, effective interactions local in state space and
controlled by the underlying reference state together with the
noise characteristics determine the IRPs of the network.
Symmetry broken dynamical states then induce anisotropic and
switchable routing patterns without the need to change the
physical network structure.

Information routing in networks of networks. For networks
with modular interaction topology24–28, our theory relating
topology, collective dynamics and IRPs between individual units
can be generalized to predict routing between entire modules.
Assuming that each sub-network X in the noiseless limit has a
stable phase-locked reference state, a second-phase reduction23
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generalized to stochastic dynamics characterizes each module by
a single meta-oscillator with collective phase FX and frequency
OX, driven by effective noise sources XX with covariances SX,Y.
The collective phase dynamics of a network with M modules then
satisfies

d

dt
FX ¼ OX þ

X

M

Y¼1

GX;YðFX �FYÞþ
X

M

Y¼1

�X;Y�Y ð6Þ

where GX,Y are the effective inter-community couplings
(Supplementary Note 5). The structure of equation (6) is
formally identical to equation (3) so that the expressions for
inter-node information routing (dMIi,j and dTEi-j) can be lifted
to expressions on the inter-community level (dMIX,Y and
dTEX-Y) by replacing node- with community-related quantities
(that is, oi with OX or gik with GX,K and so on; Supplementary
Note 5, Corollaries 3 and 4). Importantly, this process can
be further iterated to networks of networks and so on.
Figure 3 shows examples of information flow patterns resolved
at two scales. The information routing direction on the
larger scale reflects the majority and relative strengths of IRPs
on the finer scale.

Nonlocal information rerouting via local interventions.
The collective quantities in the system (6) are intricate functions

of the network properties at the lower scales. Intriguingly, the
coupling functions GX,Y not only depend on the nonlocal
interactions giX jY between units iX of module X and jY of cluster Y
but also on purely local properties of the individual clusters. In
particular, the form of GX,Y is a function of the intrinsic local
dynamical states DX and DY of both clusters as well as the phase
response ZX of sub-network X (see Methods and Supplementary
Note 5). Thus IRPs on the entire network level depend on
local community properties. This establishes several generic
mechanisms to globally change information routing in networks
via local changes of modular properties, local connectivity or via
switching of local dynamical states.

In a network consisting of two sub-networks (Fig. 3a) the
local change of the frequency of a single Hopf-oscillator in
sub-network A induces a nonlocal inversion of the information
routing between cluster A and B (Fig. 3b–d). In Fig. 3e–f,
the direction in which information is routed between two
sub-networks B and C of coupled phase oscillators is remotely
changed by increasing the strength of a local link in module
A. The origin in both examples is a non-trivial combination of
several factors: the (small) manipulations alter the collective
cluster frequency OA and the local dynamical state DA which in
turn changes the collective phase response ZA and the

Figure 2 | Multi-stable dynamics and anisotropic information routing.

(a) Two identical and symmetrically coupled neuronal circuits of Wilson–

Cowan-type (dark and light green, modular sub-network in Fig. 1e). The

noise free (that is, input free) network displays two different stable

oscillatory dynamical states a and b. (b) Phase difference

Df1,2(t):¼f1(t)�f2(t) between the extracted phases of the two neuronal

populations is fluctuating around a locked value Df
a½ �
1;2 of a the stable

collective state a of the deterministic system (orange); a strong external

perturbation (purple arrow) induces a switch to stochastic dynamics

around the second stable deterministic reference state b (brown) with

phase difference Df
b½ �
1;2. (c) Delayed mutual information dMI1,2 and (d)

transfer entropy dTE1-2 curves between the phase signals in states a

(orange) and b (brown) for numerical data (dots) and theory (lines) as a

function of the time delay d between the stochastic phase signals f1(t) and

f2(tþ d). The change in peak latencies form d
½a�
� o0 to d

½b�
� 40 in the dMI1,2

curves and the asymmetry of the dTE1-2 curves show anisotropic

information routing for the two different states. Switching between the two

dynamical states reverses the effective information routing pattern (IRP)

(graphs, bottom). (e) Phase coupling function g(Df)¼ g1,2(Df)¼ g2,1(Df)

(blue) between the two neuronal oscillators and its anti-symmetric part

�g Dfð Þ ¼ g Dfð Þ� g �Dfð Þ (red). The two zeros of �g Dfð Þ with negative

slope indicate the stable deterministic equilibrium phase differences Df
a½ �
1;2

and Df
b½ �
1;2 of the dynamical states a and b, receptively. The directionality in

the IRP arises due to symmetry breaking in the dynamics reflected in the

different slopes of g(Df) (dashed lines): In the state a, oscillator 1 receives

inputs from oscillator 2 proportional to g0 Df
a½ �
1;2

� �

, while oscillator 2 is

coupled to 1 proportional to g0 2p�Df
a½ �
1;2

� �

¼ g0 Df
b½ �
1;2

� �

in linear small-

noise approximation (cf. equation (5)). As g0 Df
a½ �
1; 2

� ��

�

�

�

�

� is large deviations

from the phase-locked state of oscillator 2 due to the noise inputs are

strongly propagated to oscillator 1 to restore the phase-locking. Information

injected to oscillator 2 is thus transmitted to oscillator 1. In contrast, inputs

to oscillator 1 only weakly impact oscillator 2 as g0 Df
b½ �
1;2

� �

is small. In total,

the information is thus dominantly routed from 2 to 1. Switching to the

dynamical state b reverses the roles of the oscillators and thus also the

directionality of the information routing motive.

0 200
0

0

−0.5

0.5

−100 100
0.0

0.5

5.5

7.5

2��

�,
�̄

M
I 1

,2
 (
d
)

(b
it
s
)

t

State � State �

a

b

c

d

e

1
2

(�)

1,2
Δ�Δ�

(�)

1,2

d
*
(�) d

*
(�)

T
E

1
,2

 (
d
)

(b
it
s
)

d

�̄

�

�′(Δ� (�)
1,2)

�′(Δ� (�)
1,2)

�
1
 −

 �
2

2�

Δ
 �

1
,2

  
Δ

 �
1
,2

(β
)

(α
)

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms11061 ARTICLE

NATURE COMMUNICATIONS | 7:11061 | DOI: 10.1038/ncomms11061 | www.nature.com/naturecommunications 5

http://www.nature.com/naturecommunications


effective noise strength XA of cluster A. These changes all
contribute to changes in the effective couplings GX,Y as well as in
the inter-cluster phase-locking values DFX,Y¼FX�FY

(cf. Supplementary Note 5 and Supplementary Fig. 3). The
changes in these properties, which enter the expressions for the
information sharing and routing measures (Fig. 2 and
Supplementary Note 4) then cause the observed changes
in information routing direction. Interestingly, the transition
in information routing has a switch-like dependency on the
changed parameter (Fig. 3c,d,g) promoting digital like changes of
communication modes. Combinatorially many information
routing patterns.

Combinatorial many information routing patterns. As an
alternative to interventions on local properties, also switching
between multi-stable local dynamical states DX can induce global
information rerouting. In the example in Fig. 4, each of theM¼ 3
modules XA{A, B, C} exhibits N X¼2 alternative phase-locked
states (labelled aX and bX, Supplementary Section 6 and
Supplementary Fig. 4). For sufficiently weak coupling, this local
multi-stability is preserved in the dynamics of the entire modular
network. Consequently each choice of theN A�N B�N C possible
combinations of ‘local’ states gives rise to at least one network-
wide collective state. Certain combinations of local states can give
rise to one or even multiple globally phase-locked states (for
example, [aAbBaC] in Fig. 4). Others support non-phase-locked
dynamics that gives rise to time-dependent IRPs (cf. Fig. 4c and
below). Thus, varying local dynamical states in a hierarchical
network flexibly produces a combinatorial number N �

Q

X N X

of different IRPs in the same physical network.

Time-dependent information routing. General reference states,
including periodic or transient dynamics, are not stationary and

hence the expressions for the dMI and dTE become dependent on
the time t. For example, Fig. 4c shows IRPs that undergo cyclic
changes due to an underlying periodic reference state (cf. also
Supplementary Note 6 and Supplementary Fig. 5a-c). In systems
with a global fixed point, systematic displacements to different
starting positions in state space give rise to different
stochastic transients with different and time-dependent IRPs
(Supplementary Fig. 5d). Similarly, switching dynamics along
heteroclinic orbits constitute another way of generating specific
progressions of reference dynamics. Thus information ‘surfing’
on top of non-stationary reference dynamical configurations
naturally yield temporally structured sequences of IRPs,
resolvable also by other measures of instantaneous information
flow36,42,43.

Discussion
The above results establish a theoretical basis for the emergence of
information routing capabilities in complex networks when signals
are communicated on top of collective reference states. We show
how information sharing (dMI) and transfer (dTE) emerge
through the joint action of local unit features, global interaction
topology and choice of the collective dynamical state. We find that
IRPs self-organize according to general principles (cf. Figs 2–4)
and can thus be systematically manipulated. Employing formal
identity of our approach at every scale in oscillatory modular
networks (equations (3) versus (6)) we identify local paradigms
that are capable of regulating information routing at the nonlocal
level across the whole network (Figs 3 and 4).

In contrast to self-organized technological routing protocols
where local nodes use local routing information to locally
propagate signals, such as in peer-to-peer networks44, in the
mechanism studied here the information routing modality is set
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Figure 3 | Remotely induced rerouting of information in modular networks. (a) Network with two coupled communities A and B (red and blue) of

oscillators close to a Hopf bifurcation. Changing the intrinsic frequency of a single node i¼ 1 from o1þ doa to o1þ dob induces a collective reorganization

of equilibrium phase differences, that result in b oppositely directed information sharing patterns between the individual nodes of the two modules (top

versus bottom). (c) dMI between two pairs of nodes from the two different clusters as a function of the time delay d and frequency change do1 of oscillator

1. The change of the peak from positive to negative delays reflecting the inversion of the information routing is visible. (d) Information routing patterns

(IRPs) calculated from the hierarchically reduced system for the two configurations in b (left) and as a function of do1 (right) reflect the inversion on the

finer scale (b,c). (e) Hierarchical network of three coupled modules of phase oscillators. (f) A change in the connection strength a2,3 from aa to ab between

two nodes (3A-2A) in sub-network A induces an inversion of information routing direction between the remote sub-networks B and C. (g) Full IRPs

calculated form the hierarchical reduced system for a2,3¼ aa and a2,3¼ aa (left) and as a function of a2,3 for all pairs of modules (density plots, right).

The transition is not continuous but rather switch like.
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by the entire network’s collective dynamics. This collective
reference state typically evolves on a slower timescale than the
information carrying fluctuations that surf on top of it and is thus
different from signal propagation in cascades45 or avalanches46

that dominate on shorter time scales.
We derived theoretical results based on information sharing

and transfer obtained via delayed mutual information and

transfer entropy curves. Using these abstract measures our results
are independent of any particular implementation of a commu-
nication protocol and thus generically demonstrate how collective
dynamics can have a functional role in information routing. For
example, in the network in Fig. 2 externally injected streams of
information are automatically encoded in fluctuations of the
rotation frequency of the individual oscillators. The injected
signals are then transmitted through the network and decodable
from the fluctuating phase velocity of a target unit precisely along
those pathways predicted by the current state-dependent IRP
(Supplementary Note 7 and Supplementary Figs 6 and 7).

Our theory is based on a small-noise approximation that
conditions the analysis onto a specific underlying dynamical state.
In this way, we extracted the precise role of such a reference state
for the network’s information routing abilities. For larger signal
amplitudes or in highly recurrent networks, in which higher order
interactions can play an important role the expansion can be
carried out systematically to higher orders using diagrammatic
approaches47 or numerically to accounting for better accuracy
and non-Gaussian correlations (cf. also Supplementary Note 4).

In systems with multi-stable states two signal types need to be
discriminated: those that encode the information to be routed and
those that indicate a switch in the reference dynamics and
consequently the IRPs. If the second type of stimuli is amplified
appropriately a switch between multi-stable states can be induced
that moves the network into the appropriate IRP state for the
signals that follow. For example, in the network of Fig. 2a switch
from states a to b can be induced by a strong positive pulse to
oscillator 2 (and vice versa). If such pulses are part of the input a
switch to the appropriate IRP state will automatically be triggered
and the network auto-regulates its IRP function (Supplementary
Fig. 6). More generally a separate part of the network that
effectively filters out relevant signatures indicating the need for a
different IRP could provide such pulses. Using the fact that
local interventions are capable to switch IRPs in the network also
the outcomes of local computations can be used to trigger
changes in the global information routing and thereby enable
context-dependent processing in a self-organized way.

When information surfs on top of dynamical reference states the
control of IRPs is shifted towards controlling collective network
dynamics making methods from control theory of dynamical
systems available to the control of information routing. For
example, changing the interaction function in coupled oscillators
systems18 or providing control signals to a subset of nodes48,49 are
capable of manipulating the network dynamics. Moreover, switch-
like changes (cf. Fig. 3) can be triggered by crossing bifurcation
points and the control of IRPs then gets linked to bifurcation
theory of network dynamical systems.

While the mathematical part of our analysis focused on phase
signals, including additional amplitude degrees of freedom into
the theoretical framework can help to explore neural or cell
signalling codes that simultaneously use activity- and phase-based
representations to convey information50. Moreover, separating
IRP generation, for example, via phase configurations, from
actual information transfer, for instance in amplitude degrees of
freedom, might be useful for the design of systems with a flexible
communication function.

The role of self-organized collective dynamics in information
routing in biological systems is still speculative. Our theoretical
study, identifying natural mechanisms for state-dependent
sharing and transfer of information, may thus foster further
experimental explorations that seek for conclusive proofs and
exploring the nonlocal effects of local system manipulations.
While recent experimental studies point towards functional roles
of collective dynamics31,35,51–54 the predicted phenomena,
including nonlocal changes of information routing by local
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global dynamical state (cf. Supplementary Fig. 3) in which the hierarchically

reduced IRP (graphs) becomes time-dependent (cf. also Supplementary

Note 6).
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interventions, could be directly experimentally verified using
methods available to date, such as synthetic patterned neuronal
cultures55, electrochemical arrays18 or synthetic gene-regulatory
networks5 (Supplementary Note 8). In addition, our results are
applicable to the inverse problem: Unknown network
characteristics may be inferred by fitting theoretically expected
dMI and dTE patterns to experimentally observed data.
For example, inferring state-dependent coupling strengths
could further the analysis of neuronal dynamics during
context-dependent processing33,35,39,53,54,56.

Modifying inputs, initial conditions or system-intrinsic
properties may well be viable in many biological and artificial
systems whose function requires particular information
routing. For instance, on long time scales, evolutionary pressure
may select a particular IRP by biasing a particular collective state
in gene-regulatory and cell-signalling networks2,15,57; on
intermediate time scales, local changes in neuronal responses
due to adaptation or varying synaptic coupling strength during
learning processes13 can impact information routing paths in
entire neuronal circuits; on fast time scales, defined control inputs
to biological networks or engineered communication systems that
switch the underlying collective state, can dynamically modulate
IRPs without any physical change to the network.

Methods
Transfer entropy. The dTE22 from a time-series xi(t) to a time-series xj(t) is
defined as

dTEi!jðdÞ¼

ZZZ

pi;j;jðdÞ log
pi;j;j dð Þpj

pi;jpj;jðdÞ

 !

dxidxjdxjðdÞ ð7Þ

with joint probability pi,j,j(d)¼ p(xj(tþ d), xi(t), xj(t)) and pj,j(d)¼ p(xj(tþ d), xj(t)).
This expression is not invariant under permutation of i and j, implying the
directionality of TE. For a more direct comparison with dMI in Fig. 2, we define
dTEi,j(d) by dTEi-j(d) for d40 and by dTEj-i(� d) for do0 (cf. Supplementary
Note 1 for additional details).

Dynamic information routing via dynamical states. For a dynamical system (2)
the reference deterministic solution x(ref)(tþ s) starting at x(t) is given by the
deterministic flow x(ref)(tþ s)¼ F(ref)(x(t), s). The small-noise approximation for
white noise n yields

p x tþ dð Þ j x tð Þð Þ¼N x refð Þ tþ dð Þ;Qd x tð Þð Þ x tþ sð Þð Þ ð8Þ

where N x;R denotes the normal distribution with mean x and covariance matrix R,

Qd xð Þ¼
R d

0 e

R d

s
G r;xð Þdr

BBTe

R d

s
GT r;xð Þdr

ds and G(s, x)¼D f (F(x, s)). We assumed
G(s, x)G(t, x)¼G(t, x)G(s, x). From this and the initial distribution p(x(t)), the dMI
and transfer entropy dMIi,j(d, t) and dTEi-j(d, t) are obtained via (2) and (7). The
result depends on time t, lag d and the reference state x(ref) (cf. Supplementary Note
2 for additional details).

Oscillator networks. In Fig. 1a, we consider a network of two coupled
biochemical Goodwin oscillators14,58. Oscillations in the expression levels of the
molecular products arise because of a nonlinear repressive feedback loop in
successive transcription, translation and catalytic reactions. The oscillators are
coupled via mutual repression of the translation process59. In addition, in one
oscillator changes in concentration of an external enzyme regulate the speed of
degradation of mRNAs, thus affecting the translation reaction, and, ultimately, the
oscillation frequency. In Figs 1e, 2 and 4 we consider networks of Wilson–Cowan-
type neural masses (population signals)41. Each neural mass intrinsically oscillates
because of antagonistic interactions between local excitatory and inhibitory
populations. Different neural masses interact, within and between communities, via
excitatory synapses. In the generic networks in Figs 1i and 3a each unit is modelled
by the normal form of a Hopf-bifurcation in the oscillatory regime together with
linear coupling. Finally, the modular networks analysed in Fig. 3a,b are directly cast
as phase-reduced models with freely chosen coupling functions. See the
Supplementary Note 8 and Supplementary Figs 4, 8 and 9 for additional details,
model equations and parameters and phase estimation.

Analytic derivation of the dMI and dTE curves. In the small-noise expansion60,
both dMI and dTE curves have an analytic approximation: For stochastic
fluctuations around some phase-locked collective state with constant reference
phase offsets Dfi,j¼fi�fj the phases evolve as f

ðrefÞ
i ðtÞ ¼ OtþDfi;1 in the

deterministic limit, where O¼oiþ
P

kgi,k(Dfi,k) is the collective network

frequency and the gi,j( � ) are the coupling functions from equation (3). In presence
of noise, the phase dynamics have stochastic components
f
ðfluctÞ
i ðtÞ¼fiðtÞ�f

ðrefÞ
i ðtÞ. In first-order approximation, independent noise inputs

Bi,j¼ Bidi,j yield coupled Ornstein–Uhlenbeck processes

d

dt
f

fluctð Þ
i ¼

X

k

gi;kf
fluctð Þ
k þ Bixi ð9Þ

with linearized, state-dependent couplings given by the Laplacian matrix entries
gi,j¼ � g0i,j(Dfi,j) and gi;i¼

P

k g
0

i;k Dfi;k

� �

. The analytic solution to the stochastic
equation (9) provides an estimate of the probability distributions, pi, pi,j(d) and
pi,j,j(d). Via (2) this results in a prediction for dMIi,j(d), equation (4), as a function of
the matrix elements ki,j(d) specifying the inverse variance of a von Mises distribution
ansatz for pi,j(d). Similarly via (7) an expression for dTEi-j(d) is obtained. For the
dependency of k

i;j
ðdÞ , and dTEi-j(d) on network parameters and further details,

see the derivation of the theorems 1 and 2 in Supplementary Note 4.

Time scale for information sharing. For a network of two oscillators as in Fig. (2)

with linearized coupling strengths g
a½ �
1 and g

a½ �
2 and g

a½ �
1 og

a½ �
2 , maximizing dMI1,2(d)

(see Supplementary Note 4 for full analytic expressions of dMI and dTE in two
oscillator networks) yields

d� ¼ g
a½ �
1 þ g

a½ �
2

� �� 1
log

1

2
1þ

g
a½ �
2

g
a½ �
1

 !2 ! !

ð10Þ

Collective phase reduction. Suppose that each node i¼ iX belongs to a specific
network module X out of MrN non-overlapping modules of a network. Then
equation (3) can be simplified to equation (6) under the assumption that in the
absence of noise every community X has a stable internally phase-locked state

f
ðrefÞ
iX

ðtÞ¼FXðtÞþDfiX
, where DfiX

are constant phase offsets of individual nodes
iX. Every community can then be regarded as a single meta-oscillator with a col-
lective phase FX(t) and a collective frequency OX ¼ oiX þ

P

jX
giX ;jX ðDfiX

�DfjX
Þ.

The vector components of the collective phase response ZX, the effective couplings
GX,Y and the noise parameters SX,Y and XX are obtained through collective
phase reduction and depend on the respective quantities (oiX ; giX ;jX ; . . . ) on the

single-unit scale (see Supplementary Note 5 for a full derivation).
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