
Dynamic Input/Output Automata: a Formal and Compositional
Model for Dynamic Systems1

Paul C. Attie

College of Computer Science
Northeastern University

and
MIT Laboratory for Computer Science

attie@ccs.neu.edu

Nancy A. Lynch

MIT Laboratory for Computer Science
lynch@theory.lcs.mit.edu

November 14, 2003

Abstract

We present a compositional model of dynamic systems, based on I/O automata [LT89]. In
our model, automata can be created and destroyed dynamically, as computation proceeds. In
addition, an automaton can dynamically change its signature, that is, the set of actions in which
it can participate. This allows us to model mobility, as discussed in [AL01], by enforcing the
constraint that only automata at the same location may synchronize on common actions.

Our model features operators for parallel composition, action hiding, and action renaming,
and a notion of simulation from one dynamic system to another, which can be used to prove that
one system implements the other. Our model is hierarchical: a dynamically changing system of
interacting automata is itself modeled as a single automaton that is “one level higher.” This can
be repeated, so that an automaton that represents such a dynamic system can itself be created
and destroyed. We can thus model the addition and removal of entire subsystems with a single
action.

We establish fundamental compositionality results for DIOA: if one component is replaced
by another whose traces are a subset of the former, then the set of traces of the system as a
whole can only be reduced, and not increased, i.e., no new behaviors are added. In other words,
trace inclusion is monotonic with respect to parallel composition. This permits the refinement of
components and subsystems in isolation from the entire system. We establish two such results.
First we establish that trace inclusion is monotonic with respect to parallel composition in a
“static” system in which no automaton is created or destroyed. That is, if in A1 ‖ · · · ‖ A′

j ‖ · · · ‖
An we replace A′

j by Aj , and the traces of Aj are a subset of the traces of A′

j , then the traces of
the resulting system are a subset of the traces of the original system. Our second result is that
trace inclusion is monotonic with respect to automaton creation: if a system creates automaton
Aj instead of (previously) creating automaton A′

j , then its set of traces is possibly reduced, but
not increased. We show that trace inclusion is monotonic with respect to automaton creation
in a dynamic system only under certain conditions. Specifically, if automaton creation is not
correlated with external behavior, then trace inclusion is not monotonic with respect to parallel
composition.

Our trace inclusion results enable a design and refinement methodology based solely on the
notion of externally visible behavior, and which is therefore independent of specific methods of
establishing trace inclusion. This provides much more flexibility in refinement than a method-
ology which is, for example, based on the monotonicity of forward simulation with respect to
parallel composition. In the latter every automaton must be refined using forward simulation,
whereas in our framework different automata can be refined using different methods.

The DIOA model was defined to support the analysis of mobile agent systems, in a joint
project with researchers at Nippon Telegraph and Telephone. It can also be used for other
forms of dynamic systems, such as systems described by means of object-oriented programs,
and systems containing services with changing access permissions.

1The first author was supported by the National Science Foundation under Grant No. CCR-0204432.

1 Introduction

Many modern distributed systems are dynamic: they involve changing sets of components, which are
created and destroyed as computation proceeds, and changing capabilities for existing components.
For example, programs written in object-oriented languages such as Java involve objects that create
new objects as needed, and create new references to existing objects. Mobile agent systems involve
agents that create and destroy other agents, travel to different network locations, and transfer
communication capabilities.

To describe and analyze such distributed systems rigorously, one needs an appropriate math-
ematical foundation: a state-machine-based framework that allows modeling of individual compo-
nents and their interactions and changes. The framework should admit standard modeling methods
such as parallel composition and levels of abstraction, and standard proof methods such as invari-
ants and simulation relations. At the same time, the framework should be simple enough to use as
a basis for distributed algorithm analysis.

We present a mathematical foundation for dynamic computation. Our model, Dynamic I/O
Automata (DIOA), provides:

1. parallel composition, action hiding, and action renaming operators,

2. the ability to create and destroy automata dynamically, as computation proceeds,

3. the ability to dynamically change the signature of an automaton, that is, the set of actions
in which the automaton can participate, and

4. a notion of externally visible behavior based on sets of traces.

Our notion of externally visible behavior provides a foundation for abstraction, and a notion of
behavioral subtyping [LW94] by means of trace inclusion. We give a notion of simulation for
DIOA, and show that it implies trace inclusion. Dynamically changing signatures allow us to model
mobility, by enforcing the constraint that only automata at the same location may synchronize on
common actions.

Our model is hierarchical: a dynamically changing system of interacting automata is itself
modeled as a single automaton that is “one level higher.” This can be repeated, so that an
automaton that represents such a dynamic system can itself be created and destroyed. This allows
us to model the addition and removal of entire subsystems with a single action.

As in I/O automata, there are three kinds of actions: input, output, and internal. A trace
of an execution results by removing all states and internal actions. We use the set of traces of an
automaton as our notion of external behavior. We establish two kinds of results concerning the
monotonicity of trace inclusion with respect to parallel composition. First, if we have two “static
systems” A = A1 ‖ · · · ‖ Aj ‖ · · · ‖ An and A′ = A1 ‖ · · · ‖ A′j ‖ · · · ‖ An consisting of n automata,
executing in parallel, and with no automata being created or destroyed, then if the traces of Aj

are a subset of the traces of A′j (which it “replaces”), then the traces of A are a subset of the
traces of A′. Second, if we have two dynamic systems, a system X in which an automaton A is
created, and a system Y in which an automaton B is created, and if the traces of A are a subset
of the traces of B, then the traces of X will be a subset of the traces of Y , but only under certain
conditions. Specifically, in the dynamic system Y , the creation of automaton B at some point
must be correlated with the finite trace of Y up to that point. Otherwise, monotonicity of trace

1

inclusion can be violated by having the new system X create the replacement A in more contexts
than those in which Y creates B, resulting in X possessing some traces which are not traces of
Y . This phenomenon appears to be inherent in situations where the creation of new automata can
depend upon global conditions (as in our model) and can be independent of the externally visible
behavior (trace).

Our trace inclusion results enable a refinement methodology for dynamic systems that is inde-
pendent of specific methods of establishing trace inclusion. Different automata in the system can
be refined using different methods, e.g., different simulation relations such as forward simulations
or backward simulations, or by using methods not based on simulation relations. This provides
much more flexibility in refinement than a methodology which, for example, shows that forward
simulation is monotonic with respect to parallel composition, since in the latter every automaton
must be refined using forward simulation.

As dynamic systems are even more complex than static distributed systems, the development of
practical techniques for specification and reasoning is imperative. For static distributed systems and
concurrent programs, compositional reasoning is proposed as a means of reducing the proof burden:
reason about small components and subsystems as much as possible, and about the large global
system as little as possible. For dynamic systems, compositional reasoning is a priori necessary,
since the environment in which dynamic software components (e.g., software agents) operate is
continuously changing. For example, given a software agent A, suppose we then refine A to generate
a new agent A′, and we prove that A′’s externally visible behaviors are a subset of A’s. We would
like to then conclude that replacing A by A′, within any environment does not introduce new, and
possibly erroneous, behaviors.

One issue that arises in systems where components can be created dynamically is that of
clones: suppose a particular component is created twice, in succession. In general, this can result
in the creation of two (or more) indistinguishable copies of the component, known as clones. We
make the fundamental assumption in our model that this situation does not arise: components can
always be distinguished, for example, by a logical timestamp at the time of creation. This absence
of clones assumption does not preclude reasoning about situations in which an SIOA A1 cannot
be distinguished from another SIOA A2 by the other SIOA in the system. This could occur, for
example, due to a malicious host which “replicates” agents that visit it. We distinguish between
such replicas at the meta-theoretic level by assigning unique identifiers to each. These identifiers
are not available to the other SIOA in the system, which remain unable to tell A1 and A2 apart, for
example in the sense of the “knowledge” [HM90] about A1 and A2 which the other SIOA possess.

Related work: Most approaches to the modeling of dynamic systems are based on a process
algebra, in particular, the π-calculus [Mil99] or one of its variants. Such approaches [CG00, FGL+96,
RH98] model dynamic aspects by introducing channels and names as basic notions. Our model
makes a different choice of primitive notion, it chooses actions and automata as primitive, and does
not include channels and their transmission as primitive. Our approach is also different in that it
is primarily a (set-theoretic) mathematical model, rather than a formal language and calculus. We
expect that notions such as channel and location will be built upon the basic model using additional
layers (as we do for modeling mobility in terms of signature change). Also, we ignore issues (e.g.,
syntax) that are important when designing a programming language.

Our model is based on the I/O automaton model [LT89], which has been successfully applied to
the design of many difficult distributed algorithms, including ones for resource allocation [Lyn96,
WL93], distributed data services [FGL+99], group communication services [FLS01], distributed
shared memory [LS02, Luc01], and reliable multicast [LL02]. In our model, all processes have unique

2

identifiers, and the notion of a subsystem is well defined. Subsystems can be built up hierarchically.
Together with our results regarding the monotonicity of trace inclusion, this provides a semantic
foundation for compositional reasoning. In contrast, process calculi tend to use a more syntactic
approach, by showing that some notion of simulation or bisimulation is preserved by the operators
that are used to define the syntax of processes (e.g., parallel composition, choice, action prefixing).

We defined the DIOA model initially to support the analysis of mobile agent systems, in a joint
project with researchers at Nippon Telephone and Telegraph. Creation and destruction of agents
are modeled directly within the DIOA model. Other important agent concepts such as changing
locations and capabilities are described in terms of changing signatures, using additional structure.
Our preliminary work on modeling and analyzing agent systems appeared in the NASA workshop
on formal methods for agent systems [AAK+00].

The paper is organized as follows. Section 2 presents signature I/O automata (SIOA), which
are I/O automata that also have the ability to change ther signature, and also defines a parallel
composition operator for them. Section 3 establishes our first trace inclusion monotonicity result,
which applies to the parallel composition of n SIOA. Section 4 proposes an appropriate notion
of forward simulation for SIOA. Section 5 presents configuration automata (CA), which have the
ability to dynamically create SIOA as execution proceeds. Section 6 establishes our second trace
inclusion monotonicity result, which applies to configuration automata. Section 7 discusses how
mobility and locations can be modeled in DIOA. Section 8 presents an example: an agent whose
purpose is to traverse a set of databases in search of a satisfactory airline flight, and to purchase
such a flight if it finds it. Section 9 discusses further research and concludes.

2 Signature I/O Automata

We assume the existence of a set Autids of unique SIOA identifiers, an underlying universal set Auts

of SIOA, and a mapping aut : Autids 7→ Auts. aut(A) is the SIOA with identifier A. We use “the
automaton A” to mean “the SIOA with identifier A”. We use the letters A,B, possibly subscripted
or primed, for SIOA identifiers.

In a particular state s, the executable actions are drawn from a signature sig(A)(s) = 〈in(A)(s),
out(A)(s), int(A)(s)〉, called the state signature, which is a function of its current state. in(A)(s),
out(A)(s), int(A)(s) are pairwise disjoint sets of input, output, and internal actions, respectively.
We define ext(A)(s), the external signature of A in state s, to be ext(A)(s) = 〈in(A)(s), out(A)(s)〉.

For any signature component, generally, the ̂ operator yields the union of sets of actions
within the signature, e.g., ŝig(A)(s) = in(A)(s) ∪ out(A)(s) ∪ int(A)(s).

Definition 1 (SIOA) An SIOA aut(A) consists of the following components

1. A set states(A) of states.

2. A nonempty set start(A) ⊆ states(A) of start states.

3. A signature mapping sig(A) where for each s ∈ states(A), sig(A)(s) = 〈in(A)(s), out (A)(s), int(A)(s)〉.

4. A transition relation steps(A) ⊆ states(A)×acts(A)×states(A), where acts(A) =
⋃

s∈states(A) ŝig(A)(s).

and satisfies the following constraints on those components:

3

1. ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s).

2. ∀s ∈ states(A),∀a ∈ in(A)(s),∃s′ : (s, a, s′) ∈ steps(A)

3. ∀s ∈ states(A), in(A)(s) ∩ out(A)(s) = in(A)(s) ∩ int(A)(s) = out(A)(s) ∩ int(A)(s)

Constraint 1 requires that any executed action be in the signature of the initial state of the
transition. Constraint 2 extends the input enabling requirement of I/O automata to SIOA. Con-
straint 3 requires that in any state, an action cannot be both an input and an output, etc. However,
the same action can be an input in one state and an output in another. This is in contrast to ordi-
nary I/O automata, where the signature of an automaton is fixed once and for all, and cannot vary
with the state. Thus, an action is either always an input, always an output, or always an internal.

If (s, a, s′) ∈ steps(A), we also write s
a

−→A s′. For sake of brevity, we write states(A) instead
of states(aut(A)), i.e., the components of an automaton are identified by applying the appropriate
selector function to the automaton identifier, rather than the automaton itself.

The components in(A)(s), out(A)(s), int(A)(s) are the input, output, and internal actions of
sig(A)(s). We define ext(A)(s) = 〈in(A)(s), out(A)(s)〉.

Definition 2 (Execution, trace of SIOA) An execution fragment α of an SIOA A is a nonempty
(finite or infinite) sequence s0a1s1a2 . . . of alternating states and actions such that (si−1, ai, si) ∈
steps(A) for each triple (si−1, ai, si) occurring in α. Also, α ends in a state if it is finite. An
execution of A is an execution fragment of A whose first state is in start(A). execs(A) denotes the
set of executions of SIOA A.

Given an execution fragment α = s0a1s1a2 . . . of A, the trace of α (denoted trace(α)) is the
sequence that results from

1. remove all ai such that ai 6∈ êxt(A)(si−1), i.e., ai is an internal action of si−1, and then

2. replace each si by its external signature ext(A)(si), and then

3. replace each maximal block ext(A)(si), . . . , ext(A)(si+k) such that (∀j : 0 ≤ j ≤ k : ext(A)(si+j) =
ext(A)(si)) by ext(A)(si), i.e., replace each maximal block of identical external signatures by
a single representative. (Note: also applies to an infinite suffix of identical signatures, i.e.,
k = ω.)

Thus, a trace is a sequence of external actions and external signatures that starts with an external
signature. Also, if the trace is finite, then it ends with an external signature. Traces are our notion
of externally visible behavior. A trace β of an execution α exposes the external actions along α,
and the external signatures of states along α, except that repeated identical external signatures
along α do not show up in β. Thus, the external signature of the first state of α, and then all
subsequent changes to the external signature, are made visible in β. traces(A), the set of traces of
an SIOA A, is the set {β | ∃α ∈ execs(A) : β = trace(α)}. We write s

α
−→A s′ iff there exists an

execution fragment α of A starting in s and ending in s′. If a state s lies along some execution,
then we say that s is reachable. Otherwise, s is unreachable.

The length |α| of a finite execution α is the number of transitions along α. The length of
an infinite execution is infinite (ω). If |α| = 0, then α consists of a single state. If execution
α = s0a1s1a2 . . ., then for 0 ≤ i ≤ |α|, define α|i = s0a1s1a2 . . . aisi. We define a concatenation

4

operator ⌢ for executions as follows. If α′ = s0a1s1a2 . . . aisi is a finite execution fragment and
α′′ = t0b1t1b2 . . . is an execution fragment, then α′ ⌢ α′′ is defined to be the execution fragment
s0a1s1a2 . . . ait0b1t1b2 . . . only when si = t0. If si 6= t0, then α′⌢ α′′ is undefined.

2.1 Parallel Composition of Signature I/O Automata

The operation of composing a finite number n of SIOA together gives the technical definition of
the idea of n SIOA executing concurrently. As with ordinary I/O automata, we require that the
signatures of the SIOA be compatible, in the usual sense that there are no common outputs, and
no internal action of one automaton is an action of another.

Definition 3 (Compatible signatures) Let S be a set of signatures. Then S is compatible iff,
for all sig ∈ S, sig′ ∈ S, where sig = 〈in, out, int〉, sig′ = 〈in′, out′, int′〉 and sig 6= sig′, we have:

1. (in ∪ out ∪ int) ∩ int′ = ∅, and

2. out ∩ out′ = ∅.

Since the signatures of SIOA vary with the state, we require compatibility for all possible
combinations of states of the automata being composed. Our definition is “conservative” in that
it requires compatibility for all combinations of states, not just those that are reachable in the
execution of the composed automaton. This results in significantly simpler and cleaner definitions,
and does not detract from the applicability of the theory.

Definition 4 (Compatible SIOA) Let A1, . . . , An, be SIOA. A1, . . . , An are compatible if and
only if for every 〈s1, . . . , sn〉 ∈ states(A1) × · · · × states(An), {sig(A1)(s1), . . . , sig(An)(sn)} is a
compatible set of signatures.

Definition 5 (Composition of Signatures) Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be
compatible signatures. Then we define their composition Σ × Σ′ = (in ∪ in′ − (out ∪ out′), out ∪
out′, int ∪ int′).

Signature composition is clearly commutative and associative. We therefore use
∏

for the n-ary

version of ×. Let [n]
df
== {i | 1 ≤ i ≤ n}.

As with I/O automata, the SIOA synchronize on same-named actions. To devise a theory that
accommodates the hierarchical construction of systems, we ensure that the composition of n SIOA
is itself an SIOA.

Definition 6 (Composition of SIOA) Let A1, . . . , An, be compatible SIOA. Then A = A1 ‖
· · · ‖ An is the state-machine consisting of the following components:

1. A set of states states(A) = states(A1) × · · · × states(An)

2. A set of start states start(A) = start(A1) × · · · × start(An)

3. A signature mapping sig(A) as follows. For each s = 〈s1, . . . , sn〉 ∈ states(A), sig(A)(s) =
sig(A1)(s1) × · · · × sig(An)(sn)

5

4. A transition relation steps(A) ⊆ states(A) × acts(A) × states(A) which is the set of all
(〈s1, . . . , sn〉, a, 〈t1, . . . , tn〉) such that

(a) a ∈ ŝig(A1)(s1) ∪ . . . ∪ ŝig(An)(sn), and

(b) for all i ∈ [n] : if a ∈ ŝig(Ai)(si), then (si, a, ti) ∈ steps(Ai), otherwise si = ti

If s = 〈s1, . . . , sn〉 ∈ states(A), then define s↾Ai = si, for i ∈ [n].

Since our goal is to deal with dynamic systems, we must define the composition of a variable
number of SIOA at some point. We do this below in Section 5, where we deal with creation and
destruction of SIOA. Roughly speaking, parallel composition is intended to model the composition
of a finite number of large systems, for example a local-area network together with all of the
attached hosts. Within each system however, an unbounded number of new components, for
example processes, threads, or software agents, can be created. Thus, at any time, there is a finite
but unbounded number of components in each system, and a finite, fixed, number of “top level”
systems.

Proposition 1 Let A1, . . . , An, be compatible SIOA. Then A = A1 ‖ · · · ‖ An is an SIOA.

Proof: We must show that A satisfies the constraints of Definition 1. We deal with each constraint
in turn.

Constraint 1: Let (s, a, s′) ∈ steps(A). Then, s can be written as 〈s1, . . . , sn〉. From Defini-
tion 6, clause 4, a ∈ ŝig(A1)(s1)∪ . . . ∪ ŝig(An)(sn) From Definition 6, clause 3, ŝig(A1)(s1)∪ . . .∪
ŝig(An)(sn) = ŝig(A)(s). Hence a ∈ ŝig(A)(s).

Constraint 2: Let s ∈ states(A), a ∈ in(A)(s). Then, s can be written as 〈s1, . . . , sn〉. From
Definition 6, clause 3, a ∈ (

⋃
1≤i≤n in(Ai)(si))−out(A)(s). Hence, there exists ϕ ⊆ {1, . . . , n} such

that ∀i ∈ ϕ : a ∈ in(Ai)(si), and ∀i ∈ {1, . . . , n} − ϕ : a 6∈ ŝig(Ai)(si). Since each Ai satisfies
Constraint 2 of Definition 1, we have:

∀i ∈ ϕ : ∃ti : (si, a, ti) ∈ steps(Ai)

By Definition 6, Clause 4,

∃t : (s, a, t) ∈ steps(A), where ∀i ∈ ϕ : t↾i = ti, and ∀i ∈ {1, . . . , n} − ϕ : t↾i = si.

Hence Constraint 2 is satisfied.

Constraint 3: Each Ai satisfies Constraint 3 of Definition 1. From this and Definitions 6 and 5, it
is each to see that A also satisfies Constraint 3. �

2.2 Action Hiding for Signature I/O Automata

The operation of action hiding allows us to convert output actions into internal actions, and is
useful in specifying the set of actions that are to be visible at the interface of a system.

Definition 7 (Action hiding for SIOA) Let A be an SIOA and Σ a set of actions. Then A \Σ
is the state-machine given by:

1. A set of states states(A \ Σ) = states(A)

6

2. A set of start states start(A \ Σ) = start(A)

3. A signature mapping sig(A) as follows. For each s ∈ states(A),
sig(A \ Σ)(s) = 〈in(A \ Σ)(s), out (A \ Σ)(s), int(A \ Σ)(s)〉, where

(a) out(A \ Σ)(s) = out(A)(s) − Σ

(b) in(A \ Σ)(s) = in(A)(s)

(c) int(A \ Σ)(s) = int(A)(s) ∪ (out(A)(s) ∩ Σ)

4. A transition relation steps(A \ Σ) = steps(A)

Proposition 2 Let A be an SIOA and Σ a set of actions. Then A \ Σ is an SIOA.

Proof: We must show that A \ Σ satisfies the constraints of Definition 1. We deal with each
constraint in turn.

Constraint 1: From Definition 7, we have, for any s ∈ states(A \ Σ): ŝig(A \ Σ)(s) = (out(A)(s) −
Σ)∪in(A)(s)∪(int (A)(s)∪(out (A)(s)∩Σ)) = ((out(A)(s)−Σ)∪(out (A)(s)∩Σ))∪in(A)(s)∪int (A)(s)
= out(A)(s) ∪ in(A)(s) ∪ int(A)(s) = ŝig(A)(s).

Since A is an SIOA, we have ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 7,
steps(A \ Σ) = steps(A). Hence, ∀(s, a, s′) ∈ steps(A \ Σ) : a ∈ ŝig(A \ Σ)(s). Thus, Constraint 1
holds for A \ Σ.

Constraint 2: From Definition 7, states(A \ Σ) = states(A), steps(A \ Σ) = steps(A), and for all
s ∈ states(A \ Σ), in(A \ Σ)(s) = in(A)(s).

Since A is an SIOA, we have Constraint 2 for A:

∀s ∈ states(A),∀a ∈ in(A)(s),∃s′ : (s, a, s′) ∈ steps(A).

Hence, we also have

∀s ∈ states(A \ Σ),∀a ∈ in(A \ Σ)(s),∃s′ : (s, a, s′) ∈ steps(A \ Σ).

Hence Constraint 2 holds for A \ Σ.

Constraint 3: A satisfies Constraint 3 of Definition 1. From this and Definitions 6 and 5, it is each
to see that A \ Σ also satisfies Constraint 3. �

2.3 Action Renaming for Signature I/O Automata

The operation of action renaming allows us to rename actions uniformly, that is, all occurrences
of an action name are replaced by another action name, and the mapping is also one-to-one. This
is useful in defining “parameterized” systems, in which there are many instances of a “generic”
component, all of which have similar functionality. Examples of this include the servers in a client-
server system, the components of a distributed database system, and hosts in a network.

Definition 8 (Action renaming for SIOA) Let A be an SIOA and let ρ be an injective mapping
from actions to actions whose domain includes acts(A). Then ρ(A) is the state machine given by:

1. start(ρ(A)) = start(A)

7

2. states(ρ(A)) = states(A)

3. for each s ∈ states(A), sig(ρ(A))(s) = 〈in(ρ(A))(s), out(ρ(A))(s), int(ρ(A))(s)〉, where

(a) out(ρ(A))(s) = ρ(out(A)(s))

(b) in(ρ(A))(s) = ρ(in(A)(s))

(c) int(ρ(A))(s) = ρ(int(A)(s))

4. A transition relation steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}

Proposition 3 Let A be an SIOA and let ρ be an injective mapping from actions to actions whose
domain includes acts(A). Then, ρ(A) is an SIOA.

Proof: We must show that ρ(A) satisfies the constraints of Definition 1. We deal with each
constraint in turn.

Constraint 1: From Definition 8, we have, for any s ∈ states(ρ(A)): ŝig(ρ(A))(s) = out(ρ(A))(s)∪
in(ρ(A))(s) ∪ int(ρ(A))(s) = ρ(out(A)(s)) ∪ ρ(in(A)(s)) ∪ ρ(int(A)(s)) = ρ(ŝig(A)(s)).

Since A is an SIOA, we have ∀(s, a, s′) ∈ steps(A) : a ∈ ŝig(A)(s). From Definition 8,
steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈ steps(A)}

Hence, if (s, ρ(a), t) is an arbitrary element of steps(ρ(A)), then (s, a, t) ∈ steps(A), and
so a ∈ ŝig(A)(s). Hence ρ(a) ∈ ρ(ŝig(A)(s)). Since ρ(ŝig(A)(s)) = ŝig(ρ(A))(s), we conclude
ρ(a) ∈ ŝig(ρ(A))(s). Hence, ∀(s, ρ(a), s′) ∈ steps(ρ(A)) : ρ(a) ∈ ŝig(ρ(A))(s). Thus, Constraint 1
holds for ρ(A).

Constraint 2: From Definition 8, states(ρ(A)) = states(A), steps(ρ(A)) = {(s, ρ(a), t) | (s, a, t) ∈
steps(A)}, and for all s ∈ states(ρ(A)), in(ρ(A))(s) = ρ(in(A)(s)).

Since A is an SIOA, we have Constraint 2 for A:

∀s ∈ states(A),∀a ∈ in(A)(s),∃s′ : (s, a, s′) ∈ steps(A).

Hence, we also have

∀s ∈ states(ρ(A)),∀a ∈ in(ρ(A))(s),∃s′ : (s, a, s′) ∈ steps(ρ(A)).

Hence Constraint 2 holds for ρ(A).

Constraint 3: A satisfies Constraint 3 of Definition 1. From this and Definitions 6 and 5, it is each
to see that ρ(A) also satisfies Constraint 3. �

3 Compositional Reasoning for Signature I/O Automata

To confirm that our model provides a reasonable notion of concurrent composition, which has
expected properties, and to enable compositional reasoning, we establish execution “projection”
and “pasting” results for compositions. We deal with both execution projection/pasting, and also
with trace pasting.

3.1 Execution Projection and Pasting for SIOA

Given a parallel composition A = A1 ‖ · · · ‖ An of n SIOA, we define the projection of an
alternating sequence of states and actions of A onto one of the Ai, i ∈ [n], in the usual way: the

8

state components for all SIOA other than Ai are removed, and so are all actions in which Ai does
not participate.

Definition 9 (Execution projection for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. Let α be a
sequence s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj,1, . . . , sj,n〉 ∈ states(A) and ∀j > 0, aj ∈

ŝig(A)(sj−1). Then, for i ∈ [n], define α↾Ai to be the sequence resulting from:

1. replacing each sj by its i’th component sj,i, and then

2. removing all ajsj,i such that aj 6∈ ŝig(Ai)(sj−1,i).

sj,i is the component of sj which gives the state of Ai. sig(Ai)(sj−1,i) is the signature of Ai

when in state sj−1,i. Thus, if aj 6∈ ŝig(Ai)(sj−1,i), then the action aj does not occur in the signature
sig(Ai)(sj−1,i), and Ai does not participate in the execution of aj . In this case, aj and the following
state are removed from the projection, since the idea behind execution projection is to retain only
the state of Ai, and only the actions which Ai participates in. Note that we do not require α to
actually be an execution of A, since this is unnecessary for the definition, and also facilitates the
statement of execution pasting below.

Our execution projection result states that the projection of an execution of a composed SIOA
A = A1 ‖ · · · ‖ An onto a component Ai, is an execution of Ai.

Theorem 4 (Execution projection for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. If α ∈
execs(A) then α↾Ai ∈ execs(Ai).

Proof: Let α = u0a1u1a2u2 . . . ∈ execs(A), and let s0 = u0↾Ai. Then, by Definition 9, s0 ∈
start(Ai) and α↾Ai = s0b1s1b2s2 . . . for some b1s1b2s2 . . ., where sj ∈ states(Ai) for j ≥ 1.

Consider an arbitrary step (sj−1, bj, sj) of α↾Ai. Since bjsj was not removed in Clause 2 of
Definition 9, we have

(1) sj = uk↾Ai for some k > 0 and such that ak ∈ ŝig(Ai)(uk−1↾Ai)
(2) bj = ak, and
(3) sj−1 = uℓ↾Ai for the smallest ℓ such that

ℓ < k and ∀m : ℓ + 1 ≤ m < k : am 6∈ ŝig(Ai)(um−1↾Ai)

From (3) and Definitions 6 and 9, uℓ↾Ai = uk−1↾Ai. Hence sj−1 = uk−1↾Ai. From uk−1
ak−→uk,

ak ∈ ŝig(Ai)(uk−1↾Ai), and Definition 6, we have uk−1↾Ai
ak−→ uk↾Ai. Hence sj−1

bj
−→ sj from sj−1 =

uk−1↾Ai established above and (1), (2). Now sj−1, sj ∈ states(Ai), and so (sj−1, bj , sj) ∈ steps(A).

Since (sj−1, bj , sj) was arbitrarily chosen, we conclude that every step of α↾Ai is a step of Ai.
Since the first state of α↾Ai is s0, and s0 ∈ start(Ai), we have established that α↾Ai is an execution
of Ai. �

Execution pasting is, roughly, an “inverse” of projection. If α is an alternating sequence of
states and actions of a composed SIOA A = A1 ‖ · · · ‖ An such that (1) the projection of α onto
each Ai is an actual execution of Ai, and (2) every action of α not involving Ai does not change
the state of Ai, then α will be an actual execution of A. Condition (1) is the “inverse” of execution
projection. Condition (2) is a consistency condition which requires that Ai cannot “spuriously”
change its state when an action not in the current signature of Ai is executed.

9

Theorem 5 (Execution pasting for SIOA) Let A = A1 ‖ · · · ‖ An be an SIOA. Let α be a
sequence s0a1s1a2s2 . . . sj−1ajsj . . . where ∀j ≥ 0, sj = 〈sj,1, . . . , sj,n〉 ∈ states(A) and ∀j > 0, aj ∈

ŝig(A)(sj−1). Furthermore, suppose that

1. for all 1 ≤ i ≤ n : α↾Ai ∈ execs(Ai), and

2. for all j > 0 : if aj 6∈ ŝig(Ai)(sj−1,i) then sj−1,i = sj,i.

Then, α ∈ execs(A).

Proof: We shall establish, by induction on j:

for all j ≥ 0, α|j ∈ execs(A). (*)

From which we can conclude s0 ∈ start(A) and ∀j ≥ 0 : (sj−1, aj , sj) ∈ steps(A). Definition 2 then
implies the desired conclusion, α ∈ execs(A).

Base case: j = 0.
So α|j = s0. Now s0 = 〈s0,1, . . . , s0,n〉 by assumption. By Definition 9, s0,i is the first state of α↾Ai,
for 1 ≤ i ≤ n. By clause 1, α↾Ai ∈ execs(Ai), and so s0,i ∈ start(Ai), for 1 ≤ i ≤ n. Thus, by
Definition 6, s0 ∈ start(A).

Induction step: j > 0.
Assume the induction hypothesis:

α|j−1 ∈ execs(A) (ind. hyp.)

and establish α|j ∈ execs(A). By Definition 2, it is clearly sufficient to establish sj−1
aj
−→ sj. By

assumption, aj ∈ ŝig(A)(sj−1).

Let ϕ ⊆ {1, . . . , n} be the unique set such that ∀i ∈ ϕ : aj ∈ ŝig(Ai)(sj−1↾Ai) and ∀i ∈

{1, . . . , n} − ϕ : aj 6∈ ŝig(Ai)(sj−1↾Ai). Thus, by Definition 9:

∀i ∈ ϕ : (sj−1↾Ai, aj , sj↾Ai) lies along α↾Ai.

Since ∀i ∈ {1, . . . , n} : α↾Ai ∈ execs(Ai) and Ai is an SIOA,

∀i ∈ ϕ : sj−1↾Ai

aj
−→Ai

sj↾Ai.

Also, by clause 2,

∀i ∈ {1, . . . , n} − ϕ : sj−1↾Ai = sj↾Ai.

By Definition 6

〈sj−1↾A1, . . . , sj−1↾An〉
aj
−→A 〈sj↾A1, . . . , sj↾An〉

Hence

sj−1
aj
−→A sj .

From the induction hypothesis α|j−1 ∈ execs(A) and sj−1
aj
−→A sj and Definition 6, we have

α|j ∈ execs(A). �

3.2 Trace Pasting for SIOA

We deal only with trace pasting, and not trace projection. Trace projection is not well-defined since
a trace of A = A1 ‖ · · · ‖ An does not contain information about the Ai, i ∈ [n]. Since the external

10

signatures of each Ai vary, there is no way of determining, from a trace β, which Ai participate
in each action along β. Thus, the projection of β onto some Ai cannot be recovered from β itself,
but only from an execution α whose trace is β. Since there are in general, several such executions,
the projection of β onto Ai can be different, depending on which execution we select. Hence, the
projection of β onto Ai is not well-defined as a single trace. It could be defined as a set of traces:
β↾Ai = traces(execs(Ai)(β)). We do not pursue this avenue here.

We find it sufficient to deal only with trace pasting, since we are able to establish our main
result, trace substitutivity, which states that replacing an SIOA in a parallel composition by one
whose traces are a subset of the former’s, results in a parallel composition whose traces are a subset
of the original parallel composition’s. In other words, trace-containment is monotonic with respect
to parallel composition.

Let Σ = (in, out, int) and Σ′ = (in′, out′, int′) be signatures. We define Σ̂ = in ∪ out ∪ int,
and Σ ⊆ Σ′ to mean in ⊆ in′ and out ⊆ out′ and int ⊆ int′.

Definition 10 (Pretrace) A pretrace γ = γ(1)γ(2) . . . is a nonempty sequence such that

1. For all i ≥ 1, γ(i) is an external signature or an action

2. γ(1) is an external signature

3. No two successive elements of γ are actions

4. For all i > 1, if γ(i) is an action a, then γ(i − 1) is an external signature containing a
(a ∈ γ̂(i − 1))

5. If γ is finite, then it ends in an external signature

The notion of a pretrace is similar to that of a trace, but it permits “stuttering”: the (possibly
infinite) repetition of the same external signature. This simplifies the subsequent proofs, since it
allows us to “stretch” and “compress” pretraces corresponding to different SIOA so that they “line
up” nicely. Our definition of a pretrace does not depend on a particular SIOA, i.e, we have not
defined “a pretrace of an SIOA A,” but rather just a pretrace in general. We define “pretrace of
an SIOA A” below.

Definition 11 (Reduction of pretrace to a trace) Let γ be a pretrace. Then r(γ) is the result
of replacing all maximal blocks of identical external signatures in γ by a single representative. In
particular, if γ has an infinite suffix consisting of repetitions of an external signature, then that is
replaced by a single representative.

If γ = r(γ), then we say that γ is a trace. This defines a notion of trace in general, as opposed to
“trace of an SIOA A.” We now define stuttering-equivalence (≈) for pre-traces. Essentially, if one
pretrace can be obtained from another by adding and/or removing repeated external signatures,
then they are stuttering equivalent.

Definition 12 (≈) Let γ, γ′ be pretraces. Then γ ≈ γ′ iff r(γ) = r(γ′).

It is obvious that ≈ is an equivalence relation. Note that every trace is also a pretrace, but not
necessarily vice-versa, since repeated external signatures (stuttering) are disallowed in traces. The

11

length |γ| of a finite pretrace γ is the number of occurrences of external signatures and actions in γ.
The length of an infinite pretrace is ω. Let pretrace γ = γ(1)γ(2) Then for 0 ≤ i ≤ |γ|, define
γ|i = γ(1)γ(2) . . . γ(i). We define concatenation for pretraces as simply sequence concatenation,
and will usually use juxtaposition to denote trace concatenation, but will sometimes use the ⌢
operator for clarity. The concatenation of two pretraces is always a pretrace (note that this is
not true of traces, since concatenating two traces can result in a repeated external signature). We
use <,≤ for proper prefix, prefix, respectively, of a pretrace: γ < γ′ iff there exists a pretrace
γ′′ such that γ = γ′γ′′, and γ ≤ γ′ iff γ = γ′ or γ < γ′. If γ′ is a pretrace and γ < γ′, then γ
satisfies clauses 2–4 of Definition 10, but may not satisfy clause 5. For a sequence γ that does

satisfy clauses 2–4 of Definition 10, define the predicate ispretrace(γ)
df
== (last(γ) is an external

signature).

We now define a predicate zips(γ, γ1, . . . , γn) which takes n + 1 pretraces and holds when γ
is a possible result of “zipping” up γ1, . . . , γn, as would result when γ1, . . . , γn are pretraces of
compatible SIOA A1, . . . , An respectively, and γ is the corresponding trace of A = A1 ‖ · · · ‖ An.

Definition 13 (zip of pretraces) Let γ, γ1, . . . , γn all be pretraces (n ≥ 1). The predicate
zips(γ, γ1, . . . , γn) holds iff

1. |γ| = |γ1| = · · · = |γn|

2. For all i > 1: if γ(i) is an action a, then there exists nonempty ϕi ⊆ [n] such that

(a) ∀k ∈ ϕi : γk(i) = a

(b) ∀ℓ ∈ [n]− ϕi: γℓ(i− 1) = γℓ(i) = γℓ(i + 1), γℓ(i) is an external signature Γℓ, and a 6∈ Γ̂ℓ

3. For all i > 0: if γ(i) is an external signature Γ, then for all j ∈ [n], γj(i) is an external
signature Γj, and Γ =

∏
j∈[n] Γj.

4. For all i > 0, if γ(i − 1) and γ(i) are both external signatures, then there exists k ∈ [n] such
that ∀ℓ ∈ [n] − k : γℓ(i − 1) = γℓ(i)

Proposition 6 Let γ, γ1, . . . , γn all be pretraces (n ≥ 1). Suppose, zips(γ, γ1, . . . , γn). Then, for
all i such that 1 ≤ i ≤ |γ| and ispretrace(γ|i) (i.e., γ(i) is an external signature), zips(γ|i, γ1|i, . . . , γn|i)
holds.

Proof: Immediate from Definition 13. �

We use the zips predicate on pretraces together with the ≈ relation on pretraces to define a
“zipping” predicate for traces: the trace β is a possible result of “zipping up” the traces β1, . . . , βn

if there exist pretraces γ, γ1, . . . , γn that are stuttering-equivalent to β1, . . . , βn respectively, and for
which the zips predicate holds. The predicate so defined is named zip. Thus, zips is “zipping with
stuttering,” as applied to pretraces, and zip is “zipping without stuttering,” as applied to traces.

Definition 14 (zip of traces) Let β, β1, . . . , βn all be traces (n ≥ 1). The predicate zip(β, β1, . . . , βn)
holds iff there exist pretraces γ, γ1, . . . , γn such that γ ≈ β,

∧
j ∈ [n] : γj ≈ βj , and zips(γ, γ1, . . . , γn).

Define pretraces(A) = {γ | ∃β ∈ traces(A) : β ≈ γ}. That is, pretraces(A) is the set of
pretraces which are stuttering-equivalent to some trace of A. An equivalent definition which is

12

sometimes more convenient is pretraces(A) = {γ | ∃α ∈ execs(A) : trace(α) ≈ γ}. We also define
pretraces∗(A) = {γ | γ ∈ pretraces(A) and γ is finite }.

Given γ ∈ pretraces(A), we define execs(A)(γ) = {α | α ∈ execs(A) ∧ trace(α) ≈ γ}. In
other words, execs(A)(γ) is the set of executions (possibly empty) of A whose trace is stuttering-
equivalent to γ. Also, execs∗(A)(γ) = {α | α ∈ execs∗(A) ∧ trace(α) ≈ γ}, i.e., the set of finite
executions (possibly empty) of A whose trace is stuttering-equivalent to γ.

Theorem 7 states that if a set of finite pretraces γj of Aj respectively, j ∈ [n], can be “zipped
up” to generate a finite pretrace γ, then γ is a pretrace of A1 ‖ · · · ‖ An, and furthermore, any set of
executions corresponding to the γj can be pasted together to generate an execution of A1 ‖ · · · ‖ An

corresponding to γ. Theorem 7 is established by induction on the length of γ, and the explicit use of
executions corresponding to the pretraces γ, γ1, . . . , γn, is needed to make the induction go through.

Theorem 7 (Finite-pretrace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let
A = A1 ‖ · · · ‖ An. Let γ be a finite pretrace. If, for all j ∈ [n], γi ∈ pretraces∗(Aj) can be chosen
so that zips(γ, γ1, . . . , γn) holds, then

∀α1 ∈ execs∗(A1)(γ1), . . . ,∀αn ∈ execs∗(An)(γn),
∃α ∈ execs∗(A) : trace(α) ≈ γ ∧ (

∧
j∈[n] α↾Aj = αj)

Proof: Since γj ∈ pretraces∗(Aj), we easily deduce, from the definitions, that execs∗(Aj)(γj) 6= ∅
for all j ∈ [n]. For all j ∈ [n], fix αj to be an arbitrary element of execs∗(Aj)(γj). We will assume
the antecedent of the theorem, that is, γj ∈ pretraces∗(Aj) for all j ∈ [n] and zips(γ, γ1, . . . , γn).
We will also assume the induction hypothesis for all prefixes of γ that are pretraces. We will then
establish

∃α ∈ execs∗(A) : trace(α) ≈ γ ∧ (
∧

j∈[n] α↾Aj = αj) (*)

which suffices to establish the theorem. The proof is by induction on |γ|, the length of γ.

Base case: |γ| = 1. Hence γ consists of a single external signature Γ. For the rest of the base
case, let j range over [n]. By zips(γ, γ1, . . . , γn) and Definition 13, we have that each γj consists of
a single external signature Γj , and Γ =

∏
j∈[n] Γj . Since γ1, . . . , γn contain no actions, α1, . . . , αn

must contain only internal actions (if any). Furthermore, all the states along αj, j ∈ [n], must have
the same external signature, namely Γj .

By Definition 6, we can construct an execution α of A by first executing all the internal actions
in α1 (in the sequence in which they occur in α1), and then executing all the internal actions in
α2, etc. until we have executed all the actions of αn, in sequence. It immediately follows, by
Definition 9, that ∀j ∈ [n] : α↾Aj = αj. The external signature of every state along α is

∏
j∈[n] Γj ,

i.e., Γ, since the external signature component contributed by each Aj is always Γj. Hence, by
Definition 2, trace(α) ≈ Γ. Thus, trace(α) ≈ γ. We have thus established trace(α) ≈ γ and
(
∧

j∈[n] α↾Aj = αj). Hence (*) is established.

Induction step: |γ| > 1. There are two cases to consider, according to Definition 13.

Case 1: γ = γ′aΓ, γ′ is a pretrace, a is an action, and Γ is an external signature.
Hence, by Definition 13, we have

13

∃ϕ, ∅ 6= ϕ ⊆ [n] :
∀k ∈ ϕ : γk = γ′kaΓk ∧ a ∈ last(γ′k),
∀ℓ ∈ [n] − ϕ : γℓ = γ′ℓΓℓΓℓ ∧ Γℓ = last(γ′ℓ) ∧ a 6∈ Γℓ,
zips(γ′, γ′1, . . . , γ

′
n),

Γ = (
∏

k∈ϕ Γk) × (
∏

ℓ∈[n]−ϕ Γℓ). (a)

For the rest of this case, let j range over [n], k range over ϕ, and ℓ range over [n] − ϕ. In (a), we
have that γ′j ∈ pretraces∗(Aj) for all j, since γ′j < γj and γj ∈ pretraces∗(Aj) for all j, Since we
also have γ′ < γ and zips(γ′, γ′1, . . . , γ

′
n), we can apply the inductive hypothesis for γ′ to obtain

∀α′1 ∈ execs∗(A1)(γ
′
1), . . . ,∀α′n ∈ execs∗(An)(γ′n) :

∃α′ ∈ execs∗(A) : trace(α′) ≈ γ′ ∧ ∀j ∈ [n] : α′↾Aj = α′j (b)

By assumption, αk ∈ execs∗(Ak)(γk). Hence, we can find a finite execution α′k, and finite execution

fragment α′′k such that αk = α′k ⌢ (sk
a

−→Ak
tk) ⌢ α′′k, where sk = last(α′k), ext(Ak)(tk) = Γk, and

tk = first(α′′k). Furthermore, α′k ∈ execs∗(Ak)(γ
′
k), since αk ∈ execs∗(Ak)(γk), γk = γ′kaΓk, and

ext(Ak)(tk) = Γk. Also, α′′k consists entirely of internal actions, and trace(α′′k) ≈ Γk, i.e., every
state along α′′k has external signature Γk.

By assumption, αℓ ∈ execs(Aℓ)(γℓ). For all ℓ, let α′ℓ = αℓ, and let sℓ = tℓ = last(α′ℓ). Hence
α′ℓ ∈ execs(Aℓ)(γ

′
ℓ), since γ′ℓ ≈ γℓ. Instantiating (b) for these choices of α′k, α

′
ℓ, we obtain, for some

α′:
(
∧

j α′↾Aj = α′j) ∧ α′ ∈ execs∗(A)(γ′) ∧

(
∧

k(sk, a, tk) ∈ steps(Ak)) ∧ (
∧

k ext(Ak)(tk) = Γk). (c)

By α′ℓ ∈ execs∗(Aℓ)(γ
′
ℓ) and sℓ = last(α′ℓ), we have ext(Aℓ)(sℓ) = last(γ′). Hence, by (a), we have

ext(Aℓ)(sℓ) = Γℓ. Also, by (a), a 6∈ Γ̂ℓ. Thus,
∧

ℓ a 6∈ êxt(Aℓ)(sℓ) ∧ ext(Aℓ)(sℓ) = Γℓ. (d)

Also, since A1, . . . , An are compatible SIOA, we have
∧

ℓ a 6∈ int(Aℓ)(sℓ). Hence
∧

ℓ a 6∈ ŝig(Aℓ)(sℓ).
Now let s = 〈s1, . . . , sn〉, and let t = 〈t1, . . . , tn〉. By (b) and Definition 9, we have s = last(α′).
By (b),

∧
ℓ a 6∈ int(Aℓ)(sℓ), and Definition 6, we have (s, a, t) ∈ steps(A). Now let α′′ be a finite

execution fragment of A constructed as follows. Let t be the first state of α′′. Starting from t,
execute in sequence first all the (internal) transitions along αk1

, where k1 is some element of ϕ,
and then all the (internal) transitions along αk2

, where k1 is another element of ϕ, etc. until all
elements of ϕ have been exhausted. Since all the transitions are internal, Definition 6 gives us that
α′′ is indeed an execution fragment of A. Furthermore, since no external signatures change along
any of the α′′k, it follows that the external signature does not change along α′′, and hence must
equal ext(A)(t) at all states along α′′. Hence trace(α′′) ≈ ext(A)(t). Finally, by its construction,
we have α′′↾Ak = α′′k for all k.

Let α = α′⌢ (s
a

−→A t) ⌢ α′′. By the above, α is well defined, and is an execution of A.

We now have
ext(A)(t)

= (
∏

k ext(Ak)(tk)) × (
∏

ℓ ext(Aℓ)(tℓ)) definition of t
= (

∏
k Γk) × (

∏
ℓ ext(Aℓ)(tℓ)) (c)

= (
∏

k Γk) × (
∏

ℓ Γℓ) (d)
= Γ (a)

Also,

14

trace(α)
≈ trace(α′) ⌢ a ⌢ trace(α′′) definition of α
≈ trace(α′) ⌢ a ⌢ ext(A)(t) trace(α′′) ≈ ext(A)(t)
≈ trace(α′) ⌢ a ⌢ Γ ext(A)(t) = Γ established above
≈ γ′aΓ α′ ∈ execs∗(A)(γ′), hence trace(α′) ≈ γ′

≈ γ case condition

For all k ∈ ϕ,
α↾Ak

= (α′↾Ak) ⌢ (sk
a

−→Ak
tk) ⌢ (α′′↾Ak) Definition 9 and definition of α

= α′k ⌢ (sk
a

−→Ak
tk) ⌢ (α′′↾Ak) by (c), α′↾Ak = α′k

= α′k ⌢ (sk
a

−→Ak
tk) ⌢ α′′k by the preceding remarks, α′′↾Ak = α′′k

= αk by definition of α′k, α′′k: αk = α′k ⌢ (sk
a

−→Ak
tk) ⌢ α′′k

For all ℓ ∈ [n] − ϕ,
α↾Aℓ

= α′↾Aℓ Definition 9 and definition of α
= α′ℓ by (c), α′↾Aℓ = α′ℓ
= αℓ by our choice of α′ℓ, αℓ = α′ℓ

We have just established α ∈ execs∗(A), α↾j = αj for all j ∈ [n], and trace(α) ≈ γ. Hence (*)
is established for case 1.

Case 2: γ = γ′Γ, γ′ is a pretrace, and Γ is an external signature.
Hence, by Definition 13, we have

∃k ∈ [n] :
γk = γ′kΓk ∧ last(γ′k) is an external signature,
∀ℓ ∈ [n] − k : γℓ = γ′ℓΓℓ ∧ last(γ′ℓ) = Γℓ,
zips(γ′, γ′1, . . . , γ

′
n),

Γ = Γk × (
∏

ℓ∈[n]−k Γℓ). (a)

For the rest of this case, let j range over [n], and ℓ range over [n] − k. In (a), we have that
γ′j ∈ pretraces∗(Aj) for all j, since γ′j < γj and γj ∈ pretraces∗(Aj) for all j. Since we also have
γ′ < γ and zips(γ′, γ′1, . . . , γ

′
n), we can apply the inductive hypothesis for γ′ to obtain

∀α′1 ∈ execs∗(A1)(γ
′
1), . . . ,∀α′n ∈ execs∗(An)(γ′n) :

∃α′ ∈ execs∗(A) : trace(α′) ≈ γ′ ∧ (
∧

j∈[n] α
′↾Aj = α′j) (b)

By assumption, αℓ ∈ execs(Aℓ)(γℓ). For all ℓ, let α′ℓ = αℓ, and let sℓ = tℓ = last(α′ℓ). Hence
α′ℓ ∈ execs(Aℓ)(γ

′
ℓ), since γ′ℓ ≈ γℓ. Define α′k as follows. If Γk = last(γ′k), then let α′k = αk. If

Γk 6= last(γ′k), then we can find a finite execution α′k, and finite execution fragment α′′k such that

αk = α′k ⌢ (sk
τ

−→Ak
tk) ⌢ α′′k, where sk = last(α′k), ext(Ak)(tk) = Γk, and tk = first(α′′k). The

transition sk
τ

−→Ak
tk must exist, since the external signature of Ak changed along γk. Also, α′′k

consists entirely of internal actions, and trace(α′′k) ≈ Γk, i.e., every state along α′′k has external
signature Γk.

In both cases, α′k ∈ execs(Ak)(γ′k). Instantiating (b) for these choices of α′j , we obtain, for
some α′:

15

(
∧

j : α′↾Aj = α′j) ∧ α′ ∈ execs∗(A)(γ′) ∧

(sk, a, tk) ∈ steps(Ak) ∧ ext(Ak)(tk) = Γk (c)

We now have two subcases.

Subcase 2.1: Γk = last(γ′k).
So, α′k = αk. Since α′ℓ = αℓ for all ℓ ∈ [n] − k, we get α′j = αj for all j ∈ [n]. Now define α = α′.
Hence, by (c), we obtain (

∧
j : α↾Aj = αj). Also by (c), trace(α′) ≈ γ′, since α′ ∈ execs∗(A)(γ′).

Hence trace(α) ≈ γ′.

By the case assumption, last(γ′) is an external signature. So, we have
last(γ′)

= last(γ′k) × (
∏

ℓ last(γ′ℓ)) zips(γ′, γ′1, . . . , γ
′
n) and Definition 13

= last(γ′k) × (
∏

ℓ Γℓ) (a)
= Γk × (

∏
ℓ Γℓ) subcase assumption

= Γ (a)

By the case assumption, γ = γ′Γ. Hence γ ≈ γ′. So, trace(α) ≈ γ. We have just established
α ∈ execs(A), α↾Aj = αj for all j ∈ [n], and trace(α) ≈ γ. Hence (*) is established for subcase 2.1.

Subcase 2.2: Γk 6= last(γ′k).

Hence αk = α′k ⌢ (sk
τ

−→Ak
tk) ⌢ α′′k, where sk = last(α′k) and ext(Ak)(tk) = Γk.

Now let s = 〈s1, . . . , sn〉, and let t = 〈t1, . . . , tn〉. By (b) and Definition 9, we have s = last(α′).
By Definition 6, we have (s, τ, t) ∈ steps(A). Let α = α′⌢ (s

τ
−→A t) ⌢ α′′, where α′′ is the finite-

execution fragment of A with first state t, and whose transitions are exactly those of α′′k, with no
other SIOA making any transitions. Since all the transitions of α′′k are internal, Definition 6 gives
us that α′′ is indeed an execution fragment of A. Furthermore, since the external signature does not
change along α′′k, it follows that the external signature does not change along α′′, and hence must
equal ext(A)(t) at all states along α′′. Hence trace(α′′) ≈ ext(A)(t). Finally, by its construction,
we have α′′↾Ak = α′′k.

By the above, α is well defined, and is an execution of A.

We now have
ext(A)(t)

= ext(Ak)(tk) × (
∏

ℓ ext(Aℓ)(tℓ)) definition of t
= Γk × (

∏
ℓ ext(Aℓ)(tℓ)) definition of tk

= Γk × (
∏

ℓ Γℓ) tℓ = last(α′ℓ), (a)
= Γ (a)

And so,
trace(α)

≈ trace(α′) ⌢ trace(α′′) definition of α
≈ trace(α′) ⌢ ext(A)(t) trace(α′′) ≈ ext(A)(t)
≈ trace(α′) ⌢ Γ ext(A)(t) = Γ established above
≈ γ′Γ α′ ∈ execs∗(A)(γ′), hence trace(α′) ≈ γ′

≈ γ case condition

For k,

16

α↾Ak

= (α′↾Ak) ⌢ (sk
τ

−→Ak
tk) ⌢ (α′′↾Ak) Definition 9 and definition of α

= α′k ⌢ (sk
τ

−→Ak
tk) ⌢ (α′′↾Ak) by (c), α′↾Ak = α′k

= α′k ⌢ (sk
τ

−→Ak
tk) ⌢ (α′′k) by the preceding remarks, α′′↾Ak = α′′k

= αk by definition of α′k, α′′k: αk = α′k ⌢ (sk
τ

−→Ak
tk) ⌢ α′′k

For all ℓ ∈ [n] − k,
α↾Aℓ

= α′↾Aℓ Definition 9 and definition of α
= α′ℓ by (c), α′↾Aℓ = α′ℓ
= αℓ by our choice of α′ℓ, αℓ = α′ℓ

We have just established α ∈ execs(A), α↾Aj = αj for all j ∈ [n], and trace(α) ≈ γ. Hence (*)
is established for subcase 2.2. Hence Case 2 of the inductive step is established.

Since both cases of the inductive step have been established, the theorem follows. �

We use Theorem 7 and the definition of zip (Definition 14) to establish a similar result for
traces.

Corollary 8 (Finite trace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A =
A1 ‖ · · · ‖ An. Let β be a finite trace and β1, . . . , βn be such that βj ∈ traces∗(Aj) for all j ∈ [n].
If zip(β, β1, . . . , βn) holds, then β ∈ traces∗(A).

Proof: By Definition 14, there exist pretraces γ, γ1, . . . , γn such that γ ≈ β, (
∧

j∈[n] γj ≈ βj), and
zips(γ, γ1, . . . , γn). By Theorem 7, ∃α ∈ execs∗(A) : trace(α) ≈ γ. Hence trace(α) ≈ β. Since β is
a trace, we obtain trace(α) = β. Since β is finite, β ∈ traces∗(A). �

Theorem 9 extends theorem 7 to infinite pretraces. That is, if a set of pretraces γj of Aj

respectively, j ∈ [n], can be “zipped up” to generate a pretrace γ, then γ is a pretrace of A =
A1 ‖ · · · ‖ An. The proof uses the result of Theorem 7 to construct an infinite family of finite
executions, each of which is a prefix of the next, and such that the trace of each finite execution is
stuttering-equivalent to a prefix of γ. Taking the limit of these executions under the prefix-ordering
then yields an infinite execution α of A whose trace is stuttering-equivalent to γ, as desired.

Theorem 9 (Pretrace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A =
A1 ‖ · · · ‖ An. Let γ be a pretrace. If, for all j ∈ [n], γi ∈ pretraces(Aj) can be chosen so that
zips(γ, γ1, . . . , γn) holds, then ∃α ∈ execs(A) : trace(α) ≈ γ.

Proof: If γ is finite, then the result follows from Theorem 7, and Definition 13, clause 1. Hence
assume that γ is infinite for the remainder of the proof. By Proposition 6, we have

∀i, i > 0 ∧ ispretrace(γ|i) : zips(γ|i, γ1|i, . . . , γn|i) (a)

For any i > 0, if ispretrace(γ|i) and zips(γ|i, γ1|i, . . . , γn|i), then
∧

j∈[n] ispretrace(γj |i), by Defini-
tion 13. Hence, by definition of a pretrace, we have

∧
j ∈ [n],∀i, i > 0 ∧ ispretrace(γ|i) : γj|i ∈ pretraces(Aj) (b)

By (a,b) and Theorem 7, we have

∀i, i > 0 ∧ ispretrace(γ|i) : ∃αi ∈ execs(A) : trace(αi) ≈ γ|i (c)

17

Now let i′, i′′ be such that i′ < i′′, ispretrace(γ|i′), ispretrace(γ|i′′), and there is no i′ < i < i′′ such
that ispretrace(γ|i). By Definition 10, we have that either γ|i′′ = (γ|i′)aΓ or γ|i′′ = (γ|i′)Γ, for some
action a and external signature Γ. We can show that there exist αi′ ∈ execs(A), αi′′ ∈ execs(A)
such that αi′ < αi′′ , trace(αi′) ≈ γ|i′ , trace(αi′′) ≈ γ|i′′ . This is established by the same argument
as used for the inductive step in the proof of Theorem 7. In essence, αi′′ is obtained inductively as
an extension of αi′ . We omit the (repetitive) details.

Let prefixes(γ) = {i | i > 0 ∧ ispretrace(γ|i)}. Hence, from this and (c), we have

there exists a set {αi | i ∈ prefixes(γ)} such that
∀i ∈ prefixes(γ) : αi ∈ execs(A) ∧ trace(αi) ≈ γ|i
∀i, i′ ∈ prefixes(γ), i < i′ : αi ≤ αi′ (d)

Now let α be the unique minimum sequence that satisfies ∀i ∈ prefixes(γ) : αi < α. α exists by
(d). Since every triple (s, a, s′) along α occurs in some αi, it must be a step of A. Hence α is an
execution of A. Furthermore, every element of γ occurs in some γ|i, and hence will occur in the
trace of αi, by (d). (note that a single element of trace(α) may account for multiple elements of
γ). Hence this element will also occur in the trace of α. Furthermore, the order of such elements
in trace(α) is the same as their order in γ. Finally, trace(α) contains no elements other than
those generated by some αi, and hence which occur in γ|i and so also in γ. Hence we conclude
trace(α) ≈ γ. �

We use Theorem 9 and the definition of zip (Definition 14) to establish Corollary 10, which
extends corollary 8 to infinite traces. Corollary 10 gives our main trace pasting result, and is also
used to establish trace substitutivity, Theorem 17, below.

Corollary 10 (Trace pasting for SIOA) Let A1, . . . , An be compatible SIOA, and let A = A1 ‖
· · · ‖ An. Let β be a trace and β1, . . . , βn be such that βj ∈ traces(Aj) for all j ∈ [n]. If
zip(β, β1, . . . , βn) holds, then β ∈ traces(A).

Proof: By Definition 14, there exist pretraces γ, γ1, . . . , γn such that γ ≈ β,
∧

j∈[n] γj ≈ βj , and
zips(γ, γ1, . . . , γn). By Theorem 9, ∃α ∈ execs(A) : trace(α) ≈ γ. Hence trace(α) ≈ β. Since β is a
trace, we obtain trace(α) = β. Hence β ∈ traces(A). �

3.3 Trace Substitutivity for SIOA

To establish trace substitutivity, we first need some preliminary technical results. These establish
that for an execution α of A = A1 ‖ · · · ‖ An and its projections α↾A1, . . . , α↾An, that there exist
corresponding (in the sense of being stuttering equivalent to the trace of) pretraces γ, γ1, . . . , γn

respectively which “zip up,” i.e., zips(γ, γ1, . . . , γn) holds. Our first proposition establishes this
result for finite executions.

Proposition 11 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any
finite execution of A. Then, there exist finite pretraces γ, γ1, . . . , γn such that γ ≈ trace(α), for all
j ∈ [n], γj ≈ trace(α↾Aj), and zips(γ, γ1, . . . , γn).

Proof: By induction on |α|. For the rest of the proof, fix α to be some element of execs∗(A)(γ).

Base case: |α| = 0. Then α consists of a single state s. By Definition 6, we have ext(A)(s) =∏
j∈[n] ext(Aj)(s↾Aj) Let γ consist of the single element ext(A)(s) and for all j ∈ [n], let γj consist

18

of the single element ext(Aj)(s↾Aj). Hence γ =
∏

j∈[n] γj. By Definition 13, zips(γ, γ1, . . . , γn)
holds.

Induction step: |α| > 0. There are two cases to consider, according to whether the last
transition of α is an external or internal action of A.

Case 1: α = α′at for some action a and state t, where a ∈ êxt(A)(last (α′)).
We can apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′1, . . . , γ
′
n such that

γ′ ≈ trace(α′),
∧

j∈[n] γ
′
j ≈ trace(α′↾Aj), and zips(γ′, γ′1, . . . , γ

′
n) (a)

Let s = last(α′), and for all j, let sj = s↾Aj , and tj = t↾Aj . Let ϕ = {j | a ∈ êxt(Aj)(sj)}. Let k

range over ϕ and ℓ range over [n]−ϕ. Hence,
∧

ℓ a 6∈ ŝig(Aℓ)(sℓ). Hence, by Definition 6,
∧

ℓ sℓ = tℓ.

By Definition 9, for all k, we have α↾Ak = (α′↾Ak)atk. Hence trace(α↾Ak) = trace(α′↾Ak) ⌢
a ⌢ ext(Ak)(tk). For all k, we have γ′k ≈ trace(α′↾Ak) by (a). Let γk = γ′k ⌢ a ⌢ ext(Ak)(tk).
Hence γk ≈ trace(α↾Ak).

By Definition 9, for all ℓ, we have α↾Aℓ = α′↾Aℓ. Hence trace(α↾ℓ) = trace(α′↾ℓ). Let γℓ =
γ′ℓ ⌢ ext(Aℓ)(sℓ) ⌢ ext(Aℓ)(sℓ). From γ′ℓ ≈ trace(α′↾Aℓ) and s = last(α′), we get last(γ′ℓ) =
ext(Aℓ)(last (α

′↾ℓ)) = ext(Aℓ)(sℓ). Hence γℓ ≈ γ′ℓ. For all ℓ, we have γ′ℓ ≈ trace(α′↾Aℓ) by (a).
Hence γℓ ≈ γ′ℓ ≈ trace(α′↾Aℓ) = trace(α↾Aℓ). Thus, γℓ ≈ trace(α↾Aℓ).

Let γ = γ′ ⌢ a ⌢ ext(A)(t). Now trace(α) = trace(α′at) = trace(α′) ⌢ a ⌢ ext(A)(t). From
(a), γ′ ≈ trace(α′). Hence γ = γ′ ⌢ a ⌢ ext(A)(t) ≈ trace(α′) ⌢ a ⌢ ext(A)(t) = trace(α). So,
γ ≈ trace(α).

From the previous three paragraphs, we have

γ ≈ trace(α) ∧
∧

j∈[n] γj ≈ trace(α↾Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satisfied for
γ, γ1, . . . , γn. By (a), zips(γ′, γ′1, . . . , γ

′
n). We will use this repeatedly below.

By zips(γ′, γ′1, . . . , γ
′
n), we have |γ′| = |γ′1| = · · · = |γ′n|. By construction |γ| = |γ′| + 2, and for

all j ∈ [n], |γj| = |γ′j | + 2. Hence |γ| = |γ1| = · · · = |γn|. So clause 1 is satisfied.

By definition of ℓ, we have
∧

ℓ a 6∈ ext(Aℓ)(sℓ). By construction, the last three elements of γℓ

(for all ℓ) are all ext(Aℓ)(sℓ). By this and zips(γ′, γ′1, . . . , γ
′
n), we conclude that clause 2 is satisfied.

By Definition 6, we have ext(A)(t) =
∏

j∈[n] ext(Aj)(tj). By construction, we have last(γ) =
ext(A)(t),

∧
k last(γk) = ext(Ak)(tk), and

∧
ℓ last(γℓ) = ext(Aℓ)(sℓ). From

∧
ℓ sℓ = tℓ (estab-

lished above), we get
∧

ℓ last(γℓ) = ext(Aℓ)(tℓ). Hence last(γ) =
∏

j∈[n] last(γj). By this and

zips(γ′, γ′1, . . . , γ
′
n), we conclude that clause 3 is satisfied.

By zips(γ′, γ′1, . . . , γ
′
n) and the construction of γ, γ1, . . . , γn (specifically, that a is an external

action), we conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1, . . . , γn). Together with (b), this establishes the inductive
step in this case.

Case 2: α = α′at for some action a and state t, where a ∈ int(A)(last (α′)).
We can apply the induction hypothesis to α′ to obtain

there exist pretraces γ′, γ′1, . . . , γ
′
n such that

γ′ ≈ trace(α′),
∧

j∈[n] γ
′
j ≈ trace(α′↾Aj), and zips(γ′, γ′1, . . . , γ

′
n) (a)

19

Let s = last(α′), and for all j, let sj = s↾Aj , and tj = t↾Aj . Since a is an internal action of A, it is
executed by exactly one of the A1, . . . , An. Thus, there is some k ∈ [n] such that a ∈ int(Ak)(sk),
and for all ℓ ∈ [n] − k, a 6∈ ŝig(Aℓ)(sℓ). Let ℓ range over [n] − k for the rest of this case. Hence∧

ℓ sℓ = tℓ, by Definition 6.

By Definition 9, we have α↾Ak = (α′↾Ak)atk. Hence trace(α↾Ak) = trace(α′↾Ak)⌢ext(Ak)(tk).
For all k, we have γ′k ≈ trace(α′↾Ak) by (a). Let γk = γ′k ⌢ ext(Ak)(tk). Hence γk ≈ trace(α↾Ak).

By Definition 9, for all ℓ, we have α↾Aℓ = α′↾Aℓ. Hence trace(α↾ℓ) = trace(α′↾ℓ). Let γℓ =
γ′ℓ ⌢ ext(Aℓ)(sℓ). From γ′ℓ ≈ trace(α′↾Aℓ) and s = last(α′), we get last(γ′ℓ) = ext(Aℓ)(last(α

′↾ℓ))
= ext(Aℓ)(sℓ). Hence γℓ ≈ γ′ℓ. For all ℓ, we have γ′ℓ ≈ trace(α′↾Aℓ) by (a). Hence γℓ ≈ γ′ℓ ≈
trace(α′↾Aℓ) = trace(α↾Aℓ). Thus, γℓ ≈ trace(α↾Aℓ).

Let γ = γ′ ⌢ ext(A)(t). Now trace(α) = trace(α′at) = trace(α′) ⌢ ext(A)(t). From (a),
γ′ ≈ trace(α′). Hence γ = γ′⌢ ext(A)(t) ≈ trace(α′) ⌢ ext(A)(t) = trace(α). So, γ ≈ trace(α).

From the previous three paragraphs, we have

γ ≈ trace(α) ∧
∧

j∈[n] γj ≈ trace(α↾Aj). (b)

We now establish zips(γ, γ1, . . . , γn). We show that all clauses of Definition 13 are satisfied for
γ, γ1, . . . , γn. By (a), zips(γ′, γ′1, . . . , γ

′
n). We will use this repeatedly below.

By zips(γ′, γ′1, . . . , γ
′
n), we have |γ′| = |γ′1| = · · · = |γ′n|. By construction |γ| = |γ′| + 1, and for

all j ∈ [n], |γj| = |γ′j | + 1. Hence |γ| = |γ1| = · · · = |γn|. So clause 1 is satisfied.

By zips(γ′, γ′1, . . . , γ
′
n) and the construction of γ, γ1, . . . , γn (specifically, that a is an internal

action), we conclude that clause 2 is satisfied.

By Definition 6, we have ext(A)(t) =
∏

j∈[n] ext(Aj)(tj). By construction, we have last(γ) =
ext(A)(t),

∧
k last(γk) = ext(Ak)(tk), and

∧
ℓ last(γℓ) = ext(Aℓ)(sℓ). From

∧
ℓ sℓ = tℓ (estab-

lished above), we get
∧

ℓ last(γℓ) = ext(Aℓ)(tℓ). Hence last(γ) =
∏

j∈[n] last(γj). By this and

zips(γ′, γ′1, . . . , γ
′
n), we conclude that clause 3 is satisfied.

By construction, the last two elements of γℓ (for all ℓ) are both ext(Aℓ)(sℓ). By this and
zips(γ′, γ′1, . . . , γ

′
n), we conclude that clause 4 is satisfied.

Hence, we have established zips(γ, γ1, . . . , γn). Together with (b), this establishes the inductive
step in this case.

Having established both possible cases, we conclude that the inductive step holds. �

Proposition 12 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β be an
arbitrary element of traces∗(A). Then, there exist β1, . . . , βn such that (1) for all j ∈ [n] : βj ∈
traces∗(Aj), and (2) zip(β, β1, . . . , βn).

Proof: Since β ∈ traces∗(A), there exists α ∈ execs∗(A) such that trace(α) = β. Applying
Proposition 11 to α, we have that there exist finite pretraces γ, γ1, . . . , γn such that γ ≈ trace(α),
(
∧

j ∈ [n] : γj ≈ trace(α↾Aj)), and zips(γ, γ1, . . . , γn).

For all j ∈ [n], let βj = trace(α↾Aj). By Theorem 4, α↾Aj ∈ execs(Aj). Hence βj ∈
traces∗(Aj). Thus, (1) is established.

From γj ≈ trace(α↾Aj) and βj = trace(α↾Aj), we have βj ≈ γj, for all j ∈ [n]. From
γ ≈ trace(α) and β = trace(α), we have γ ≈ β. Hence, by Definition 14 and zips(β, γ1, . . . , γn), we
conclude zip(β, β1, . . . , βn). Hence (2) is established. �

20

Theorem 13 (Finite Trace Substitutivity for SIOA) Let A1, . . . , An be compatible SIOA, and
let A = A1 ‖ · · · ‖ An. For some j ∈ [n], let Aj, A

′
j be SIOA such that traces∗(Aj) ⊆ traces∗(A′j),

and let A′ = A1 ‖ · · · ‖ A′j ‖ · · · ‖ An. Then traces∗(A) ⊆ traces∗(A′).

Proof: Let β be an arbitrary element of traces∗(A). Then, by Proposition 12, there exist β1, . . . , βn

such that zip(β, β1, . . . , βn), and
∧

j∈[n] βj ∈ traces∗(Aj). By assumption, traces∗(Aj) ⊆ traces∗(A′j).

Hence βj ∈ traces∗(A′j).

Thus, we have βj ∈ traces∗(A′j), (
∧

k∈[n]−j βk ∈ traces∗(Ak)), and zip(β, β1, . . . , βn). Hence,

by Corollary 8, β ∈ traces∗(A′). Since β was chosen arbitrarily, we have traces∗(A) ⊆ traces∗(A′).
�

Proposition 14 extends the result of Proposition 11 to the (infinite set of) finite prefixes of
an infinite execution. That is, for every finite prefix α|i of an infinite execution α of A = A1 ‖
· · · ‖ An, and its projections (α|i)↾A1, . . . , (α|i)↾An, there exist corresponding (in the sense of
being stuttering equivalent to the trace of) pretraces γi and γi

1, . . . , γ
i
n respectively which “zip

up,” i.e., zips(γi, γi
1, . . . , γ

i
n) holds. Furthermore, the pretraces γi−1, γi−1

1 , . . . , γi−1
n corresponding

to α|i−1, (α|i−1)↾A1, . . . , (α|i−1)↾An, respectively are prefixes of the pretraces γi, γi
1, . . . , γ

i
n, respec-

tively.

Proposition 14 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any
execution of A. Then, there exists a set of tuples of finite pretraces {〈γi, γi

1, . . . , γ
i
n〉 | 0 ≤ i ≤ |α|}

such that:

1. ∀i, 0 ≤ i ≤ |α| : γi ≈ trace(α|i) ∧ (
∧

j∈[n] γ
i
j ≈ trace((α|i)↾Aj))

2. ∀i, 0 ≤ i ≤ |α| : zips(γi, γi
1, . . . , γ

i
n)

3. ∀i, 0 < i ≤ |α| : γi−1 < γi ∧ (
∧

j∈[n] γ
i−1
j < γi

j)

Proof: By induction on i.

Base case: i = 0. Then, α|0 consists of a single state s. The proof then parallels the base case
of the proof of Proposition 11. We omit the repetitive details.

Induction step: i > 0. Assume the inductive hypothesis for 0 ≤ i < m, and establish it for
i = m. By the inductive hypothesis, we obtain

there exists a set of tuples of finite pretraces {〈γi, γi
1, . . . , γ

i
n〉 | 0 ≤ i < m} such that:

1. ∀i, 0 ≤ i < m : γi ≈ trace(α|i) ∧ (
∧

j∈[n] γ
i
j ≈ trace((α|i)↾Aj))

2. ∀i, 0 ≤ i < m : zips(γi, γi
1, . . . , γ

i
n)

3. ∀i, 0 < i < m : γi−1 < γi ∧ (
∧

j∈[n] γ
i−1
j < γi

j)

(a)

We now establish the inductive hypothesis for i = m, that is:
there exists a tuple of pretraces 〈γm, γm

1 , . . . , γm
n 〉 such that

1. γm ≈ trace(α|i) ∧ (
∧

j∈[n] γ
m
j ≈ trace((α|m)↾Aj)),

2. zips(γm, γm
1 , . . . , γm

n), and

3. γm−1 < γm ∧ (
∧

j∈[n] γ
m−1
j < γm

j).

(*)

21

There are two cases.

Case 1: α|m = (α|m−1)at for some action a and state t, where a ∈ êxt(A)(last (α|m−1)).

Case 2: α|m = (α|m−1)at for some action a and state t, where a ∈ int(A)(last (α|m−1)).

To establish clauses 1 and 2 of (*), the proofs for these cases proceeds in exactly the same way
as the proofs for cases 1 and 2 in the proof of Proposition 11, with α|m−1 playing the role of α′,
and α|m playing the role of α.

To establish clause 3 of (*), we note that, in both cases 1 and 2 in the proof of Proposition 11,
γ, γ1, . . . , γn are constructed as extensions of γ′, γ′1, . . . , γ

′
n, respectively. Our proof here proceeds

in exactly the same way, with γm−1, γm−1
1 , . . . , γm−1

n playing the role of γ′, γ′1, . . . , γ
′
n, respectively,

and γm, γm
1 , . . . , γm

n playing the role of γ, γ1, . . . , γn, respectively. We omit the details. �

Proposition 15 establishes the result of Proposition 11 for infinite executions. The proof uses
the result of Proposition 14 and constructs the required pretraces γ, γ1, . . . , γn by taking the limit
under the prefix-ordering of the γi, γi

1, . . . , γ
i
n given in Proposition 14, as i tends to ω.

Proposition 15 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let α be any
execution of A. Then, there exist pretraces γ, γ1, . . . , γn such that γ ≈ trace(α), for all j ∈ [n],
γj ≈ trace(α↾Aj), and zips(γ, γ1, . . . , γn).

Proof: If α is finite, then the result follows from Proposition 11. Hence, assume that α is infinite
in the rest of the proof. By Proposition 14, we have

there exists a set of tuples of finite pretraces {〈γi, γi
1, . . . , γ

i
n〉 | 0 ≤ i} such that:

1. ∀i, 0 ≤ i : γi ≈ trace(α|i) ∧ (
∧

j∈[n] γ
i
j ≈ trace((α|i)↾Aj))

2. ∀i, 0 ≤ i : zips(γi, γi
1, . . . , γ

i
n)

3. ∀i, 0 < i : γi−1 < γi ∧ (
∧

j∈[n] γ
i−1
j < γi

j)

(a)

By clause 3 of (a), we can define γ to be the unique sequence such that ∀i, 0 ≤ i : γi < γ, and, for
all j ∈ [n], γj to be the unique sequence such that ∀i, 0 ≤ i : γi

j < γj . From clause 2 of (a) and
Definition 13, we conclude zips(γ, γ1, . . . , γn).

From clause 1 of (a), γ ≈ trace(α) ∧ (
∧

j∈[n] γj ≈ trace(α↾Aj)).

Hence, the proposition is established. �

Proposition 16 “lifts” the result of Proposition 15 from executions to traces; it shows that if
β is a trace of A = A1 ‖ · · · ‖ An then there exist traces β1, . . . , βn of A1, . . . , An respectively
which zip up to β, that is zip(β, β1, . . . , βn) holds. The proof is a straightforward application of
Proposition 15.

Proposition 16 Let A1, . . . , An be compatible SIOA, and let A = A1 ‖ · · · ‖ An. Let β be an
arbitrary element of traces(A). Then, there exist β1, . . . , βn such that (1) for all j ∈ [n] : βj ∈
traces(Aj), and (2) zip(β, β1, . . . , βn).

Proof: Since β ∈ traces(A), there exists α ∈ execs(A) such that trace(α) = β. Applying
Proposition 15 to α, we have that there exist pretraces γ, γ1, . . . , γn such that γ ≈ trace(α),

22

(
∧

j ∈ [n] : γj ≈ trace(α↾Aj)), and zips(γ, γ1, . . . , γn).

For all j ∈ [n], let βj = trace(α↾Aj). By Theorem 4, α↾Aj ∈ execs(Aj). Hence βj ∈ traces(Aj).
Thus, (1) is established.

From γj ≈ trace(α↾Aj) and βj = trace(α↾Aj), we have βj ≈ γj, for all j ∈ [n]. From
γ ≈ trace(α) and β = trace(α), we have γ ≈ β. Hence, by Definition 14 and zips(β, γ1, . . . , γn), we
conclude zip(β, β1, . . . , βn). Hence (2) is established. �

Theorem 17 gives one of our main results: trace substitutivity. This states that, in a compo-
sition of n SIOA, if one of the SIOA is replaced by another whose traces are a subset of those of
the SIOA that was replaced, then this cannot increase the set of traces of the entire composition.

Theorem 17 (Trace Substitutivity for SIOA) Let A1, . . . , An be compatible SIOA, and let
A = A1 ‖ · · · ‖ An. For some j ∈ [n], let Aj , A

′
j be SIOA such that traces(Aj) ⊆ traces(A′j),

and let A′ = A1 ‖ · · · ‖ A′j ‖ · · · ‖ An. Then traces(A) ⊆ traces(A′).

Proof: Let β be an arbitrary element of traces(A). Then, by Proposition 16, there exist β1, . . . , βn

such that zip(β, β1, . . . , βn), and
∧

j∈[n] βj ∈ traces(Aj). By assumption, traces(Aj) ⊆ traces(A′j).

Hence βj ∈ traces(A′j).

Thus, we have βj ∈ traces(A′j), (
∧

k∈[n]−j βk ∈ traces(Ak)), and zip(β, β1, . . . , βn). Hence, by

Corollary 10, β ∈ traces(A′). Since β was chosen arbitrarily, we have traces(A) ⊆ traces(A′). �

4 Simulation

We define a notion of forward simulation [LV95] from one SIOA to another. Our notion requires
the usual matching of every transition of the implementation by an execution fragment of the
specification. It also requires that corresponding states have the same external signature. This
gives us a reasonable notion of refinement, in that an implementation presents to its environment
only those interfaces (i.e., external signatures) that are allowed by the specification.

Definition 15 (Forward simulation) Let A and B be SIOA. A forward simulation from A to
B is a relation f over states(A) × states(B) that satisfies:

1. If s ∈ start(A), then f [s] ∩ start(B) 6= ∅,

2. If s
a

−→A s′ and t ∈ f [s], then there exists t′ ∈ f [s′], t1, α1, t2, α2 such that

(a) t
α1−→B t1

a
−→B t2

α2−→B t′,

(b) α1, α2 contain only internal actions of Y ,

(c) ext(B)(u) = ext(A)(s) for all u along α1 (including t, t1),

(d) ext(B)(v) = ext(A)(s′) for all v along α2 (including t2, t
′).

We say A ≤ B if a forward simulation from A to B exists. Our notion of correct implementation
with respect to safety properties is given by trace inclusion, and is implied by forward simulation.

Theorem 18 If A ≤ B then traces(A) ⊆ traces(B).

23

Proof: Let f be a forward simulation from A to B. Then, we can show that for every execution
α = s0a1s1a2s2 · · · of A, there exists an execution α′ = u0b1u1b2u2 · · · of B such that α and α′

correspond in the following sense. There exists a total, nondecreasing mapping m : {0, 1, . . . , |α|} 7→
{0, 1, . . . , |α′|} such that:

1. m(0) = 0,

2. (si, um(i)) ∈ f for all 0 ≤ i ≤ |α|,

3. trace(sm(i−1)bm(i−1)+1 · · · bm(i)sm(i)) = trace(si−1aisi) for all 0 < i ≤ |α|, and

4. for all j, 0 ≤ j ≤ |α′|, there exists an i, 0 ≤ i ≤ |α|, such that m(i) ≥ j.

The mapping m is referred to as an index mapping from α to α′ with respect to f . We can then
use this correspondence to establish that trace(α) = trace(α′). Since α is an arbitrary execution of
A, it follows that traces(A) ⊆ traces(B).

The details of the above proof are essentially the same as the proofs of similar results in
[GSSAL93], and are therefore omitted. The only difference is that we have to accomodate our
different definition of a trace, which represents external signatures as well as external actions. Our
notion of forward simulation is designed to exactly accomodate our notion of trace in this respect.
�

5 Configurations and Configuration Automata

Suppose a is an action of SIOA A whose execution has the side-effect of creating another SIOA B.
To model this, we must keep track of the set of “alive” SIOA, i.e., those that have been created but
not destroyed (we consider the automata that are initially present to be “created at time zero”).
Thus, we require a transition relation over sets of SIOA. We also need to keep track of the current
global state, i.e., the tuple of local states of every SIOA that is alive. Thus, we replace the notion
of global state with the notion of “configuration,” i.e., the set A of alive SIOA, and a mapping S
with domain A such that S(A) is the current local state of A, for each SIOA A ∈ A.

A configuration contains within it a set of SIOA, each of which embodies a transition relation.
Thus, the possible transitions out of a configuration cannot be given arbitrarily, as when defining
a transition relation over “unstructured” states. Rather, these transitions should be “intrinsically”
determined by the SIOA in the configuration. Below we define the intrinsic transitions between
configurations, and then define a “configuration automaton” as an SIOA whose transition relation
respects these intrinsic transitions. Configuration automata are our principal semantic objects.

Definition 16 (Configuration, Compatible configuration) A configuration is a pair 〈A,S〉
where

• A is a finite set of signature I/O automaton identifiers, and

• S maps each A ∈ A to an s ∈ states(A).

A configuration 〈A,S〉 is compatible iff, for all A ∈ A, B ∈ A, A 6= B:

1. ŝig(A)(S(A)) ∩ int(B)(S(B)) = ∅, and

24

2. out(A)(S(A)) ∩ out(B)(S(B)) = ∅.

The compatibility condition is the usual I/O automaton compatibility condition [LT89], applied
to a configuration. If C = 〈A,S〉 is a configuration, then we use (A, s) ∈ C as shorthand for
A ∈ A ∧ S(A) = s, and we also qualify A and S with the notation C.A, C.S, where needed.

A configuration is a “flat” structure in that it consists of a set of SIOA (identifier, local-state)
pairs, with no grouping information. Such grouping could arise, for example, by the composition
of subsystems into larger subsystems. This grouping will be reflected in the states of configuration
automata, rather than the configurations themselves, which are not states, but are the semantic
denotations of states. We defined a configuration to be a set of SIOA identifiers together with
a mapping from identifiers to SIOA states. Hence, every SIOA is uniquely distinguished by its
identifier. This our formalism does not a priori admit the existence of clones, as discussed in the
introduction.

Definition 17 (Intrinsic attributes of a configuration) Let C = 〈A,S〉 be a compatible con-
figuration. Then we define

• auts(C) = A

• map(C) = S

• out(C) =
⋃

A∈A out(A)(S(A))

• in(C) = (
⋃

A∈A in(A)(S(A))) − out(C)

• int(C) =
⋃

A∈A int(A)(S(A))

• ext(C) = 〈in(C), out(C)〉

• sig(C) = 〈in(C), out(C), int(C)〉

We call sig(C) the intrinsic signature of C, since it is determined solely by C.

Let C = 〈A,S〉 be a configuration. Define reduce(C) = 〈A′,S↾A′〉, where A′ = {A | A ∈
A and ŝig(A)(S(A)) 6= ∅}. C is a reduced configuration iff C = reduce(C).

A consequence of this definition is that an empty configuration cannot execute any transitions.
Note also that we do not define transitions from a non-compatible configuration. Thus, the initial
configuration of a transition is guaranteed to be compatible. However, the final configuration of a
transition may not be compatible. This may arise, for example, when two SIOA are involved in
executing an action a, and their signatures in their final local states may contain output actions in
common. Another possibility is when a new SIOA is created, and its signature in its initial state
violates the compatibility condition (Definition 16) with respect to an already existing SIOA.

We now define the intrinsic transitions
a

=⇒ϕ that can be taken from a given configuration
〈A,S〉. Our definition is parametrized by a set ϕ of SIOA identifiers which represents SIOA which
are to be “created” by the execution of the transition. This set is not determined by the transition
itself, but rather by the configuration automaton which has 〈A,S〉 as the semantic denotation of
one of its states. Thus, it has to be supplied to the definition as a parameter.

25

Definition 18 (
a

=⇒ϕ) Let 〈A,S〉, 〈A′,S ′〉 be arbitrary reduced compatible configurations, and let

ϕ ⊆ Autids. Then 〈A,S〉
a

=⇒ϕ 〈A′,S ′〉 iff there exists a compatible configuration 〈A′′,S ′′〉 such
that

1. A′′ = A∪ ϕ,

2. for all A ∈ A′′ −A : S ′′(A) ∈ start(A),

3. for all A ∈ A: if a ∈ ŝig(A)(S(A)) then S(A)
a

−→A S ′′(A), otherwise S(A) = S ′′(A),

4. 〈A′,S ′〉 = reduce(〈A′′,S ′′〉)

All the SIOA with identifiers in ϕ−A (= A′′−A) are “created” in some start state (Clause 2).
Also, we apply the reduce operator to the intermediate configuration 〈A′′,S ′′〉 to obtain the final
configuration 〈A′,S ′〉 resulting from the transition. This removes all SIOA which have an empty
signature, and is our mechanism for destroying SIOA. An SIOA with an empty signature cannot
execute any transition, and so cannot change its state. Thus it will remain forever in its current
state, and will be unable to interact with any other SIOA. Thus, an SIOA “self-destructs” by
moving to a state with an empty signature. This is the only mechanism for SIOA destruction. In
particular, we do not permit one SIOA to destroy another, although an SIOA can certainly send a
“please destroy yourself” request to another SIOA.

Definition 19 (Configuration Automaton) A configuration automaton X consists of the fol-
lowing components

1. A signature I/O automaton sioa(X).
For brevity, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) =
sig(sioa(X)), steps(X) = steps(sioa(X)), and likewise for all other (sub)components and
attributes of sioa(X).

2. A configuration mapping config(X) with domain states(X) and such that config(X)(x) is a
reduced compatible configuration for all x ∈ states(X)

3. For each x ∈ states(X), a mapping created (X)(x) with domain ŝig(X)(x) and such that
created (X)(x)(a) ⊆ Autids for all a ∈ ŝig(X)(x).

and satisfies the following constraints

1. If x ∈ start(X) and (A, s) ∈ config(X)(x), then s ∈ start(A)

2. If (x, a, y) ∈ steps(X) then config(X)(x)
a

=⇒ϕ config(X)(y), where ϕ = created(X)(x)(a).

3. If x ∈ states(X) and config(X)(x)
a

=⇒ϕ D for some action a, ϕ = created(X)(x)(a), and
reduced compatible configuration D, then ∃y ∈ states(X) : config(X)(y) = D and (x, a, y) ∈
steps(X)

4. For all x ∈ states(X)

(a) out(X)(x) ⊆ out(config(X)(x))

(b) in(X)(x) = in(config(X)(x))

26

(c) int(X)(x) ⊇ int(config(X)(x))

(d) out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x))

The above constraints are needed to properly reflect the intrinsic transitions
a

=⇒ϕ that a com-
patible configuration is capable of: all of the successor configurations generated by such transitions
must be represented in the states and transitions of X. This is a significant difference with the
basic I/O automaton model: there, states are either “atomic” entities, or tuples of tuples of . . . of
atomic entities. Thus, states, in and of themselves, embody no information about their possible
successor states. That information is given by the transition relation, and there are no constraints
on the transition relation itself: any set of triples (state, action, state) which respects the input
enabling requirement can be a transition relation.

Since an SIOA that is created “within” a configuration automaton always remains within
that automaton, we see that configuration automata serve as a natural encapsulation boundary
for component creation. Even if an SIOA migrates and changes its location, it always remains a
part of the same configuration automaton. Migration and location are not primitive notions in our
model but are build on top of configuration automata and variable signatures, see Section 7 below.

In the sequel, we write config(X)(x)
a

=⇒X,x config(X)(y) as an abbreviation for

“config(X)(x)
a

=⇒ϕ config(X)(y) where ϕ = created (X)(x)(a).”

Definition 20 Let X be a configuration automaton. For each x ∈ states(X), define auts(X)(x) =
auts(config(X)(x)). That is, auts is a mapping from each state x of X to the set of SIOA in
config(X)(x).

Definition 21 (Execution, trace of configuration automaton) A configuration automaton X
inherits the notions of execution fragment and execution from sioa(X). Thus, α is an execution
fragment (execution) of X iff it is an execution fragment (execution) of sioa(X). execs(X) de-
notes the set of executions of configuration automaton X. X also inherits the notion of trace from
sioa(X). Thus, β is a trace of x iff it is a trace of sioa(X). traces(X) denotes the set of traces of
configuration automaton X.

We write C
α

−→X C ′ iff there exists an execution fragment α (with |α| ≥ 1) of X starting in C
and ending in C ′.

5.1 Parallel Composition of Configuration I/O Automata

We now deal with the composition of configuration automata.

Definition 22 (Union of configurations) Let C1 = 〈A1,S1〉 and C2 = 〈A2,S2〉 be configura-
tions such that A1 ∩A2 = ∅. Then, the union of C1 and C2, denoted C1 ∪ C2, is the configuration
C = 〈A,S〉 where A = A1 ∪A2, and S agrees with S1 on A1, and with S2 on A2.

It is clear that configuration union is commutative and associative. Hence, we will freely use
the n-ary notation C1 ∪ · · · ∪ Cn (for any n ≥ 1) whenever

∧
i,j∈[n],i6=j auts(Ci) ∩ auts(Cj) = ∅.

Definition 23 (Compatible configuration automata) Let X1, . . . ,Xn, be configuration automata.
X1, . . . ,Xn are compatible iff, for every 〈x1, . . . , xn〉 ∈ states(X1) × · · · × states(Xn),

27

1. forall i, j ∈ [n], i 6= j, auts(config(Xi)(xi)) ∩ auts(config(Xj)(xj)) = ∅.

2. config(X1)(x1) ∪ · · · ∪ config(Xn)(xn) is a reduced compatible configuration.

3. {sig(X1)(x1), . . . , sig(Xn)(xn)} is a set of compatible signatures

Definition 24 (Composition of configuration automata) Let X1, . . . ,Xn, be compatible con-
figuration automata. Then X = X1 ‖ · · · ‖ Xn is the state machine consisting of the following
components:

1. sioa(X) = sioa(X1) ‖ · · · ‖ sioa(Xn)

2. A configuration mapping config(X) given as follows. For each x = 〈x1, . . . , xn〉 ∈ states(X),
config(X)(x) = config(X1)(x1) ∪ · · · ∪ config(Xn)(xn).

3. For each x ∈ states(X), a mapping created(X)(x) with domain ŝig(X)(x) and given as fol-
lows. For each a ∈ ŝig(X)(x), created(X)(x)(a) =

⋃
a∈csig(Xi)(xi),i∈[n]

created(Xi)(xi)(a).

As in Definition 19, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) =
sig(sioa(X)), steps(X) = steps(sioa(X)), and likewise for all other (sub)components and attributes
of sioa(X).

Proposition 19 Let X1, . . . ,Xn, be compatible configuration automata. Then X = X1 ‖ · · · ‖ Xn

is a configuration automaton.

Proof: We must show that X satisfies the constraints of Definition 19. Since X1, . . . ,Xn are
configuration automata, they already satisfy the constraints. The argument for each constraint
then uses this together with Definition 24 to show that X itself satisfies the constraints. The
details are as follows, for each constraint in turn.

Constraint 1. Let x ∈ start(X) and (A, s) ∈ config(X)(x). Then, x = 〈x1, . . . , xn〉 where xi ∈
start(Xi) for 1 ≤ i ≤ n. By Definition 24, config(X)(x) = config(X1)(x1) ∪ · · · ∪ config(Xn)(xn).
Hence (A, s) ∈ config(Xj)(xj) for some j ∈ [n]. Also, xj ∈ start(Xj). Since Xj is a configuration
automaton, we apply Constraint 1 to Xj to conclude s ∈ start(A). Hence, Constraint 1 holds for
X.

Constraint 2. Let (x, a, y) be an arbitrary element of steps(X). We will establish
config(X)(x)

a
=⇒X,x config(X)(y).

For brevity, let Ai = sioa(Xi) for i ∈ [n]. Now (x, a, y) ∈ steps(X). So (x, a, y) ∈ steps(sioa(X))
by Definition 24. Also by Definition 24, sioa(X) = sioa(X1) ‖ · · · ‖ sioa(Xn) = A1 ‖ · · · ‖ An. So,
(x, a, y) ∈ steps(A1 ‖ · · · ‖ An). Since x, y ∈ states(A1 ‖ · · · ‖ An), we can write x, y as 〈x1, . . . , xn〉,
〈y1, . . . , yn〉 respectively, where xi, yi ∈ states(Ai) for i ∈ [n]. From Definition 6, there exists a
nonempty ϕ ⊆ [n] such that

(
∧

i∈ϕ a ∈ ŝig(Ai)(xi) ∧ (xi, a, yi) ∈ steps(Ai)) ∧ (
∧

i∈[n]−ϕ a 6∈ ŝig(Ai)(xi) ∧ xi = yi) (a)

Each Xi, i ∈ [n], is a configuration automaton. Hence, by (a) and constraint 2 applied to each Xi,
i ∈ ϕ,

∧
i∈ϕ(config(Xi)(xi)

a
=⇒Xi,xi

config(Xi)(yi)). (b)

Also by (a),

28

∧
i∈[n]−ϕ(config(Xi)(xi) = config(Xi)(yi)). (c)

Since X1, . . . ,Xn are compatible, we have, by Definition 23, that auts(config(Xi)(xi)) ∩
auts(config(Xj)(xj)) = ∅ forall i, j ∈ [n], i 6= j, i.e., all SIOA in these configurations are unique,
and that config(X1)(x1) ∪ · · · ∪ config(Xn)(xn) is a compatible configuration. Since X1, . . . ,Xn

are configuration automata, each of config(X1)(x1), . . . , config(Xn)(xn) is a reduced configuration,
by Definition 19. Hence config(X1)(x1) ∪ · · · ∪ config(Xn)(xn) is also reduced, and is therefore a
reduced compatible configuration.

By Definition 24, created(X)(x)(a) =
⋃

a∈csig(Xi)(xi),i∈[n]
created(Xi)(xi)(a). By this, (b,c), and

Definition 18, we obtain

(
⋃

i∈[n] config(Xi)(xi))
a

=⇒X,x (
⋃

i∈[n] config(Xi)(yi)). (d)

By Definition 24, config(X)(x) =
⋃

i∈[n] config(Xi)(xi) and config(X)(y) =
⋃

i∈[n] config(Xi)(yi).
Hence

config(X)(x)
a

=⇒X,x config(X)(y),

and we are done.

Constraint 3. Let x be an arbitrary state in states(X) and D an arbitrary reduced compati-
ble configuration such that config(X)(x)

a
=⇒X,x D. We must show ∃y ∈ states(X) : (x, a, y) ∈

steps(X) and config(X)(y) = D.

We can write x as 〈x1, . . . , xn〉 where xi ∈ states(Xi) for i ∈ [n].

Since X1, . . . ,Xn are compatible, we have, by Definition 23, that auts(config(Xi)(xi))∩auts(config(Xj)(xj)) =
∅ forall i, j ∈ [n], i 6= j, (thus, all SIOA in these configurations are unique) and that config(X1)(x1)∪
· · · ∪ config(Xn)(xn) is a compatible configuration. Also, from Definition 24, config(X)(x) =⋃

i∈[n] config(Xi)(xi). Hence from config(X)(x)
a

=⇒X,x D,

(
⋃

i∈[n] config(Xi)(xi))
a

=⇒X,x D. (a)

Hence, from Definition 18, there exists a nonempty ϕ ⊆ [n] such that

(
∧

i∈ϕ a ∈ ŝig(Xi)(xi)) ∧ (
∧

i∈[n]−ϕ a 6∈ ŝig(Xi)(xi)) (b)

We now define Di, 1 ≤ i ≤ n, as follows.

For i ∈ [n] − ϕ, Di = config(Xi)(xi).

For i ∈ ϕ, Di = 〈DAi,map(D)↾DAi〉, where
DAi = {A : A ∈ D and [A ∈ auts(config(Xi)(xi)) or A ∈ created(Xi)(xi)(a)]}.

Hence, by definition of Di, Definition 18, (a), and the compatibility of X1, . . . ,Xn, we have
∧

i∈ϕ(config(Xi)(xi)
a

=⇒Xi,xi
Di) (c)

Now each Xi, i ∈ [n], is a configuration automaton. Hence, from (c) and constraint 3 applied to
Xi, i ∈ ϕ,

∧
i∈ϕ,∃yi ∈ states(Xi) : config(Xi)(yi) = Di and (xi, a, yi) ∈ steps(Xi) (d)

Let y = 〈y1, . . . , yn〉 where, for i ∈ ϕ, yi is given by (d), and for i ∈ [n] − ϕ, yi = xi. Hence,
for i ∈ [n], yi ∈ states(Xi). Since X1, . . . ,Xn are compatible configuration automata, we get, by
Definitions 19 and 23,

29

auts(config(Xi)(yi)) ∩ auts(config(Xj)(yj)) = ∅ for all i, j ∈ [n], i 6= j, and
config(X1)(y1) ∪ · · · ∪ config(Xn)(yn) is a reduced compatible configuration. (e)

Thus, in particular, all SIOA in the configurations config(X1)(y1), . . . , config(Xn)(yn) are unique.
From (d), for i ∈ ϕ, config(Xi)(yi) = Di. By definition of Di, for i ∈ [n] − ϕ, config(Xi)(xi) = Di.
By definition of yi, for i ∈ [n]− ϕ, yi = xi. Hence, for i ∈ [n]− ϕ, config(Xi)(yi) = Di. Combining
these, we get

∧
i∈[n] config(Xi)(yi) = Di (f)

From the definition of Di and Definition 18, we have that D = D1∪· · ·∪Dn. Also, by Definition 24,
config(X)(y) =

⋃
i∈[n] config(Xi)(yi). By this, (f), and D = D1 ∪ · · · ∪ Dn,

config(X)(y) = D. (g)

By definition of yi, for i ∈ [n] − ϕ, yi = xi. By (d), for i ∈ ϕ, (xi, a, yi) ∈ steps(Xi). From these
and (b), we get

∧
i∈ϕ a ∈ ŝig(Xi)(xi) ∧ (xi, a, yi) ∈ steps(Xi)∧
i∈[n]−ϕ a 6∈ ŝig(Xi)(xi) ∧ yi = xi.

From this, x = 〈x1, . . . , xn〉, y = 〈y1, . . . , yn〉, and Definitions 6 and 24, we conclude (x, a, y) ∈
steps(X). From this and (g), we have

(x, a, y) ∈ steps(X) and config(X)(y) = D,

and we are done.

Constraint 4. We treat each subconstraint in turn.

Constraint 4a: out(X)(x) ⊆ out(config(X)(x)).
By Definitions 24 and 6,

out(X)(x) =
⋃

i∈[n] out(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4a. Hence
∧

i∈[n] out(Xi)(xi) ⊆ out(config(Xi)(xi)).

Taking the unions of both sides, over all i ∈ [n], we obtain

(
⋃

i∈[n] out(Xi)(xi)) ⊆ (
⋃

i∈[n] out(config(Xi)(xi))). (b)

By Definition 24, config(X)(x) =
⋃

i∈[n] config(Xi)(xi). By assumption, X1, . . . ,Xn, are compati-
ble configuration automata. Hence, by Definition 23,

⋃
i∈[n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 17, we obtain

out(config(X)(x)) =
⋃

i∈[n] out(config(Xi)(xi)). (c)

From (a,b,c), we obtain out(X)(x) =
⋃

i∈[n] out(Xi)(xi) ⊆ (
⋃

i∈[n] out(config(Xi)(xi))) = out(config(X)(x)),
as desired.

Constraint 4b: in(X)(x) = in(config(X)(x)). By Definitions 24 and 6,

in(X)(x) = (
⋃

i∈[n] in(Xi)(xi)) − (
⋃

i∈[n] out(Xi)(xi)). (a)

Since the Xi are configuration automata, they all satisfy constraints 4a and 4b. Hence∧
i∈[n] in(Xi)(xi) = in(config(Xi)(xi)),∧
i∈[n] out(Xi)(xi) ⊆ out(config(Xi)(xi)). (b)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence

30

∧
i∈[n] out(Xi)(xi) ∪ int(Xi)(xi) = out(config(Xi)(xi)) ∪ int(config(Xi)(xi)). (c)

And so,
∧

i∈[n] out(config(Xi)(xi)) ⊆ out(Xi)(xi) ∪ int(Xi)(xi). (d)

Since out(Xi)(xi)∩ int(Xi)(xi) = ∅ for all i ∈ [n], by the partitioning of actions into input, output,
and internal, we have, by (b,d)

∧
i∈[n] out(Xi)(xi) = out(config(Xi)(xi)) − int(Xi)(xi). (e)

Taking the unions of both sides, over all i ∈ [n], in (b) and (e), we obtain

(
⋃

i∈[n] in(Xi)(xi)) = (
⋃

i∈[n] in(config(Xi)(xi))),

(
⋃

i∈[n] out(Xi)(xi)) = (
⋃

i∈[n] out(config(Xi)(xi)) − int(Xi)(xi)). (f)

From (a,f), we obtain

in(X)(x) = (
⋃

i∈[n] in(config(Xi)(xi))) − (
⋃

i∈[n] out(config(Xi)(xi)) − int(Xi)(xi)). (g)

From (c),
∧

i∈[n] int(Xi)(xi) ⊆ out(config(Xi)(xi)) ∪ int(config(Xi)(xi)). (h)

Now (out(config(Xi)(xi)) ∪ int(config(Xi)(xi))) ∩ in(config(Xi)(xi)) = ∅, for all i ∈ [n], by the
partitioning of actions into input, output, and internal. Hence, by (h),

∧
i∈[n] int(Xi)(xi) ∩ in(config(Xi)(xi)) = ∅. (i)

From (b,i), and the compatibility of X1, . . . ,Xn, we get

(
⋃

i∈[n] int(Xi)(xi)) ∩ (
⋃

i∈[n] in(config(Xi)(xi))) = ∅. (j)

From (g,j)

in(X)(x) = (
⋃

i∈[n] in(config(Xi)(xi))) − (
⋃

i∈[n] out(config(Xi)(xi))). (k)

By Definition 24, config(X)(x) =
⋃

i∈[n] config(Xi)(xi). By assumption, X1, . . . ,Xn, are compatible
configuration automata. Hence, by Definition 23,

⋃
i∈[n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 17, we obtain

in(config(X)(x)) = (
⋃

i∈[n] in(config(Xi)(xi))) − (
⋃

i∈[n] out(config(Xi)(xi))). (l)

Finally, from (k,l), we obtain in(X)(x) = (
⋃

i∈[n] in(config(Xi)(xi)))− (
⋃

i∈[n] out(config(Xi)(xi)))
= in(config(X)(x)), as desired.

Constraint 4c: int(X)(x) ⊇ int(config(X)(x)).
By Definitions 24 and 6,

int(X)(x) =
⋃

i∈[n] int(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4c. Hence
∧

i∈[n] int(Xi)(xi) ⊇ int(config(Xi)(xi)).

Taking the unions of both sides, over all i ∈ [n], we obtain

(
⋃

i∈[n] int(Xi)(xi)) ⊇ (
⋃

i∈[n] int(config(Xi)(xi))). (b)

By Definition 24, config(X)(x) =
⋃

i∈[n] config(Xi)(xi). By assumption, X1, . . . ,Xn, are compati-
ble configuration automata. Hence, by Definition 23,

⋃
i∈[n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 17, we obtain

int(config(X)(x)) =
⋃

i∈[n] int(config(Xi)(xi)). (c)

From (a,b,c), we obtain int(X)(x) =
⋃

i∈[n] int(Xi)(xi) ⊇ (
⋃

i∈[n] int(config(Xi)(xi))) = int(config(X)(x)),
as desired.

31

Constraint 4d: out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)).
By Definitions 24 and 6,

out(X)(x) =
⋃

i∈[n] out(Xi)(xi),

int(X)(x) =
⋃

i∈[n] int(Xi)(xi). (a)

Since the Xi are configuration automata, they all satisfy constraint 4d. Hence
∧

i∈[n](out(Xi)(xi) ∪ int(Xi)(xi)) = (out(config(Xi)(xi)) ∪ int(config(Xi)(xi))).

Taking the unions of both sides, over all i ∈ [n], we obtain

(
⋃

i∈[n] out(Xi)(xi) ∪ int(Xi)(xi)) = (
⋃

i∈[n] out(config(Xi)(xi)) ∪ int(config(Xi)(xi))). (b)

By Definition 24, config(X)(x) =
⋃

i∈[n] config(Xi)(xi). By assumption, X1, . . . ,Xn, are compati-
ble configuration automata. Hence, by Definition 23,

⋃
i∈[n] config(Xi)(xi) is a reduced compatible

configuration. So, from Definition 17, we obtain

out(config(X)(x)) =
⋃

i∈[n] out(config(Xi)(xi)),

int(config(X)(x)) =
⋃

i∈[n] int(config(Xi)(xi)). (c)

From (a,b,c), we obtain (out(X)(x) ∪ int(X)(x)) = (
⋃

i∈[n] out(Xi)(xi) ∪ int(Xi)(xi)) =
(
⋃

i∈[n] out(config(Xi)(xi)) ∪ int(config(Xi)(xi))) = out(config(X)(x)) ∪ int(config(X)(x)), as de-
sired.

Since we have established that X satisfies all the constraints, the proof is done. �

5.2 Action Hiding for Configuration Automata

Definition 25 (Action hiding for configuration automata) Let X be a configuration automa-
ton and Σ a set of actions. Then X \Σ is the state machine consisting of the following components:

1. sioa(X \ Σ) = sioa(X) \ Σ

2. A configuration mapping config(X \ Σ) = config(X)

3. For each x ∈ states(X \ Σ), a mapping created(X \ Σ)(x) = created(X)(x)

As in Definition 19, we define states(X) = states(sioa(X)), start(X) = start(sioa(X)), sig(X) =
sig(sioa(X)), steps(X) = steps(sioa(X)), and likewise for all other (sub)components and attributes
of sioa(X).

Proposition 20 Let X be a configuration automaton and Σ a set of actions. Then X \ Σ is a
configuration automaton.

Proof: We must show that X\Σ satisfies the constraints of Definition 19. Since X is a configuration
automaton, constraints 1, 2, and 3 hold for X. From Definitions 25 and 7, we see that the only
components of X and X \Σ that differ are the signature and its various subsets. Now constraints 1,
2, and 3 do not involve the signature. Hence, they also hold for X \ Σ.

We deal with each subconstraint of Constraint 4 in turn.

Constraint 4a: out(X \ Σ)(x) ⊆ out(config(X \ Σ)(x)).
By Definition 25, out(X \ Σ)(x) = out(sioa(X \ Σ))(x) = out(sioa(X) \ Σ)(x). By Definition 7,

32

out(sioa(X) \ Σ)(x) = out(sioa(X))(x)−Σ. By Definition 19, which is applicable since X is a con-
figuration automaton, out(sioa(X))(x) = out(X)(x). Hence, out(sioa(X))(x)−Σ = out(X)(x)−Σ.
Putting the above equalities together, we obtain

out(X \ Σ)(x) = out(X)(x) − Σ. (a)

Since X is a configuration automaton, it satisfies constraint 4a. Hence

out(X)(x) ⊆ out(config(X)(x)).
(b)

By Definition 25, config(X \ Σ) = config(X). Hence,

out(config(X)(x)) = out(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x) ⊆ out(X)(x) ⊆ out(config(X)(x)) = out(config(X \ Σ)(x)),
as desired.

Constraint 4b: in(X \ Σ)(x) = in(config(X \ Σ)(x)).
By Definition 25, in(X \ Σ)(x) = in(sioa(X \ Σ))(x) = in(sioa(X) \ Σ)(x). By Definition 7,
in(sioa(X) \ Σ)(x) = in(sioa(X))(x). By Definition 19, which is applicable since X is a configura-
tion automaton, in(sioa(X))(x) = in(X)(x). Putting the above equalities together, we obtain

in(X \ Σ)(x) = in(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4b. Hence

in(X)(x) = in(config(X)(x)). (b)

By Definition 25, config(X \ Σ) = config(X). Hence,

in(config(X)(x)) = in(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain in(X \ Σ)(x) = in(X)(x) = in(config(X)(x)) = in(config(X \ Σ)(x)), as
desired.

Constraint 4c: int(X \ Σ)(x) ⊇ int(config(X \ Σ)(x)).
By Definition 25, int(X \ Σ)(x) = int(sioa(X \ Σ))(x) = int(sioa(X) \ Σ)(x). By Definition 7,
int(sioa(X) \ Σ)(x) = int(sioa(X))(x) ∪ (out(sioa(X))(x) ∩ Σ). By Definition 19, which is appli-
cable since X is a configuration automaton, int(sioa(X))(x) = int(X)(x) and out(sioa(X))(x) =
out(X)(x). Hence, int(sioa(X) \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ). Putting the above equali-
ties together, we obtain

int(X \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ). (a)

Since X is a configuration automaton, it satisfies constraint 4c. Hence

int(X)(x) ⊇ int(config(X)(x)). (b)

By Definition 25, config(X \ Σ) = config(X). Hence,

int(config(X)(x)) = int(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain int(X \ Σ)(x) ⊇ int(X)(x) ⊇ int(config(X)(x)) = int(config(X \ Σ)(x)),
as desired.

Constraint 4d: out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)).
In the proofs for Constraints 4a and 4c above, we established (the equations marked “(a)”)

out(X \ Σ)(x) = out(X)(x) − Σ,
int(X \ Σ)(x) = int(X)(x) ∪ (out(X)(x) ∩ Σ).

33

Now (out(X)(x) − Σ) ∪ (out(X)(x) ∩ Σ) = out(X)(x), and so

out(X \ Σ)(x) ∪ int(X \ Σ)(x) = out(X)(x) ∪ int(X)(x). (a)

Since X is a configuration automaton, it satisfies constraint 4d. Hence

out(X)(x) ∪ int(X)(x) = out(config(X)(x)) ∪ int(config(X)(x)). (b)

By Definition 25, config(X \ Σ) = config(X). Hence,

out(config(X)(x)) ∪ int(config(X)(x)) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)). (c)

From (a,b,c), we obtain out(X \ Σ)(x)∪int(X \ Σ)(x) = out(X)(x)∪int(X)(x) = out(config(X)(x))∪
int(config(X)(x)) = out(config(X \ Σ)(x)) ∪ int(config(X \ Σ)(x)), as desired.

Since we have established that X satisfies all the constraints, the proof is done. �

5.3 Action Renaming for Configuration Automata

Definition 26 Let C = 〈A,S〉 be a compatible configuration and let ρ be an injective mapping
from actions to actions whose domain includes

⋃
A∈A acts(A). Then we define ρ(C) = 〈ρ(A), ρ(S)〉

where ρ(A) = {ρ(A) | A ∈ A}, and ρ(S)(ρ(A)) = S(A) for all A ∈ A.

Definition 27 (Action renaming for configuration automata) Let X be a configuration au-
tomaton and let ρ be an injective mapping from actions to actions whose domain includes

⋃
C∈states(X) ŝig(X)(C).

Then ρ(X) consists of the following components:

1. A signature I/O automaton ρ(sioa(X))

2. A configuration mapping config(ρ(X)) with domain states(X) and such that config(ρ(X))(x) =
ρ(config(X)(x)).

3. For each x ∈ states(ρ(X)), a mapping created (ρ(X))(x) with domain ŝig(ρ(X))(x) and such
that created (ρ(X))(x)(ρ(a)) = {ρ(A) | A ∈ created(X)(x)(a)} for all a ∈ ŝig(X)(x).

Proposition 21 Let X be a configuration automaton and let ρ be an injective mapping from actions
to actions whose domain includes

⋃
C∈states(X) ŝig(X)(C). Then ρ(X) is a configuration automaton.

Proof: We must show that ρ(X) satisfies the constraints of Definition 19. Since X is a configuration
automaton, constraints 1, 2, and 3 hold for X. From Definitions 27 and 8, we see that the states of
ρ(X) and the configurations in config(ρ(X))(x) are unchanged by the applying ρ. Hence constraint 1
also holds for ρ(X).

Constraints 2, and 3 hold since ρ is injective, so we can simply replace a by ρ(a) uniformly in
the transition relation of both ρ(X) and the configurations in config(ρ(X))(x). The constraints for
ρ(X) then follow from the corresponding ones for X.

By Definitions 26 and 27, we have out(config(ρ(X))(x)) = ρ(out(config(X)(x))). and out(ρ(X))(x) =
ρ(out(X)(x)). Since constraint 4a holds for X, we have out(X)(x) ⊆ out(config(X)(x)). Hence
ρ(out(X)(x)) ⊆ ρ(out(config(X)(x))). Hence out(ρ(X))(x) ⊆ out(config(ρ(X))(x)). Hence con-
straint 4a holds for ρ(X).

The other subconstraints of constraint 4 can be established in a similar manner. �

34

5.4 Multi-level Configuration Automata

Since a configuration automaton is an SIOA, it is possible for a configuration automaton to create
another configuration automaton. This leads to a notion of “multi-level,” or “nested” configuration
automata. The nesting structure will be well-founded, that is, the binary relation “X is created by
Y ’ will be well-founded in all global states.

This ability to nest entire configuration automata makes our model very flexible. For example,
administrative domains can be modeled in a natural and straightforward manner. It should also
be possible to emulate the operations of the ambient calculus [CG00].

5.5 Compositional Reasoning for Configuration Automata

We now establish compositionality results for configuration automata analogous to those established
above for SIOA.

The notions of execution and trace of a configuration automaton X depend solely on the
SIOA component sioa(X). Furthermore, the SIOA component of a composition of configuration
automata depends only on the SIOA components of the individual configuration automata (see
Definition 24). It follows that the results of Section 3 carry over for configuration automata with
no modification. We restate them for configuration automata solely for the sake of completeness.

5.5.1 Execution Projection and Pasting for Configuration Automata

Definition 28 (Execution projection for configuration automata) Let X = X1 ‖ · · · ‖ Xn

be a configuration automaton. Let α be a sequence C0a1C1a2C2 . . . Cj−1ajCj . . . where ∀j ≥ 0, Cj =

〈Cj,1, . . . , Cj,n〉 ∈ states(X) and ∀j > 0, aj ∈ ŝig(X)(Cj−1). Then, define Cj↾Xi = Cj,i. Also,
define α↾Xi (1 ≤ i ≤ n) to be the sequence resulting from:

1. replacing each Cj by its i’th component Cj,i, and then

2. removing all ajCj,i such that aj 6∈ ŝig(Xi)(Cj−1,i).

Our execution projection results states that the projection of an execution (of a composed
configuration automaton X = X1 ‖ · · · ‖ Xn) onto a component Xi, is an execution of Xi.

Theorem 22 (Execution projection for configuration automata) Let X = X1 ‖ · · · ‖ Xn

be a configuration automaton. If α ∈ execs(X) then α↾Xi ∈ execs(Xi).

Our execution pasting result requires that a candidate execution α of a composed automaton
X = X1 ‖ · · · ‖ Xn must project onto an actual execution of every component Xi, and also that
every action of α not involving Xi does not change the configuration of Xi. In this case, α will be
an actual execution of X.

Theorem 23 (Execution pasting for configuration automata) Let X = X1 ‖ · · · ‖ Xn be
a configuration automaton. Let α be a sequence C0a1C1a2C2 . . . Cj−1ajCj . . . where ∀j ≥ 0, Cj =

〈Cj,1, . . . , Cj,n〉 ∈ states(X) and ∀j > 0, aj ∈ ŝig(X)(Cj−1). Furthermore, suppose that

35

1. for all 1 ≤ i ≤ n : α↾Xi ∈ execs(Xi), and

2. for all j > 0 : if aj 6∈ ŝig(Xi)(Cj−1,i) then Cj−1,i = Cj,i.

Then, α ∈ execs(X).

5.5.2 Trace Pasting for Configuration Automata

Corollary 24 (Trace pasting for Configuration Automata) Let X1, . . . ,Xn be compatible con-
figuration automata, and let X = X1 ‖ · · · ‖ Xn. Let β be a trace and β1, . . . , βn be such that
βj ∈ traces(Xj) for all j ∈ [n]. If zip(β, β1, . . . , βn) holds, then β ∈ traces(X).

5.5.3 Trace Substitutivity for Configuration Automata

Theorem 25 (Trace Substitutivity for Configuration Automata) Let X1, . . . ,Xn be com-
patible configuration automata, and let X = X1 ‖ · · · ‖ Xn. For some j ∈ [n], let Xj,X

′
j be

configuration automata such that traces(Xj) ⊆ traces(X ′j), and let X ′ = X1 ‖ · · · ‖ X ′j ‖ · · · ‖ Xn.
Then traces(X) ⊆ traces(X ′).

6 Creation Substitutivity for Configuration Automata

We now show that trace inclusion is monotonic with respect to process creation, under certain
conditions. Our intention is that, if a configuration automaton Y creates an SIOA B when executing
some particular actions in some particular states, then, if configuration automaton X results from
modifying Y by making it create an SIOA A instead, and if traces(A) ⊆ traces(B), then we can
prove traces(X) ⊆ traces(Y).

Let ϕ ⊆ Autids, and A,B be SIOA identifiers. Then we define ϕ[B/A] = (ϕ − {A}) ∪ {B} if
A ∈ ϕ, and ϕ[B/A] = ϕ if A 6∈ ϕ. Let C,D be configurations. We define C ∼ D iff auts(D) =
auts(C)[B/A] and map(D)(A′) = map(C)(A′) for every A′ ∈ auts(C) − {A}.

To simplify notation and development, we assume that A and B have a single start state. This
restriction is not fundamental and can be easily removed. It seems clear that, to obtain monotonic-
ity, the start configurations of Y must include a configuration corresponding to every configuration
of X, i.e., ∀x ∈ start(X),∃y ∈ start(Y) : auts(config(Y)(y)) = auts(config(X)(x))[B/A]. Together
with traces(A) ⊆ traces(B), we might expect to be able to establish traces(X) ⊆ traces(Y). How-
ever, suppose that X has an execution α in which A is created exactly once, terminates some time
after it is created, and after A’s termination, X executes an input action a. Let βA be the trace
that A generates during the execution of α by X. Since traces(A) ⊆ traces(B), we can construct
(by induction) using conditions 1, 2, and 3 of Definition 19, a corresponding execution α′ of Y , up
to the point where A terminates. Since traces(A) ⊆ traces(B), we have βA ∈ traces(B). Define B
as follows. B emulates A faithfully up to but not including the point at which A terminates (i.e.,
self-destructs). Then, B sets it external signature to empty but keeps some internal actions enabled.
This allows B to export an empty signature, and so we have βA ∈ traces(B) (recall that traces(B) is
the set of finite and infinite traces of B). After executing an internal action, B permanently enters
a state in which it’s signature has action a as an output, but a is never actually enabled. Thus, no
trace of Y from this point onwards can contain action a. Hence, trace(α) cannot be a trace of Y ,
and so traces(X) 6⊆ traces(Y), since trace(α) ∈ traces(X). This example is a consequence of the

36

a

d
a

d

a

c

c

X :

s1

a

s0A :

t1

t2

B :

a

b

t0

d

C :

c

c

u1

u2 u3

u0

d

c

c

Y :

{(C, u2)}

{(C, u1), (B, t0)}

{(C, u0)}

a

b

{(C, u1), (A, s0)}

{(C, u0)}

{(C, u2), (A, s0)}

Figure 1: The Automata in Example 1

fact that an SIOA can prevent an action a from occurring, if a is an output action of the SIOA
which is not currently enabled, and shows that we also need to relate the traces of A that lead to
termination with those of B that lead to termination.

If α is a finite execution of an SIOA A which ends in a state with an empty signature, and
β = trace(α), then β is a terminating trace of A. ttraces(A) is the set of all terminating traces
of A. We therefore add ttraces(A) ⊆ ttraces(B) to our set of antecedents. This however, is still
insufficient, since we have so far only required that X create A “whenever” Y creates B. We have
not prevented X from creating A in more situations than those in which Y creates B. This can
cause traces(X) 6⊆ traces(Y), as the following example shows.

Example 1 Let A,B,C be the SIOA and X,Y be the configuration automata given in Figure 6.
Each node represents a state and each directed edge represents a transition, and is labeled with the
name of the action executed. All the automata have a single initial state. A,B,C, have start state
s0, t0, u0 respectively. All the states of X,Y , except the terminating states, are labeled with their
corresponding configurations. The start states of X,Y are the states with configuration {(C, u0)}.

By inspection, ∀x ∈ start(X),∃y ∈ start(Y) : config(Y)(y) = config(X)(x)[B/A], traces(A) ⊆
traces(B), and ttraces(A) ⊆ ttraces(B). Also by inspection, traces(X) = {λ, c, ca, cda, cad} and
traces(Y) = {λ, c, ca, cb, cd}, and so traces(X) 6⊆ traces(Y). (λ denotes the empty trace). This
is because X creates A along the transition which is generated by the (u0, c, u2) transition of B
(according to constraint 3 of Definition 19), whereas Y does not.

We now impose a restriction which precludes scenarios such as in Example 1. We say that
configuration automaton X is creation-deterministic iff the following holds. Let β ∈ traces∗(X),

37

|β| > 0, and let α,α′ ∈ execs∗(X) be such that trace(α) = trace(α′) = β. Let a be the last external
action along α, and let x be the state along α preceding a, i.e., the state from which a is executed.
Likewise define a′, x′ w.r.t. α′. Then created(X)(x)(a) = created(X)(x′)(a′). In other words, if two
finite executions of X have the same trace, then their last external actions result in the creation
of the same SIOA. In this case, we define created(X)(β) = created (X)(x)(a). We also require
created(X)(x)(a) = ∅ when a ∈ int(X)(x), i.e., that internal actions do not create any SIOA.

Now, in addition to the three requirements discussed in Example 1, we require that the configu-
ration automata X,Y be creation-deterministic, and that on the last external actions of executions
with the same trace, X and Y create the same SIOA, except that Y may create B where X creates
A. We give results for finite trace inclusion and trace inclusion.

If α′ = u0b1u1b2u2 · · · is an execution of some configuration automaton, then define trace(α′, j, k)
to be trace(bj · · · bk) if j ≤ k, and to be λ (the empty sequence) if j > k.

Let α = x0a1x1 . . . ∈ execs(X). Then α↾↾A results by:

1. removing each xiai+1 such that A 6∈ auts(X)(xi), then

2. removing each xiai+1 such that ai+1 6∈ ŝig(A)(map(config(X)(xi))(A)), then

3. replacing each xi by map(config(X)(xi))(A)

We remark that α↾↾A is in general, a sequence of several (possibly an infinite number of) executions
of A.

Theorem 26 Let X,Y be creation-deterministic configuration automata and A,B be SIOA. If

1. ∀x ∈ start(X),∃y ∈ start(Y) : config(Y)(y) = config(X)(x)[B/A]

2. traces∗(A) ⊆ traces∗(B)

3. ttraces(A) ⊆ ttraces(B)

4. ∀β ∈ traces∗(X) ∩ traces∗(Y) : created(Y)(β) = created(X)(β)[B/A]

then
traces∗(X) ⊆ traces∗(Y)

Proof: Let α = x0a1x1a2x2 . . . aℓxℓ be an arbitrary finite execution of X. We show that there
exists a “corresponding” finite execution α′ of Y and a mapping m : {0, . . . , |α|} 7→ {0, . . . , |α′|}
such that:

1. m(0) = 0

2. m(|α|) = |α′|

3. trace(α′,m(i − 1) + 1,m(i)) = trace(ai) for all i, 0 < i ≤ |α|, and

4. config(Y)(ym(i)) ∼ config(X)(xi) for all i, 0 < i ≤ |α|, and

38

Clause 3 implies that trace(α) = trace(α′), which yields the desired traces∗(X) ⊆ traces∗(Y).

By constraint 2 of Definition 19,

∀i ∈ {1, . . . , |α|} : config(X)(xi−1)
ai=⇒ϕ config(X)(xi), where ϕ = created(X)(xi−1)(ai). (*)

We build up the proof by considering several (non-exclusive) cases, in increasing order of
difficulty.

Case 1: ∀i ∈ {0, . . . , |α|} : A 6∈ auts(X)(xi).

By assumption 1, there is a y0 ∈ start(Y) such that config(Y)(y0) = config(X)(x0). From
this, the case assumption, assumption 4, (*), and constraint 2 of Definition 19, we can establish by
a straightforward induction on |α| that there exist ℓ′, y1, y2, . . . yℓ′ such that the following intrinsic
transitions exist:

∀i ∈ {1, . . . , |ℓ′|} : config(Y)(yi−1)
ai=⇒ϕ config(Y)(yi)

where ϕ = created (Y)(yi−1)(ai) = created (X)(xi−1)(ai) since X and Y are creation-deterministic.
By constraint 3 of Definition 19, the required execution α′ exists.

Case 2: There exist k1, k2 such that 0 ≤ k1 ≤ k2 < |α| and such that ∀i ∈ {k1, . . . , k2} : A ∈
auts(X)(xi), ∀i 6∈ {k1, . . . , k2} : A 6∈ auts(X)(xi).

By assumption 1, there is a y0 ∈ start(Y) such that config(Y)(y0) = config(X)(x0).

Let β = trace(α↾↾A). By the case condition, β ∈ ttraces(A). Hence, by assumption 3, β ∈
ttraces(B). Let αB ∈ execs(B)(β). Then, we construct α′ so that α′↾↾B = αB .

The argument proceeds along similar lines as case 1, i.e., by induction on ℓ = |α|. The main

difference is in treating any config(X)(xi−1)
ai=⇒ϕ config(X)(xi) such that (A, s) ∈ config(X)(xi−1)

and ai ∈ êxt(A)(s). Corresponding to each such intrinsic transition, we construct a sequence of
intrinsic transitions between configurations of Y . This sequence starts with some number (possibly
zero) of internal transitions of B, followed by ai. We chose the transitions of B as the “next”
ones along αB , starting from map(config(Y)(ym(i−1)))(B), which (we can establish inductively) is a
state along αB . The overall sequence of intrinsic transitions results from concatenating the intrinsic
transitions corresponding to each transition in (*). By constraint 3 of Definition 19, this sequence
of intrinsic transitions generates the required α′.

Case 3: There exist k1, k2 such that 0 ≤ k1 ≤ |α| and such that ∀i ∈ {k1, . . . , |α|} : A ∈ auts(X)(xi),
∀i ∈ {0, . . . , k1 − 1} : A 6∈ auts(X)(xi).

This is argued similarly to case 2, except that we use assumption 2 instead of assumption 3,
since A is still alive at the end of α.

Case 4: There exist several “intervals” along α inside which A is alive, and outside of which A is
not alive.

This is argued by combining the arguments for cases 2 and 3. The details are straightforward
and are omitted. �

Theorem 27 Let X,Y be creation-deterministic configuration automata and A,B be SIOA. If

39

1. ∀x ∈ start(X),∃y ∈ start(Y) : config(Y)(y) = config(X)(x)[B/A]

2. traces(A) ⊆ traces(B)

3. ttraces(A) ⊆ ttraces(B)

4. ∀β ∈ traces(X) ∩ traces(Y) : created(Y)(β) = created(X)(β)[B/A]

then
traces(X) ⊆ traces(Y).

Proof: Let α = x0a1x1a2x2 . . . be an arbitrary execution of X. We show that there exists a
“corresponding” execution α′ of Y and a mapping m : {0, . . . , |α|} 7→ {0, . . . , |α′|} such that:

1. m(0) = 0

2. m(|α|) = |α′|

3. trace(α′,m(i − 1) + 1,m(i)) = trace(ai) for all i, 0 < i ≤ |α|, and

4. config(Y)(ym(i)) ∼ config(X)(xi) for all i, 0 < i ≤ |α|, and

Clause 3 implies that trace(α) = trace(α′), which yields the desired traces(X) ⊆ traces(Y).

If α is finite, then the result follows from Theorem 26. So, we assume that α is infinite. Let γ1

be an arbitrary prefix of α. Then the proof of Theorem 26 shows that there exists a corresponding
execution γ′1 of Y in the above sense. Likewise, if γ1 < γ2 and γ2 < α then there exists an execution
γ′2 of Y corresponding to γ2. Furthermore, we can show that γ′1 < γ′2, since γ′2 can be chosen to be
an extension of γ′1. Since α is infinite, there exists an infinite set {γi | i ≥ 0} of finite executions of X
such that ∀i > 0 : γi−1 < γi ∧ γi < α. Repeating the above argument for arbitrary i > 0, we obtain
that there exists an infinite set {γ′i | i ≥ 0} of finite executions of Y such that ∀i > 0 : γ′i−1 < γ′i.
Now let α′ be the unique infinite execution of Y that satisfies ∀i > 0 : γ′i < α′. Then, α′ is the
required execution of Y . �

In Section 8 below, we present an example of a flight ticket purchase system. A client submits
requests to buy an airline ticket to a client agent. The client agent creates a request agent for
each request. The request agent searches through a set of appropriate databases where the request
might be satisfied. Upon booking a suitable flight, the request agent returns confirmation to the
client agent and self-destructs. A typical safety property is that if a flight booking is returned to
a client, then the price of the flight is not greater than the maximum price specified by the client.
The request agent in this example searches through databases in any order. Suppose we replace it
by a more refined agent that searches through databases according to some rules or heuristics, so
that it looks first at the databases more likely to have a suitable flight. Then, Theorem 26 tells us
that this refined system has all of the safety properties which the original system has.

7 Modeling Dynamic Connection and Locations

We stated in the introduction that we model both the dynamic creation/moving of connections, and
the mobility of agents, by using dynamically changing external interfaces. The guiding principle
here is the notion that an agent should only interact directly with either (1) another co-located

40

agent, or (2) a channel one of whose ends is co-located with the agent. Thus, we restrict interaction
according to the current locations of the agents.

We adopt a logical notion of location: a location is simply a value drawn from the domain
of “all locations.” To codify our guiding principle, we partition the set of SIOA into two subsets,
namely the set of agent SIOA, and the set of channel SIOA. Agent SIOA have a single location,
and represent agents, and channel SIOA have two locations, namely their current endpoints. We
assume that all configurations are compatible, and codify the guiding principle as follows: for any
configuration, the following conditions all hold, (1) two agent SIOA have a common external action
only if they have the same location, (2) an agent SIOA and a channel SIOA have a common external
action only if one of the channel endpoints has the same location as the agent SIOA, and (3) two
channel SIOA have no common external actions.

8 Example: A Travel Agent System

Our example is a simple flight ticket purchase system. A client requests to buy an airline ticket.
The client gives some “flight information,” f , e.g., route and acceptable times for departure, arrival
etc., and specifies a maximum price f .mp they can pay. f contains all the client information,
including mp, as well as an identifier that is unique across all client requests. The request goes to
a static (always existing) “client agent,” who then creates a special “request agent” dedicated to
the particular request. That request agent then visits a (fixed) set of databases where the request
might be satisfied. If the request agent finds a satisfactory flight in one of the databases, i.e., a
flight that conforms to f and has price ≤ mp, then it purchases some such flight, and returns a
flight descriptor fd giving the flight, and the price paid (fd .p) to the client agent, who returns it to
the client. The request agent then terminates.

The agents in the system are:

1. ClientAgt , who receives all requests from the client,

2. ReqAgt(f), responsible for handling request f , and

3. DBAgtd, d ∈ D, the agent (i.e., front-end) for database d, where D is the set of all databases
in the system.

In writing automata, we shall identify automata using a “type name” followed by some parameters.
This is only a notational convenience, and is not part of our model.

Figure 2 presents a specification automaton, which is a single SIOA that specifies the set of
correct traces. Figures 3 and 4 then give the client agent and request agents of an implementation
(the database agents provide a straightforward query/response functionality, and are omitted for
lack of space). When writing sets of actions, we make the convention that all free variables are
universally quantified over their domains, so, e.g., {informd(f ,flts), confd(fd , ok?)} within action
selectd(f) below really denotes {informd(f ,flts), confd(fd , ok?) | fd ∈ F ,flts ⊆ F , ok? ∈ Bool}.

In the implementation, we enforce locality constraints by modifying the signature of ReqAgt(f)
so that it can only query a database d if it is currently at location d (we use the database names
for their locations). We allow ReqAgt(f) to communicate with ClientAgt regardless of its location.
A further refinement would insert a suitable channel between ReqAgt(f) and ClientAgt for this
communication (one end of which would move along with ReqAgt(f)), or would move ReqAgt(f)
back to the location of ClientAgt .

41

We use “state variables” in, out, and int to denote the current sets of input, output, and
internal actions in the SIOA state signature.

We now give the client agent and request agents of the implementation. The initial configura-
tion consists solely of the client agent ClientAgt .

ClientAgt receives requests from a client (not portrayed), via the request input action. ClientAgt
accumulates these requests in reqs , and creates a request agent ReqAgt(f) for each one. Upon re-
ceiving a response from the request agent, via input action req-agent-response, the client agent adds
the response to the set resps , and subsequently communicates the response to the client via the
response output action. It also removes all record of the request at this point.

ReqAgt(f) handles the single request f , and then terminates itself. ReqAgt(f) has initial
location c (the location of ClientAgt) traverses the databases in the system, querying each database
d using queryd(f). Database d returns a set of flights that match the schedule information in f .
Upon receiving this (informd(f ,flts)), ReqAgt(f) searches for a suitably cheap flight (the ∃fd ∈ flts :
fd .p ≤ f .mp condition in informd(f ,flts)). If such a flight exists, then ReqAgt(f) attempts to buy
it (buyd(f ,flts) and confd(f , fd , ok?)). If successful, then ReqAgt(f) returns a positive response to
ClientAgt and terminates. ReqAgt(f) can return a negative response if it queries each database
once and fails to buy a flight.

We note that the implementation refines the specification (provided that all actions except
request(f) and response(f , fd , ok?) are hidden) even though the implementation queries each database
exactly once before returning a negative response, whereas the specification queries each database
some finite number of times before doing so. Thus, no reasonable bisimulation notion could be es-
tablished between the specification and the implementation. Hence, the use of a simulation, rather
than a bisimulation, allows us much more latitude in refining a specification into an implementation.

9 Conclusions and Further Research

We will investigate the relationship between DIOA and π-calculus, and will look into embedding the
π-calculus into DIOA. This should provide insight into the implications of the choice of primitive
notion; automata and actions for DIOA versus names and channels for π-calculus. The work
of [NS95], which provides a process-algebraic view of I/O automata, could be a starting point
for this investigation. We note that the use of unique SIOA identifiers is crucial to our model:
it enables the definition of the execution projection operator, and the establishment of execution
projection/pasting and trace pasting results. This then yields our trace substitutivity result. The π-
calculus does not have such identifiers, and so the only compositionality results in the π-calculus are
with respect to simulation, rather than trace inclusion. Since simulation is incomplete with respect
to trace inclusion, our compositionality result has wider scope than that of the π-calculus. When
the traces of A are included in those of B, but there is no simulation from A to B, our approach
will allow B to be replaced by A, and we can automatically conclude that correctness is preserved,
i.e., no new behaviors are introduced in the overall system. In approaches relying on simulation,
the verification of correctness would have to be redone for the entire system, necessitating much
greater effort.

We will explore the use of DIOA as a semantic model for object-oriented programming. Since
we can express dynamic aspects of OOP, such as the creation of objects, directly, we feel this is a
promising direction. Embedding a model of objects into DIOA would provide a foundation for the
verification and refinement of OO programs.

42

Specification: Spec

Signature
Input:

request(f), where f ∈ F
informd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, f , fd ∈ F , and ok? ∈ Bool

selectd(f), where d ∈ D and f ∈ F
adjustsig(f), where f ∈ F
initially: {request(f) : f ∈ F} ∪ {selectd(f) : d ∈ D, f ∈ F}

Output:
queryd(f), where d ∈ D and f ∈ F
buyd(f ,flts), where d ∈ D, f ∈ F , and flts ⊆ F
response(f , fd , ok?), where f , fd ∈ F and ok? ∈ Bool

initially: {response(f , fd , ok?) : f , fd ∈ F , ok? ∈ Bool}
Internal:

initially: ∅

State

status f ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted

trans f ,d ∈ Bool , true iff the system is currently interacting with database d on behalf of request f , initially false

okflts f ,d ⊆ F , set of acceptable flights that has been found so far, initially empty

resps ⊆ F ×F × Bool , responses that have been calculated but not yet sent to client, initially empty

xf ,d ∈ N , bound on the number of times database d is queried on behalf of request f before a negative reply is returned to
the client, initially any natural number greater than zero

Actions

Input request(f)
Eff: status f ← submitted

Input selectd(f)
Eff: in ←

(in ∪ {informd(f ,flts), confd(fd , ok?)}) −
{informd′(f ,flts), confd′(fd , ok?) : d′ 6= d};

out ←
(out ∪ {queryd(f), buyd(f , fd)}) −
{queryd′ (f), buyd′(f , fd) : d′ 6= d}

Output queryd(f)
Pre: status f = submitted ∧ xf ,d > 0
Eff: xf ,d ← xf ,d − 1;

trans f ,d ← true

Input informd(f ,flts)
Eff: okfltsf ,d ← okflts f ,d ∪

{fd : fd ∈ flts ∧ fd .p ≤ f .mp}

Output buyd(f ,flts)
Pre: status f = submitted ∧

flts = okflts f ,d 6= ∅ ∧ trans f ,d

Eff: skip

Input confd(f , fd , ok?)
Eff: trans f ,d ← false;

if ok? then
resps ← resps ∪ {〈f , fd , true〉};
status f ← computed

else
if ∀d : xf ,d = 0 then

resps ← resps ∪ {〈f ,⊥, false〉};
statusf ← computed

else
skip

Output response(f , fd, ok?)
Pre: 〈f , fd, ok?〉 ∈ resps ∧ status f = computed
Eff: statusf ← replied

Input adjustsig(f)
Eff: in ← in−

{informd(f ,flts), confd(f , fd, ok?)};
out ← out−

{queryd(f), buyd(f , fd)}

Figure 2: The specification automaton

43

Client Agent: ClientAgt

Signature
Input:

request(f), where f ∈ F
req-agent-response(f , fd , ok?), where f , fd ∈ F , and ok? ∈ Bool

Output:
response(f , fd , ok?), where f , fd ∈ F and ok? ∈ Bool

Internal:
create(ClientAgt ,ReqAgt(f)), where f ∈ F

State

reqs ⊆ F , outstanding requests, initially empty

created ⊆ F , outstanding requests for whom a request agent has been created, but the response has not yet been returned to
the client, initially empty

resps ⊆ F ×F × Bool , responses not yet returned to client, initially empty

Actions

Input request(f)
Eff: reqs ← reqs ∪ {〈f 〉}

Output create(ClientAgt ,ReqAgt(f))
Pre: f ∈ reqs ∧ f 6∈ created

Eff: created ← created ∪ {f }

Input req-agent-response(f , fd , ok?)
Eff: resps ← resps ∪ {〈f , fd, ok?〉};

done ← done ∪ {f }

Output response(f , fd, ok?)
Pre: 〈f , fd, ok?〉 ∈ resps

Eff: resps ← resps − {〈f , fd , ok?〉}

Figure 3: The client agent

44

Request Agent: ReqAgt(f) where f ∈ F

Signature
Input:

informd(f ,flts), where d ∈ D and flts ⊆ F
confd(f , fd , ok?), where d ∈ D, fd ∈ F , and ok? ∈ Bool

movef (c, d), where d ∈ D
movef (d, d′), where d, d′ ∈ D and d 6= d′

terminate(ReqAgt(f))
initially: {movef (c, d), where d ∈ D}

Output:
queryd(f), where d ∈ D
buyd(f ,flts), where d ∈ D and flts ⊆ F
req-agent-response(f , fd , ok?), where fd ∈ F and ok? ∈ Bool

initially: ∅
Internal:

initially: ∅

State

location ∈ c ∪ D, location of the request agent, initially c, the location of ClientAgt

status ∈ {notsubmitted, submitted, computed, replied}, status of request f , initially notsubmitted

transd ∈ Bool , true iff ReqAgt(f) is currently interacting with database d (on behalf of request f), initially false

DBagents ⊆ D, databases that have not yet been queried, initially the list of all databases D

donedb ∈ Bool , boolean flag, initially false

done ∈ Bool , boolean flag, initially false

tkt ∈ F , the flight ticket that ReqAgt(f) purchases on behalf of the client, initially ⊥

okfltsd ⊆ F , set of acceptable flights that ReqAgt(f) has found so far, initially empty

Actions

Input movef (c, d)
Eff: location ← d;

donedb ← false ;
in ← {informd(f ,flts), confd(f , fd, ok?)};
out ← {queryd(f), buyd(f , fd),

req-agent-response(f , fd , ok?)};
int ← ∅

Output queryd(f)
Pre: location = d ∧ d ∈ DBagents ∧ tkt = ⊥
Eff: DBagents ← DBagents − {d};

transd ← true

Input informd(f ,flts)
Eff: okfltsd ← okfltsd ∪

{fd : fd ∈ flts ∧ fd .p ≤ f .mp};
if okfltsd = ∅ then

transd ← false;
int ← {movef (d, d′) :

d′ ∈ DBagents − {d}}

Output buyd(f ,flts)
Pre: location = d ∧ flts = okfltsd 6= ∅ ∧

tkt = ⊥∧ transd ∧ status = submitted
Eff: skip

Input confd(f , fd , ok?)
Eff: transd ← false;

if ok? then
tkt ← fd ;
status ← computed

else
if DBagents = ∅ then

status ← computed
else

skip

Input movef (d, d′)
Eff: location ← d′;

donedb ← false;
in ← {informd′ (f ,flts), confd′ (f , fd , ok?)};
out ← {queryd′ (f), buyd′(f , fd),

req-agent-response(f , fd , ok?)};
int ← ∅

Output req-agent-response(f , fd , ok?)
Pre: status = computed ∧

[(fd = tkt 6= ⊥ ∧ ok?) ∨
(DBagents = ∅ ∧ fd = ⊥∧ ¬ok?)

]
Eff: status ← replied;

in ← ∅;
out ← ∅;
int ← ∅

Figure 4: The request agent

45

Agent systems should be able to operate in a dynamic environment, with processor failures,
unreliable channels, and timing uncertainties. Thus, we need to extend our model to deal with
fault-tolerance and timing.

Pure liveness properties are given by a subset of the infinite traces that are traces of executions
that meet a specified liveness condition [Att99, GSSAL98], which are called the live traces. Thus,
refinement with respect to liveness properties is dealt with by inclusion relations amongst the sets
of live traces only. In [Att99], a method is given for establishing live trace inclusion, by using
a notion of forward simulation that is sensitive to liveness properties. Extending this method to
SIOA will enable the refinement and verification of liveness properties of dynamic systems.

Our model provides a very general framework for modeling process creation: creation of an
SIOA A is a function of the state of the “containing” configuration automaton, i.e., the global state
of the “encapsulated system” which creates A. This generality was useful in enabling us to define
a connection between SIOA creation and external behavior that yielded Theorems 26 and 27.

References

[AAK+00] Tadashi Araragi, Paul Attie, Idit Keidar, Kiyoshi Kogure, Victor Luchangco, Nancy
Lynch, and Ken Mano. On formal modeling of agent computations. In NASA Workshop
on Formal Approaches to Agent-Based Systems, Apr. 2000. To appear in Springer
LNCS.

[AL01] P. C. Attie and N.A. Lynch. Dynamic input/output automata: a formal model for
dynamic systems (extended abstract). In CONCUR’01: 12th International Conference
on Concurrency Theory, LNCS. Springer-Verlag, Aug. 2001.

[Att99] P. C. Attie. Liveness-preserving simulation relations. In 18th Annual ACM Symposium
on the Principles of Distributed Computing, pages 63 – 72, May 1999.

[CG00] Luca Cardelli and Andrew D. Gordon. Mobile ambients. Theoretical Computer Science,
240(1):177–213, 2000.

[FGL+96] Cedric Fournet, Georges Gonthier, Jean-Jacques Levy, Luc Maranget, and Didier
Remy. A calculus of mobile agents. In Proceedings of the 7th International Con-
ference on Concurrency Theory (CONCUR’96), Springer-Verlag, LNCS 1119, pages
406–421, Aug. 1996.

[FGL+99] A. Fekete, D. Gupta, V. Luchangco, N. A. Lynch, and A. Shvartsman. Eventually-
serializable data service. Theoretical Computer Science, 220(1):113–156, jun 1999.
Special Issue on Distributed Algorithms.

[FLS01] A. Fekete, N. A. Lynch, and A. Shvartsman. Specifying and using a partitionable group
communication service. ACM Transactions on Computer Systems, 19(2):171–216, May
2001.

[GSSAL93] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, and N.A. Lynch. Liveness in timed and
untimed systems. Technical Report MIT/LCS/TR-587, MIT Laboratory for Computer
Science, Boston, Mass., Nov. 1993.

46

[GSSAL98] R. Gawlick, R. Segala, J.F. Sogaard-Andersen, and N.A. Lynch. Liveness in timed and
untimed systems. Information and Computation, 141(2):119–171, Mar. 1998.

[HM90] Joseph Y. Halpern and Yoram Moses. Knowledge and common knowledge in a dis-
tributed environment. J. ACM, 37(3):549–587, 1990.

[LL02] C. Livadas and N. A. Lynch. A formal venture into reliable multicast territory. In Moshe
Y. Vardi Doron Peled, editor, Formal Techniques for Networked and Distributed Sys-
tems - FORTE 2002 (Proceedings of the 22nd IFIP WG 6.1 International Conference),
volume 2529 of Lecture Notes in Computer Science, pages 146–161, Houston, Texas,
USA, November 2002. Springer. Also, full version in Technical Memo MIT-LCS-TR-
868, MIT Laboratory for Computer Science, Cambridge, MA, November 2002.

[LS02] N. A. Lynch and A. Shvartsman. RAMBO: A reconfigurable atomic memory service
for dynamic networks. In D. Malkhi, editor, Distributed Computing (Proceedings of
the 16th International Symposium on DIStributed Computing (DISC)), volume 2508 of
Lecture Notes in Computer Science, pages 173–190, Toulouse, France, October 2002.
Springer-Verlag. Also, Technical Report MIT-LCS-TR-856.

[LT89] N.A. Lynch and M.R. Tuttle. An introduction to input/output automata. Technical
Report CWI-Quarterly, 2(3):219–246, Centrum voor Wiskunde en Informatica, Ams-
terdam, The Netherlands, Sept. 1989.

[Luc01] V. Luchangco. Memory Consistency Models for High Performance Distributed Com-
puting. PhD thesis, Department of Electrical Engineering and Computer Science, Mas-
sachusetts Institute of Technology, Cambridge, MA 02139, September 2001.

[LV95] N.A. Lynch and F.W. Vaandrager. Forward and backward simulations — part I: Un-
timed systems. Information and Computation, 121(2):214–233, sep 1995.

[LW94] B.H. Liskov and J.M. Wing. A behavioral notion of subtyping. ACM Trans. Program.
Lang. Syst., 16(6):1811 – 1841, Nov. 1994.

[Lyn96] N. A. Lynch. Distributed Algorithms. Morgan-Kaufmann, San Francisco, California,
USA, 1996.

[Mil99] R. Milner. Communicating and mobile systems: the π-calculus. Addison-Wesley, Read-
ing, Mass., 1999.

[NS95] R. De Nicola and R. Segala. A process algebraic view of I/O automata. Theoretical
Computer Science, 138:391–423, mar 1995.

[RH98] J. Riely and M. Hennessy. A typed language for distributed mobile processes. In
Proceedings of the 25th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-
gramming Languages, 1998.

[WL93] J. Welch and N. A. Lynch. A modular Drinking Philosophers algorithm. Distributed
Computing, 6(4):233–244, jul 1993.

47

