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DYNAMIC INSTABILITY OF A HOMOGENOUS DEFORMATION
OF A THIN ELASTIC BAR*

By TIMOTHY J. BURNS (Sandia National Laboratories!, Albuquerque)

Abstract. A linear stability analysis of a homogeneous deformation at constant strain-
rate of a thin elastic bar is used to show that the deformation is unstable with respect to
small perturbations in the case when the stress-strain relation is concave with a single
maximum.

1. Introduction. The one-dimentional thin elastic bar is a convenient model for the
study of the instability of a deformation in a material with a concave constitutive relation
<j(s) with a single maximum at e = ec , where a is the stress and e is the strain [2, 7]. Such
instabilities have been observed in experiments at constant strain-rate in which thin-walled
metal tubes loaded in torsion begin to form one or more shear bands at strains near or
exceeding ec, the critical strain at which the maximum of <r(e) occurs [4, 5], In this study, a
linear stability analysis is used to show that small perturbations on a homogeneous longi-
tudinal extension, at constrant strain-rate e0, of a thin elastic bar with a concave constitut-
ive relation, do not grow catastrophically in amplitude until the bar has been strained to
near or beyond the critical strain ec. Further, if a perturbation is separated into normal
modes, then the modes corresponding to the longest wavelengths can grow the most. Once
the critical strain has been exceeded, however, small perturbations can grow exponentially
in amplitude.

2. Dynamic elastic bar deformation. The motion of a one-dimensional thin elastic bar
is governed by the partial differential equation (see, e.g., [6, Ch. II, §1])

Po dt2 ~ dX (1)

where X e [0, L], L > 0, is the Lagrangian material coordinate; t e [0, T], T > 0, is the
time; p0 > 0 is the constant initial density at each point X in the bar; and u(X, t) is the
displacement at time t of the material particle X. The stress a and the strain e = du/dX are
assumed to satisfy a constitutive relation a = <r(e), with a e C2[ 0, ej, for some > 0, such
that <r(e) > 0 and c(0) = 0; da/de > 0 for e e [0, ec), da/de = 0 for e = ec, and da/de < 0 for
£ £ (ec , £j], for some 0 < ec < £,. It is also assumed that there exist positive constants a < b
and c < d such that

— b < d2a/ds2 < —a for e e [0, £c], — d < d2<j/de2 < —c for £ £ [fic, fij. (2)
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A simple but interesting non-steady solution of (1) is given by the homogeneous deforma-
tion of the bar at constant strain-rate with the point at X = 0 held fixed,

uh(X, t) = e0Xt, (3)

where e0 = 82uJdXdt is the constant strain-rate, on the time interval [0, T], with T =
Mo'•

3. Linear stability analysis. The first variation of the bar equation (1) with respect to
the homogeneous solution (3), obtained by linearizing Eq. (1) about (3) with u — uh + v for
small v, is given by

d2v/dt2 = f(t) 82v/dX2, (4)

where/(t) = (l/p0)(rf(r/de) |£=£0(, so that/(r) > 0 for t e [0, tc), f(tc) = 0, and /(t) < 0 for
t e (tc, T], where tc = ec e0 1 • Note that Eq. (4) changes type from hyperbolic to elliptic at
t = tc. A small perturbation of the homogeneous solution satisfies (4) to first order, with
boundary conditions

t;(0, t0) = v{L, t0) = 0, for some 0 < t0 < T,

small initial amplitude

v(X, t0) = H(X), for some H(X) e C\0, L], with H(0) = H(L) = 0,

and small initial velocity

~ (X, t0) = K(X), for some K(X) e C2[0, L], with K(0) = K(L) = 0.
at

The method of separation of variables leads to a representation of the solution of the
initial-boundary value problem in terms of a Fourier sine series on [t0, T],

oo

v(X, () = E vM)sm PX, P = nkL~\ (5)
k= 1

which is in C2(0, L] x [t0, T]). Each term in (5) is a solution of the variational equation (4)
which satisfies the periodic boundary conditions. Substitution of such a normal-mode
solution into (4) leads to an ordinary differential equation for the growth of the amplitude
of each term in the sine series,

V + p2f(t) V = 0, (6)
where the subscript /? has been dropped and a dot denotes d/dt, with initial values V(t0) =
V0, V(t0) = V0 determined by the coefficients in the sine series expansions of H(X) and K(X)
on [0, L], As is common in fluid dynamics stability theory (see, e.g., [8, §27]), the homoge-
neous solution will be called stable if the amplitude functions Vf(t) do not grow in absolute
value on the finite time interval [t0, T], and unstable otherwise.

The behavior of solutions of the amplitude equation (6) will be studied by comparison
with solutions of the well-known Airy equation,

d2W/dt2 -tW = 0. (7)

It will be shown that every solution of (6) on the interval [0, T] must oscillate a finite
number of times on the subinterval [0, Jc] and remain bounded in terms of its initial values,
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while for t e [tc, T], solutions of (6) can grow exponentially in absolute value. From the
convexity condition (2), it follows that there exists a positive constant A, which depends on
the constant a in (2) and on the constant strain-rate e0, such that, for t e [0, tc], /(f) >
A(tc — t). Let g(t) = A(tc — t), and consider the equation

Z + p2g(t)Z = 0. (8)

The change of independent variable x = p2,3All3(t — tc) = —(/l/A)2/3g(t) on [0, tc) trans-
forms Eq. (8) into the Airy equation (7), with z e [—zu 0], where tj = f}2,3A1,3tc. Hence,
Z(t) = W{t) for t e [0, tc] whenever the two solutions and their derivatives have the same
initial values at some point in the interval. Since f(t) > g(t) on [0, tc], it follows from the
Sturm comparison theorem [3, Ch. 2, Th. 6] that a nontrivial solution of (6) must vanish at
least once between any two zeros of a nontrivial solution of (8). It is well known (see, e.g., [1,
§37]) that all solutions of (7) oscillate for t < 0, so that any solution of (6) must oscillate at
least a finite number of times (zero times is allowed) on [0,tc]. A similar argument using (2)
to bound /(f) from above by a linear function on [0, tc] shows that no nontrivial solution of
(6) can oscillate more than a finite number of times on [0, fc], for otherwise this would also
be true for a nontrivial solution of (7).

Next, let V(t) denote a nontrivial solution of (6) on [f0, T] for someO < t0 < tc. Then
substituting V(t) into (6), multiplying through by V(t), and integrating by parts yields

\ inm2 + y mm)-]2 = \v2 + \ P2f(t0wi + y d*.

Hence, it follows that, since f'{t) is negative on [t0, tc),

-?J>

(9)

o<?mm)]2-? f/'(5)[K(s)]2ds<\v2 + ^f(t0)v2.2

Let Vm = max {| V{t) |: t e [t0, tc]}. Then

j f(t)v2m - y U(t) -/(t0)] vi = Y f(t0)v2n + j RtoWl.

By Bessel's inequality, for all /?,

[K(X)-]2 dX = J,

so it follows that, for all 0,

0 < y2f(t0)LV2 - Vfi < y. (10)

The inequality (10) implies that V2 — Vl decreases to zero as (1 increases to infinity, so that
on the subinterval [t0, tc], perturbations corresponding to the longest wavelengths can
grow the most, with the maximum growth bounded by y[j32/(t0)]_1. Since/(t) decreases to
zero as t increases to tc, it follows that V2 can be larger the closer t0 is to tc.

For t e [tc, T],/(t) is less than or equal to zero, so a corollary to the Sturm comparison
theorem [3, Ch. 2, §4, Cor. 1] implies that the nontrivial solutions of (6) can have at most
one zero on [fc, T], For the above solution V(t), let this zero, if it exists, be denoted by tlt
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and assume that tt > tc and that V(t) is negative on [tc, t,) and positive on(tj, T], Then the
substitution W = VV'1 transforms (6) into the following Riccati equation:

W + W2 + = 0, (11)

on the two subintervals [fc, rt — (5] and [f t + <5, T], for any sufficiently small <5 > 0. Using
the convexity relations (2) again, bounds will next be obtained on the growth of W(t), the
logarithmic derivative of V(t), which will then lead to bounds on the growth of V(t) on [tc,
T] in terms of the well-known Airy functions Ai(t) and Bi(t), which are two linearly
independent solutions of the Airy equation (7).

Condition (2) implies that, for t e [tc, T], there exist positive constants C and D, with
C < D, which depend on the constants c and d in (2) and on the constant strain-rate e0,
such that

-D(t - tc) <f(t) < —C(t — tc).

Let h(t) = C(t — tc) and k(t) = D(t — tc). It follows that, on the two subintervals [tc, 11 — 5]
and [«! + S, T],

- W2 + p2h(t) < W< - W2 + p2k{t). (12)

Let Wl = Hrc)[K(tc)]~1 and W2 = V{tx + + <5)]-1, and consider the two Riccati
equations

R + R2 - 02h(t) = 0, S + S2 - p2k(t) = 0.

Because of the bounds (12) on W{t), it follows from a standard comparison theorem [3, Ch.
1, §12, Th. 8] that

R(t) < W(t) < S(t)

on [fc, tj — (5] and [t! + S, T], with R(tc) = S(tc) = W1 on the first subinterval and
/?(t1 + ^) = S(t1 + <5) = W2 on the second subinterval. Now, W(t) is the logarithmic deriva-
tive of V(t), so that, on [tc, ty — (3],

exp

and on + S, T],

exp

R(t) dx W, < V(t)lV(tc)Tl < expJ^'sM drj -

J R(t) dtj -W2< K(t)[K(t! + ^)] "1 < exp S(t) drj - W2.

But exp[j|t R(t) dt] and exp[J|c S(t) dx] are solutions of the second-order equations

P - p2h(t)P = 0, and Q - p2k(t)Q = 0,
which can be transformed into the Airy equation (7) by means of a linear change of
independent variable, as was done above with Eq. (8). Since | V(t) \ can be made arbitrarily
small on [ — (5, <5] for sufficiently small <5 > 0 by continuity, it follows that the solution V(t)
of (6) is bounded above and below by linear combinations of the Airy functions Ai(r) and
Bi(x), where x is an increasing linear function of t, and the two constants in the linear
combination are determined by V(tc) and V(tc) on [fc, f, — <5] and by K(tj + <5) and
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K(t, + d) on [f, + 6, T], It is well-known that Ai(r) has the leading behavior Ai(t) ~
7r-i/2T-i/4 eXp[ — 2t3/2/3] as r—> oo and Bi(t) has the leading behavior Bi(t) ~ ti"1/2t_1/4
exp[2t3/2/3] as t—► oo (see, e.g., [1, §3.5, Ex. 5]). Since, for fixed t, x —► oo as /? —» oo (see the
discussion following Eq. (8)), it follows that most perturbations of the homogeneous solu-
tion (3) of (1), i.e. all except those whose amplitudes depend only on Ai(r) or only on small
values of /?, grow exponentially in amplitude on [tc, T~\. The cases where a solution of (6)
has no zero on [tc, T] or is positive on [tc, tj) and negative on(r„ T], forsome tj satisfying
tc < tl < T, lead to essentially the same conclusion. Hence, the homogeneous solution (3) is
an unstable solution of the bar equation (1).
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