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Abstract. Piles are long slender columns installed deep into the ground to support heavy structures such as oil platforms, bridges,
and tall buildings where the ground is not strong enough to support the structure on its own. In seismic prone zones, in the
areas of soft soils (loose to medium dense soil which liquefies like a quick sand) piles are routinely used to support structures
(buildings/ bridges). The pile and the building vibrate, and often collapse, in liquefiable soils during major earthquakes. In this
paper an experimental and analytical approach is taken to characterize this vibration. The emphasis has been given to the dynamic
instability of piled foundations in liquefied soil. The first natural frequency of a piled-structure vibrating in liquefiable soil is
obtained from centrifuge tests. The experimental system is modelled using a fixed-free Euler-Bernoulli beam resting against an
elastic support with axial load and tip mass with rotary inertia. Natural frequencies obtained from the analytical method are
compared with experimental results. It was observed that the effective natural frequency of the system can reduce significantly
during an earthquake.

1. Introduction

During strong earthquakes under the action of shear loading, loose to medium dense saturated sands lose strength
and liquefy — the phenomenon is called ‘liquefaction’ and is quite similar to quick sand. In mildly sloping ground,
the soil usually flows following the liquefaction. Collapse and/or severe damage of pile-supported structures
is still observed in loose to medium dense sands (liquefiable soils) after most major earthquakes such as 1995
Kobe earthquake (Japan), 1999 Koceli earthquake (Turkey), 2001 Bhuj earthquake (India) and the 2005 Sumatra
earthquake. The failures not only occurred in sloping grounds but were also observed in level grounds. The failures
were often accompanied by settlement and tilting of the superstructure, rendering it either useless or very expensive
to rehabilitate after the earthquake, see Fig. 1. Following the 1995 Kobe earthquake, investigation has been carried
out to find the failure pattern of the piles, Yoshida and Hamada [41], BTL [32]. Piles were excavated or extracted
from the subsoil, borehole cameras were used to take photographs, and pile integrity tests were carried out. These
studies hinted the location of the cracks and damage patterns for the piles. Of particular interest is the formation of
plastic hinges in the piles. This indicates that the stresses in the pile during and after liquefaction exceeded the yield
stress of the material of the pile despite large factors of safety employed in the design. As a result, design of pile
foundation in seismically liquefiable areas still remains a constant source of attention to the earthquake geotechnical
engineering community.
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(a) Failure pattern of a pile-supported building, (b) Damage pattern of the piles supporting the
photo courtesy K. Tokimatsu building

Fig. 1. The collapse of a building supported on 38 piles in the Higashinada-ku area of Kobe City.

In a recent investigation [26,35] the importance of partial to full loss of lateral support over a portion of the pile
length owing to soil liquefaction has been highlighted. It has been concluded that the degradation of the soil strength
due to liquefaction has a significant influence on the buckling instability type failure. The study is based on extension
of Mindlin solution for a point load acting inside semi-infinite elastic space. This has been also experimentally
investigated in references [6,23]. However, the dynamics of the pile instability has not been considered in the above
study and is the focus of this investigation.

Figure 1(a) shows the collapse of a building supported on 38 piles. The building was located 6m from the quay
wall on a reclaimed land in Higashinada-ku area of Kobe City. After the 1995 Kobe earthquake, the quay wall was
displaced by 2 m towards the sea and the building tilted by about 3 degrees. Following the earthquake, investigation
was carried out to find the damage pattern, see Fig. 1(b). The failure pattern suggests that the building supported
on the piles rotated during the earthquake. Therefore the rotary inertia of the building should be accounted for
in the analysis. This type of failure pattern could also be replicated in carefully designed small scale model tests
carried out by Bhattacharya et al. [6], Knappett and Madabhushi [23] while studying the buckling instability of piled
foundations in liquefiable soils. Figure 2 shows the failure pattern of a single pile and a pile group observed in small
scale geotechnical centrifuge tests. The key principles of a geotechnical centrifuge are explained in subsection 3.1.

Motivated by the real-life failures of pile-supported structures, together with the experimental evidences, an unified
approach comprising of bending, buckling and dynamics has been proposed in this paper. An Euler-Bernoulli beam
model resting against an elastic support with axial force and tip mass with rotary inertia is considered. The elastic
support is aimed at modeling the surrounding soil while the tip mass together with its rotary inertia is aimed at
modeling the superstructure. Only free vibration analysis is considered in this work. In Section 2 a brief review on
the cause of failure of piled foundation during earthquakes is given. In Section 3 the experimental adopted in this
study is explained and selected results are presented. A beam model with tip mass and rotary inertia is analyzed
in Section 4. Exact analytical expressions to obtain the natural frequencies of the combined system are derived in
terms of non-dimensional parameters describing the system. Numerical Results obtain using the proposed approach
are presented in Section 5.

2. Current understanding of the cause of failure of piled foundation during earthquakes

Figure 3 shows the different stages of loading on a pile-supported foundation during an earthquake. Stage I in
the figure describes the load sharing between the shaft resistance (shear generated along the surface of the pile) and
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(a) Buckling of a single pile in a centrifuge test, (b) Buckling of apile group in acentrifuge test,
Bhattacharya [2] Knappett and Madabhushi [23]

Fig. 2. Buckling pattern of single pile and a pile group in a centrifuge test.

end-bearing of the pile (bearing of the tip of the pile) in normal condition i.e. prior to an earthquake. The vertical
load of the building which can be considered purely static (Pgtatic) is carried by the shear (friction along the length
of the pile) and end-bearing in the pile. However, during earthquakes, soil layers overlying the bedrock are subjected
to seismic excitation consisting of numerous incident waves, namely shear (S) waves, dilatational or pressure (P)
waves, and surface (Rayleigh and Love) waves which result in ground motion. The ground motion at a site will
depend on the stiffness characteristics of the layers of soil overlying the bedrock. This motion will also affect a
piled structure. As the seismic waves arrive in the soil surrounding the pile, the soil layers will tend to deform. This
seismically deforming soil will try to move the piles and the embedded pile-cap with it. Subsequently, depending
upon the rigidity of the superstructure and the pile-cap, the superstructure may also move with the foundation. The
pile may thus experience two distinct phases of initial soil-structure interaction.

1. Before the superstructure starts oscillating, the piles may be forced to follow the soil motion, depending on the
flexural rigidity (EI) of the pile. Here the soil and pile may take part in kinematic interplay and the motion of
the pile may differ substantially from the free field motion. This may induce bending moments in the pile.

2. As the superstructure starts to oscillate, inertial forces are generated. These inertia forces are transferred as
lateral forces and overturning moments to the pile via the pile-cap. The pile-cap transfers the moments as
varying axial loads and bending moments in the piles. Thus the piles may experience additional axial and
lateral loads, which cause additional bending moments in the pile.

These two effects occur with only a small time lag and have been studied in some detail by Tokimatsu and
Asaka [37]. If the section of the pile is inadequate, bending failure may occur in the pile. The behaviour of the pile
at this stage may be approximately described as a beam on an elastic foundation, where the soil provides sufficient
lateral restraint. The available confining pressure around the pile is not expected to decrease substantially in these
initial phases. The response to changes in axial load in the pile would not be severe either, as shaft resistance
continues to act. This is shown in Fig. 3 (Stage II).

In loose saturated sandy soil, as the shaking continues, pore pressure will build up and the soil will start to liquefy.
With the onset of liquefaction, an end-bearing pile passing through liquefiable soil will experience distinct changes
in its stress state.



668 S. Adhikari and S. Bhattacharya / Dynamic instability of pile-supported structures in liquefiable soils during earthquakes

Pstatic Petatic+ Paynamic Petatict Paynamic Pytatict Paynamic

P\ateral L Plaleral

— - — -

Non Liquefied
Crust LLL,

c | quefiea[ ]
| sane [T

Dense
Sand o
Stage-I: Stage-Il: Stage-Ill: Stage-1V:
Before earthquake in Shaking starts. Soil Soil liquefied. Inertia In sloping ground
alevel ground yet to liquefy. Pile forces may act. Pile acts as lateral spreading may
actsasabeam acolumn and may buckle start

Fig. 3. Different stages of the loading on a pile in liquefiable soil.

— The pile will start to lose its shaft resistance in the liquefied layer and shed axial loads downwards to mobilise
additional base resistance. If the base capacity is exceeded, settlement failure will occur.

— The liquefied soil will begin to lose its stiffness so that the pile acts as an unsupported column as shown in
Fig. 3 (Stage III). Piles that have a high slenderness ratio will then be prone to axial instability, and buckling
failure will occur in the pile, enhanced by the actions of lateral disturbing forces and also by the deterioration
of bending stiffness due to the onset of plastic yielding, see Bhattacharya et al. [5,7], Bhattacharya et al. [6].
This particular mechanism is currently missing in all codes of practice and has been described as a fundamental
omission in seismic pile design, Bhattacharya and Bolton [4].

In sloping ground, even if the pile survives the above load conditions, it may experience additional drag load due
to the lateral spreading of soil. Under these conditions, the pile may behave as a beam-column (column with lateral
loads); see Fig. 3 (Stage IV). This bending mechanism is currently considered most critical for pile design, see for
example Japanese Road Association code (2002), Eurocode 8.

After some initial time period, as the soil starts liquefying (Stage III in Fig. 3), the motion of the pile will be a
coupled motion. This coupling will consist of: (a) transverse static bending predominantly due to the lateral loads,
(b) dynamic buckling arising due to the dynamic vertical load of the superstructure, and (c) motion due to dynamic
amplification caused by the frequency dependent force arising due to the shaking of the bedrock and its surroundings.
In the initial phase (Stage I in Fig. 3), when the soil has not fully liquefied, the transverse static bending is expected
to govern the internal stresses within the pile. As the liquefaction progresses, the coupled buckling and resonance
would govern the internal stresses and may eventually lead to dynamic failure. The key physical aspect that the
authors aim to emphasize is that the motion of the pile (and consequently the internal stresses leading to the failure)
is a coupled phenomenon. This coupling is, in general, nonlinear and it is not straightforward to exactly distinguish
the contributions of the different mechanisms towards an observed failure. It is however certainly possible that one
mechanism may dominate over the others at a certain point of time during the period of earthquake motion and till
the dissipation of excess pore water pressure. A coupled dynamical analysis combining (a) transverse static bending,
(b) buckling instability and (c) dynamic amplification (near resonance) must be carried out for a comprehensive
understanding of the failure mechanism of piles during an earthquake. The purpose of this paper is therefore to
understand the vibrational characteristics of the piled foundation at full liquefaction i.e. the time instant shown by
Stage III in Fig. 3. This has design implications as it is necessary to predict the lateral and vertical dynamic loads in
the pile at full liquefaction.
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Table 1
Scaling laws in a centrifuge test
Parameter Model/prototype ~ Dimensions
Length 1/N L
Mass 1/N3 M
Stress 1 ML~1T—2
Strain 1 1
Force 1/N? MLT—2
Seepage velocity N LT-!
Time (seepage) 1/N? T
Time (dynamic) 1/N T
Frequency N 1/T
Acceleration N LT—2
Velocity 1 LT-!
EI (bending stiffness) 1/N* ML3 T2
MP (plastic moment capacity) 1/N3 ML2T—2
Table 2
Information on the pile section

Outside diameter 9.3 mm

Inside diameter 8.5 mm

Material Dural alloy

Stiffness 7.77 x 106 N mm?

Length 189 mm

Mass per unit length 0.3 gm/mm

3. Experimental analysis of vibration of piled foundations
3.1. Centrifuge modelling

In soil mechanics or geotechnical engineering, model tests using small size models (1:N where N is the scaling
ratio) under 1-g conditions cannot reproduce the prototype behaviour because the stress level due to self-weight is
much lower than that in the field scale prototype. The behaviour of soils has been established to be highly non-linear
and hence true prototype behaviour can only be observed in a model under stress and strain conditions similar to the
prototype. A geotechnical centrifuge enables us to recreate the same stress and strain level within the scaled model
by testing a 1 : N scale model at [V times earth’s gravity, created by centrifugal force.

In the centrifuge, the linear dimensions are modelled by a factor 1/N and the stress is modelled by a factor of unity.
Scaling laws for many parameters in the model can be obtained by simple dimensional analysis, and are discussed
by Schofield [33,34] as summarised in Table 1.

3.2. Experimental investigation of vibration of a single pile in liquefied soil

Dynamic centrifuge tests were carried out at Schofield Centre (University of Cambridge) to verify that fully
embedded piles, passing through saturated, loose to medium dense sands, and end-bearing on hard layers, buckle
under the action of axial load alone if the surrounding soil liquefies in an earthquake, see Bhattacharya [2]. During
earthquakes, whether at model or field scale, the axial loads on a pile are accompanied by lateral loads induced by
the inertia of the superstructure and the drag of laterally spreading soil. The failure of a pile can arise because of
any one of these load effects, or a suitable combination of them. The centrifuge tests were designed in level ground
to avoid the effects of lateral spreading. Twelve piles were tested in a series of four centrifuge tests including some
which decoupled the effects of inertia and axial load. The model piles were made of dural alloy tube having an
outside diameter of 9.3 mm, a thickness of 0.4 mm and a total length of 160 mm or 180 mm. Properties of the model
pile can be seen in Table 2.

The sand used to build the models was Fraction E silica sand, which is quite angular with D50 grain size of
0.14 mm, maximum and minimum void ratio of 1.014 and 0.613 respectively, and a specific gravity of 2.65. Axial
load (P) was applied to the pile through a block of brass fixed at the pile head (see Fig. 2(a)). With the increase in
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Fig. 4. SDOF oscillator showing the locations of the accelerometers and the PPT’s.

centrifugal acceleration, the brass weight imposes increasing axial load in the pile. The packages were centrifuged
to 50 g, one-dimensional earthquakes were fired and the soil liquefied. Details of the early tests can be found in
Bhattacharya [2] and Bhattacharya et al. [6], while this paper details test results of a single pile which was aimed at
understanding the vibration characteristics when soil liquefies.

A cantilever column with a tip mass is the simplest form of a vibrating system. As there is only boundary condition
(i.e. the fixed end) to be simulated, the problem can also be studied experimentally without much error. Details of the
experimental set-up can be seen in Bhattacharya et al. [6]. Figure 4 shows the schematic of the simple experiment.

The external excitation, i.e. the time-varying force acting on the pile-toe is due to the earthquake, is measured by
accelerometer ACC 9882. This input motion is shown in Fig. 5(a). In Fig. 5(b) we have also shown the time-history
of the output motion measured at the pile-head.

The FFT of the input signal provided by the actuator is shown in Fig. 6.

As the experiment was carried out at 50-g (fifty times earth’s gravity), this input motion represent a prototype
earthquake of 1 Hz frequency (see Table 1 for scaling law). The time history of the loading shows that there were
two excitations:

1. Excitation 1 (between 0.25 seconds and 1.25 seconds) when the soil was initially solid and then transformed
into a liquefied mass. Study of the pore pressure response in the experiment suggests that the soil liquefied just
after 0.3 seconds i.e. after two full cycles of loading. This earthquake corresponds to a prototype earthquake
of 50 seconds duration (see scaling law for dynamic time in Table 1).

2. Excitation 2 (between 3.5 seconds and 6 seconds) when the soil was fully liquefied.

3.3. Data acquisition and the test results

Accelerometers and Pore Pressure transducers were used to record the responses during the vibration. Data was
recorded for 6 seconds at the rate of 4000 Hz i.e. 24000 data was acquired. The accelerometer (ACC 8076) at
the pile head records the responses in the pile head i.e. the transfer of input acceleration to the pile head as soil
liquefies due to the stiffness degradation of the pile-soil system, referred herein as ‘output’. The pile head mass
was not in contact with the liquefied ground and therefore the response is due to combined stiffness of the pile and
the soil. This is function of the stiffness and damping of the pile-soil system. Figure 7 shows the traces of the
excess pore pressure generated in the soil during the earthquake which provides us information regarding the onset
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Fig. 6. FFT of the input signal.

of liquefaction. Liquefaction is defined as the point when the pore water pressure reaches the total vertical stress of
the soil or effective vertical stress is zero. It may be noted that as the shaking starts the excess pore pressure rises in
the soil and reached a plateau at about 0.32 seconds. Figure 7 suggests that in each case, the plateau corresponds
well with an estimate of the pre-existing effective vertical stress at the corresponding elevation, suggesting that the
vertical effective stress had fallen to zero. In other words, the soil had liquefied. Between 0.32 second and 0.6
seconds in Fig. 7, the pile would have lost all lateral effective stress from the soil i.e. the bracing action of the soil
against buckling is almost negligible. Horizontal arrows in the right-hand side of Fig. 7 represent the excess pore
pressure at which the vertical effective stress equals to zero for each PPT. It is interesting to note the change in
the amplitude of vibration at the pile head during this period, see Fig. 8. The present paper is intended to improve
understanding of this vibration problem when the soil liquefies.

From the acceleration record (see Fig. 8) it can be observed that the motion of the pile is initially in phase, i.e. in
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the first half cycle before soil starts to liquefy and during shaking. With the progression of the rise of pore pressure
i.e. liquefaction in a top-down fashion, the stiffness of the pile-soil system decreases and the motion of the pile is
out of phase. After full liquefaction, i.e. just after the instant of 0.33 sec in the time record, the motion of the pile
comes in phase with the input acceleration.

Figure 9(a) shows the frequency response function of the system corresponding to time domain data shown in
Fig. 8. This is essentially the ratio of the output and input of the pile plotted in the frequency domain. Coherence
corresponding to this frequency response function is shown in Fig. 9(b) The coherence is reasonably good except
some frequency points. To the best of our knowledge, not many examples of FRFs in centrifuge dynamic testing as
shown in Fig. 9 have appeared in literature. It may be seen that there is a peak at around 20 Hz. This peak corresponds
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to the first natural frequency of the combines system so that f1 = 20 Hz (see reference [3] for the detailed frequency
domain analysis). As the input motion is predominantly harmonic and if we assume linear (between force and
displacement) SDOF system, then this peak would correspond to the natural frequency of the oscillator. In the next
section we investigate this in more details using analytical means.
4. Analytical formulation

4.1. Equation of motion and boundary conditions

We consider an Euler Bernoulli beam as shown in Fig. 10. The bending stiffness of the beam is EI and it is
resting against a linear uniform elastic support of stiffness k. The beam has a tip mass with rotary inertia J and mass
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M. The mass per unit length of the beam is m, r is the radius of gyration and the beam is subjected to a constant
compressive axial load P. The equation of motion of the beam is given by

+k(z)w(z, t) + mw(x,t) = f(x,t).

here w(x,t) is the transverse deflection of the beam, x is the spatial coordinate along the length of the beam, ¢
is time, (o) denotes derivative with respect to time and f(z,t) is the applied time depended load on the beam.
It is assumed that all properties are constant along the length of the beam. Equation (1) is a fourth-order partial
differential equation [24] and has been treated extensively in literature (see for example, references [1,9—13,15-22,
25,29,30,36,38-40]). Our central aim is to obtain the natural frequency of the system. The book by Blevins [8] lists
several expressions of the natural frequencies of similar systems but this particular case has not been covered. Here
we develop an approach based on the non-dimensionalisation of the equation of motion in Fig. 10.
Because we are interested in the free vibration problem, considering f(z,t) = 0, Eq. (1) can be expressed as

)]

0*w(x,t) 0%w(x,t) 02i(x,t)
EI - P ot
ozt * Ox? T g

The four boundary conditions associated with this equation can be expressed as

+ kw(x,t) + mw(x,t) = 0. (2)

— Deflection at z = O:
w(0,t) = 0. (3)
— Rotation at z = 0:

ow(x,t)

_ / _
e 0]z=0 or w'(0,¢) =0. 4)
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— Bending moment at x = L:

0%w(x,t) 0w (x,t)
EL Ox? 7 Oz

— Shear force at x = L:

Ow(L,t)
ox

=0|p=r or EIW"(L,t)+J =0.

Puwt)  pow@t) o . L 0ib(z,t)
EI P + P e Mw(z,t) —mr o = 0lp=r
.
or EIW" (L,t) + Pw'(L,t) = M(L,t) — mr® _awéxa 2o

Assuming harmonic solution (the separation of variable) we have
w(z,t) = W(&) exp{iwt}, & =uz/L.
Substituting this in the equation of motion and the boundary conditions, Eqs (2)—(6), results

EIQ*W(§) P *W () mriw? W (§)

+ kW (€) — mw? W (€) + =0

L+ 0&t L2 0¢? L? &2
W(0)=0

w'(0)=0

EIr __, w2J

72 (1) T W'(1)=0

E 1 E / 2 mr’w? / _

L3W (1)+LW(1)—|—w MW(1)+ 7 wW'(1) = 0.

675

®)

(6)

(M

®)

€))

(10)

(1)

12)

It is convenient to express these equations in terms of non-dimensional parameters by elementary rearrangements

as
W () |, _0*W() 2
W) —QW(E) =0
ot T am TV (&)
W (0)=0
wW'(0) =0
W”(1) — BQ*W’'(1) =0
W”(1) + W' (1) + aQ*W(1) =0
where
v=v+ u?Q?
and
PL?
v=—r (nondimensional axial force)
kL* . . .
n= BT (nondimensional support stiffness)
mL*
02 =w2— (nondimensional frequency parameter)

ET

13)

(14)
5)
(16)

a7)

(18)

19)

(20)

2y
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M
a=_—+ (mass ratio) (22)
J . . S
8= o~ (nondimensional rotary inertia) (23)
m
= % (nondimensional radius of gyration). 24)

It is often useful to express v in terms of the critical buckling load as
2 2

e ™
vV = Z(P/PCT) = zec (25)
where
. = P/Pcr (26)

is the ratio between the applied load and the critical buckling load. Also note that for most beams p = r/L < 1 so
that 42 =~ 0. As a result for low frequency vibration one expects 7 ~ v. For notational convenience we define the
natural frequency scaling parameter

EI
fo=y/ 77 @7)

Using this, from Eq. (21) the natural frequencies of the system can be obtained as

w]':ij(); j:1,2,3,"' (28)
4.2. Derivation of the frequency equations

Assuming a solution of the form

W(E) = exp{A&} (29)
and substituting in the equation of motion Eq. (13) results
M +DA— (02 —n) =0. (30)

This equation is often know as the dispersion relationship. This is the equation governing the natural frequencies
of the beam. Solving this equation for A? we have

>\2§i\/<§)2+(92n)
== \/G)QHQQ—UHg : \/(g)2+((22—n)—§

Depending on whether 22 — 7 > 0 or not two cases arise.

€29

Case 1: If 7 > 0 and Q%2 — n > 0 or Q2 > 5 then both roots are real with one negative and one positive root.
Therefore, the four roots can be expressed as

A=4id;, £ (32)

where

~\ 2 ~
A= \/@) +(Qtn)+g (33)
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1/2

~\ 2 ~
and Ay = V(g)-+ﬁﬂ—n)—g . (34)

From Egs (33) and (34) also note that

N\ =7. (35)
In view of the roots in in Eq. (32) the solution W (&) can be expressed as
W (&) = a1 sin \1€ + az cos A1 € + ag sinh Ao + ag cosh A& or W(E) =sT(¢)a (36)
where the vectors
s(§) = {sin A1&, cos A1, sinh A2&, cosh )\gg}T (37)
and a = {al,ag,ag,a4}T. (38)
Applying the boundary conditions in Eqs (14)—(17) on the expression of W (&) in Eq. (36) we have
Ra=0 (39)
where the matrix
51(0) s2(0)
51(0) s5(0)
s1(1) — 8?51 (1) s5(1) — pQ2s5(1)
s (1) + vsh (1) + af2%s1 (1) s5'(1) 4+ vsh(1) + a?s9(1)
R — (40)
53(0) 54(0)
55(0) 51(0)
s5(1) — BQ%s5(1) s1(1) — BQ?sy(1)

sH(1) + vsh(1) + a0?s3(1) s5'(1) + vsh(1) + a0?s3(1)
Substituting functions s;(£),j = 1, - -, 4 from Eq. (37) and simplifying we obtain

0 1
A\ 0
—sin (A1) A2 — Q23 cos (A1) A —cos (A1) A2 + Q28 sin (A1) A
R L—cos (M) A2+ 7 cos (A1) A1 + Q%a sin (A1) sin (A1) A2 — 7 sin (A1) A1 + Q%a cos (A1) @1
0 1
Ao 0
sinh (A2) A2? — Q28 cosh (A2) Mg cosh (A2) Ao? — Q24 sinh (Ag) Ao

cosh (A2) \o® + 7 cosh (A2) A2 + Q%a sinh (\z) sinh (A2) \o® + 7 sinh (A2) A2 + Q% cosh (\2)
The constant vector in Eq. (39) cannot be zero. Therefore, the equation governing the natural frequencies is given
by

IR| = 0. (42)
This, upon simplification (see Appendix A for the Maple® code developed for this purpose) reduces to

(= sin (A1) A 22202 cosh (A2) + M2 cos (A1) sinh (A2) A2® — Q* sin (A1) A1 sinh (o)

—0%sin (A1) cosh (A2) Ao® + Q*sin (A1) B sinh (A2) Ao? 4 cos (A1) A1*Q? sinh (\o)

—2 X102 cos (A1) B cosh (A2) A2 +2Q*XAaB M) @ + (A1 A2” — cos (A1) A1 cosh (A2) Ao®

—2 sin (A1) A sinh (A2) A2® — A% X2 4 cos (A1) A1® cosh (A2) A2) T+ A" Aa + A Ao° (43)

+2 cos (A1) A2 cosh (A2) Ao + sin (A1) A4 sinh (A2) o2 — sin (A1) 12 sinh (A2) Ao

—sin (A1) A 1023 cosh (A2) Ao — Q28 sin (A1) A% cosh (A2) Ao® — Q23 cos (A1) Ap sinh (Ag) Ao?

—cos (A1) A *Q23 sinh (\2) X2 = 0.
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The natural frequencies can be obtained by solving Eq. (43) for 2. Due to the complexity of this transcendental
equation it should be solved numerically.

Case 2: If 7 > 0 and Q2 — 1 < 0 or Q2 < 1) then both the roots are real and negative. Therefore, all of the four
roots can be expressed as

A= 4id, il (44)

where )\; is as in the previous case

5 1/2
|z YN 2
A= 2+\/(2) (n—2) 45)

and Xg is given by

1/2

~ ~\ 2
~ 14 14

In view of the roots in in Eq. (44) the solution W (&) can be expressed as

W (&) = arsin \i& + ag cos M & + a3 Sin Ao + aq cos Aof or W) =sT(¢)a 47)
where the vectors
~ o NT
s(¢) = {sin A€, o8 M€, Sin Aef, cos Agg} 48)
T
a={ai,az,a3,a4} . (49)

Applying the boundary conditions in Eqs (14)—(17) on the expression of W (&) in Eq. (47)and following similar
procedure as the previous case (see Appendix A for the Maple ® code developed for this purpose), the frequency
equation can be expressed as

(cos (A1) A1 cos (}\\2) Xg - )\13\3 - A13X2 + cos (A1) A2 cos (Xg) A2 + 2 sin (\q) A\ 2 sin (Xg) X%) v

+ (—Q4ﬁ sin (A1) A2 sin (Xg) + cos (A1) A 202 sin (Xg) —2X0%cos (A1) 3 cos (Xg) Xg +2 A1945X2
—A102 cos (A1) sin (Xg) 22+ Q%sin (Ap) cos (/):2) 23— sin (A1) A 22202 cos (Xg)

—Q*sin (A1) B sin (Xg) X%) o —2 cos (A1) A% cos (Xg) Xg —sin (A1) A * sin (Xg) X% 0
—sin (A1) A2 sin (Xg) X;* + )\15XQ — 028 cos (A1) A1 sin (Xg) X‘; + Q%4 sin (A1) A2 cos (Xg) Xg
—sin (A1) M 4028 cos (/):2) /):2 + cos (A1) A20%4 sin (A2) X% + ,\1X§ =0.

The natural frequencies can be obtained by solving Eq. (50) for €2. Due to the complexity of this transcendental
equation it should be solved numerically.

4.3. Special cases

Equations (43) and (50) are quite general as they consider axial load, elastic support, tip mass, and rotary inertia.
Several interesting special cases discussed in literature can be obtained from these expressions.



S. Adhikari and S. Bhattacharya / Dynamic instability of pile-supported structures in liquefiable soils during earthquakes 679

— Standard cantilever: no tip mass, rotary inertia, axial force and support stiffness:
For this case n = 0, 8 = 0, & = 0 and v = 0. From the dispersion relationship in Eq. (30) observe that for this

case A\ = o = VQ =w % = ) (say). As a result, the two cases discussed before converge to a single

case. Substituting these in Eq. (43) or (50) and simplifying (see the Maple ® script in Appendix ) we obtain
the frequency equation as

1+ cos (A) cosh (A) = 0. (51D

This matches exactly with the frequency equation for a standard cantilever (see the book by Meirovitch [27] or
Géradin and Rixen [14]).

— Cantilever with a tip mass: no rotary inertia, axial force and support stiffness:
For this case n = 0, 8 = 0, and v = 0. From the dispersion relationship in Eq. (30) observe that for this case
again \; = Mo = ) (say). Substituting these in Eq. (43) or (50) and simplifying (see the Maple ® script in
Appendix A) we obtain the frequency equation as

(—sin (A\) cosh (A) + cos (A) sinh (X)) a A + cos (A) cosh (A) + 1 = 0. (52)

If we substitute o = 0 in this equation, we retrieve the standard cantilever case obtained in Eq. (51).

— Cantilever with a tip mass and rotary inertia: no axial force and support stiffness:
For this case only = 0 and v = 0 and we also have A\; = Ay = A (say). Substituting these in Eq. (43) or (50)
and simplifying (see the Maple® script in Appendix A) we obtain the frequency equation as

(—cos (\) cosh (A) 4+ 1) a BA* + (— cos (A) sinh (A) — sin (A) cosh (1)) B A3

(53)
+ (—sin (A) cosh (A) + cos (A) sinh (A)) @ A + cos (A) cosh (A) + 1 = 0.

If we substitute 3 = 0 in this equation, we retrieve the case obtained in Eq. (52).

5. Numerical results

In this section we aim to compare experimental results presented in subsection 3.3 with the analytical expressions
developed in the last section. First we determine the relevant non-dimensional parameters for the experiment
appearing in the equations derived here. We focus our attention on the affect of § . = P/P,, ratio and the non-
dimensional soil stiffness 1 on the first-natural frequency. For this reason, the numerical results are presented as a
function of 6, and 7.

Recall that the centrifuge tests were conducted at 50 g acceleration. Therefore the non-dimensional mass ratio
can be obtained as

M P P P, P nlEl P w2 f2 L (54)
o= —= = = _— = U¢ I .
mL 50gmL P, \50gmL P.r \ 200 gmL3 200 g
The mass at the top of the beam used in the experiment is of cylindrical shape. Supposing its height is h and
radius is a, the moment of inertia can be obtained as

_% 2 2
J= 12(3a +h?). (55)

Therefore, the nondimensional rotary inertia can be obtained as

J M (3a2 + h2 M |1 2 1 /h\?
R o ):ml () E<Z>]:O‘(¢i/“¢%/u)' (36)

4

L

In the context of pile supported buildings, the nondimensional radius ¢ , and the nondimensional height ¢, can
be considered as the ‘shape parameters’ of the building. These parameters take account of the physical shape of the
building so that it is not considered as a ‘point mass’ used in many simplified analyses. For non-circular masses
(buildings) a may replaced by the radius of gyration about the z-axis (vertical axis). For the experimental study (see
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Table 2) ET = 7.77 x 10° N mm?, L = 189 mm and m = 0.3 gm/mm. Therefore the natural frequency scaling
parameter can be obtained as

EI
fo=

_ -1
The radius and the height of the mass are respectively ¢ = 34 mm and h = 18 mm. Using these values from
Eqgs (54) and (56) we obtain

a = 20.2336, and [ = 0.009« = 0.18216.. (58)

The radius of gyration of the pile (the outside diameter is 9.3 mm and the inside diameter is 8.5 mm) is 3.1 mm
so that the nondimensional radius of gyration 4 = r/L = 0.016. From Eq. (18) we therefore have

U=rv+256x 1074Q2. (59

For 40% relative density, modulus of subgrade reaction is 8 MN/m? (see reference [3] for further details). It
is often convenient to calculate the parameters at the prototype scale and use the scaling laws. The experiment
being carried out at 50 g, and therefore the prototype stiffness of the pile-soil system (k) is 8 MN/m 3 x 0.465 m =
3.72 MPa. Based on this value we have

kL*

n=—Z7 = 610.10. (60)

During the full liquefaction, the value % reduces to less than 10% of the original value [31].

Depending on the two cases discussed before, we substitute these values of 7 and v either in Egs (33) and (34) to
obtain A1 and Ao, or in Egs (45) and (46) to obtain A; and /):2. Substituting them either in Eq. (43) or (50) we solve
for the nondimensional first natural frequency €2 ;. For earthquake applications the first natural frequency is the most
important as the excitation frequency is generally between 1-10 Hz. Higher natural frequencies can however be
obtained by solving Eq. (43) or (50).

The variation of the first natural frequency of the cantilever pile with respect to the axial load for different values
of normalized soil stiffness is shown in Fig. 11. From Fig. 9(a) it can be observed that (see reference [3] for the
detailed analysis) the first natural frequency is 20 Hz. At 50g acceleration, the P/P., ratio becomes 0.5. Using
these two values, from Fig. 11 we observe that 7 & 35, which about 5.75% of the original value. Experiment shows
that the first natural frequency is 20 Hz (f; = 19.42 Hz to be precise) at the full liquefaction. Here w = 27 f, where
f in the frequency in Hz. Our analytical model suggests that at 20 Hz is reached when the soil stiffness is 0.06% of
the initial value, which is comparable to the definition of liquefaction based on AIJ [31]. In Fig. 11 we have plotted
the experimental data (marked by “*”).

The variation of the first natural frequency of the cantilever pile with respect to the normalized support stiffness
for different values of axial load is shown in Fig. 12. In the same diagram the experimental result is shown by a “*’.
This plot confirms that when n = 35.0, then P/P,., = 0.5 for the experimentally measured first natural frequency
of 20 Hz.

In Fig. 13, the overall variation of the first natural frequency of the cantilever pile with respect to both normalized
support stiffness and axial load are shown in a 3D plot. The interesting feature to observe from this plot is the
rapid and sharp ‘fall’ in the natural frequency for small values of 7. This has very important practical consequence.
This result implies that the system natural frequency can come very close to the earthquake excitation frequency
(=1-10 Hz) when soils is approaching full liquefaction than previously thought. Also observe that the reduction in
the first natural frequency become even sharper for higher values of P/P.,. These nonlinear effects must be taken
into account for earthquake resistant design of pile foundations.

6. Conclusions
Dynamic instability of pile-supported structures founded on liquefiable soils has been investigated. Small-scale

model tests and analytical work form the basis of this investigation. Three conditions are studied, namely (a) the soil
supporting the foundation is stiff which may represent the condition prior to the earthquake, (b) the soil supporting
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Fig. 11. Variation of the first natural frequency of the cantilever pile with respect to the axial load for different values of normalized soil stiffness.
The experimental result (fi = 20 Hz, 8. = P/Pc, = 0.5 and n = 35.0) is shown by a ‘*’ in the diagram.
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Fig. 12. Variation of the first natural frequency of the cantilever pile with respect to the normalized support stiffness for different values of axial
load. The experimental result (fi = 20 Hz, . = P/P., = 0.5 and n = 35.0) is shown by a ‘*’ in the diagram.

the foundation is fully liquefied (zero stiffness) which may represent some time instant after the onset of the shaking,
and (c) the transient phase when the supporting soil is being transformed from being stiff to being liquefied.

The experimental results indicate that the first natural frequency of the structure reduces as the soil starts to lose
its stiffness (transient phase) and is lowest when the soil is in the fully liquefied condition. Bending, buckling
and dynamics should be considered simultaneously to analytically model the real system. A distributed parameter
model using the Euler Bernoulli beam theory with axial load, support stiffness and tip mass with rotary inertia is
considered. The non-dimensional parameters necessary to understand the dynamic instability have been identified.
These parameters are nondimensional axial force (v), nondimensional soil stiffness, (1), mass ratio between the
building and the pile (o), nondimensional radius of gyration of the pile (1), ratio between the applied load and the
critical buckling load (6.), and the shape parameters of the building, namely the nondimensional radius (¢ ;) and the
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Fig. 13. Variation of the first natural frequency of the cantilever pile with respect to the normalized support stiffness and axial load.

nondimensional height (¢). The shape parameters take account of the physical shape of the building so that it is
not considered as a point mass used in many simplified analyses.

Current codes of practice for piled foundations such as the Japanese code and the Eurocode are based only on
the bending criteria where the lateral loads induce bending stress in the pile. It is well recognized that codes of
practice have to specify some simplified approach for design which should provide a safe working envelope for any
structure of the class being considered, and in full range of ground conditions likely to be encountered at different
sites. Our concern in this paper is to point out that the application of such simplified approach demands further
consideration of effective lateral stiffness of the pile taking into account the change in the natural frequency during
liquefaction. One of the key conclusion is that the first natural frequency of the foundation will start to drop when
the soil transforms from being solid to liquid. If the first natural frequency comes close to the excitation frequency
of the earthquake motion (typically between 0.5 Hz and 10 Hz), then the amplitude of vibration (and consequently
the internal stresses) can grow significantly. Using the expressions derived in the paper, designers could estimate the
first natural frequency at the full liquefaction and design the pile such that the resulting natural frequency does not
come close to the expected frequency of the earthquake motion.

Maple® Code for the frequency equations

Here we show the code in Map1e® [28] used to generate the equations for the natural frequencies, that is Eqs (43)
and (50). Codes used to obtain the special cases discussed in subsection 4.3 are also given below.

Program for calculating the symbolic expression of the eigenvalue
equation of a fixed-free beam with axial load resting against an
elastic support. The beam has a mass at the free end with rotary
inertia.

with(combinat):with(linalg):with(CodeGeneration):
# * * Case 1 * *
R:=array(l..4,1..4):
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s:=array(l. .4, [sin(lambda[1l] *x), cos(lambda[l] *x),
sinh(lambda[2]*x), cosh(lambda[2] *x)]);
for jj from 1 to 4 do
R[1,J]j]:=eval(subs(x=0,s[3jl1));
R[2, j]j] :=eval(subs(x=0,diff(s[jjl,x)));
R[3,jj] :=subs(x=1,diff(s[j]j],x$2)
-Omega”2*beta*diff(s[jjl, x));
R[4, J]J] :=subs(x=1,diff(s[jjl,x$3)
+nu*diff(s[jjl, x)+Omega”2*alpha*s[Jj]);
od:
evalm(R);
feqgl:=collect(simplify(det(R)), {alpha,nu});
# * * Case 2 * *
R:=array(l..4,1..4):
s:=array(l. .4, [sin(lambda[l] *x), cos(lambda[l] *x),
sin(lambda[2]*x), cos(lambda[2] *x)]);
for jj from 1 to 4 do
R[1,jj]:=eval(subs(x=0,s[33j1));
R[2,j]j] :=eval(subs(x=0,diff(s[jjl,x)));
R[3,j]j] :=subs(x=1,diff(s[j]j],x$2)
-Omega“2*beta*diff(s[jjl, x));
R[4, J]J] :=subs(x=1,diff(s[jjl,x$3)
+nu*diff(s[jjl, x)+Omega”2*alpha*s[jjl);
od:
evalm(R);
feg2:=collect(simplify(det(R)), {alpha,nu});

# SPECIAL CASES

# Standard cantilever:

# no tip mass, rotary inertia, axial force & support

fegSCl:=subs(nu=0, lambda[l]=lambda, lambda[2]=1lambda,
beta=0, alpha=0, feql):

simplify(feqgSCl/(2*1lambda”6))=0;

# Cantilever with a tip mass:
# no rotary inertia, axial force & support stiffness
fegSC2:=subs(Omega=lambda”2, nu=0,

stiffness

lambda[l]=lambda, lambda[2]=1lambda, beta=0, feqgl):
collect(subs(simplify(feqSC2/(2*1lambda”6))), {alpha, lambda})=0;

# Cantilever with a tip mass and rotary inertia:

# no axial force & support stiffness

fegSC3:=subs(Omega=lambda”2, nu=0,
lambda[l]=lambda, lambda[2]=lambda, feql):

collect(subs(simplify(feqSC3/(2*lambda”6))), {alpha, lambda, beta})=0;

Nomenclature
o mass ratio, o = 2L
mL

6 nondimensional rotary inertia, § = —

mL3

683
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nondimensional support sti?ness, n = ~L-
mens’ PPOTESHTNESS, 11 = 5T
nondimensional radius of gyratlor;; 52 =1

El
. . 4
nondimensional frequency parameter, Q2 = w21k

angular frequency (rad/s) o

nondimensional radius of the mass, ¢, = a = L

nondimensional height of the mass, ¢, = h =L

ratio between the applied load and the critical buckling load, § . = P = Pecr
non-dimensional length parameter, { =z = L

radius of the cylindrical mass

bending stiffiness of the beam

circular frequency (Hz)

nondimensional axial force, v =

f(z;t)  applied time depended load on the beam

natural frequency scaling parameter (s ~1), fo = 4/ %

height of the cylindrical mass

rotary inertia of the tip mass

stiffiness of the elastic support

length of the beam

mass of tip mass

mass per unit length of the beam, m = pA
mass of the beam, M, = mL

constant axial force in the beam

time

(¢)  transverse deflection of the beam

w(z;t) time depended transverse deflection of the beam

spatial coordinate along the length of the beam
derivative with respect to the spatial coordinate
matrix transposition

derivative with respect to time

determinant of a matrix
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