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This paper studies a dynamic insurance problem with bilateral asymmetric information and 
balanced budgets. There are two infinitely-lived agents in our model, both risk averse, and each 
has an i.i.d. random endowment stream which is unobservable to the other. In each period, each 
agent must have a non-negative consumption and together they must consume the entire aggregate 
endowment. Dynamic incentive compatibility in the Nash sense is defined. We give sufficient and 
necessary conditions for the existence of a constrained efficient contract. We show that a con- 
strained efficient contract can be characterized in a Bellman equation. We demonstrate that the 
long-run distribution of expected utilities of each agent is not degenerate. We also develop an 
algorithm for computing the efficient contract and, in a numerical example, we find that the 
consumption processes of the agents form stationary Markov chains. 

1. INTRODUCTION 

This paper studies a dynamic insurance problem between two risk-averse agents with 
bilateral asymmetric information and balanced budgets. The two agents, both infinitely- 
lived in a pure exchange economy, face idiosyncratic risks in the endowments they receive. 
Specifically, at each date, they each draw independently a stochastic, privately observed 
endowment. The endowment is perishable, and there exist no opportunities for the two 
agents to borrow and lend with outside parties. The two agents hence are constrained to 
consume the aggregate endowment they receive at each date. Being risk averse, they would 
wish to pool their endowments together. But this is impeded by the private information 
about the endowments they receive. The problem that the two agents face, therefore, is 
to design a feasible trading mechanism which achieves Pareto efficiency subject to the 
constraint of incentive compatibility: they must both be given the incentives to truthfully 
reveal their endowments. 

The problem we study here is closely related to the dynamic insurance literature led 
by Townsend (1982), Spear and Srivastava (1987), and Thomas and Worrall (1990), who 
model relationships between a principal and a single risk-averse agent; and Green (1987) 
and Phelan and Townsend (1990), who examine relationships between a principal and a 
continuum of risk-averse agents. In these models, as in standard principal-agent models 
such as Holmstrom (1979), Allen (1985), and Radner (1985), a key feature is that the 
principal, who typically has access to credit markets, can serve as a residual claimant to 
permit violation of the budget-balancing constraint. In a recent contribution, Atkeson and 
Lucas (1992) extend the literature by looking at a closed economy where a period-by- 
period aggregate resource constraint is imposed. In Atkeson and Lucas, the total consump- 
tion handed out by the principal each period to the population cannot exceed some 
constant endowment level. 
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578 REVIEW OF ECONOMIC STUDIES 

This paper goes one step further in the direction started by Atkeson and Lucas. In 
the model studied in Atkeson and Lucas it is feasible for the constant aggregate endowment 
not to be consumed since the principal can always retain a positive residual. In our model, 
by contrast, the two agents are constrained to consume the entire (uncertain) aggregate 
endowment in each period. Therefore in our model the role played by the principal as 
residual claimant is completely discarded. Another important difference between our model 
and that of Atkeson and Lucas is that Atkeson and Lucas focus on multiplicative taste 
shocks rather than endowment shocks. Multiplicative taste shocks can sometimes be inter- 
preted as endowment shocks, for example, when utility is exponential. In this case, how- 
ever, the optimal contract may require the principal to take from an agent more than he 
claims to have. This feature is absent in our model. Instead, we focus directly on endow- 
ment shocks and we impose in a period-by-period feasibility constraint that the optimal 
contract does not take from an agent more than he claims to have received. 

The model is presented in Section 2 where feasible and incentive compatible contracts 
are defined and the problem of constrained efficiency is formulated. In Section 3, we 
demonstrate that a constrained efficient contract that delivers ex ante expected utility V 
to agent 2 exists if and only if V is in some compact set we denote as (Dv. Then, in Section 
4, we show that a constrained efficient contract can be characterized in a Bellman equation. 
Our Bellman equation is quite different from those studied by earlier writers in the dynamic 
insurance literature. Among other things, a unique feature of our Bellman equation is that 
the value function enters into the incentive constraints. 

A common important result in Green (1987), Atkeson and Lucas (1992), and Thomas 
and Worrall (1990) is, for efficient risk sharing, the expected utility of each agent converges 
to the minimum level in the set of possible expected utilities with probability one. This 
however is not the case here. In Section 5, we show that the expected utility of each agent 
converges to every level in the set of possible expected utilities with probability zero. We 
also show in this section that the constraint efficient contract is non-trivial and strictly 
dominates autarky. 

As our model is not amenable to analytic solutions, an algorithm for numerical 
computation of an efficient contract is discussed in Section 6. Then in Section 7, an 
example, where utility is exponential and endowment takes on two values, is computed. 
Among other things, we find that in this example, each agent's consumption path 
forms a stationary Markov chain. Section 8 concludes the paper with several short 
remarks. 

2. THE MODEL 

Consider the following economy. Time is discrete and lasts forever: t = 1, 2 .... There 
are two infinitely-lived agents, indexed by a= 1, 2. Both agents are risk averse and maximize 
their ex ante expected life-time utilities, and discount the future by the common discount 
factor ,B E (0, 1). There is one perishable good which the agents consume. The instantaneous 
utility function u: R-+R, shared by both agents, is assumed to satisfy the following condi- 
tions: u'(c) > 0, u"(c) <0, for all c ?0. At each date, each agent has a random endowment 
ea drawn from a finite set 0 = {OI, 02, .. O.n}, where 0< <O02< . . . < On . We assume 
that e' and et are identically and independently distributed and Prob {e, = Oi} = ir >0, for 
all t_ 1, all Oi -S and all a. 

There exist no opportunities for the two agents to borrow or lend with outside parties. 
Self-imposed punishments, such as the bonfires discussed in Holmstrom (1982) and the 
consumption lotteries in Rasmusen (1987) are also infeasible: ex post it is inefficient for 
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the two agents to commit to these strategies. Since endowments are perishable, the two 
agents are constrained to consume the entire aggregate endowment at each date. Being 
risk averse, they would wish to pool their endowments together. But this is impeded by a 
problem of information asymmetry. At each date, the history of realized endowments of 
each agent is his private information. 

Given the information structure, any possible trades in our model are to be based 
solely upon what has been reported by the two agents. For all t> 1, we denote by 
gat= (rl', . . . , 4,) agent a's reported history of endowments up to date t, where r4 is agent 

a's reported endowment at date t. Next, let the overall history of reported endowments 
up to date t be denoted by 

gt =(g g2t) = (r1, . . r,)E(e x )t= Ht, 

where rt = (r, r,), and H' is the set of possible histories up to date t. Let Ho 0. 

Definition 1. A co-insurance contract a is a sequence of functions {u,}t.=1 where 

S,: H'-+R. Call cr,(g') the amount of good transferred from agent I to agent 2 at date t, 
conditional on reported history gt up to date t. 

Therefore under contract a, at date t, agent 1 will consume -a(g') + e, and agent 
2 (gt) + e2. Note that the above way of defining a contract automatically ensures that 
the two agents will consume exactly the entire aggregate endowment at each date. Also 
note that the case where cr,= O independent of date and history corresponds to autarky. 

We now turn to define the feasibility of a contract. Let a,(gt-1, (0, O)) be the date 
t net transfer of endowment from agent I to agent 2 if reported history up to date t - I 
has been g'-' and date t current reports by the two agents are Oi and Oj respectively. 

Definition 2. A co-insurance contract a is feasible if for all t> 1 and g'- eH' ', 

-_0 <at(g 
- 

(0i, O,))?<0i, V(0i, 01)e02 (1) 

Condition (1) simply requires that, at any date, the contract will not take from any 
agent more than he claims to have received. Therefore, suppose the two agents both report 
truthfully about their endowments at each date, as they will under the conditions of 
incentive compatibility to be given shortly, then both agents will consume a non-negative 
amount of the consumption good. 

We proceed now to tackle the issue of incentive compatibility. Basically, a contract 
cr is said to be perfectly incentive compatible if, at any date, conditional on any history, 
the continuation profile of af is such that truthful reporting strategies by both agents 
concerning all future endowments constitute a Nash equilibrium. By modifying the 
approach in Green (1987), and Spear and Srivastava (1987), this can be formulated in a 
recursive manner. The idea is to decompose the super-incentive problem that each agent 
faces at the beginning of each date into a sequence of one-step incentive problems, each 
associated with a single future date. Some additional notation is needed here. Denote by 
U(oIg'', (0,, Oj)) the date t expected utility (discounted to date t + 1) that the continua- 
tion profile (from date t +1 on) of af will deliver to agent 1, conditional on reported 
history (g'- 1, (0,, Oj)) up to date t and that both will report truthfully from date t + 1 on. 

Define V(alg'-', (0,, Oj)) analogously for agent 2. 
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Definition 3. A contract af is incentive compatible if, for all t >1, gtI- H' , and 

for all (0s, Oj)C02 and OkGO, 

U(-Cr1(gt- I, (0i, 0j)) + ?i) + p QU(Cg' 1, (0i, OM) 

_>U(- at(g , (Ok, Oj)) + 0 i) + P U I gt-1 (?k ? )), (2) 

and, for all (0,, 0j)e02 and O,eQ, 

U(o1(g' , (0i, OM)) + Oj) + P V(crjg-', (0, O)) 

U(cT,(g'', (0i, O,))+0j)+flV(o]I g' (0,, 0,)). (3) 

In constraint (2), given that 0, and Oj are the endowments the two agents receive 
at date t, and reported history up to date t -1 has been gt-l, on the left-hand side 
of the inequality, -oc,(gt-', (0i, Oj)) +0i is agent l's current consumption and 
U(cog', (0i, Oj)) his future utility if he and agent 2 both report truthfully, today 
and from tomorrow on. On the right-hand side of the inequality, 
-aot(g'', (Ok, Of)) + 0i is agent l's current consumption and U(olg'', (Ok, Oj)) his 
future utility, if agent 1 cheats by reporting Ok rather than Oi, given that agent 2 
reports honestly O0 and that they both will report truthfully from tomorrow on. Hence 
by Definition 3, incentive compatibility means that, at any date, given any reported 
history, if one agent chooses to adopt the truthful reporting strategy from that date 
on, then the other cannot benefit from any one-period misrepresentation at that 
date. Note that although feasibility will guarantee that the "truth reporting" current 
consumptions -cr,(g'- 1, (0i, Oj)) + Oi and cr,(g'-1, (i, j)) - Oj are non-negative, it may 

still be the case that the "deviating"-off the equilibrium path-current consumptions 

-at(g', (Ok, Oj)) + Oi and ct(g'', (0i, Ol)) + Oj take on negative values. This is why 
we required for mathematical convenience that the utility function u be defined on the 
whole real line. 

We are now in a position to define constrained efficiency. We say that a feasible and 
incentive compatible contract a is efficient if it maximizes the ex ante expected utility of 
agent 1, denoted by U(o), subject to delivering a given ex ante expected utility, denoted 
V(cr), to agent 2. Formally, 

Definition 4. A co-insurance contract a is constrained efficient at V if it maximizes 
U(a) subject to constraints (1), (2), (3), and 

V(o) = V. (4) 

To close this section, we note that following the literature, we only look at contracts 
which implement truthful reporting strategies. We also note that here, as in Green, and 
Atkeson and Lucas, we do not impose that each agent be entitled an expected utility that 
is at least as high as the autarkic expected utility at any ex post date. We leave this 
type of enforcement issue aside to focus on the issues of private information and budget 
balancing. 

3. EXISTENCE OF THE EFFICIENT CONTRACT 

Obviously, the efficient contract defined in Definition 4 does not exist for all values of V. 
In this section, we solve the problem of existence by establishing that an efficient contract 
at V exists if and only if V is in some compact set we call (Dv. We also develop notations 
and a fixed point argument that will prove useful in the later sections. 
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Let 1D be the set of feasible and incentive compatible expected utilities: 

=_ {(U(u), V(o)) eR2Rl a s.t. (1), (2), and (3)} . 

Set D is non-empty because the autarkic contract is always feasible and incentive compat- 
ible. D is also bounded. We shall show that 1D is compact and is a fixed point of a one- 
step operator. To this end, we borrow from Abreu, Pearce and Stacchetti (1990) the 
concept of "self-generation" as our major mathematical tool. 

Let v be any non-empty and bounded set in R2. Let "[U(Oi, Oj)](Oi ,O)Ee2. Call 
0&: E2-+R2 a continuation value function with respect to P if &(Oi, Oj)= 
(U(0i, Oj), V(Oi, Oj))e'P, for all ( js, 01)ee2. 

Definition 5. Given ', a pair (s, 0?) is said to be admissible to ' if V? is a continua- 
tion value function with respect to I, and the following conditions are satisfied: 

_0j < C(Oi, 0j) < Oi, V(Oi, Oj) C 2; (5) 

V(Oi, oj)ee2 and VOkee, 

U(-uC(0, OJ) + Oi) + P+U(Oh, O1) _U(-(Ok, Oj) + Oi) + PU(Ok, OJ); (6) 

and, V(Oi, Oj)e()2 and VO,e(, 

u(cr(O,, Oi) + O0) + p V(O, Oj) _ u(U(0,, 0,) + 0j) + P V(0,, 0,). (7) 

Note that the constraints in the above definition are the one-step analogues of con- 
straints (1), (2), and (3) in the previous section. Specifically, (5) is feasibility, and (6) and 
(7) are incentive compatibility. Now for any given (s, 1), which is admissible to I, define 
the one-step expected utilities generated by this pair by 

Of(w, &) = V1(t K ), 42Kt 0&)), 

where 

of I(W 0&) = r E r gf[U(- c(Oi, Oj) + oi) + P U(Oi, Oj)], 

e2Kt O&) I= ??j [U(Uf(i, 0j) + 0j) + p V(Oi, 091 . 

If we let L'(02; R2) denote the space of bounded functions mapping from 2 to R2, then 
function ,: RE2 x L (02; R2) --R2 which is defined above is continuous when the product 
space R2x L(2; R2) is endowed with the proper product topology. Further, define 
operator B stepwise in the following way: 

B(P)_ {&Q(W, V)I (W, 0&) admissible to T}. 

Note that the operator B which maps from the collection of all non-empty and bounded 
sets in R2 to R2, is non-empty, bounded valued, and monotone in the sense that I, C'P2 

implies B(' 1) ' B(T2). 
Following Abreu, Pearce and Stacchetti (1990), T is called self-generating if T c B(T), 

i.e. if its image under operator B contains ' itself. In the appendix we show in Lemma 1 
that if ' is self-generating, then B('P) ' D. We also show in Lemma 2 that ( itself is self- 
generating. With these lemmas, we can then establish: 

Proposition 1. (i) ( is compact. (ii) (D= B((D ). 

Corollary 1. (i) (D= { VeRI there exists U such that (U, V) ec} is compact. (ii) For 
all Ve(D, (D(V) = { UeRI (U, V) (D} is compact. 
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The proof of Proposition 1 is in the Appendix. The proof of Corollary I is a straight- 
forward exercise using the first part of Proposition 1. What Corollary 1 tells us is that an 
efficient contract exists for any V in a compact set (Dv. Given that there is not a feasible 
and incentive-compatible contract for any V outside the set (D, we can then conclude 
that an efficient contract at V exists if and only if Ve Dv. Finally, the second part of 
Proposition 1, which states that D is a fixed point of B, is a useful result for analysis in 
Section 6 when an algorithm for computing D is developed. 

4. A BELLMAN EQUATION 

Given Corollary 1, we can usefully define function U*: Dv-+R in the following way: 

U*(V)-max U, VVe-D. 
UecI(V) 

That is, given that agent 2 receives an expected utility V, U*( V) is the maximum expected 
utility of agent 1 that can be achieved by a feasible and incentive-compatible contract. 
Our aim is to show that U* is a fixed point of a mapping that we now seek to define. 

Let C(V)=[of(0j, Oj)(V), V(0j, ,j)(V)](o,'0,)e02, for all VeDv. Let U:(v-*R be 

any bounded function. Given U, for all VeDv, let 

4(C( V), U) =E 7riKj[u(-of(0i, 0,) + Oi) +P3U( V(0i, 0j))], 

for all C(V) such that the following constraints are satisfied: V(0j, O,)E 0 2, 

-Oj < ?(0i, Oj)(V) < O?, V(0j, Oj)(V)et-v; (8) 

V(0,, Oj)E02 and V0kE0, 

U(-cr(0,, 0j)(V)+ Oi)+ I U(V(0i, 0j)(V)) 

_ U(-C(Ok, Oj)( V) + 0,) + /U( V(Ok, 0j )( V)); (9) 

V(0j, Oj)E02 and V0OeO, 

u(cr(0,, O)(V)+ 0)+f3V(0i, O)(V)?u(Cr(0,, 0,)(V)+Qj)+fBV(0i, 0,)(V); (10) 

and 

E(oi'i Cje2 ri 7j [U(Cr(0i, Oj)( V)+ Oj)+ P V(0j, 0 )( V)] = V.(ll 

Condition (8) requires that C(V) be feasible. Constraints (9) and (10) require that C(V) 
be incentive compatible, given U. Constraint (11) is the one-step analogue of (4) which 
promises that expected utility V be delivered to agent 2. Now define an operator T, which 

maps from bounded functions to bounded functions, as follows. Given function U, let 

ROW)( ) = sup 4(C( V), CU), VVc-(v, 

where C(V) satisfies constraints (8) through (11). 

Proposition 2. T(U*)(V)= U*(V),for all VeDv. 

A proof of Proposition 2 is in the Appendix. The following lemma states that the 

"sup" in the Bellman equation is actually attained. 

Lemma 3. T(U*)(V)=maxc(v) 4(C(V), U*),for all VeDv. 
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A proof of Lemma 3 is in the appendix. Now let C*(V)=[uf*(0i, Oj)(V), 
V*(Oi, Oj)(V)](6,IO6),02. Call C*= {C*(V): C*(V) argmaxc(p) 4(C(V), U*), VeDvl an 
efficient allocation rule,' where {u*(0i, Oj)( V): (0, Oj)E02, VeDvl is the efficient trading 
scheme and {V*(0i, 0j)( V): (0i, Oj) e02, Ve1V} is the optimal law of motion of the state 
variable. We say that an efficient allocation rule C* can generate a contract a, (or a can 
be generated by C*), if for all t> 1, h'-'eH'-', and (0i, oj)e02, 

at(ht - I, (0i, OM) = U*(Oi, Oj)( V(aj ht'-)), 

V(ajh'-', (0,, Oj))= V*(0i, Oj)(V(oih'-')), 

U(alh'-', (0,, Oj)) = U*( V*(0i, Oj)( V(alh'- ))). 

The following lemma establishes in some loose sense an equivalence relationship between 
efficient allocation rules and efficient contracts. 

Lemma 4. (i) Let af be an efficient contract. Then there exists an efficient allocation 
rule C* that generates a. (ii) Let C* be an efficient allocation rule. Then for all VeDv, an 

efficient contract a can be generated by C* such that V(u) = V. 

A formal proof of Lemma 4 is left for the reader. Due to (ii) of Lemma 4 then, to 
solve for an efficient contract, it is sufficient to solve for an efficient allocation rule which 
in turn amounts to solving the Bellman equation. For illustrative purposes, we now 
describe briefly how the contract a that is generated by C* in (ii) of Lemma 4 works. Let 
VO be the ex ante expected utility of agent 2. Suppose, at date 1, Oi and Oj are reported 
respectively by the two agents. Then the contract says that U*(Oi, Oj)( VO) amount of the 
consumption good is to be transferred from agent 1 to agent 2. In the meantime, the 
contract also determines that, from date 2 on, agent 2 is entitled to an expected utility 
V, = V*(Oi, Oj)(VO). Now as the two agents move to date 2, suppose Oi and Oj are 
reported, then a*(Oi,, Oj)(VI) will be transferred from agent 1 to agent 2, and 
V2 = V*(0i,, Oj)( V1) will be promised to agent 2 as his expected utility from date 3 on. In 
this way the contract rolls forward date by date. Notice that here the expected utility of 
agent 2, V, is acting as a state variable to summarize history. At the beginning of each 
date t, nothing but V,_, matters, for today and for the future. 

We now go on to derive a characterization of an efficient allocation rule. The following 
proposition says that no matter what agent 1 reports, agent 2 should receive a smaller 
transfer of current endowment from agent 1, and be entitled to a higher expected utility 
from tomorrow on, if he reports a higher endowment. Similarly, if he reports a lower 
endowment, then he should receive a larger transfer from agent 1 and be entitled to a 
lower expected utility from tomorrow on. 

Proposition 3. Let C* be an efficient allocation rule. Then for all VcDv, if ok-<?i 

and 0?< 0j, then 

Vf*(0k, Oj)(V) < Vf*(0i, Oj)(V) < V*(Oi, 01)(V), 

V*(Oig 01)(V) _ V*(Oig Oj)(V) _ V*(Ok,9 Oi)(V)g 

U*( V*(0Ok O;)( V)) <- U*( V*(Oig O;)( V)) -< U*( V*(0;i t01)( V)). 

1. This terminology is borrowed from Atkeson and Lucas (1992) but used here in a slightly different sense. 
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A proof of Proposition 3 is in the appendix. To fully characterize an efficient allocation 
rule, it is desirable that the Bellman equation in Proposition 2 be solved analytically. 
Green (1987), Thomas and Worrall (1990), and Atkeson and Lucas (1992) have shown 
that, for some special forms of the utility function, (exponential utility functions in particu- 
lar), it is possible to derive closed-form solutions to their Bellman equations. This, however, 
is difficult here. There are two reasons, each can be viewed as a unique feature of our 
Bellman equation, compared to those in related models. First, in the Bellman equation 
here, there are explicit upper and lower boundaries for the net transfers, o(O,, Oj)(V), 
whereas in the Bellman equations of Green (1987), Thomas and Worrall (1990), and 
Atkeson and Lucas (1992) for the exponential utility case, there is not a boundary on an 
individual agent's consumption. Second, and more important, in our Bellman equation, 
the value function U*( ) enters into not only the objective but also both sides of the 
incentive constraints. 

5. FURTHER CHARACTERIZATIONS OF THE EFFICIENT CONTRACT: 
THE CASE OF TWO ENDOWMENT VALUES 

In this section, we present two propositions to further characterize the efficient contract 
without solving for it analytically. For tractability, we focus on the case where the endow- 
ment takes on only two values, i.e. n = 2 and 0= {0, 02}. First, we show in Proposition 
4 that a contract where agent 1 transfers a constant amount of the endowment to agent 
2 in every period cannot be efficient. A corollary of Proposition 4 hence is that the autarkic 
contract is dominated by an efficient contract. 

Proposition 4. The contract & where a, = c, c being a constant,for all t is not efficient. 

A constructive proof of Proposition 4 is in the appendix. The rest of this section is 
devoted to looking at the long-run behaviour of the two agents' expected utilities. To 
motivate our result, note that a central proposition in Green (1987) is that the long-run 
distribution of expected utilities across agents is degenerate: for each individual agent in 
the population, his expected utility converges to negative infinity with probability one. 
Green assumes that his agents have an exponential utility function. Thomas and Worrall 
(1990) in their single-agent model show that for a family of utility functions which are 
not bounded from below, the agent's expected utility also converges to negative infinity 
with probability one. Atkeson and Lucas (1992) show that in cases in which the utility 
function of the agents takes either the logarithmic form, the CRRA form, or the CARA 
form, the expected utility of any individual agent converges to the minimum level in the 
set of possible expected utilities with probability one. This type of result, however, does 
not apply here. First, here by assuming that a feasible contract never takes away from 
any agent more than he receives, the two agents in our model will never consume a negative 
amount of endowment. This implies that their expected utilities are essentially bounded 
from below, although the two agents here may have the same unbounded utility function 
as the agents in, for example, Green (1987) have. This certainly rules out possibilities for 
the expected utilities of the two agents to converge to minus infinity. Further, given that 
in our model we have identical agents and they are constrained to consume the entire 
aggregate endowment each date, it is also unikely that their expected utilities will converge 
to the minimum in the expected utility possibilities with probability one. Our aim in the 
rest of the section is to show that the expected utility of each agent actually converges to 

every expected utility, including the minimum, in (Dv with probability zero. This will 
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guarantee that the long-run distributions of expected utilities of the two agents are not 
degenerate. 

Let Vo-Dv be any arbitrary ex ante expected utility that the constrained efficient 
contract would promise to agent 2. Let V,(t ?1) be the random variable representing the 
expected utility to which agent 2 is entitled at the end of date t. 

Proposition 5. Prob {lim,, V,= V}=O, for all V-Dv. 

Proof. Let {v,}, 2 be any time-series (or path) of agent 2's expected utilities that 
has the following property 

lim v, = V. (12) 
to-.o 

For each v,, let {ur*(Oi, Oj)(v,), V*(Oi, Oj)(V,)}(6,6 )EO2 be the one-step profile of the con- 
strained efficient contract at the state V= v,. We show for the first step of the proof that 
either of the following two inequalities must hold: 

lim V*(0O,O )(v,)#V, (13) 

lim V*((0, Oi)(v,) # V. (14) 

Suppose not and lim,O V*(OI, O)(v,) = lim,, V*(O,, 0 )(v,) = V. Then, since 

V*(^9n ^1)(Vt)<V* (^i, ^j)(Vt)<V* (01,0, )(Vt), V(^9i, ^j)C( 0 
2 

for all v,, it is immediate that 

lim V*(Oi, Oj)(Vt)= V, V(Oi, 0j)e02. (15) 
tr 

Apply this to the incentive constraints for agent 2 in the Bellman equation to yield 

lim [Uf*(Oi, 0j)(v,) - U*(Oi, Oj,)(V,)] 
= 

, V(O9E O9j), (^9i, O9j,) e(2. 

Since for each (0,, 01j)e02, the sequence {u*(0i, Oj)(v,)}I'=1 is bounded and hence contains 
a convergent sub-sequence. For convenience we assume that this sub-sequence is the 
sequence itself. We therefore can write: 

lim a*(0i, 0j)(V,)=C, V(0i, 1j)CE2, (16) 

where c is some constant in [-0O, 0,]. Now notice that for each v,, 

vt = 
Z(O O,)6e2 r1i 1rj Ma*(Oi Oj)(Vt) + 0j) + ,B V*(01, 0j)(Vt)]. 

Let t- oo and due to (15) and (16), the above will yield: 

1 
V= 

I p .Ee 0ffju(c+ Oj). 

This implies that the contract a' where a' = c for all t is efficient, contradicting Proposition 
4. Therefore, either (13) or (14) must be true. 

2. Note that as is standard we use the upper case for the random variable and the lower case for its 
realization. 
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We now proceed with the second step of the proof. Suppose (13) is true. Define two 
sub-sequences {xq} and {y,} of {v,} be such that 

Xq= V*(O , ,On)(yq), Vq. (17) 

We show that {Xq} can not contain infinitely many elements. Suppose the contrary, then 
due to (12), 

lim xq= lim Yq V. 
q-.co q-+co 

However, limqOO Yq = V and (17) together would imply limq-, xq X V. due to (13)?. This 
is a contradiction. Therefore {Xq} can have at most finitely many elements and hence the 
path {v,} allows only finitely many (01, O,) to occur. Such paths have a measure zero. 
Supposing (14) is true will lead us to the same conclusion. 11 

6. COMPUTING THE EFFICIENT CONTRACT 

As our discussion in Section 4 indicates, the complex nature of our Bellman equation 
makes it difficult to solve analytically for an efficient contract. In order to obtain greater 
insight into the structure of an efficient contract, in this and the next section, we turn to 
pursue a computational approach. As a first step, we explore in this section two related 
algorithms for numerical computation of an efficient contract. 

Following our analysis in Section 4, the key to solving for an efficient contract is to 
solve for D, the set of admissible expected utility pairs. Once 1D is obtained, then the set 
of admissible states, i.e. the set of admissible expected utilities of agent 2, Dv, and the 
value function of the Bellman equation, U*(V), VcDv, are readily computed. Finally, 
solving the Bellman equation given (Dv and U*( V) will yield the efficient trading scheme 
{u*(Oi, Oj)( V)} and the optimal law of motion of the state variable { V*(Oi, Oj)( V)}. 

The following lemma, which is in the spirit of Abreu-Pearce-Stacchetti (1990), pro- 
vides an algorithm for solving for D. Basically, starting with a set WoC-V R2 which is large 
enough, and operating on it iteratively using the operator B, we will then obtain a mono- 
tone sequence of sets converging to D. 

Lemma 5. Let WO be the space on which (U, V), the pair of expected utilities of the 
two agents, are allowed to take values, and assume B( WO) C Wo. Let W,+, = B( W,), Vt > 0. 
Then { W,} is monotone decreasing and limr, W, = WOO = (D. 

Here a natural candidate for W0 is [q, a] x [q, d], where a is the expected life-time 
utility of the agent if he consumes zero units of the consumption good every period, and 
d is the expected life-time utility of the agent if he consumes the aggregate endowment 
every period. Of course any set in R2 that contains [q, d] x [a, d] will also do the job. 

To numerically implement the above algorithm, Wo is not allowed to take on continu- 
ous values. We can assume that Wo contains N2 grid points uniformly distributed over 
the space [q, a] x [q, a]. That is, W= {(Up, Vq), p, q= l, 2,. . . , N}, where Up= Vp = 

a+(d-a)(p-1)/(N-1),p=1,2,.. .,N. To obtain W1=B(W0), we are essentially 
searching over Wo for all the (Up, Vq)s where there exist [(U(Oi, Oj), V(0i, 01))e 

Wo](6,61)0E02, and [ur(Oi, Oj)](e,0e )e.02, such that they satisfy conditions (5) through (7) and 

Up = E 7ri7rj[u(-cx(Oi, Oj) + Oi) +flU(0i, Q )], Vq= E 7r7rj[u(cx(0i, Oj) + Oj) +/3 V(0i, Qj)]. 

3. Remember that in (13) {v,} is any arbitrary sequence converging to Vmn. 
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Since now we are dealing with a finite space of possible expected utilities, convergence of 
the sequence { W,} will occur after a finite number of iterations. 

A deficiency of the above algorithm however is that the amount of computation that 
it requires to reach the solution can be large. At any (t + 1)th iteration, given the complex 
nature of incentive compatibility, and that the space W, over which we search for admis- 
sible expected utilities is two-dimensional, a large number of nonlinear programming 
problems must be solved. To reduce computation, we now proceed to develop an alterna- 
tive algorithm by modifying the one in Lemma 5. The idea here is to compute the value 
function of the Bellman equation directly, without having to keep track of the whole set 
of admissible expected utilities 0, as we do in Lemma 5. 

Instead of covering the whole space on which the pair of expected utilities (U, V) 
takes on values with a grid, we now assume that only V is restricted to take values on a 
discrete space containing N grid points { V(K): K= 1, 2, . . . , N}, which are distributed 
over the interval [q, a]. But for each V, U is allowed to take continuous values on the 
closed interval [a, a]. The following proposition lays out an algorithm for computing an 
efficient contract under these assumptions. 

Proposition 6. Let (F?={V(K):K=1,2,..., N}J. Let Uomin (V)=a, and 

U?max(V) = d, Ve ?D . Let (0 = {(U, V) Ue [ U% in(V), U% ax(V)I, VecD ?} . For t _ O and 
Vc-D , let 

S, + I ( V) = {E i;rj [u(- a(Oi, 0j) + Oi) + 0 U(Oi, 0A) I}, 

where [a(01, Oj), U(0j, oj)](o,,o,)Ce2 is such that there exists [V(Oi, Oj)](oj,oj)Ce2 so that 

[c(Oi, Oj), U(Oi, ?j), V(Oi, Oj)I(o,o,)6e2 is admissible to D, and satisfies the following: 

E ri[7rj[M(U(O, 0j) + 0j) + 1 V(Oi, O)] = V. 

Let 

(Dt+ I = f((Dt)= {U, V) c- Dt Vc- Pt , St + I(V):A0, U-[ UtnI( V), Ut X( V)] } 

where U+a( V) and Umtt ( V) respectively are the maximum and minimum values in the set 

S,t+(V). Then, let 

(Dti'= {Ve'Dvt 3Us.t. (U, V)E 
D,t+l}. 

Let Iv = limt, IDt , and Umax(V) =limt,oo Utnax(V), V VCI v. If T(U ax)(V) 

UOax(V), VVe(D, then (Dv= ID, and U*(V) = Umax(V), VVe-Iv. 

Proof. We begin the proof by noticing several simple facts. First, B is monotonic 
and B(IDO) s (Do. Second, B(') s B(P), V TPeR2. Third, the two sequences {D,} and 
{D I} are monotone decreasing. Fourth, for all Ve D>, { Um'ax( V)} is monotone decreasing 
but { U in(V)} is monotone increasing. 

Given the conditions, we have: {(U'x(V), V): VeIW}D'1'D, and it then follows 
immediately that O I 'z(v, and U'ax(V)? U*(V), VVe-I05 

Now let { Wt} be the monotone sequence of sets generated by operating B (rather 
than B) iteratively on (Do. Then 

D c B()Dc B(Po) = WI B(fi(o) = 4) 
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By induction it can be shown that in general, 

(D(- Wt c-Ot, Vt _0. 

But this implies that TD vD and U*(V)< U'ax(V), VVe-(D v 1 

In Proposition 6, by allowing U to take continuous values leads to a large reduction 
in the amount of search over the grid points. At any (t + 1)th iteration, we only search 
for admissible expected utilities of agent 2 along a single dimensional space P , whereas 
in Lemma 5, we were searching over a two-dimensional space W, for admissible expected 
utility pairs. However, as is commonplace in dynamic programming problems where the 
mapping that defines the Bellman equation is not a contraction and uniqueness of a fixed 
point of this mapping is not guaranteed, Proposition 6 as an algorithm only works when 
a certain requirement is satisfied. Here the key requirement is that the function UOOax must 
in fact be a fixed point of operator T. Obviously, a sufficient condition for this is that the 
operator B preserves convexity, in the sense that for all t and V, (U1, V)e W, and 
((U2, V)e iiW, together will imply (a Ui + (1 -a)U2, V)e W,, Va e(0, 1). In this case, B and 
B will essentially be equivalent. Finally, we note that although the condition that U'ax is 
a fixed point of Tmay be hard to verify analytically, it is straightforward to check computa- 
tionally after the convergence occurs. 

7. COMPUTING THE EFFICIENT CONTRACT: AN EXAMPLE 

For illustrative purposes, in this section we solve numerically a parameterized example of 
our model using the algorithm provided by Proposition 6. Assume utility is exponential, 
i.e. u(c) = -exp (-c). Assume B = 0 96. Assume the endowment can be either low or high: 
01= 0 2 and 02 = 0 4. The low and high endowments are received by each agent with equal 
probabilities: 7r, =;2=0-5. Assume that the expected utility of agent 2 can only take 
values on a finite set that contains one hundred grid points, { V(l), . . ., V(100)}, which 
are uniformly distributed over the interval [a, d], where a and a are as defined in the 
previous section. 

We find, for the efficient contract, (Dv= { V(22),. . ., V(84)}. That is, any expected 
utility which is below V(22) or above V(84) is not achievable. The value function 
U*( V(K)) is found to be concave and monotone decreasing. The efficient trading scheme 
is depicted in Figure 1. Notice that U*(01, 02)(V(K))<ua*(0j, Oi)(V(K))< 

a*(02, 01)(V(K)), i= 1, 2. Remember that this is the property we prove analytically in 
Proposition 3, which describes the impact of current endowments on current trades. Also 
notice that a*(0j, Oj)(V(K)) are monotone increasing in K, which means that 
c*(0i, Oj)( V(K)), and hence o*(0j, 0X)( V(K)) + Oj, which is the current consumption of 
agent 2, tends to increase as K increases. That is, agent 2 will receive more transfer of 
the consumption good from agent I and hence consume more currently, as his wealth 
accumulates. Similarly, agent l's current consumption -a*(0,, Oj)( V(K)) + O decreases 
as K increases. Note that this is how history affects current consumption. 

The optimal law of motion of the state variable is as follows: 

V*(O, 01)( V(K)) = V(K), K= 22,.. ., 84. 

V*(0i, 02)( V(K)) = V(K+ I ), K= 22,.. ., 83; V*(H,, 02)( V(84)) = V(84). 

V*(02, 01)(V(K))= V(K-1), K=23, . . ., 84; V*(02, 01)(V(22))= V(22). 

V*(02, 02)( V(K)) = V(K), K= 22,. . ., 84. 
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FIGURFE 1 

Net Transfer from agent I to agent 2. '+'=ca*(Oi, O0)(V(K)), '*'= *(O1, 02)(V(K)), "'='0r*(02, 01)(V(K)), 
'0=a*(02, 02)(V(K)). 

Notice that for all (0,, Oj), V*(0j, Oj)( V(K)) is monotone increasing in K. Note that this 
is how history affects future wealth: for given current endowment realizations, the agent 
will be in a better wealth position tomorrow if he is in a better wealth position today. 

The above law of motion of the state variable indicates that the expected utilities of 
each agent form a stationary Markov chain. This in turn implies that the consumption 
process of each agent also forms a stationary Markov chain. To illustrate graphically, 
Figure 2 plots an example of the expected utility paths of the two agents who start with 
almost the same ex ante expected life-time utilities over a period of 400 dates. Notice that 
although the two agents have ergodic long-run distributions in expected utilities, their 
wealth positions may still fan out temporarily. Finally, Figure 3 plots the associated 
consumption paths of the two agents. Notice the persistence in consumption that shows 
up in this figure. 

8. CONCLUDING REMARKS 

This paper studies a model of dynamic insurance under private information in a pure 
exchange economy. There are two infinitely-lived agents in our model, both risk-averse 
and each having an i.i.d. stochastic endowment stream which is unobservable to the other. 
We give sufficient and necessary conditions for the existence of a constrained efficient 
contract. We show that a constrained efficient contract can be characterized in a Bellman 
equation. An algorithm for numerical computation of an efficient contract is discussed 
and an example with exponential utility is computed. 

Our model here is simple and restricted. For example, there are only two agents in 
our model. One natural extension is to allow for multiple agents, and it is clear that the 
technical approach here is able to be modified to confront this situation. Specifically, in 
the case of N agents, an efficient contract can be defined as one which maximizes the 
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FIGURE3 2 

Expected utility paths of the two agents: '-.' =expected utility of agent 1, '-'= expected utility of agent 2. 
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FIGURE 3 

Consumption paths of the two agents. Top panel: consumption path of agent 1. Bottom panel: consumption 
path of agent 2. 

expected utility of the Nth agent, subject to delivering a given vector of expected utilities 
to the rest N- I agents. For the Bellman equation, N-I state variables, each correspond- 
ing to the expected utilities of the N- I agents, will need to be defined. 

Other extensions of the model are also possible. For example, the only consumption 
good here is perishable, it will be interesting to see how savings can be determined in a 
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bilateral trading context by allowing for storage in our model. Of course it is also important 
to understand to what extent the efficient allocations in our model can be achieved in a 
decentralized environment with price-taking traders. 

APPENDIX 

Lemma 1. If T is self-gener ating, then T c (D. 

Proof. Let T be self-generating and let V(h0) = (' (h0), 
V 2(h0))eB(T). We need to show that V(h0)eD, 

i.e., there exists a feasible and incentive-compatible co-insurance contract a(V(h10)) such that (U, V)(f(Vi(h0))) = 

V (ht). 

We start by constructing the contract ao((h0)). By the definition of B(T), there exists a pair 

(r6(V(h0)), 91(V(h0))), where W'(VI(h0)) = [((V(h0))(0i, Oj)J(ij),e2, admissible with respect to T such that 
.(9'(y(h0)), W(V(h0))) = V(h?). Define, for all (0,, 0,)e&2, that ao(h0, (0i, 0j)) = a(VI(h))(0i, Oj). Then for any 

date I reported realization of endowments, say (0i, 0,), let 

V (hl) = (ho, (, Oj )) =,& Vf y(h)) (0,, Oj) e T c- B(T). 

Where the "e" is due to the fact that 0&(V(h0)) is a selection from T and the "c" is due to the fact that T is 

self-generating. 

Now for ii(hQ')eB(T) instead of V(h0t)eB(T), follow the above procedure to obtain a2(h2) and y(h/2). 

Repeat this for all t to obtain: 

ar(t Vh)) = {a (h'), U2(h ). ,(h'), . . 

S( V (h))= {v (h) V(h') . . . V(h'), . . .}. 

We now demonstrate that S(VI((h)) is the sequence of expected utility vectors that the contract o(V(h0)) will 

generate for the two agents. Precisely, 

(U, V)(o(V(hi0))Ih') = V(h'), t=O, 1,2. (18) 

Note that if the above equation is indeed true, then it is easy to perceive that the co-insurance contract a(V(/h0)) 
is feasible, incentive-compatible and gives the two agents the expected utility vector y(h?), as is desired. To 

show that (18) is true, observe that a simple fact from the above recursive construction of a(yV(h0)) is: 

o(V(h0))Ih'=oa(vV(h')), t=O, 1, 2. 

Use this relationship to write: 

U(af(V(h1))=y ?irji[u(-aj(ht (0, 0j)) + i) +fU(af(V(ht))jht? (0, Oj))] 

= y ,rgr1[u(-oa, (h, (0i, 01)) + 0,) + / U(o(v(h, (0i, (0,,))J- 

On the other hand, by the construction of V(h?), we have: 

V"(h0 )=Z ,'r, r, [u(-of(V(h0))(0,, Oj)+0i)+fPU(i((h0))(0,, 0))J 

= E iri i, [u(- or (ho, (0, qj )) + 0i) + P v (ho, (0i, Oj ) 

Therefore, 

I V(h )- U(-(v'(1h))I flZpff,r, Iv('(h0, (0,, 0,))- U(o(f(h0, (0,, 0,))))j 

<,s sup IV I(h0, (0i, Oj)) - U(v( '(h0, (0i, 0,))))I 

<,s' sup I (h (0i, 0j)) - U(a(V(h ( 0 ))))I. 

Note that the above is true for all t>1 and all h'--'ceH'--'. Now let t-.oo. Since O<,B<1 and utilities are 

bounded, it is immediate that yV'(h0) = U(a(V)(h')), Vt>0. Therefore half of (18) is proven. In the same way 

we can show the other half to be true. 

Lemma 2. ( is self-generating. 
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Proof Let 0 = (4', 02) I (. We need to show that 4)e B(F). By definition of (, there exists a co-insurance 

contract cr(4 ) such that (U, V)(cr(o)) = b, or equally, 

0'= irigrj[u(-o,()0)(h?, (0,, Oj) + 0j) + PfU(c(0))h0, (0,, Oj))J, 

'2=Z 7r, ij r[u(.I(4)(1 A, (0,, O) + O)j) +/P V(a(o))Ih, (0s, 0,))]. 

Define a pair (', q/)(4) such that for all ( js, 1)eE2, o(4)(0j, 0j)=ac(0)(h0, (0j, Oj)), U(4)(0i, '0)= 

U(cr(O)l)hD, (0,, Oj)), and V(0)(0, Oj) = V(cr(O)lf/to, (0,, Oj)). It is then obvious that (', 4)(O) thus constructed 

is feasible and incentive compatible in the one-step sense defined by constraints (5), (6) and (7), and also gives 

the vector of expected utilities (4', 42) to the two agents. 11 

Proof of Proposition 1. (D = B(dP) is an immediate consequence of Lemma I and Lemma 2. The proof for 

the compactness of ( takes two steps. We first show that if TP is closed, then B(T) is closed, too. In other words, 

B preserves closedness. Let 'P be closed and let sequence {V,,)} C B(T) be such that lWn ty, as n-. oo . By the 

definition of B(T), there exists a sequence {(If, (&,)} with each element admissible with respect to P such that 

4( W,. ' V.) = V,,, Vn. Since the space of all admissible pairs with respect to T' is bounded, I(('7,, )} has a 

convergent subsequence (;qS ,,,) -+ (f, W), as q-+oo. But 9( W, V) is continuous in ('4, 1), we have e( W, qi) = 

limq_ oo g4(qq 
, 94,,) = lim,,- ,; V,, = tg. Left to be shown are: (a) 1' is a continuation value function with respect 

to T; and (b) ('4, 1) satisfies equations (5) through (7). To show (a), simply notice that since 0/4,(0,, Oj)e'P, 
V(0,, Oi)Ce2, and ' is closed, we have 1(0,, Oj) =limq , ",'(0i, O), V(0i, 0_)e02. (b) is obvious. Therefore 

we have shown that yipeB(T), and hence B(T) is closed. 

Now we can proceed with the second step of the proof. We need only show that (D is closed since it is 

certainly bounded. Let (F be the closure of (D. By definition, (F c (F. Since the operator B is monotone increasing, 

we thus have B(D) 5 B((f). But B(D) = (D, therfore (Dc B(F). Now since D is closed, by the result of the first 

step of the proof then, B(D) is also closed. However, since (F is the smallest closed set containing (D, it must be 

the case that FD O B(dD), that is, (F is self-generating. Therefore by Lemma 1, B((F) c(, implying 1D(. Hence 

we have shown that (F =(F, or (F is closed. 11 

Proof of Proposition 2. Fix V. Let C(V) be such that (C(V), U*) meets (8), (10), (11), and 

U(-o(0,, Oj)(V) + Oi) + PU*( V(0i, 03)(V))?u(-cr(0i, 0,)( V) + O,)+PU*( V(0,, Oi)( V)). 

To show T(U*)( V) . U*(V), we need only show that there exists a contract a which is feasible and incentive 

compatible and is such that V(cr)= V, and U(cr)= T(U*)(V). Now for each (0,, 1)e&2, since 

(U*(V(Bi, Oj)(V)), V(0,, Oj)(V))e(D, there exists a feasible and incentive-compatible contract air such that 

U(at) = U*(V(Oi, 0j)(VA) r(a#)= z(s,, j)(v), V(O,, j)eE)62. 

We can then let the contract a= {c,(h')} be constructed in the following way: 

a(ht?, (0j, 0,))-a(O,, Oj) (V), alho, (0j, 0) =j ( 0)L=2. 

We now proceed to show that U*(V)? T(U*)(V). For all U(ar)e(D(V), we have 

U(ca) Y ri 7rj[u(-aI(h10, (0,, 0j))+0,)+flU(crh?, (0i, Oj))] 

and 

V=E 7ri7r[u(cfl(h10, (0i, 0j))+0j)+flV(5ajt?, (0i, Pj))], 

where {oa(h0, (0,, Oj)), U(orlh;, (0,, Oj)), V(orhh, (0,, Oj))}(o,.o,)4e satisfies (1), (2), and (3). But by definition 

of U*(V), 

U(alll?, (0i, 0j))_< U*( V(vl0t? (0i, 0m).) 

Therefore for all U(r)E(D( V), 

U(cr)? ri7rj [u(-FI(h, (0i, I0)) + ui) + pU*( V(ovlio, (0i, 0j)))I 

=<sup 4(C(V), U*) 
C(M 

= T(U*)(V). 

Thus taking the maximum across U(a) yields U*(V)=maxu(,).4,(v U(a) ?T(U*)(V). I 
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Proof of Lemma 3. Fix V. Since I( V) is compact, there exists a contract a* such that U(a*) = U*( V). 

Then [a,(h?, (0i, 0O)), V(o*lho, (0i, 0j))J(6 ,0)62eargmaxc(v) 4(C(V), U*). 

Proof of Proposition 3. Fix V. Fix 0, and 0,. Let 01< 0j. Manipulate agent 2's incentive-compatibility 

constraints to get 

U(a*(0i, Oj)(V) + 0X) - u(a*(0i, 0,)(V) + 0j) ?fP[ V*(0i, 0,)(V) - V*(0i, 0,)(V)J, 

u(a*(0,, 01)( V) + 01) - U(a*(0i, Oj)( V) + 0,) ? PJ V*(01, 0 )( V) - V*(0i, 0,)( V)J. 

Adding these two inequalities yields: 

U(a*(0i, O0)( V) + 0 ) - U(a*(0i, 01)( V) + O0) _ U(a*(0i, O0)( V) + 0,) - U(a*(0i, 0,)( V) + 01). 

Define function f: R+ -.R as follows: 

f(0) = u(a*(0i, 0,)( V) + 0) - u(af*(0i, 0,)( V) + 0). 

Then we have: f (0,) _ f (,). Suppose, by way of contradiction, that a*(Ot, Oj)( V) > a*(0,, 0,)( V), then 

f'(0) = u'(a *(0i, Oj)( V) + 0) - u'(a *(0i, 0,)( V) + 0) < 0. 

Since 0,< 0j, f(01) >f(Oj), we have a contradiction. Therefore a*(0i, 0O)(V) <a*(0i, 0,)( V) must be the case. 

Applying this result to the first inequality in this proof, it is immediate that V*(0i, 0,)(V) < V*(Oi, 0,)(V). In 
almost the same way the remaining parts of the lemma can be shown to be true. 11 

Proof of Proposition 4. We prove the proposition by constructing a feasible and perfectly incentive 
compatible contract which strictly improves upon contract a' in the Pareto sense. Without losing generality 
assume c _ 0. Let 3e( [0, 02 - cl and let As [O, cl. Construct a contract called a(b, A) in the following way. 

For t= 1, let or(3, A)(g9, (02, 01))=c+6, and a,(6, A)(g9, (0i, 0O))=c, for (0i, O,)?(02, 01). For t=2, 
let U2(6, A)(g2)= c-A, if g'=(go, (02, 01)); otherwise U2(6, A)(g2)=c. Finally, for t_ 3, let a,(6, A)(g')=c, for 

all g'eH'. Obviously, then, a(0, 0) is just 'c. Note that for all 3 and A the contract a(6, A) thus constructed 
is certainly feasible, and it is also temporarily incentive compatible at all the dates t>2. We now proceed to 
show that by choosing the magnitudes of d and A properly, a(6, A) can be made temporarily incentive compatible 
at date I as well and satisfy the desired Pareto dominance requirement. 

A K, 

F, =0 

A E, 

FIGURE 4 
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It is straightforward to show that cr(3, A) is temporarily incentive compatible at date I if and only if the 
following inequalities hold: 

F,(3, A) = u(-c-36 + 0X) +f[rIu(-c + A +01) + r2u(-C+A+02)J 

-u(-c+ 01) -/[iru(-c+ 01)+n2U(-C+ 02) <0, (19) 

F2(6, A) = u(-c- 3 + 02) + P[7ru(-c+A+ 9,) + r2u(-c+A + 02)1 

-u(-c + 02)- P[7r,u(-c+ 0,) + r2u(-c + 02)?>-0, (20) 

G,(3, A) = u(c+ a + 0X) ++P[ru(c- A +90,) + I2u(c-A+02)J 

-u(c+ 01)- P[fJ I u(c+ 01) + 7r2U(c+ 02)] <0, (21) 

G2(3, A) = u(c+ 3 + 02) + P[rIu(c-A + 09) + r2U(c-A+ 02)1 

-U(C + 02) - P[rI U(C + 091) + r2U(C + 02)1 >-?- (22) 

And, a(3, A) strictly dominates autarky if and only if either (20) or (21) holds in strict inequality. let Q= 
{(3, A)E[0, 0,121(6,A) s.t. (19), (20), (21), (22)}. Notice that since F,(0,0)=G,(0,0)=0, i=1,2, we have 
(0, 0)eU. In the following we will show that Ql contains a point at which either (20) or (21) holds with strict 
inequality. To this end, we find that Q2 is characterized by the following facts: 

d >0, dA >0, i=1,2; 
d3 F)(8.A)=0 d3 G,48.A)=0 

d2 >A d2 <0, A=1,2; 

d3b FI(.A)=0 d32 G,(.6A)=0 

dA _dA dA _dA 
-b | -= d- - = K, > K2= d = 
d3 F1(O.O) =O d3 

GI (O.O)= O d3 F,(o.o)=o a3 G2(0.0) =O 

4With these facts in hand, the set Q is depicted graphically in Figure 4.5 Obviously then, for all 
(3, A)EQ--{A, E}, 6r(6, A) strictly dominates autarky. 11 

4. To show these facts, define functions a and y that map from R to R as follows: 

a(x) = (l/fl)[(r,u'(x-c+ 0,) + 7r2u'(X-c + 02)1--', 

7(x) = (1/f )[r I U'(X + C + 0 9) + r2U'(X + C + 02)] 

Then for i= 1, 2, we have: 

dA =a(A)u'(c-3+90)>0, 
d3 F,4 A) = 0 

dA = y(-A)u'(c + 3 + 9,) > 0, 
d5 G(A) O=0 

d2A | = -a(A)u"(--c- 6 + 9,) - a(A)3'fu'(-c- U3 + 9) 
d32 F,(,5A)=O 

x [irIu"(-c+A+01)+ r2U"(-C+A+02)J>0, 

d2| = y(-A)u"(c + 
3 

+ 0,) + y(-A)3pU'(C+ 
3 

+ 09)2 

d3 G,(SA))=0 

x [7(lu"(c- A + 01) + r2U'(C-A + 02)] < 0, 

dA 
= a(O)u'(-c + 0j), 

db Fxo.o) =o 

dA 
_ 

G|(O.O) ~ = y(0)u'(c + Oi). db Go,o0*) = 

It is straightforward to verify that a(O)u'(-c+ 9i)> y(0)u'(c + 0,). 
5. Note that the arrows in the figure point to the directions that are consistent with the inequalities from 

(19) to (22). 
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Proof of Lemma 5. { W,} is monotone decreasing because B is mototonic and B( WO) c Wo. To prove the 
limiting result, first, we show that the sequence { W,} converges. It is obvious that B( WO) c Wo. Now operate B 
repeatedly on both sides of this expression to yield: W,+, = B( W,) c W,, for all t>0, as the operator B is 
monotone increasing. Therefore { W,} is a bounded and monotone decreasing sequence. It converges and in fact 
W, = lim,_ Wt = C o W,. Second, we show that D c W,, . Obviously, D c W0. Monotonicity of B implies 
B(D) c B( WO). But B((D) = D by Proposition I and B( WO) = WI by construction, we thus have: (D c W . Iterate 
the above procedure to obtain: D c W,, for all t _ 0. Therefore b c WO. Third, we show that WOO c- (D. By the 
construction and convergence of { W,}, B( Wv) = W,. Therefore WD is self-generating. By Lemma I then, W, = 

B(W.,)C?--D 11 
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