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ABSTRACT 
Random Forests are a successful ensemble prediction technique 
that combines two sources of randomness to generate base 
decision trees; bootstrapping instances for each tree and 
considering a random subset of features at each node. Breiman in 
his introductory paper on Random Forests claims that they are 
more robust than boosting with respect to overfitting noise, and 
are able to compete with boosting in terms of predictive 
performance. Multiple recently published empirical studies 
conducted in various application domains confirm these claims. 
Random Forests use simple majority voting to combine the 
predictions of the trees. However, it is clear that each decision tree 
in a random forest may have different contribution in classifying a 
certain instance. In this paper, we demonstrate that the prediction 
performance of Random Forests may still be improved in some 
domains by replacing the combination function. Dynamic 
integration, which is based on local performance estimates of base 
predictors, can be used instead of majority voting. We conduct 
experiments on a selection of classification datasets, analysing the 
resulting accuracy, the margin and the bias and variance 
components of error. The experiments demonstrate that dynamic 
integration increases accuracy on some datasets. Even if the 
accuracy remains the same, dynamic integration always increases 
the margin. A bias/variance decomposition demonstrates that 
dynamic integration decreases the error by significantly 
decreasing the bias component while leaving the same or 
insignificantly increasing the variance. The experiments also 
demonstrate that the intrinsic similarity measure of Random 
Forests is better than the commonly used Heterogeneous 
Euclidean/Overlap Metric in finding a neighbourhood for local 
estimates in this context. 

Categories and Subject Descriptors 
H.2.8 [Information Systems]: Database Management – Database 

Applications, Data Mining 

I.2.6 [Computing Methodologies]: Artificial Intelligence – 
Learning  

I.5.1 [Computing Methodologies]: Pattern Recognition – Models 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
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1. INTRODUCTION 
Ensemble learning is one of the most important current directions 
in machine learning and data mining. Predictive performance 
demonstrated by ensembles of models is usually comparable or 

even better than the performance that can be achieved by the best 
single sophisticated models in many application domains [8].  

Random Forests are a relatively young (they were introduced in 
2001), but effective and popular ensemble learning technique [6].  
It is based on combining two sources of randomness when 
generating decision trees: (1) each tree is constructed on a 
bootstrap replicate of the original dataset as in bagging, and (2) a 
random feature subset of a fixed predefined size is considered for 
each node at tree construction. Random Forests were 
demonstrated to compare favourably with boosting in terms of 
predictive performance and to be more robust than boosting with 
respect to overfitting noisy instances in various classification and 
regression domains. In classification, Random Forests often 
achieve error rates comparable to the Bayes rate [6]. 

In the standard Random Forests algorithm [6] simple majority 
voting or averaging are used to combine predictions of the base 
decision trees. In classification, each decision tree votes for the 
most popular class by casting a unit vote. In regression, outputs of 
the base decision trees are simply averaged. However, obviously, 
base decision trees may have different strengths at processing 
different instances. Due to the two sources of randomness used, 
base models in Random Forests are usually relatively weak, and 
significantly vary in their predictive performance. It was 
demonstrated with various ensemble designs that ensemble 
performance may often be improved by replacing the simple 
majority voting procedure or averaging with a more sophisticated 
combination function [7, 15]. 

A natural possible extension to Random Forests is to improve the 
combination of trees by taking into account their local predictive 
performance. One such combination technique, which could be 
used here, is dynamic integration [15]. In dynamic integration, 
local predictive performance is first estimated for each base model 
based on the performance on similar instances, and then it is used 
to calculate a corresponding weight for combining predictions 
with locally weighted voting (Dynamic Voting), or simply a 
model with the best local performance is selected (Dynamic 
Selection).  

Random Forests provide us with an intrinsic similarity metric, 
which could be used in dynamic integration. The proportion of the 
base trees where two instances appear together in the same leaves 
can be used as a measure of similarity between the instances [6]. 
In this paper we evaluate the two alternative combination 
functions. We find that dynamic integration does improve the 
performance of Random Forests. We also find that this intrinsic 
similarity metric is very effective; this is not surprising as it is in 

tune with the dynamics of the ensemble. 

This paper is organized as follows: in Section 2 we review the 
Random Forests ensemble prediction technique, in Section 3 we 
consider how it can be augmented with dynamic integration of 
predictive models, in Section 4 we present the results of our 



experiments comparing majority voting with dynamic integration 
of classifiers as combination functions in Random Forests on a 
selection of benchmark datasets, and in Section 5 we conclude 
with a brief summary and further research directions. 

2. RANDOM FORESTS 
Breiman in his paper [6] demonstrated that optimal ensemble 
performance could be achieved by injecting randomness in order 
to minimize correlation between base models while maintaining 
accuracy. In terms of the bias/variance decomposition of error, 
this means that the base models in an ensemble should have 
maximal variance while keeping bias low.  

In Random Forests this is achieved by combining two sources of 
randomness. First, instances used to grow each tree are sampled 
randomly without replacement from the original training set. 
Second, Random Forests consist of using randomly selected 
features at each node to grow each tree [6]. Using the Strong Law 
of Large Numbers, Breiman demonstrated that Random Forests 
always converge so that overfitting is not a problem, that is 
Random Forests never overfit as more trees are added. Multiple 
recent empirical studies demonstrate Random Forests to be 
competitive in accuracy with the best classification and regression 
algorithms in a number of application domains. 

Random Forests have a set of desirable properties [6]: 

(1) their predictive performance is as good as boosting and 
sometimes better (especially on noisy datasets); 

(2) they are relatively robust to outliers and noise; 

(3) they are faster than many other ensembles, bagging and 
boosting in particular; 

(4) due to the use of bootstrapping as in bagging, they give useful 
internal (so-called out-of-bag) estimates of error, strength 
(margin), correlation and feature importance; 

(5) they are simple and easily parallelized. 

Random Forests were demonstrated to produce error rates not far 
above the Bayes error rate [6]. However, in some domains their 
accuracy still can be improved. For example, Robnik-Šikonja in 
[11] considered two ways of improving Random Forests: (1) a 
combination of several feature selection criteria such as Gini 
index, Gain ratio, MDL, ReliefF and j-measure in order to reduce 
correlation and increase variance in the forests, and (2) 
replacement of majority voting with locally weighted voting as a 
new combination function in Random Forests. It was 
demonstrated that both of the ways might lead to some 
improvement in performance and the improvement due to the 
replacement of combination function was statistically significant 
for several datasets. In this paper our focus is on the second way – 
the replacement of combination function. 

3. IMPROVING RANDOM FORESTS 

3.1 Dynamic Integration of Predictive Models 
In this sub-section we consider the basic idea of dynamic 
integration of predictive models in an ensemble and give a brief 
review of related work. 

Brodley and Lane [7] have shown that simply increasing diversity 
of an ensemble is not enough to ensure increased predictive 
performance. If an integration method does not utilize diversity, 

then no benefit arises from the integration. The task of ensemble 
integration is to decide which of the models to select or how to 
combine the results produced by the base models for each 
particular instance. A number of selection and combination 
approaches to integration have been proposed [7, 8, 12, 13, 15]. 

One of the most popular and simplest techniques used to combine 
the results of base models in a classification ensemble, which is 
also used in Random Forests, is simple voting (also called 
majority voting) [2]. In voting, the output of each base classifier is 
considered as a vote for that particular class value. The class value 
that receives the biggest number of votes is selected as the final 
classification. Weighted Voting (WV), where each vote has a 
weight proportional to the estimated generalization performance 
of the corresponding classifier, usually has better predictive 
performance than simple voting [2]. An analogue of voting in 
regression is the simple averaging of numeric outputs. 

A number of selection techniques have also been proposed to 
address the task of integration. One of the most popular and 
simplest selection techniques is Cross-Validation Majority (CVM) 
[13]. In CVM, cross-validation accuracy for each base classifier is 
first estimated, and then the classifier with the highest accuracy is 
selected. The same principle can be used in regression. 

The approaches described above are static. They select one model 
for the whole data space or combine the models uniformly. In 
dynamic integration information about each new instance to be 
processed is taken into account. Experimental studies in many 
application domains demonstrate that better results can often be 
achieved if integration is dynamic. 

Three dynamic integration techniques based on the same local 
performance estimates; Dynamic Selection (DS), Dynamic Voting 
(DV), and Dynamic Voting with Selection (DVS), variants of 
which we also use in our experiments in this paper, were 
considered in [15]. These dynamic techniques have the same 
training phase. In classification, the local errors of each base 
classifier for each instance of the training set are estimated 
according to the 1/0 loss function using cross validation. The 
training phase finishes with training the base classifiers on the 
whole training set. The application phase begins with determining 
k-nearest neighbours for a new instance. Then, weighted nearest 
neighbour learning is used to predict the local errors of each base 
classifier for the new instance. 

Then, DS simply selects a classifier with the least predicted local 
error. In DV, each base classifier receives a weight that is 
proportional to its estimated local accuracy, and the final 
classification is produced using weighted voting. In DVS, the 
base classifiers with the highest local errors are discarded (the 
classifiers with the errors that fall into the upper half of the error 
interval) and locally weighted voting (DV) is applied to the 
remaining classifiers. 

In fact, the basic idea in the dynamic integration approach 
suggested consists in learning (meta-level learning) the predictive 
performance of base models. Lazy learning is used in order to 
predict the local performance of the base models in an ensemble. 

Dynamic integration was successfully applied in a number of 
contexts, outperforming other integration methods. In [15] the 
three dynamic integration techniques were used to combine the 
base classifiers generated with bagging and boosting, improving 



the predictive performance of the two most popular ensemble 
techniques. In [14] dynamic integration was considered in the 
context of ensembles with base classifiers generated on different 
feature subsets (using so-called ensemble feature selection). In 
[12] an adaptation of the three dynamic integration techniques to 
regression is considered and applied for ensembles generated 
using the random subspace method. 

3.2 Dynamic Integration in Random Forests 
In this sub-section we consider the details of how dynamic 
integration can be implemented with Random Forests. 

Random Forests have the very appealing property that each tree is 
built on a bootstrap replicate of the original training set. The 
remaining (out-of-bag) instances are useful for evaluating 
Random Forests and their component trees. The out-of-bag 
instances could be used to estimate the base trees’ accuracy, 
margin, correlation, and even feature importance in the domain 
[6]. This property can be used in dynamic integration as well. 
With out-of-bag instances there is no need for cross-validation or 
for a separate validation set in order to get the estimates of the 
base models’ performance. Instead, the performance of base 
models on out-of-bag instances can be simply recorded at the end 
of training phase and later used for local performance prediction 
on similar out-of-bag instances.  

Different distance functions can be used for determining the 
neighbourhood of the current test instance in dynamic integration. 
The simplest and most common way is to use the heterogeneous 
Euclidean/overlap metric (HEOM)[17] in the instance space as in 
[15]. In HEOM, the Euclidean distance is used with numeric 
features, and the overlap distance with categorical features in 
order to find a distance between two instances x1 and x2 as shown 
in (1) and (2), where m is the number of features. For a numeric 
feature a the distance is normalised by the width of the range of 
values of the corresponding feature on the training set rangea: 
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The Euclidean distance for numeric features and the overlap 
distance for categorical were demonstrated to be robust and 
difficult to compete with in many applications, see for example 
[17]. However, Random Forests provide us with an intrinsic 
instance similarity metric, which could be used in dynamic 
integration as well. Breiman [6] suggested the proportion of the 
component trees where two instances appear together in the same 
leaves as a measure of similarity between the two instances.  

This distance was demonstrated to be useful in different tasks 
such as clustering, outlier removal, visualisation and finding 
prototypes in many application domains such as bioinformatics. It 
is important to note that two instances that are quite close together 
in the Euclidean (or HEOM) space might have relatively small 

intrinsic similarity if they are near the classification boundary. 
The intrinsic random forest similarity demands )(nKO  additional 
space for saving information about n training instances in the 
leaves of the K trees. 

We use both HEOM and the intrinsic random forest similarity as 
metrics for finding a neighbourhood for local performance 
estimates in our experiments with dynamic integration in this 
paper. In order to calculate the weight for model i in dynamic 
integration for a new instance x, we suggest to use: 

∑

∑

=

=

⋅∈

⋅⋅∈

=
k

j

jij

k

j

jijij

i

OOBI

mrOOBI

w

1

1

),()(

)(),()(

)(

xxx

xxxx

x

σ

σ

 (3) 

where k is the size of the neighbourhood,  OOBi is the set of out-
of-bag instances for model i, I() is an indicator function, ),( jxxσ  

is a distance-based relevance coefficient and mri(xj) is the margin 
(4) of model i on jth nearest neighbour of x. Margin is defined as 
usual for a classifier with crisp outputs (1 for a correct prediction, 
and –1 for a wrong one): 
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The denominator in (3) is necessary for normalizing the relevance 
coefficients ),( jxxσ  to sum to one on the corresponding out-of-

bag instances. In fact, weight (3) represents the expected margin 
of model i at instance x. We normalize weights (3) to be non-
negative and to sum to one in order to apply them in (locally) 
weighted voting in dynamic integration. After weights (3) are 
calculated, the three dynamic integration functions (DS, DV and 
DVS) are applied as described in Section 3.1. 

The distance-based weight coefficient ),( jxxσ  should reflect 

similarity between the two instances. In our experiments with two 
distance metrics we use the inverse HEOM distance and the cube 
of the intrinsic random forest similarity as the corresponding 
distance-based weight coefficients: 
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A simple weighting function that just raises the distance to a 
negative power is perhaps the most commonly used weighting 
function in locally weighted learning, and is often used for the 
Euclidean and overlap metrics [1]. It is also used in most previous 
experiments with dynamic integration [14,15]. The cube in (6) 
was selected after a small series of experiments on a few separate 
benchmark datasets (not included in the experiments presented in 
Section 4) comparing different natural number powers of the 
intrinsic similarity. It is important to notice that (5) and (6) are not 
necessarily optimal and perhaps better weighting functions could 
be suggested for particular datasets. However, it is enough to use 
these simple functions in our experiments to demonstrate the 
potential of locally weighted learning in dynamic integration. In 
our experiments we also consider a non-weighted 



( 1),(:),( =∀ jj xxxx σ ) variant of (3), demonstrating that the use 

of weights is usually superior for both of the distance metrics. 

Now we can categorize the dynamic integration technique for 
Random Forests previously considered in [11] according to the 
introduced notation. The proposed technique used the intrinsic 
random forest similarity without locally weighting margins. The 
technique itself is almost identical to DVS – it just skips the 
negative weights in (3). In this study, comparing with [11], we 
analyse two distance metrics (HEOM and intrinsic similarity), 
compare the locally weighted and non-weighted cases, and 
different sizes of neighbourhood with respect to the three dynamic 
integration functions (DS, DV, and DVS). Besides analysing 
accuracy for ensembles of different sizes, we consider the 
influence of dynamic integration on the ensemble margin and 
provide the bias/variance decomposition of error. 

4. EXPERIMENTAL STUDIES 

4.1 Experimental Setup 
In our experimental studies we used an implementation based on 
the machine learning library WEKA 3.4.2 (available at 
http://www.cs.waikato.ac.nz/~ml/weka/), which is currently 
perhaps the most popular library of machine learning algorithms 
[18]. In this implementation, Information Gain is used as the 
splitting criterion for growing each (unpruned) tree, the number of 
randomly selected features in each node is the integer part of 

1log2 +M , where M is the number of features in the dataset. 

We experiment with random forests including 10, 25, 50 and 100 
trees. A forest of 100 trees is constructed each time at the training 
phase, and the first 10, 25 and 50 trees out of these 100 are 
considered for the ensembles of smaller sizes. At the application 
phase, we experiment with 4 different integration strategies to 
combine the predictions of the trees; plain static majority voting 
(SV) and the three dynamic techniques; DS, DV and DVS. In 
order to determine the neighbourhood for the dynamic techniques, 
two distance metrics are used; HEOM and intrinsic similarity. We 
consider both a locally weighted and non-weighted calculation of 
local performance estimates (3). We experiment with 4 different 
sizes of neighbourhood; 15, 31, 63, and 127. We estimate the 
accuracy and the margin for the four integration strategies using 
30 runs of hold-out cross validation with 70%/30% train/test split 
of the dataset. 

In our experiments we use 27 benchmark datasets. 24 of these 
datasets are from the UCI machine learning repository [4]. The 
Parity2 and Parity3 datasets were considered in [11]. They have 2 
and 3 binary parity attributes respectively. Each of these parity 
problems also contains 10 random irrelevant binary attributes. The 
Images dataset consists of 1000 image windows drawn from 2 
monochrome images of natural scenes. The sizes of the original 
images were 512 x 256 pixels, and windows of size 50 x 50 were 
randomly drawn from the images. Each image window was 
presented as a one d-dimensional column vector (d = 2500). 
These images were previously considered by Bingham and 
Mannila in [3] (here we consider the 2 first classes only instead of 
all 13 considered in their paper). The characteristics of the 
datasets are collected in Table 1, including the number of 
instances (Size), categorical features (Cat.Feats), numeric features 
(Num.Feats) and class values (Classes).  

Table 1.  Dataset summary 

 Name  Size Cat.Feats Num.Feats Classes 

Audiology 226 69 0 24 
Balance 625 0 4 3 
Breast cancer 286 9 0 2 
Car 1728 6 0 4 
Pima diabetes 768 0 8 2 
DNAp 106 57 0 2 
Glass recognition 214 0 9 6 
Heart disease 270 0 13 2 
Images 1000 0 2500 2 
Ionosphere 351 0 34 2 
Iris Plants 150 0 4 3 
LED 300 7 0 10 
LED17 300 24 0 10 
Liver disorders 345 0 6 2 
Lymphography 148 15 3 4 
MONK-1 432 6 0 2 
MONK-2 432 6 0 2 
MONK-3 432 6 0 2 
Parity2 200 12 0 2 
Parity3 200 13 0 2 
Sonar 208 0 60 2 
Soybean 47 0 35 4 
Thyroid 215 0 5 3 
Tic-tac-toe 958 9 0 2 
Vehicle 846 0 18 4 
Voting 435 16 0 2 
Zoo 101 16 0 7 

 

4.2 Analysis of Classification Accuracy 
As was mentioned in Section 2, Random Forests often give an 
error rate comparable to the Bayes rate. This is especially so for 
many relatively simple datasets from the UCI repository. Thus, it 
is no surprise that their accuracy is very difficult to beat for any 
technique, including Random Forests with dynamic integration. In 
our experiments, on 12 out of the 27 datasets considered there was 
a statistically significant accuracy improvement due to the use of 
dynamic integration with some configuration. With the remaining 
datasets accuracy achieved was similar to plain Random Forests, 
or the difference was insignificant. We continue the analysis of 
experimental results focusing on the 12 datasets on which some 
form of dynamic integration helped to improve accuracy. 

The first surprising tendency which we could see from the 
experimental results was that the accuracy of DS was very poor. 
On most datasets DS significantly decreased the accuracy of 
Random Forests with any local learning scheme and the size of 
neighbourhood. Only with 2 datasets was its accuracy better; 
MONK-2 and Parity2. These datasets represent artificial concepts 
“well suitable” for dynamic integration. Such a poor behaviour of 
DS is surprising, because much research in the area of ensembles 
is concentrated on (dynamic) classifier selection, and this is 
justified by its good performance in many application domains. 
However, in the context of Random Forests, the base models are 
usually weak and diverse, which makes the task of classifier 
selection difficult. This is in line with [11], where the poor 
performance of classifier selection in the context of Random 
Forests was also mentioned. We continue the analysis of 



experimental results with the other two dynamic integration 
techniques; DV and DVS. Fortunately, their behaviour is much 
better and they are able to compete with majority voting in terms 
of accuracy.  We shall come back to DS in Section 4.4, where its 
behaviour is explained in terms of bias/variance error 
decomposition.  

DVS and DV give very close results, with DVS being a little 
better on average. The focus of our further analysis of 
experimental results is on DVS. However, all the dependencies 
presented hold true both for DVS and DV (unless otherwise 
stated). 

An important question with any lazy learning technique is the size 
of neighbourhood used. In Figure 1 the average accuracy is 
presented for DVS with ensembles of 4 sizes (10, 25, 50 and 100) 
for 4 different sizes of neighbourhood (15, 31, 63, 127). The 
results are averaged over the 12 datasets and 4 different local 
learning schemes (2 distances with and without local weighting 
each).  
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Figure 1. Classification accuracy of DVS Random Forests for 

different sizes of neighbourhood and ensemble sizes 

Naturally, accuracy decreases with the increase in the size of 
neighbourhood, becoming closer to simple static majority voting. 
Dynamic integration is not sensitive to the size of neighbourhood. 
The neighbourhoods of 15 and 31 instances give very close 
results. This supports a similar claim made in [11].  

These results are averaged over the datasets and different local 
learning schemes. However, the same tendency holds true in every 
case. For the locally weighted cases the lines presented are a little 
flatter (they are closer to horizontal lines), while for the non-
weighted cases the size of neighbourhood is a little more 
important. We continue our analysis of experimental results 
focusing on the size of neighbourhood equal to 15, as it gives the 
best improvement due to dynamic integration on average. 

Now let us consider different local learning schemes for dynamic 
integration. In Figure 2 the accuracy of plain Random Forests 
with static voting (SV) is compared with Random Forests with 
DVS for the 4 different local learning schemes; HEOM, equally-
weighted (DVSheom) and locally weighted (DVSheomw), and 
intrinsic random forest similarity, equally-weighted (DVSrf) and 
locally weighted (DVSrfw) for the 4 different ensemble sizes with 
15 instances in the neighbourhood, averaged over the 12 datasets. 
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Figure 2. Classification accuracy of plain and DVS Random 

Forests for different local learning schemes and ensemble sizes 

This figure reveals a few interesting tendencies. First, it shows the 
average improvement due to dynamic integration, which is more 
than 1.5% with any local learning scheme for the ensembles with 
100 trees. Second, all the schemes give close results. However, it 
can be seen that the locally weighed schemes out-perform their 
equally weighted counterparts, and the intrinsic similarity results 
out-perform the HEOM results in general. An interesting result is 
that the locally weighted intrinsic similarity scheme clearly stands 
out on the figure. As we shall later see, this superiority will also 
be supported by tests for statistical significance and the analysis of 
margin for each dataset. 

In Table 2 accuracy results are given for the ensembles of 100 
trees for plain Random Forests with static voting (SV) and for the 
four local learning schemes used in combination with DVS 
(DVSheom, DVSheomw, DVSrf and DVSrfw) for the 12 datasets. 
The neighbourhood size of 15 is used in the dynamic integration 
strategies.  

The table includes the dataset name, the minimum, average and 
maximum accuracy of ensemble members, their agreement (the 
proportion of instances correctly classified by every ensemble 
member) and coverage (the proportion of instances correctly 
classified by at least one ensemble member), and the classification 
accuracies for the five integration strategies. Numbers given in 
bold represent the significant wins of corresponding DVS 
strategies over SV (according to the paired t-test with 0.95 level 
of significance). 

This table demonstrates the fact that Random Forests ensembles 
contain weak and highly diverse base classifiers.  In many 
domains Random Forests out-perform the best component 
decision tree (except the Glass, Zoo and Parity problems). Out of 
the four local learning strategies, locally weighted intrinsic 
similarity (DVSrfw) demonstrates the most robust behaviour with 
the best average accuracy and 9 wins (with 8 wins for DVSheom 
and 7 wins for DVSrf and DVSheomw). Dynamic integration 
(DVS strategy) gives always similar or better accuracy than SV in 
these domains. The same situation holds true with DVS and with 
the ensembles of other sizes (10, 25 and 50). 



Table 2.  Classification accuracy for plain Random Forests and for the four local learning schemes used with DVS 

Dataset Min Aver Max Agr Cov SV DVSheom DVSheomw DVSrf DVSrfw 

Audiology 0.316 0.507 0.707 0.010 0.907 0.727 0.741 0.740 0.739 0.739 

Car 0.755 0.830 0.888 0.228 1.000 0.935 0.938 0.937 0.936 0.937 

DNAp 0.385 0.636 0.872 0.000 1.000 0.908 0.914 0.911 0.908 0.913 

Glass 0.495 0.637 0.770 0.047 0.991 0.762 0.765 0.764 0.770 0.772 

Images 0.566 0.639 0.708 0 1 0.85 0.859 0.86 0.857 0.859 

MONK-1 0.624 0.824 0.989 0.068 1.000 0.997 0.999 1.000 1.000 1.000 

Parity2 0.397 0.658 0.999 0.000 1.000 0.925 0.973 0.974 0.978 0.977 

Parity3 0.350 0.543 0.860 0.000 1.000 0.639 0.716 0.724 0.713 0.724 

Sonar 0.524 0.689 0.835 0.001 1.000 0.830 0.841 0.840 0.840 0.844 

Tic-tac-toe 0.673 0.765 0.845 0.013 1.000 0.936 0.960 0.961 0.961 0.966 

Vehicle 0.605 0.675 0.738 0.061 1.000 0.746 0.748 0.748 0.749 0.749 

Zoo 0.709 0.844 0.959 0.491 0.988 0.898 0.898 0.904 0.899 0.912 

Average 0.533 0.687 0.848 0.077 0.991 0.846 0.863 0.864 0.863 0.866 

 

An interesting tendency revealed by this table, concerns the 
behaviour of dynamic integration on datasets with different types 
of features (categorical and numeric). Dynamic integration (at 
least in its present implementation) is more robust and 
demonstrates bigger gains on datasets with categorical features. 
First, the original pool of datasets included 14 categorical and 12 
numeric datasets (one, Lymphography, is heterogeneous). The 
selected 12 datasets with an increase of predictive performance 
due to dynamic integration include 8 categorical and only 4 
numeric datasets. Second, the average gain in accuracy due to 
dynamic integration is considerably bigger for categorical data.  

In Figure 3 average accuracy of plain and DVS Random Forests 
for different local learning schemes and ensemble sizes is shown 
averaged over the 4 numeric datasets only (Glass, Images, Sonar 
and Vehicle). This figure has the same format as Figure 2. 

While it can be seen from the figure that all the discovered 
tendencies (the superiority of dynamic integration and the relative 
superiority of intrinsic similarity and locally weighted schemes) 
hold true with the numeric datasets as well, the gain due to 
dynamic integration is considerably less with numeric data than 
with the categorical data (0.9% vs 2.5% with the DVSrfw locally 
weighted learning strategy, which gives the best gain).  

4.3 Analysis of Classification Margin 
Besides the accuracy for the different integration techniques 
considered we also measured margin for static voting, DV and 
DVS. We did not measure margin for DS because in DS one 
classifier only is selected and the average margin for a classifier 
with crisp predictions can be simply derived from its accuracy. 

The margin of a classifier h on instance x measures the extent to 
which the average vote for the right class y(x) exceeds the 
maximal average vote for any other class: 
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Average margin over the test instances represents an estimate of 
expected margin for the classification problem considered and is 
an important characteristic for any learning algorithm [6,11]. 
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Figure 3. Classification accuracy of plain and DVS Random 

Forests for different local learning schemes and ensemble sizes 

for the 4 numeric datasets 

In Table 3 the margin is given for the plain Random Forests and 
for the 4 local learning schemes used in combination with DV and 
DVS. From this table one can see that dynamic integration always 
increases the margin of plain Random Forests on these 12 
datasets. Interestingly, this increase is always significant 
(according to the t-test). Besides, dynamic integration often 
increases the margin even when the accuracy of dynamic 
integration remains the same with static voting (on the rest of 27 
datasets). This behaviour of dynamic integration is close to the 
behaviour of boosting which was proven in theory and 
demonstrated empirically to always increase (or at least not to 
decrease) the margin. 



Table 3.  Classification margin for plain Random Forests and for the four local learning schemes with DV and DVS 

Dataset SV DVheom DVSheom DVheomw DVSheomw DVrf DVSrf DVrfw DVSrfw 

Audiology 0.255 0.282 0.291 0.286 0.302 0.285 0.296 0.306 0.314 

Car 0.701 0.724 0.729 0.726 0.733 0.729 0.735 0.746 0.754 

DNAp 0.267 0.289 0.298 0.289 0.302 0.299 0.310 0.306 0.322 

Glass 0.370 0.382 0.386 0.387 0.394 0.387 0.392 0.403 0.411 

Images 0.276 0.284 0.287 0.286 0.289 0.286 0.289 0.29 0.295 

MONK-1 0.614 0.677 0.689 0.680 0.700 0.696 0.716 0.728 0.754 

Parity2 0.315 0.406 0.434 0.412 0.454 0.416 0.449 0.444 0.484 

Parity3 0.092 0.138 0.160 0.140 0.172 0.143 0.165 0.165 0.187 

Sonar 0.377 0.392 0.397 0.396 0.406 0.400 0.406 0.408 0.420 

Tic-tac-toe 0.513 0.558 0.571 0.559 0.575 0.566 0.582 0.584 0.608 

Vehicle 0.418 0.424 0.426 0.425 0.427 0.428 0.429 0.430 0.434 

Zoo 0.752 0.759 0.761 0.771 0.775 0.761 0.763 0.779 0.782 

Average 0.413 0.443 0.452 0.446 0.461 0.450 0.461 0.466 0.480 

 

This behaviour is not so surprising, as the notion of a diverse 
ensemble is somewhat at odds with the concept of a high 
classification margin, i.e. diversity can be achieved by squeezing 

the margin. Naturally, the base classifiers in Random Forests are 
weak and diverse, and their margin can be simply improved. 

Interestingly, the margins of weighted schemes are always greater 
than the corresponding margins of non-weighted schemes, and the 
margins using random forest similarity are always greater than the 
corresponding margins of HEOM. Another interesting and 
somewhat surprising tendency when one considers separate 
locally learning schemes is that while all the other three schemes 
give pretty close results, the margins with locally weighted 
intrinsic similarity (DVrfw and DVSrfw) usually clearly stand out 
and are always statistically significantly higher than all the other 
corresponding margins, supporting its relative superiority in 
accuracy shown in Figure 1 (this could be seen from the average 
values in Table 3 as well). The results in Table 3 clearly show the 
superiority of the intrinsic random forest similarity over HEOM in 
finding a neighbourhood for dynamic integration. The fact that the 
locally weighted intrinsic similarity always produces a statistically 
significantly greater margin, even though the corresponding 
accuracy may not always be significantly different in comparison 
with the other local learning schemes, demonstrates its greater 
strength in this context. 

Another interesting tendency is that DVS always increases the 
margin of DV, and in the vast majority of cases this increase is 
statistically significant. This happens even when the accuracy of 
DVS is similar to or even less than that of DV. This behaviour can 
be explained by the fact that DVS tries to focus on more “likely to 
be correct here” classifiers and thus tends to decrease the 
contribution of wrong predictions, even if they do not change the 
final classification. 

In Figure 4 the average margin is shown for the plain Random 
Forests and for the 4 local learning schemes with DVS for the 
ensembles of different sizes (10, 25, 50 and 100). The figure 
confirms previously described tendencies. It is interesting that the 
increase in margin with the addition of more ensemble members is 

not so obvious as the increase in accuracy. The increase in margin 
from 10 to 100 members is less than 0.01 for plain Random 
Forests and is about 0.015 with the dynamic integration 
techniques. The corresponding increase in accuracy is always 
about 4.5% (see Figure 2) and the lines are steeper. There is 
almost no increase in margin when the ensemble grows from 50 to 
100 members. The reason for that might be that the margin 
reflects mostly the bias component of error, and small ensembles 
already have pretty good bias, and the increase in accuracy with 
the addition of new members is mostly due to the decrease in 
variance. 
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Figure 4. Classification margin of plain and DVS Random 

Forests for different local learning schemes and ensemble sizes 

4.4 Bias/Variance Decomposition of Error 
The bias/variance analysis is useful in focusing attention on two 
significant factors that govern the predictive performance of 
models trained by a learning system. If a learning system when 
provided different training data develops models that differ in 
their predictions, then the extent of such variance provides a 
lower limit on the expected error of those models when applied to 
any subsequent set of test data. 



However, preventing such variance between the models will not 
guarantee the elimination of prediction error. This error is also 
governed by the accuracy of the learning bias and, in the case of 
classification, by the degree to which the correct classification for 
an instance can differ from those for other instances with identical 
descriptions (irreducible or Bayes error) [16]. 

Perhaps the most popular application domain for bias/variance 
analysis is ensemble learning [5,16]. The bias/variance 
decomposition of error helps to better understand ensemble’s 
behaviour in reducing the generalization error of a single model. 
It was demonstrated that most ensemble techniques, such as 
bagging, reduce the variance component of error, while adaptive 
resampling-based (also called arcing and boosting) ensemble 
techniques such as AdaBoost are able to reduce both bias and 
variance [5,16]. 

While in regression there exists a well known and commonly used 
bias/variance decomposition based on squared (quadratic) loss, 
originating from the field of statistics called sampling theory, the 
situation with classification and zero-one loss is, unfortunately, 
not so clear. Recently, several decompositions have been 
proposed for zero-one loss, but many of them have a significant 
shortcoming in that they have only an intuitive relationship to the 
original purely additive squared-loss decomposition [9]. 

In our experiments, we consider two bias/variance 
decompositions; those of Kohavi and Wolpert [10] and Breiman 
[5]. They closely capture the original squared loss definitions and 
have a behaviour that corresponds with intuition. Both of these 
metrics decompose the error into three components; bias, variance 
and the irreducible Bayes error. While it is useful to take account 
of irreducible error in some cases, for the analysis of Random 
Forests, our interest centers on the manner in which bias and 
variance are affected by different ensemble integration strategies. 
The irreducible error is difficult if possible to estimate given only 
one dataset of limited size. Following the usual practice of 
bias/variance estimation (see for example [16]), we ignore the 
irreducible error and use modified formulae for the two 
decompositions in order to estimate the bias and variance 
components of error, distributing the irreducible error across the 
bias and/or variance terms. 

For the Kohavi-Wolpert decomposition, we use their original 
formula of variance for a test instance x [10] and calculate bias as 
the difference between error and variance, thus combining the 
irreducible error with the original bias term:  
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In the simplified notation used, h(x) is a model from a collection 
of classifiers generated with the same learning algorithm under 
investigation on a set of training samples. Y is the set of possible 
class values, and y(x) is the ground truth class value. 

The bias/variance decomposition of Breiman [5] is based on the 
concept of central tendency ho(x) and is calculated as follows: 

)))()(())()((()( o xxxxx hhyhPbiasB =∧≠=  (10) 

)))()(())()((()( o xxxxx hhyhPvarianceB ≠∧≠=  (11) 

The central tendency of a learning algorithm on instance x is the 
most probable (frequent) prediction made by classifiers generated 
with this algorithm on different random samples with this 
instance. The irreducible error is distributed across both bias and 
variance in (10)-(11). It is defined in [5] as the error that would be 
made by the Bayes Optimal Classifier as well, and can be both 
equal and different with respect to the central tendency. 

In order to calculate the bias and variance estimates considered, 
we conduct a separate series of experiments in a similar way to 
[16]. The same test settings as before were used, but the values for 
the bias and variance metrics were estimated by ten runs of three-
fold cross validation instead of the 30 Monte-Carlo cross 
validation runs used in the previous experiments. This was done 
in order to provide equal number of tests (10) for each instance. 
With this approach, every available instance is used the same 
number of times, both for training and for testing.  

In Table 4 the results of bias/variance decomposition are 
presented for the usual static voting Random Forests (SV) and for 
the three dynamic integration techniques; DS, DV and DVS. Two 
decompositions were used; Kohavi-Wolpert (index KW) and 
Breiman’s (index B) decomposition. Nine datasets are considered 
with the biggest gain in accuracy due to dynamic integration. 
Three datasets (Car, MONK-1, and Vehicle) were excluded in 
comparison with the previous experiments, as no interesting 
patterns in the behaviour of dynamic integration techniques could 
be observed when the error of static and dynamic integration is 
the same or the difference is subtle. Each cell in the table includes 
two numbers; bias and variance. 

The values in Table 4 correspond to ensemble size 100, the size of 
neighbourhood 15 and the intrinsic similarity with locally 
weighted learning in dynamic integration. These parameters were 
demonstrated to be the best in the previous experiments. 
However, the same behaviour of bias and variance with dynamic 
integration could be observed with other parameters as well. 

An interesting finding, which can be made from the numbers 
presented in Table 4 and from other not presented here numbers 
for bias/variance decomposition for other ensemble configurations 
is that although the two different bias/variance decompositions 
have different nature, they often give numbers close to each other 
and almost always capture the same behaviour of the dynamic 
integration techniques. This could be confirmed by the Pearson’s 
correlation coefficient between the two decompositions over 
different datasets, which is always greater than 0.96 for different 
integration techniques in this context. An interesting question for 
further research is whether the two decompositions always give 
such well-coordinated values, or whether this is true for the 
present study only. 

Analysing the behaviour of DS in Table 4, one can see that DS 
tries to reduce bias at the expense of the considerable increase in 
variance. The increase in variance is huge, and in some datasets 
bias is increased too (on DNAp, Images, Tic-tac-toe and Zoo with 
both decompositions, and Audiology, Parity 2 and Sonar with the 
Kohavi-Wolpert decomposition).  



Table 4.  Bias/variance decomposition for static voting and three dynamic integration techniques in Random Forests 

Dataset SVKW DSKW DVKW DVSKW SVB DSB DVB DVSB 

Audiology 0.182 0.186 0.169 0.167 0.163 0.123 0.154 0.153 

  0.077 0.214 0.075 0.079 0.096 0.277 0.091 0.094 

DNAp 0.056 0.138 0.047 0.048 0.064 0.111 0.04 0.04 

  0.059 0.187 0.061 0.062 0.051 0.213 0.069 0.071 

Glass 0.17 0.167 0.162 0.161 0.169 0.137 0.159 0.158 

  0.07 0.157 0.07 0.072 0.07 0.187 0.073 0.074 

Images 0.116 0.155 0.103 0.098 0.123 0.123 0.109 0.103 

 0.043 0.19 0.046 0.049 0.036 0.222 0.04 0.044 

Parity2 0.032 0.058 0.011 0.008 0.024 0.016 0.009 0.006 

  0.056 0.137 0.03 0.022 0.064 0.179 0.032 0.024 

Parity3 0.249 0.178 0.196 0.183 0.253 0.15 0.201 0.189 

  0.136 0.197 0.13 0.131 0.133 0.226 0.125 0.126 

Sonar 0.128 0.138 0.121 0.117 0.141 0.124 0.137 0.129 

  0.061 0.161 0.062 0.062 0.048 0.174 0.046 0.05 

Tic-tac-toe 0.031 0.047 0.016 0.012 0.03 0.031 0.011 0.008 

  0.036 0.099 0.027 0.025 0.036 0.115 0.032 0.029 

Zoo 0.033 0.043 0.026 0.026 0.029 0.032 0.016 0.021 

  0.032 0.063 0.032 0.032 0.037 0.074 0.043 0.038 

Average 0.111 0.123 0.095 0.091 0.111 0.094 0.093 0.090 

 0.063 0.156 0.059 0.059 0.063 0.185 0.061 0.061 

 

DV and DVS reduce error by reducing bias while trying to keep 
variance the same. DV and DVS, on these datasets, always 
decrease bias and this decrease is always significant. Sometimes 
this is accompanied by a usually insignificant increase in variance 
(the increase is significant for DNAp with Breiman’s 
decomposition only). In some cases DV and DVS reduce both 
bias and variance (for example, for the Parity problems this 
decrease is significant). This behaviour can be observed from the 
average numbers as well. 

When one compares DV and DVS, it is possible to see that DVS, 
as a technique involving classifier selection, tries to decrease bias. 
Interestingly, this is not always accompanied by the same increase 
in variance, and on average the variance terms of DV and DVS 
are the same.  

5. CONCLUSIONS 
Random Forests are one of the most successful ensemble learning 
techniques that generates component decision trees on the 
bootstrap replicates of the original dataset and considers random 
samples of features as the candidates for splitting at the nodes. 
Multiple recent empirical studies have demonstrated Random 
Forests to be competitive in accuracy with the best classification 
and regression algorithms such as boosting and support vector 
machines in a number of application domains. Although Random 
Forests often give accuracy close to the Bayes Optimal Classifier, 
in some domains their accuracy can still be improved. 

One way for improving Random Forests is to replace majority 
voting with a more sophisticated combination function. In this 
paper we considered how Random Forests could be combined 
with dynamic classifier integration techniques. Our experimental 
study demonstrated that dynamic integration was able to improve 
the accuracy of Random Forests on 12 out of 27 datasets (with 
DV and DVS integration strategies).  

More detailed experimental analysis revealed a few interesting 
tendencies with respect to dynamic integration in Random 
Forests. Dynamic integration techniques DV and DVS were 
demonstrated to always increase margin in comparison with the 
usual Random Forests – a characteristic that is similar to that of 
boosting. Bias/variance analysis demonstrated that DV and DVS 
tend to decrease bias while keeping variance the same. DS was 
proven to be inappropriate in this context, always significantly 
increasing variance.  

Among the distance functions and local learning schemes 
considered, the best combination was the intrinsic similarity with 
locally weighted learning. Interestingly, this combination usually 
resulted in a significantly greater margin than all the other 
techniques, even when accuracy remained the same. In general, 
the intrinsic similarity metric demonstrated very promising 
behaviour, and it is an interesting question for further research 
whether this superiority will hold true in other data mining tasks 
and application domains. 

Regression Random Forests are also competitive in terms of 
predictive performance as their classification counterparts. An 



important topic for further research is to apply dynamic 
integration to regression Random Forests and to analyze the 
resulting predictive performance checking whether the 
dependencies found in classification will hold true. Our 
preliminary experiments demonstrate that dynamic integration is 
often able to improve the predictive performance of regression 
random forests as well and that it has similar patterns in 
bias/variance decomposition to those presented here for 
classification random forests. 
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