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Abstract— The problem of spectrum sharing between two
operators in a dynamic network is considered. We allow both
operators to share (a fraction of) their licensed spectrum band
with each other by forming a common spectrum band. The
objective is to maximize the gain in profits of both operators by
sharing their licensed spectrum bands rather than using them
exclusively, while considering the fairness among the operators.
This is modeled as a two-person bargaining problem, and cast
as a stochastic optimization. To solve this problem, we propose
centralized and distributed dynamic control algorithms. At each
time slot, the proposed algorithms perform the following tasks:
1) determine spectrum price for the operators; 2) make flow
control decisions of users data; and 3) jointly allocate spectrum
band to the operators and design transmit beamformers, which
is known as resource allocation (RA). Since the RA problem is
NP-hard, we have to rely on sequential convex programming to
approximate its solution. To derive the distributed algorithm,
we use alternating direction method of multipliers for solving
the RA problem. Numerically, we show that the proposed
distributed algorithm achieves almost the same performance as
the centralized one. Furthermore, the results show that there is
a trade-off between the achieved profits of the operators and the
network congestion.

Index Terms— Co-primary spectrum sharing, dynamic control,
network utility maximization, stochastic optimization, Lyapunov
drift, bargaining problem, fairness, sequential convex program-
ming, alternating direction method of multipliers (ADMM),
distributed algorithm.

I. INTRODUCTION

IN THE wireless systems, the radio spectrum is divided

into a set of disjoint blocks which are assigned (licensed)

to different operators on an exclusive basis. The assignment

of exclusive spectrum bands to operators gives each operator 
the right to control their spectrum bands. However, when the

entire spectrum band is considered, the exclusive allocation 
strategy often leads to a low spectrum utilization, because the

operators may have different spectrum demands over the time

and some part of the spectrum band can be underutilized [1],

[2]. Therefore, spectrum sharing between the operators is
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required for better spectrum utilization, and to cope with the

rapidly increasing spectrum demand [3], [4].

The operators can share their spectrum band with each

other in two basic ways [5]: orthogonal sharing and non-

orthogonal sharing. In the orthogonal sharing, operators are

allowed to operate in each others spectrum bands; but at any

time instance one spectrum band can be used only by one

operator. In contrast, in the non-orthogonal sharing, multiple

operators are allowed to transmit on the same spectrum band at

the same time and location. Here, the operators are required to

coordinate their operation and choose transmission strategies

to mitigate the inter-operator interference [6]. The performance

of these two ways of spectrum sharing model depends on

users’ locations from base station (BS) [7].

Several orthogonal and non-orthogonal inter-operator spec-

trum sharing algorithms have been proposed in literature,

e.g., [8]–[13]. Specifically, in [8] and [9] time division multiple

access technique is considered, and the operators are allowed

to lease their unused time slots with each other. A principle of

last resort sharing is adopted in [8] and [9], i.e., an operator

hires time slots only if its private portion is not sufficient

to satisfy the QoS of its users. Moreover, the work in [9]

considers sharing of infrastructure (BSs) among the operators.

The use of a common spectrum pool [14], [15] to share

the spectrum among operators is investigated in [10], [11],

and [13]. Two operators are considered in [10] and [11]

and distributed algorithms using the non-cooperative game

theory [16] are proposed. In general, the non-cooperative

game theoretic approach leads to a stable operating point,

and it is known as Nash equilibrium (NE). However, in the

context of spectrum sharing the NE point is often seen as

an inefficient operating point, as the operators’ performance

can be further improved over it [12], [17], [18]. In [13] the

co-primary shared access model [3] is adopted, and several

heuristic centralized and distributed algorithms are proposed.

All works in [8]–[13] consider single antennal transmitters and

receivers.

The problem of spectrum sharing among operators in

multiple-input single-output antenna wireless systems have

been considered in [19]–[22]. Specifically, in [19] a distributed

algorithm is proposed using cooperative game theory [16].

In [20] the problem is studied by using both cooperative and

non-cooperative (competitive) game theoretic approach, and

a significant gain by operators cooperation has been demon-

strated. For cooperative spectrum sharing, various transmit

beamforming techniques to manage the inter-operator inter-

ference have been proposed in [21] and [22].



To the best of our knowledge all existing spectrum sharing

algorithms consider a static case (i.e., the spectrum sharing

problem for a given instance). Thus, when these algorithms

are applied over a period of time to a dynamic network, they

may yield suboptimal performance and also may not ensure

the stability of the network [23, Sec. 4.1].

In this paper the problem of dynamic spectrum sharing

between two wireless cellular network operators is considered.

We assume a co-primary setup [3], [24], where operators share

a fraction of their licensed spectrum by forming a common

spectrum pool, which is dynamically allocated to the operators

according to their channel qualities, traffic demands, past

activities, etc.

Clearly, by sharing the spectrum instead of using it indi-

vidually the operators can increase their own profits, but this

gives rise to a new problem: how to distribute the surplus (i.e.,

the increase in the profit) fairly among the operators, so that

they have incentive to share their licensed spectrum with each

other. For example, the total (or sum) profit can be maximized

by allocating each portion of the shared spectrum to the

operator that can make the most profit out of it. However,

such a simplistic strategy does not make much sense since it

may lead to a highly unfair outcome, where some operators

may even diminish their profit instead of increasing it.

This problem of fair surplus management has been inten-

sively studied, especially in economics, and a solution has

been proposed by Nash in 50’s [25]. The bargaining problem

proposed in [25] has shown that under a reasonable set of

axioms, a fair operating point can be obtained by maximizing

the product of the incremental profit gains, with respect to the

case when the agents do not cooperate. We adopt this definition

of fairness to share the licensed spectrum band between two

cellular network operators.

Our goal is to propose a dynamic network control mecha-

nism (algorithm) which decides at each time slot: 1) portion of

spectrum band for each operator from the common spectrum

pool; 2) beamformers, powers, transmission rates, admitted

data, etc., for users; and 3) possible inter-operators payments,

such that the surplus obtained from cooperation is fairly shared

among the operators. To do this, we formulate (or cast) the

spectrum sharing problem as a Nash bargaining game [17],

[25]–[28], and then we use the Lyapunov drift plus penalty

framework [23], [29] to derive a dynamic control algorithm.

The main contribution of the paper is to propose both

centralized and distributed dynamic control algorithms to

share the common spectrum pool between two operators.

Our proposed dynamic algorithms perform at each time slot

the following tasks: 1) determine the spectrum price for

the operators; 2) make flow control decisions for the users

data; and 3) jointly allocate spectrum band to the operators

and design the transmit beamformers and powers, which

is known as resource allocation (RA). The RA problem

leads to a general weighted sum-rate maximization problem

over the instantaneous achievable rate region [23], [29], and

thus it is NP-hard [30]. Since the RA problem is NP-hard,

in the centralized algorithm we use the sequential convex

programming (SCP) [31] to approximate the solution of the

RA problem. To derive the distributed algorithm, we use

the alternating direction method of multipliers (ADMM) [32]

in conjunction with the SCP for solving the RA problem.

Numerically, we show that the proposed distributed dynamic

control algorithm achieves almost the same performance as

the centralized one. Furthermore, the results show that there

is a trade-off between the achieved profits of the operators and

the network congestion.

The remainder of this paper is organized as follows.

In Section II, the considered system model and problem for-

mulation are described. We present the steps of the proposed

dynamic control algorithms in Section III. Centralized and

distributed algorithms to solve the RA problem are presented

in Section IV and Section V, respectively. The numerical

results are presented in Section VI, and Section VII concludes

our paper.

Notations: All boldface lower case and upper case letters

represent vectors and matrices, respectively, and calligraphy

letters represent sets. The notation Cn denotes the set of

complex n-vectors, |x | denotes the absolute value of the

scalar x , |X | denotes the cardinality of set X , ‖x‖2 denote

the Euclidean norm of the vector x, I denotes the identity

matrix, (x)+ denotes max (x, 0), ∅ denotes the empty set, and

CN (m, C) denotes the complex circular symmetric Gaussian

vector distribution with mean m and covariance matrix C.

For symmetric matrix X, X � 0 signifies that X is positive

semidefinite. The superscripts (·)H and (·)T are used to denote

the Hermitian transpose and the transpose of a matrix, and (·)⋆

is used to denote a solution of an optimization problem.

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a downlink wireless network consisting of

a cell with two coexisting BSs, belonging to two different

operators. The set of BSs is denoted by N , and we label them

with the integer values n = 1, 2. Each BS is equipped with

T transmit antennas, and each user is equipped with single

receive antenna. We denote the set of all users in nth BS by

L(n), and we label them with the integer values l = 1, . . . , Ln .

Let each operator share equal1 amount of spectrum band B Hz

with the other operator. Hence, a total spectrum of bandwidth

2B Hz is available for both operators. Furthermore, we assume

that the total spectrum band 2B Hz is split into S subchannels.

The set of subchannels is denoted by S, and we label them

with the integer values s = 1, . . . , S. Let the bandwidth of sth

subchannel be ws Hz, and we assume that it is smaller than a

coherence bandwidth. See Fig. 1 for a functional architecture

of the considered co-primary spectrum sharing setup.

The network is assumed to be operating in slotted time with

slots normalized to integer values t ∈ {1, 2, . . .}. At each time

slot, a network controller partitions the S subchannels orthog-

onally between the operators (i.e., between the two BSs).2

Let the set of subchannels allocated to nth BS during time

slot t be S(n, t), and we label them with the integer values

s = 1, . . . , Sn(t).

Let pnl,s(t) and vnl,s(t) denote the power and direction of

the transmit beamformer associated with lth user of BS n

1The work can be easily generalized to the case where operators share
different portions of the spectrum bands with each other.

2We use the terminologies BS and operator interchangeably.



Fig. 1. High level functional architecture for co-primary spectrum
sharing [3], [24], [33]: Two operators (OP) share a common spectrum pool
in a same geographical area. Usage conditions of common spectrum pool is
defined with a mutual agreement between operators. Spectrum controller is
responsible for inter-operator spectrum coordination. We refer the interested
reader to [24] for more detail on co-primary sharing architecture for a denser
network.

in subchannel s during time slot t . We assume vnl,s(t) is

normalized such that ‖vnl,s(t)‖2 = 1 for all n ∈ N , l ∈ L(n),

and s ∈ S. Furthermore, let mnl,s(t) =
√

pnl,s(t)vnl,s(t), then

the signal-to-interference-plus-noise ratio of lth user of BS n

in subchannel s during time slot t is given by

Ŵnl,s (mn(t)) =
|hH

nl,s(t)mnl,s (t)|
2

N0ws +
∑

j∈L(n), j �=l |h
H
nl,s(t)mnj,s(t)|2

, (1)

where hH
nl,s (t) ∈ C1×T is the channel vector from nth BS to its

lth user in subchannel s, N0 is a noise power spectral density,

and the notation mn(t) denotes a vector obtained by stacking

mnl,s (t) for all l ∈ L(n) and s ∈ S(n, t) on top of each other,

i.e., mn(t) = [mn1,1(t)
T, . . . , mnLn ,Sn(t)(t)

T]T.

In this paper, we consider the case where all receivers are

using single-user detection (i.e., a receiver decodes its intended

signal by treating all other interfering signals as noise), and

assume that the achievable rate of lth user of nth BS during

time slot t is given by [34, Ch. 5]

rnl (t)

� rnl

(

S(n, t), mn(t)
)

=
∑

s∈S(n,t)

ws log2

(

1+
|hH

nl,s (t)mnl,s (t)|
2

N0ws +
∑

j∈L(n), j �=l

|hH
nl,s (t)mnj,s(t)|2

)

.

(2)

Furthermore, we assume that the power allocation is subject to

a maximum power constraint
∑

l∈L(n)

∑

s∈S(n,t) ‖mnl,s (t)‖
2
2 ≤

pmax
n for each BS n ∈ N .

A. Spectrum Pricing

At each time slot, the common spectrum pool 2B Hz (i.e.,

the set of S subchannels) is partitioned between the operators.

The total spectrum band allocated to operator n ∈ N during

time slot t is
∑

s∈S(n,t) ws . We assume that both operators

can use up to the amount of spectrum that they put in the

spectrum pool without any payment. But, the operator pays

for an extra band of spectrum, if it uses more spectrum

than it has put in the common spectrum pool, to the other

operator. Specifically, if spectrum band used by nth operator
∑

s∈S(n,t) ws is more than B Hz, operator n pays to the other

operator (i.e., opponent of nth operator) for the extra band of

spectrum (
∑

s∈S(n,t) ws − B) Hz. The amount to be paid is

determined by the pricing rule established by the operators.

Let qn(t) be the per-unit price of spectrum during time

slot t to charge the nth operator’s opponent for using the extra

spectrum band. To simplify the notation, let us use n to denote

the opponent of nth operator.3 Then the payment from operator

n ∈ N , for using the extra band of spectrum, to its opponent

is qn(t)
( ∑

s∈S(n,t) ws − B
)+

.

With this spectrum pricing rule, operators with both low

and high spectrum demands can be benefitted. For example,

an operator with a high spectrum demand can have access to

more spectrum than it owns; while an operator with a low

spectrum demand (or, no spectrum demand at all) is getting

paid for leasing its spectrum. Even in the case when both

operators use the same amount of spectrum that they have

put to the common spectrum pool (i.e., in the case of equal

spectrum demand), they can still gain as the operators have an

opportunity to access subchannels with better channel quality

from the common spectrum pool, free of charge.

B. Network Queuing and Time Average Profit

We consider a network utility maximization framework sim-

ilar to the one considered in [23, Sec. 5.1], [29, Ch. 5]. Specif-

ically, exogenously arriving data is not immediately admitted

to the network layer of the BSs. Instead, the exogenous data is

first placed in the transport layer storage reservoirs. Let Dnl(t)

represent the transport layer storage backlog of lth user of

BS n during time slot t , and λnl(t) represents the amount of

data that exogenously arrives to it. Then, at each time slot a

flow control decision is made, and the amount of each user

data to be admitted to the network layer from reservoir Dnl(t)

is decided. Let anl(t) denote the amount of data of lth user of

nth BS that is admitted to the network layer from the reservoir

Dnl(t) during time slot t .

We assume that only the data currently available in Dnl(t)

at the beginning of slot t can be admitted to the network

layer during that slot. The transport layer storage reservoir

may not always have data to be admitted to the network

layer, and hence the flow rate anl(t) is subject to a constraint

anl(t) ≤ Dnl(t) for each user. Then the dynamics of the

transport layer storage reservoir Dnl (t) from one time slot to

the next can be expressed as4

Dnl(t + 1) = max[Dnl (t) − anl(t), 0] + λnl(t), (3)

for all n ∈ N and l ∈ L(n). Here, we assume that the

exogenously arriving data {λnl(t)}n∈N ,l∈L(n) can have arbitrary

3For operator n = 1, its opponent is n = 2. Similarly, for operator n = 2,
its opponent is n = 1.

4In the case transport layer storage reservoir have a finite size Dmax
nl

≥ 0,

expression (3) can be expressed as Dnl (t+1) = min
[

max[Dnl (t)−anl(t), 0]+

λnl (t), Dmax
nl

]

for all n ∈ N and l ∈ L(n).



input rates (i.e, input rates can be inside or outside of the

network capacity region).

Furthermore, at the network layer each BS maintains a set

of internal queues for storing current backlog (or unfinished

work) of its users. Let Qnl (t) represents the current backlog

of lth user in nth BS. Then the evolution of the size of Qnl (t)

is given by [23]

Qnl (t + 1) = max[Qnl (t) − rnl(t), 0] + anl(t), (4)

for all n ∈ N and l ∈ L(n), where rnl(t) is the transmission

rate (defined in (2)) offered to lth user of nth BS during time

slot t . Here, we adopt the notion of strong stability,5 and we

say that the network is strongly stable if6 [23], [29]

Qnl � lim sup
t→∞

1
t

t
∑

τ=1

E{Qnl(τ )} < ∞, n ∈ N , l ∈ L(n), (5)

where the expectation depends on the control policy, and is

with respect to the random channel states and the control

actions made in reaction to these channel states.7 Intuitively,

expression (5) means that a queue is strongly stable if its

time average backlog is finite; and a network is strongly

stable if all individual queues of the network are strongly

stable.

At each time slot, for lth user of nth BS the network

controller admits anl(t) data into the internal queue for

transmission. Note that under network stability, admitted data

anl(t) for all t in the internal queue is transmitted to the

corresponding user over a finite period of time [29]. Thus,

we define an utility of the user in terms of admitted data rate

anl(t), instead of transmission rate rnl(t). To define the utility

of lth user of BS n, let ānl(t) denote the admitted time average

rate up to time slot t , i.e., ānl(t) � 1
t

∑t
τ=1 E{anl(τ )}. Then,

associated with each user, we define a non-decreasing concave

utility function gnl(ānl(t)). The utility function gnl(ānl(t))

represents a monetary measure of the satisfaction that nth

operator receives by sending data to its lth user based on its

current data rate ānl(t). Finally, we define the time average

expected profit of nth operator as

Un � lim inf
t→∞

(

∑

l∈L(n) gnl(ānl(t))

+ 1
t

∑t
τ=1 E

{

qn(τ )
(∑

s∈S(n,τ ) ws − B
)+}

− 1
t

∑t
τ=1 E

{

qn(τ )
(∑

s∈S(n,τ ) ws − B
)+}

)

, (6)

where the second right hand term in (6) represents an amount

that nth operator gets by leasing its spectrum band to its oppo-

nent; and the third right hand term represents an amount that

nth operator pays to its opponent for renting the extra spectrum

band. Note that during any given time slot, only one operator

5A definition of strong stability is general, and it also implies other forms
of stability [29, Th. 2.8].

6Note that we use a commonly used procedure, and express the long term
average as the time average of expectation, which leads to a tractable algorithm
[35]–[41].

7Throughout the paper, all expectation are taken with respect to the random
channel states and the control actions made in reaction to these channel states,
unless stated otherwise.

can use more than B Hz from the spectrum pool 2B Hz.

Hence, during any given time slot, operators either lease or rent

a portion of the common spectrum band. Specifically, during

time slot τ , either term qn(τ )
(∑

s∈S(n,τ ) ws − B
)+

or term

qn(τ )
(∑

s∈S(n,τ ) ws − B
)+

is nonzero.

C. Problem Formulation

Our objective is to maximize the gain in profits of both

operators by sharing their licensed spectrum bands with

each other, rather than using them exclusively. Furthermore,

we want to distribute the surplus (i.e., the increase in the profit)

fairly among the operators, so that they have an incentive to

share their licensed spectrum with each other. To do this,

we model the spectrum sharing between two operators as

a two-person bargaining problem [25]–[28] and cast as a

stochastic optimization problem.

Let U0
n denotes the utility gain of nth operator that it gets

before sharing its spectrum band with the other operator. In the

context of bargaining problem, the utility U0
n is commonly

known as a disagreement point, and it is assumed to be known.

We assume that each operator knows a value of U0
n with their

past experience. Then the benefits of the operators obtained

by sharing their license spectrum bands with each other is

Un − U0
n for all n ∈ N . For tractability, we assume that a

per-unit price of the spectrum band set by each operator is

bounded, i.e., 0 ≤ qn(t) ≤ qmax for all n ∈ N . Then the

optimization problem to maximize the gain in operators profits,

fairly8, 9 subject to the network stability and the maximum

power constraint for each BS can be expressed as

maximize
∑

n∈N log(Un − U0
n )

subject to Un ≥ U0
n , n ∈ N (7a)

Qnl < ∞, n ∈ N , l ∈ L(n) (7b)

0 ≤ qn(t) ≤ qmax, n ∈ N ,∀t (7c)
∑

l∈L(n)

∑

s∈S(n,t)

‖mnl,s (t)‖
2
2 ≤ pmax

n , n ∈ N ,∀t (7d)

S(1, t) ∩S(2, t)=∅, S(1, t), S(2, t)⊆S,∀t, (7e)

with variables {qn(t), S(n, t)}n∈N , {anl(t)}n∈N ,l∈L(n), and

{mnl,s(t)}n∈N ,l∈L(n),s∈S for all t ∈ {1, 2, . . .}; where Un and

Qnl are defined in (6) and (5), respectively. The constraint (7a)

ensures that the profits of the operators obtained by sharing

their spectrum bands are greater than without sharing their

spectrum bands with each other. The constraint (7b) ensures

that the network is stable. The constraint (7d) limits the total

transmit power of each BS, and constraint (7e) ensures that a

subchannel is allocated only to a single operator.

8For U0
n = 0 for all n ∈ N , problem (7) is a proportional fair utility

maximization problem [27], [29, Ch. 5], [42]. Thus, the objective function of
problem (7) is a generalized proportional fairness objective [17], [43].

9Efficient utilization of the common spectrum pool can be obtained by
maximizing the social welfare objective

∑

n∈N Un , without regards to the
spectrum prices {qn}n∈N because the payment will be canceled out. However,
the maximization of the social welfare objective may not ensure the fairness
in operator profits. In co-primary spectrum access, both operators want to
maximize their profit, as both operators put their licensed spectrum band in
the common spectrum pool. In other word, a fair distribution in the operators’
profit is desirable.



III. DYNAMIC ALGORITHM VIA LYAPUNOV OPTIMIZATION

In this section we use the cross-layer stochastic optimization

framework of [23] and [29] to solve problem (7). We start by

transforming problem (7) such that it conform to the structure

required for the drift-plus-penalty method of [23] and [29].

Then, we apply the drift-plus-penalty minimization method to

the transformed problem to derive the steps of the proposed

dynamic control algorithms.

A. Transformed Problem via Auxiliary Variables

We start by equivalently reformulating problem (7) by

introducing an auxiliary variable µn , for all n ∈ N , as

maximize
∑

n∈N log(µn)

subject to µn ≤ Un − U0
n , n ∈ N

constraints (7a) − (7e), (8)

with variables {µn}n∈N , {qn(t)}n∈N , {anl(t)}n∈N ,l∈L(n),

{mnl,s(t)}n∈N ,l∈L(n),s∈S , S(1, t), and S(2, t) for all t ∈

{1, 2, . . .}. Note that the first inequality constraints of prob-

lem (8) holds with equality at the optimal solution due to a

monotonic increasing property of the objective function.

To use the drift-plus-penalty minimization method [23], [29]

for problem (8), we now assume that the auxiliary variable

µn is a time average of auxilary variables µn(t) for all

t = {1, 2, . . .}, i.e., µn � limt→∞
1
t

∑t
τ=1 E{µn(τ )}. Then

by following the approach of [29, Ch. 5.0.5], we modify

problem (8) as the following optimization problem:

maximize
∑

n∈N log(µn)

subject to µn ≤ Un − U0
n , n ∈ N (9a)

Un ≥ U0
n , n ∈ N (9b)

Qnl < ∞, n ∈ N , l ∈ L(n) (9c)

constraints (7c) − (7e), (9d)

with the optimization variables {µn(t)}n∈N , {qn(t)}n∈N ,

{anl(t)}n∈N ,l∈L(n), S(1, t), S(2, t), and {mnl,s(t)}n∈N ,l∈L(n),s∈S

for all t ∈ {1, 2, . . .}; where log(µn) is defined as

log(µn) � limt→∞
1
t

∑t
τ=1 E

{

log(µn(τ ))
}

. (10)

Note that by using Jensens inequality we can easily verify

that log(µn) is lower bounds on log(µn). Thus the solution

of problem (9) is also feasible for the original problem (7),

and hence problem (9) provides reasonable lower bound for

the original problem (7).

B. Solving the Transformed Problem

In this section we use the drift-plus-penalty minimization

method introduced in [23] and [29] to solve problem (9).

In the drift-plus-penalty minimization method, the inequality

constrains (9a) and (9b) are enforced by transforming them

into a queue stability problem. In other words, for each

inequality constraint, in (9a) and (9b), a virtual queue is

introduced in such a way that the stability of these virtual

queues implies the feasibility of constraints (9a) and (9b).

Let {Xn(t)}n∈N be virtual queues associated with con-

straint (9a). We update the virtual queue Xn(t) for all n ∈ N

at each time slot as

Xn(t + 1) = max[Xn(t) − xout
n (t), 0] + x in

n (t), (11)

where,

xout
n (t) =

∑

l∈L(n)

gnl(anl(t)) + qn(t)
( ∑

s∈S(n,t)

ws − B
)+

, (12)

x in
n (t) = µn(t) + U0

n + qn(t)
( ∑

s∈S(n,t)

ws − B
)+

. (13)

Note that Xn(t) can be viewed as a backlog in a virtual

queue with input rate x in
n (t) and service rate xout

n (t). If virtual

queues {Xn(t)}n∈N are strongly stable (see expression (5)

for the definition of strong stability), then constraint (9a) is

satisfied [23, Sec. 5.4.1].

Likewise, to ensure inequality constraint (9b), we define

virtual queues {Yn(t)}n∈N ; and update Yn(t) for all n ∈ N

according to the following dynamics:

Yn(t + 1) = max[Yn(t) − yout
n (t), 0] + yin

n (t), (14)

where,

yout
n (t) =

∑

l∈L(n)

gnl(anl(t)) + qn(t)
( ∑

s∈S(n,t)

ws − B
)+

, (15)

yin
n (t) = U0

n + qn(t)
(

∑

s∈S(n,t)

ws − B
)+

. (16)

Stability of virtual queues {Yn(t)}n∈N ensures constraint (9b).

We now define Lyapunov function and its drift,

which will be used to define a queue stability

problem for the actual queues {Qnl(t)}n∈N ,l∈L(n)

and the virtual queues {Xn(t), Yn(t)}n∈N . For a

compact representation, let us use �(t) to denote

a vector of the actual and the virtual queues, i.e.,

�(t) = [Q11(t), . . . , Q2L2(t), X1(t), X2(t), Y1(t), Y2(t)]
T.

Then we define a quadratic Lyapunov function L(�(t))

as [23], [29]

L(�(t)) =
1

2

[

∑

n∈N

∑

l∈L(n) Qnl (t)
2

+
∑

n∈N Xn(t)
2 +

∑

n∈N Yn(t)2
]

. (17)

The Lyapunov function L(�(t)) is a scalar measure of

network congestion. Intuitively, if L(�(t)) is small then all

queues are small; and if L(�(t)) is large then at least one

queue is large. Thus, by minimizing a drift in the Lyapunov

function (i.e., by minimizing a difference in the Lyapunov

function from one slot to the next) queues {Qnl(t)}n∈N ,l∈L(n)

and {Xn(t), Yn(t)}n∈N can be stabilized [29]. By using expres-

sion (17), the drift in the Lyapunov function (i.e., the expected

change in the Lyapunov function from one slot to the next)

can be written as

�(�(t)) � E
{

L(�(t + 1)) − L(�(t))|�(t)
}

. (18)

We now use the drift-plus-penalty minimization method

introduced in [23] and [29] to solve problem (9). In this

method, a control policy that solves problem (9) is obtained by



minimizing an upper bound on the following drift-plus-penalty

expression [23], [29]:

�(�(t)) − V
∑

n∈N E{log(µn(t))|�(t)}, (19)

where V ≥ 0, subject to the constraint (9d) in each time slot,

i.e.,

0 ≤ qn(t) ≤ qmax, n ∈ N (20)
∑

l∈L(n)

∑

s∈S(n,t) ‖mnl,s (t)‖
2
2 ≤ pmax

n , n ∈ N (21)

S(1, t) ∩ S(2, t) = ∅, S(1, t), S(2, t) ⊆ S. (22)

Note that the expression (19) has two terms. The first term

is the drift �(�(t)); and in [23] and [29] it is shown that

by minimizing the drift �(�(t)), at each time slot, we can

satisfy inequality constrains (9a)-(9c). The second term is

−
∑

n∈N E{log(µn(t))|�(t)}, and by minimizing it at each

time slot, the objective of problem (9) is maximized. Thus,

by varying parameter V we can obtain a desired trade-off

between the size of the queue backlogs and the profits of the

operators.

In the rest of this section, to simplify algorithm develop-

ment, we first find an upper bound of expression (19). Then

we present a dynamic control algorithm to solve problem (9)

that, at each time slot, minimizes the upper bound of expres-

sion (19) subject to constraints (20)-(22).

To obtain an upper bound of expression (19), by using

expressions (4), (11), and (14), we note that10

Qnl (t + 1)2 ≤ Qnl(t)
2 + anl(t)

2 + rnl (t)
2

+ 2Qnl(t)[anl(t) − rnl(t)], (23)

Xn(t + 1)2 ≤ Xn(t)
2 + x in

n (t)2 + xout
n (t)2

+ 2Xn(t)[x
in
n (t) − xout

n (t)], (24)

Yn(t + 1)2 ≤ Yn(t)
2 + yin

n (t)2 + yout
n (t)2

+ 2Yn(t)[yin
n (t) − yout

n (t)]. (25)

Then, by using expressions (18) and inequalities (23)-(25),

an upper bound of expression (19) can be expressed as

�(�(t)) − V
∑

n∈N

E{log(µn(t))|�(t)} ≤ D

− V
∑

n∈N

E{log(µn(t))|�(t)}

+
∑

n∈N

∑

l∈L(n)

Qnl (t)E{anl(t) − rnl (t)|�(t)}

+
∑

n∈N

Xn(t)E{x in
n (t) − xout

n (t)|�(t)}

+
∑

n∈N

Yn(t)E{yin
n (t) − yout

n (t)|�(t)}, (26)

where D is a finite positive constant that satisfies the following

condition for all t:

D ≥
1

2

[

∑

n∈N

∑

l∈L(n) E{anl(t)
2 + rnl(t)

2|�(t)}

+
∑

n∈N E{x in
n (t)2 + xout

n (t)2|�(t)}

+
∑

n∈N E{yin
n (t)2 + yout

n (t)2|�(t)}
]

. (27)

10To write inequalities (23)-(25), we have used the fact that (max[Q −
b, 0]+ A)2 ≤ Q2 + A2 + b2 + 2Q(A − b) for any Q ≥ 0, b ≥ 0, and A ≥ 0.

Furthermore, by substituting expressions (12), (13), (15),

and (16) in (26), we get

�(�(t)) − V
∑

n∈N E
{

log(µn(t))|�(t)} ≤ D

− V
∑

n∈N E{log(µn(t))|�(t)
}

+
∑

n∈N

∑

l∈L(n) Qnl (t)E
{

anl(t) − rnl(t)|�(t)
}

+
∑

n∈N Xn(t)E
{

µn(t)
∣

∣�(t)
}

+
∑

n∈N Wn(t)E
{

U0
n + qn(t)

(∑

s∈S(n,t) ws − B
)+∣

∣�(t)
}

−
∑

n∈N Wn(t)E
{ ∑

l∈L(n) gnl(anl(t))

+ qn(t)
( ∑

s∈S(n,t) ws − B
)+∣

∣�(t)
}

, (28)

where Wn(t) = Xn(t) + Yn(t).

Finally, we summarize the steps of the proposed dynamic

control algorithms based on the drift-plus-penalty minimiza-

tion method [23], [29] to solve problem (9) in Algorithm 1.

The proposed algorithms observes queue backlogs �(t)

and the channel states {hnl,s(t)}n∈N ,l∈L(n),s∈S, and makes a

control action to minimize the righthand side of expres-

sion (28) subject to the constraints (20)-(22). The mini-

mization of the righthand side of expression (28) can be

decoupled across variables qn(t), {anl(t)}l∈L(n), µn(t), and

{{mnl,s(t)}n∈N ,l∈L(n),s∈S(n,t), {S(n, t)}n∈N }, resulting in sub-

problems as shown in Algorithm 1. Note that the drift-plus-

penalty minimization method [23], [29] uses the concept of

opportunistically minimizing an expectation [29, Ch. 1.8] to

solve each subproblems.

In step 1 of Algorithm 1, the per-unit price of spectrum

is set for the operators, and it is obtained by minimizing the

righthand side of expression (28) over variables {qn(t)}n∈N .

Similar pricing strategy is obtained in [44], and it is known

as bang-bang pricing. This pricing strategy alternates between

periods of free service (i.e., price set to zero) and periods

where price is set to a pre-specified maximum value qmax,

according to the values of virtual queues {Wn(t) = Xn(t) +

Yn(t)}n∈N . The value of virtual queue Xn(t) can be interpreted

as the utility gain that nth operator has yet to obtain in order

to maximize its profit.11 Thus the bang-bang pricing strategy,

in step 1, sets the price value to a pre-specified value qmax 12

for an operator, whose utility is lagging behind than that of

the other operator. Observe that except step 4 of Algorithm 1,

the problems in each step of the algorithm are decoupled

into two subproblems, one for each operator. In Section IV

and Section V, we provide centralized and the distributed

algorithms to solve step 4 of Algorithm 1, respectively.

This leads to the centralized and the distributed versions

11Similarly, the value of virtual queue Yn(t) can be interpreted as the utility
gain that nth operator has yet to obtain such that its utility becomes greater

than its disagreement point U0
n .

12In the bargaining framework, it is assumed that both operators have the
full knowledge of the preferences of each other [25]. Thus, we assume that
a value of qmax is set by the operators with their mutual agreement. For
example, a value of qmax can be related to the utilities that operators can get
by using their spectrum bands, i.e., we can set qmax = c × gnl (Amax), for
some constant c > 0, (see step 2 of Algorithm 1 for a definition of Amax).



Algorithm 1: Algorithm for the Spectrum Sharing Problem (9)

1) Pricing: for each n ∈ N , per-unit price qn(t) is chosen

as

qn(t) =

{

qmax if Wn(t) > Wn(t)

0 otherwise.
(29)

2) Flow control: for each n ∈ N , flow rate anl(t) = anl

for all l ∈ L(n), where {anl}l∈L(n) solves the following

optimization problem:

maximize Wn(t)
∑

l∈L(n)gnl(anl)−
∑

l∈L(n)Qnl (t)anl

subject to 0 ≤ anl ≤ min[Dnl(t), Amax], l ∈ L(n),

(30)

with variables {anl}l∈L(n), where Amax > 0 is the

algorithm parameter as described in [23, Sec. 4.2.1].

In the inequality constraint of problem (30), the term

Dnl (t) denotes the available data in the transport layer

reservoir (see Section II-B).

3) Auxiliary variable: for each n ∈ N , auxiliary variable

µn(t) = µn , where µn solves the following optimiza-

tion problem:

maximize V log(µn) − Xn(t)µn

subject to 0 ≤ µn ≤ µmax, (31)

with variables µn , where µmax > 0 is the algorithm

parameter as described in [29, Ch. 5].

4) Resource allocation: solve the following optimization

problem:

maximize
∑

n∈N

∑

l∈L(n) Qnl (t)rnl

(

Sn, mn

)

+
∑

n∈N Wn(t)qn(t)
(
∑

s∈S(n) ws − B
)+

−
∑

n∈N Wn(t)qn(t)
( ∑

s∈S(n) ws − B
)+

subject to
∑

l∈L(n)

∑

s∈S(n)‖mnl,s‖
2
2 ≤ pmax

n , n ∈ N

S(1) ∩ S(2) = ∅, S(1), S(2) ⊆ S, (32)

with variables {mnl,s }n∈N ,l∈L(n),s∈S(n) and {S(n)}n∈N .

Set mnl,s (t) = mnl,s and S(n, t) = S(n) for all n ∈ N ,

l ∈ L(n), and s ∈ S(n).

5) Queue update: update {Dnl(t +1)}n∈N ,l∈L(n), {Qnl(t +

1)}n∈N ,l∈L(n), {Xn(t + 1)}n∈N , and {Yn(t + 1)}n∈N by

using expressions (3), (4), (11), and (14). Set t = t +1

and go to step 1.

of Algorithm 1 (i.e., the centralized and the distributed

dynamic control algorithms).13

A performance of Algorithm 1 can be evaluated by

using Theorem [23, Th. 5.4]. By using Theorem [23, Th. 5.4],

we can show that Algorithm 1 yields the objective value

of problem (7) and the network backlog with trade-off

[O(1/V ), O(V )]. That is the objective value of problem (7)

is pushed within O(1/V ) of its maximum value, with an

13In the case when an operator deploys a heterogeneous system (for exam-
ple, see [45]), the proposed Algorithm 1 can be extended by embedding the
required inter-tier interference coordination strategy in the resource allocation
subproblem (32). However, this extension falls outside the main scope of this
paper, and it is left as an interesting future work.

increase in the network backlog with V . Derivation of this

performance-backlog trade-off is omitted here due to space

limitation.

IV. RESOURCE ALLOCATION - CENTRALIZED ALGORITHM

In this section we focus on resource allocation problem (32).

Problem (32) is a combinatorial problem, and it requires expo-

nential complexity to find the global solution. Here, we derive

a computational efficient and fast, but possibly suboptimal,

algorithm for problem (32). The proposed algorithm is based

on SCP [31].

We start by introducing binary variables {bns}n∈N ,s∈S in

problem (32). Variable bns is set to one, if subchannel ws is

assigned to nth operator, otherwise it is set to zero. Hence,

by using binary variables {bns}n∈N ,s∈S , problem (32) can be

equivalently written as

maximize
∑

n∈N

∑

l∈L(n)

Qnl (t)
∑

s∈S

bnsws log2

(

1

+
|hH

nl,s (t)mnl,s |
2

bns N0ws +
∑

j∈L(n), j �=l |h
H
nl,s(t)mnj,s |2

)

+
∑

n∈N

Wn(t)qn(t)
( ∑

s∈S bnsws − B
)+

−
∑

n∈N

Wn(t)qn(t)
( ∑

s∈S bnsws − B
)+

subject to
∑

l∈L(n)

∑

s∈S

‖mnl,s‖
2
2 ≤ pmax

n , n ∈ N (33a)

∑

n∈N bns = 1, s ∈ S (33b)

bns = {0, 1}, n ∈ N , s ∈ S, (33c)

with variables {bns}n∈N ,s∈S and {mnl,s}n∈N ,l∈L(n),s∈S; where

Wn(t) = Xn(t)+ Yn(t) for all n ∈ N . Note that we have used

expression (2) to write the objective function of problem (33),

and variable ws is replaced with bnsws . In problem (33)

constraints (33b) and (33c) ensures that a subchannel ws is

allocated to a single operator. Hence, the constraints associated

with orthogonal subchannel allocation in problem (32) has

been dropped out.

Now we relax hard binary constraint (33c), and employ

a penalty function to promote binary value for variables

{bns}n∈N ,s∈S , leading to

maximize
∑

n∈N

∑

l∈L(n)

Qnl(t)
∑

s∈S

bnsws log2

(

1

+
|hH

nl,s(t)mnl,s |
2

bns N0ws +
∑

j∈L(n), j �=l |h
H
nl,s (t)mnj,s |2

)

+
∑

n∈N

Wn(t)qn(t)
( ∑

s∈S bnsws − B
)+

−
∑

n∈N

Wn(t)qn(t)
( ∑

s∈S bnsws − B
)+

+ δ
∑

n∈N

∑

s∈S

bns log(bns)

subject to
∑

l∈L(n)

∑

s∈S

‖mnl,s‖
2
2 ≤ pmax

n , n ∈ N (34a)

∑

n∈N bns = 1, s ∈ S (34b)

0 ≤ bns ≤ 1, n ∈ N , s ∈ S, (34c)



with variables {bns}n∈N ,s∈S and {mnl,s }n∈N ,l∈L(n),s∈S; where

δ > 0 is a problem parameter. The penalty function

bns log(bns) is the negative entropy function, and it has the

maximum values at bns equal to zero or one. Thus, there

exits a value of parameter δ that can achieve binary values for

variables {bns}n∈N ,s∈S . It is worth noting that problem (34) is

a non-combinatorial optimization problem, however, it is still

a nonconvex problem. In fact, problem (33) is NP-hard [30].

Since the RA problem is NP-hard, we use SCP to approxi-

mate its solution. In order to simplify the algorithm develop-

ment, let us introduce variables unl,s and znl,s for all n ∈ N ,

l ∈ L(n), and s ∈ S as

unl,s =
∑

j∈L(n) |hH
nl,s (t)mnj,s |

2,

znl,s =
∑

j∈L(n), j �=l |h
H
nl,s(t)mnj,s |

2. (35)

Furthermore, for the sake of brevity, let us define following

functions:

ψnl (unl , bn) = −
∑

s∈S

bnsws log2

(

N0ws +
unl,s

bns

)

, (36)

φnl(znl , bn) = −
∑

s∈S

bnsws log2

(

N0ws +
znl,s

bns

)

, (37)

χ1(b1) =
(

W1(t) − W2(t)
)

q2(t)
(

∑

s∈S

b1sws − B
)+

,

(38)

χ2(b2) =
(

W2(t) − W1(t)
)

q1(t)
(

∑

s∈S

b2sws − B
)+

,

(39)

ζ(bn) =
∑

s∈S

bns log(bns), (40)

where unl = [unl,1, . . . , unl,S ]T, znl = [znl,1, . . . , znl,S ]T, and

bn = [bn1, . . . , bnS]T. Then, by using expressions (35)-(40),

and changing the sign of the objective function of prob-

lem (34), it can be equivalently expressed as the following

minimization problem:

minimize
∑

n∈N

(

∑

l∈L(n)

Qnl (t)
(

ψnl (unl , bn) − φnl(znl , bn)
)

−δζ(bn) + θn

)

subject to unl,s =
∑

j∈L(n) |hH
nl,s(t)mnj,s |

2,

n ∈ N , l ∈ L(n), s ∈ S (41a)

znl,s =
∑

j∈L(n), j �=l |h
H
nl,s(t)mnj,s |

2,

n ∈ N , l ∈ L(n), s ∈ S (41b)

χn(bn) ≤ θn, n ∈ N (41c)
∑

l∈L(n)

∑

s∈S ‖mnl,s‖
2
2 ≤ pmax

n , n ∈ N (41d)
∑

n∈N bns = 1, s ∈ S (41e)

0 ≤ bns ≤ 1, n ∈ N , s ∈ S, (41f)

with variables {unl , znl}n∈N ,l∈L(n), {bn, θn}n∈N , and

{mnl,s}n∈N ,l∈L(n),s∈S. Note that we have used the relation

log(A/B) = log(A) − log(B) to express the objective

function in problem (41). In the sequel, we first approximate

problem (41) and express it as a difference of convex (DC)

programming problem [46]. We then present an algorithm

that finds a solution for DC problem (i.e., the solution for

problem (41)) by solving a sequence of approximated convex

problems.

Note that functions ψnl(unl , bn), φnl(znl , bn), and ζ(bn)

are convex. Thus, the objective function of problem (41) can

be expressed as the difference of the following two convex

functions:

f0 � f0({unl , bn, θn}n∈N ,l∈L(n))

=
∑

n∈N

∑

l∈L(n) Qnl (t)ψnl (unl , bn) + θn, (42)

g0 � g0({znl, bn}n∈N ,l∈L(n))

=
∑

n∈N

∑

l∈L(n) Qnl (t)φnl(znl , bn) + δζ(bn), (43)

i.e., the objective function of problem (41) become f0 − g0.

We now turn to the inequality constraint (41c). We can

easily see that functions χ1(b1) and χ2(b2) are convex func-

tions if W1(t) ≥ W2(t) and W2(t) ≥ W1(t), respectively.

Otherwise, both functions χ1(b1) and χ2(b2) are concave

functions. Thus, we introduce the following approximations

for functions χ1(b1) and χ2(b2):

χ̂1(b1)

=

⎧

⎪

⎨

⎪

⎩

(

W1(t)−W2(t)
)

q2(t)
(

∑

s∈S

b1sws −B
)+

W1(t)≥W2(t)

(W1(t) − W2(t)
)

q2(t)
(

∑

s∈S

b1sws − B
)

otherwise,

(44)

χ̂2(b2)

=

⎧

⎪

⎨

⎪

⎩

(

W2(t)−W1(t)
)

q1(t)
(

∑

s∈S

b2sws −B
)+

W2(t)≥W1(t)

(

W2(t) − W1(t)
)

q1(t)
(

∑

s∈S

b2sws − B
)

otherwise.

(45)

Note that in expressions (44) and (45), we have used the upper

bound functions of χ1(b1) and χ2(b2) if W1(t) < W2(t) and

W2(t) < W1(t), respectively.

To approximate (41a) and (41b) with convex constraints,

let us introduce the new variable Mnl,s = mnl,s mH
nl,s such

that Rank(Mnl,s ) = 1 for all n ∈ N , l ∈ L(n), and

s ∈ S. Then by applying a standard semidefinite relax-

ation technique (SDR) [47] and using expressions (42)-(45),

problem (41) can be approximated as the following

DC program:

minimize f0({unl , bn, θn}n∈N ,l∈L(n))

− g0({znl , bn}n∈N ,l∈L(n))

subject to unl,s =
∑

j∈L(n) hH
nl,s(t)Mnj,shnl,s (t),

n ∈ N , l ∈ L(n), s ∈ S (46a)

znl,s =
∑

j∈L(n), j �=l hH
nl,s (t)Mnj,shnl,s(t),

n ∈ N , l ∈ L(n), s ∈ S (46b)

χ̂n(bn) ≤ θn, n ∈ N (46c)
∑

l∈L(n)

∑

s∈S Trace(Mnl,s ) ≤ pmax
n , n ∈ N (46d)

∑

n∈N bns = 1, s ∈ S (46e)

0 ≤ bns ≤ 1, n ∈ N , s ∈ S (46f)

Mnl,s � 0, n ∈ N , l ∈ L(n), s ∈ S, (46g)



with variables {unl , znl}n∈N ,l∈L(n), {bn, θn}n∈N , and

{Mnl,s }n∈N ,l∈L(n),s∈S. Note that in problem (46) we have

removed Rank(Mnl,s ) = 1 constraint for all n ∈ N , l ∈ L(n),

and s ∈ S.

We find a solution for problem (46) by solving a sequence of

approximated convex problems [46]. The best convex approx-

imation of problem (46) can be obtained by replacing g0 with

its first order approximation (i.e., by replacing φnl(znl , bn)

and ζ(bn) with their first order approximations) [46]. The first

order approximation of φnl(znl , bn) near an arbitrary positive

point (ẑnl , b̂n) can be expressed as in (47), shown at the bottom

of the page. The first order approximation of ζ(bn) near an

arbitrary positive point b̂n can be expressed as

ζ̂ (bn) = ζ(b̂n) +
∑

s∈S

(

1 + log(b̂ns)
)

(bns − b̂ns). (48)

Hence, by using the expression of f0 (see 42) and the first

order approximation of g0 (obtained by substituting (47)

and (48) in (43)), problem (46) near an arbitrary positive

point (ẑnl , b̂n) can be expressed as the following convex

optimization problem:

minimize
∑

n∈N

(

∑

l∈L(n)

Qnl (t)
(

ψnl (unl , bn) − φ̂nl(znl , bn)
)

−δζ̂ (bn) + θn

)

subject to constraints (46a) − (46g), (49)

with variables {unl , znl}n∈N ,l∈L(n), {bn, θn}n∈N , and

{Mnl,s }n∈N ,l∈L(n),s∈S. Finally, we summarize the proposed

algorithm based on SCP for resource allocation problem (33)

in Algorithm 2.

The first step in Algorithm 2 initializes the algorithm. Step 2

performs a first order approximation of functions φ̂nl(znl , bn)

and ζ̂ (bn) at the point (ẑnl , b̂n) for all n ∈ N and l ∈ L(n).

Then, the approximated convex problem (49) is solved at

step 3. Step 4 checks the stopping criteria.14 Note that we

have used an SDR technique to arrive at problem (49); thus

a solution {M⋆
nl,s}n∈N ,l∈L(n),s∈S obtained at step 3 may not

be rank one in general. Hence, at step 5, we perform a

rank one approximation of {M⋆
nl,s }n∈N ,l∈L(n),s∈S to obtain the

transmit beamformers {m⋆
nl,s }n∈N ,l∈L(n),s∈S for problem (33).

Specifically, we use randomization technique (randA method)

presented in [49, Sec. IV] to obtain a rank one solution.

Then the power and direction of the transmit beamformer

associated with lth user of BS n in subchannel s can be set

to pnl,s = ‖m⋆
nl,s‖

2
2 and vnl,s = m⋆

nl,s/‖m⋆
nl,s‖2, respectively.

14The algorithm can be stopped either when a difference between the
achieved objective value of problem (46) between two successive itera-
tions is less than a given threshold, or it runs for a finite number of
iterations [32, Sec. 3.2.2], [48, Sec. IV.B].

Algorithm 2: Centralized Algorithm for the Resource Alloca-

tion Problem (33)

1) Initialization: given initial feasible starting point

{z0
nl, b0

n}n∈N ,l∈L(n) and parameter δ > 0. Set iteration

index k = 0.

2) Set ẑnl = zk
nl and b̂n = bk

n , then form φ̂nl(znl , bn) and

ζ̂ (bn) by using expressions (47) and (48), respectively,

for all n ∈ N and l ∈ L(n).

3) Solve problem (49), and denote the solution by

{u⋆
nl , z⋆

nl , b⋆
n, M⋆

nl,s }n∈N ,l∈L(n),s∈S.

Update uk+1
nl = u⋆

nl , zk+1
nl = z⋆

nl , bk+1
n = b⋆

n , and

Mk+1
nl,s = M⋆

nl,s for all n ∈ N , l ∈ L(n), and s ∈ S.

4) Stopping criterion: if the stopping criterion is satisfied,

go to step 5. Otherwise set k = k +1, and go to step 2.

5) Obtain a rank one approximation of M⋆
nl,s and denote

it by m⋆
nl,s , for all n ∈ N , l ∈ L(n), and s ∈ S. Return

solution {b⋆
n, m⋆

nl,s }n∈N ,l∈L(n),s∈S.

A. Monotonic Convergence of Algorithm 2

Algorithm 2 solves the DC programming problem (46) by

using an approach similar to that in [46]. Hence Algorithm 2

is a descent algorithm [46, Sec. 1.3]. The proof is identical to

that provided in [46, Sec. 1.3], and it is omitted here due to

space limitation.

V. RESOURCE ALLOCATION - DISTRIBUTED ALGORITHM

In this section we extend Algorithm 2 to derive a distributed

algorithm for resource allocation problem (33). The distrib-

uted algorithm is derived by solving step 3 of Algorithm 2

(i.e., problem (49)) using ADMM [32].

We start by introducing an auxiliary variable xns as a copy

of bns for all n ∈ N and s ∈ S. Then problem (49) can be

equivalently written as

minimize
∑

n∈N

(

∑

l∈L(n)

Qnl (t)
(

ψnl(unl , bn) − φ̂nl (znl , bn)
)

−δζ̂ (bn) + θn

)

subject to constraints (46a) − (46d), (46 f ), (46g) (50a)

bns = xns, n ∈ N , s ∈ S (50b)
∑

n∈N xns = 1, s ∈ S, (50c)

with variables {unl , znl }n∈N ,l∈L(n), {bn, θn}n∈N ,

{Mnl,s}n∈N ,l∈L(n),s∈S, and {xns}n∈N ,s∈S . Observe that without

constraint (50c), problem (50) can be easily decoupled into

two subproblems, one for each operator.

φ̂nl(znl , bn) = φnl(ẑnl , b̂n) +
1

log(2)

∑

s∈S

(

−
b̂nsws

b̂ns N0ws + ẑnl,s

)

(znl,s − ẑnl,s)

+
1

log(2)

∑

s∈S ws

( ẑnl,s

b̂ns N0ws + ẑnl,s

− log
( b̂ns N0ws + ẑnl,s

b̂ns

))

(bns − b̂ns) (47)



We now express problem (50) more compactly. To do this,

let us define the matrix Mnl = [Mnl,1, . . . , Mnl,S ], and the

following set:

Cn =

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪
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⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

{unl , znl ,

Mnl}l∈L(n),

bn, θn

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

unl,s =
∑

j∈L(n)

hH
nl,s(t)Mnj,shnl,s (t),

l ∈ L(n), s ∈ S

znl,s =
∑

j∈L(n), j �=l

hH
nl,s(t)Mnj,shnl,s (t),

l ∈ L(n), s ∈ S

χ̂n(bn) ≤ θn

∑

l∈L(n)

∑

s∈S Trace(Mnl,s ) ≤ pmax
n

0 ≤ bns ≤ 1, s ∈ S

Mnl,s � 0, l ∈ L(n), s ∈ S

⎫

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎭

.

(51)

Furthermore, for the sake of brevity, let us define

the function �n

(

{unl , znl , Mnl }l∈L(n), bn, θn

)

as in (52),

shown at the bottom of the page, and the following

function:

I
(

{xns}n∈N ,s∈S

)

=

⎧

⎨

⎩

0
∑

n∈N xns = 1 for all s ∈ S

∞ otherwise.
(53)

Then by using expressions (51), (52), and (53), problem (50)

can be written compactly as

minimize
∑

n∈N �n

(

{unl , znl , Mnl }l∈L(n), bn, θn

)

+ I
(

{xns}n∈N ,s∈S

)

subject to bns = xns, n ∈ N , s ∈ S, (54)

with variables {unl , znl , Mnl }n∈N ,l∈L(n), {bn, θn}n∈N , and

{xns}n∈N ,s∈S.

A. ADMM Algorithm

To derive the ADMM algorithm we first form the augmented

Lagrangian [32] of problem (54). Let {λns}n∈N ,s∈S be the

dual variables associated with the equality constraints of

problem (54). Then the augmented Lagrangian can be written

as in (55), shown at the bottom of the page. In (55), a penalty

parameter ρ > 0 adds the quadratic penalty to the standard

Lagrangian L0 for the violation of the equality constraints of

problem (54).

Each iteration of ADMM algorithm consists of the follow-

ing three steps (56)-(58), shown at the bottom of the page [32].

In (56)-(58) superscript i is the iteration counter. Note that

steps (56) and (58) are completely decentralized, and hence,

can be carried out independently in parallel at each opera-

tor. Step (57) requires to gather the updated local variables
(

{ui+1
nl , zi+1

nl }l∈L(n), bi+1
n , θ i+1

n

)

and the dual variables {λi
ns}s∈S

from both operators. In the sequel we first explain, in detail,

how to solve the ADMM step (57), and then simplify the

above ADMM update-steps (56)-(58) into two update-steps.

Then, we summarize the proposed ADMM based distributed

algorithm.

The update {x i+1
ns }n∈N ,s∈S in (57) is a solution of the

following optimization problem:

minimize
∑

n∈N

∑

s∈S

(

λi
ns(b

i+1
ns −xns)+(ρ/2)(bi+1

ns −xns)
2
)

+ I
(

{xns}n∈N ,s∈S

)

, (59)

with variable {xns}n∈N ,s∈S. Let vns = (1/ρ)λns be a scaled

dual variable. Then by using notation (53), problem (59) can

be equivalently expressed as

minimize
∑

n∈N

∑

s∈S(ρ/2)(xns − v i
ns − bi+1

ns )2

subject to
∑

n∈N xns = 1, s ∈ S, (60)

with variable {xns}n∈N ,s∈S. Note that in the objective function

of problem (60), 15 we have dropped the constant term

(ρ/2)(v i
ns)

2 since it does not effect the solution of the problem.

For the equality constrained convex optimization problem (60),

we can easily find the optimal solution by solving KKT opti-

mality conditions [50, Ch. 5.5.3]. By solving KKT optimality

conditions of problem (60), the solution {x⋆
ns}n∈N ,s∈S can be

15We can simplify λi
ns (b

i+1
ns − xns ) + (ρ/2)(bi+1

ns − xns )
2 = (ρ/2)(xns −

v i
ns − bi+1

ns )2 − (ρ/2)(v i
ns )

2.

�n

(

{unl , znl , Mnl }l∈L(n), bn, θn

)

=

{

∑

l∈L(n) Qnl (t)
(

ψnl (unl , bn) − φ̂nl(znl , bn)
)

− δζ̂ (bn) + θn {unl , znl , Mnl }l∈L(n), bn , θn ∈ Cn

∞ otherwise
(52)

Lρ

(

{unl , znl , Mnl , bn, θn, xns , λns }n∈N ,l∈L(n),s∈S

)

=
∑

n∈N �n

(

{unl , znl , Mnl }l∈L(n), bn, θn

)

+ I
(

{xns}n∈N ,s∈S

)

+
∑

n∈N

∑

s∈S

(

λns(bns − xns) + ρ
2
(bns − xns)

2
)

(55)

{ui+1
nl , zi+1

nl , Mi+1
nl }l∈L(n), bi+1

n , θ i+1
n = argmin

{unl ,znl ,Mnl }l∈L(n),bn,θn∈Cn

Lρ

(

{unl , znl , Mnl , bn, θn, x i
ns , λ

i
ns}l∈L(n),s∈S

)

, n ∈ N (56)

{x i+1
ns }n∈N ,s∈S = argmin

{xns }n∈N ,n∈S

Lρ

(

{ui+1
nl , zi+1

nl , Mi+1
nl , bi+1

n , θ i+1
n , xns , λ

i
ns }n∈N ,l∈L(n),s∈S

)

(57)

λi+1
ns = λi

ns + ρ
(

bi+1
ns − x i+1

ns

)

, n ∈ N , s ∈ S (58)



expressed as

x⋆
ns = v i

ns + bi+1
ns − ṽ i

s − b̃i+1
s + 1/N, (61)

where N = |N |, ṽ i
s = (1/N)

∑

n∈N v i
ns , and b̃i+1

s =

(1/N)
∑

n∈N bi+1
ns . Therefore, the update x i+1

ns is

x i+1
ns = x⋆

ns , n ∈ N , s ∈ S. (62)

Now we substitute expression (61) for x i+1
ns in the dual

variable update step (58). Furthermore, by using a scaled

dual variable vns = (1/ρ)λns , step (58) can be simplified

as

v i+1
ns = ṽ i

s + b̃i+1
s − 1/N, n ∈ N , s ∈ S. (63)

Expression (63) shows that the dual variables vns for all

n ∈ N are equal. Hence, the dual variables {vns}n∈N

can be replaced with a single variable vs ∈ R in the

ADMM iteration (56)-(58). Finally, by substituting the expres-

sion for x i
ns (that can be obtained from (62)) in (56),

the ADMM iteration (56)-(58) can be simplified into the

two steps (64) and (65), shown at the bottom of the

page.

Note that we have used expression (55) to arrive at (64).

By using notation (52), the optimization problem to update

variables
(

{ui+1
nl , zi+1

nl , Mi+1
nl }l∈L(n), bi+1

n , θ i+1
n

)

in (64) can be

expressed as

minimize
∑

l∈L(n) Qnl(t)
(

ψnl (unl , bn) − φ̂nl(znl , bn)
)

− δζ̂ (bn) + θn

+
∑

s∈S(ρ/2)(bns − bi
ns + b̃i

s + v i
s − 1/N)2

subject to unl,s =
∑

j∈L(n) hH
nl,s(t)Mnj,shnl,s (t),

l ∈ L(n), s ∈ S

znl,s =
∑

j∈L(n), j �=l hH
nl,s(t)Mnj,shnl,s (t),

l ∈ L(n), s ∈ S

χ̂n(bn) ≤ θn

∑

l∈L(n)

∑

s∈S Trace(Mnl,s ) ≤ pmax
n

0 ≤ bns ≤ 1, s ∈ S

Mnl,s � 0, l ∈ L(n), s ∈ S, (66)

with variables {unl , znl}l∈L(n), bn , θn , and {Mnl,s}l∈L(n),s∈S.

We now summarize the proposed distritbuted algorithm for

the resource allocation problem (33) in Algorithm 3.

The steps of Algorithm 3 are similar to those of the

centralized Algorithm 2, except the step 3 of both algorithms.

Algorithm 3: Distributed Algorithm for Problem (33)

1) Initialization: given initial feasible starting points

{z0
nl, b0

n}n∈N ,l∈L(n), {v0
s }, and parameters δ > 0 and

ρ > 0. Set iteration indices i = 0 and k = 0.

2) Set ẑnl = zi
nl and b̂n = bi

n , then form φ̂nl(znl , bn) and

ζ̂ (bn) by using expressions (47) and (48), respectively,

for all n ∈ N and l ∈ L(n).

3) ADMM iteration:

a) each operator n ∈ N updates the local

variables
(

{ui+1
nl , zi+1

nl , Mi+1
nl }l∈L(n), bi+1

n , θ i+1
n

)

by

solving (66).

b) operators exchange their updated local variables

{bi+1
ns }s∈S with each other.

c) each operator n ∈ N updates the dual variables

{v i+1
s }s∈S by solving (65).

d) ADMM stopping criterion: if the stopping criterion

is satisfied, go to step 4. Otherwise, set i = i + 1,

and go to step 3a.

4) Stopping criterion: if the stopping criterion is satisfied,

go to step 5. Otherwise set i = i + 1, k = k + 1, and

go to step 2.

5) Set b⋆
n = bi+1

n , obtain a rank one approximation of

Mi+1
nl,s and denote it by m⋆

nl,s , for all n ∈ N , l ∈ L(n),

and s ∈ S. Return {b⋆
n, m⋆

nl,s }n∈N ,l∈L(n),s∈S.

Step 3 of Algorithm 2 solves problem (49) in a central

controller. However, in Algorithm 3 the same problem is

solved distributively by using ADMM (i.e., by performing iter-

ations in steps (3a)-(3d)). Note that we have applied ADMM

to a convex problem, and therefore the ADMM iterations

converge to the global optimal value [51, Prop. 4.2], [32].

Thus, by following Section IV-A, we can see that a sequence

of the objective value of problem (46), that is produced

upon ADMM convergence (i.e., after step 3 of Algorithm 3)

is monotonic.

Step 3d of Algorithm 3 checks the ADMM stopping criteria.

In ADMM algorithm, standard stopping criteria is to check the

primal and dual residuals [32]. We refer to each execution of

steps 2-4 as an outer iteration, and we use index k to count it.

Step 4 checks stopping criteria for the outer iteration.16

16The algorithm can be stopped either when a difference between the
achieved objective value of problem (46) between two successive itera-
tions is less than a given threshold, or it runs for a finite number of
iterations [32, Sec. 3.2.2], [48, Sec. IV.B].

{ui+1
nl , zi+1

nl , Mi+1
nl }l∈L(n), bi+1

n = argmin
{unl ,znl ,Mnl }l∈L(n),bn∈Cn

�n

(

{unl , znl , Mnl }l∈L(n), bn

)

+
∑

s∈S(ρ/2)(bns − bi
ns + b̃i

s + v i
s − 1/N)2, n ∈ N (64)

v i+1
s = v i

s + b̃i+1
s − 1/N, s ∈ S (65)



B. Implementation of Algorithm 3

Except step 3b all other steps of Algorithm 3 are decoupled

over the operators. Hence all other steps, except step 3b,

can be performed independently, in parallel. Step 3b requires

coordination between operators to exchange their updated

value of local variables {bi+1
ns }s∈S for all n ∈ N . Recall that

bns represents the local opinion of nth operator about the

fraction of sth subchannel that it uses. Since ADMM usually

produces acceptable results for practical use within only a few

iterations, a predefined or fixed number of iterations can be

used as stopping criterion for the ADMM iterations [32] at

step 3d. The transmit beamformers {m⋆
nl,s}n∈N ,l∈L(n),s∈S for

problem (33) are computed at step 5, upon the convergence

of the algorithm. At step 5, we can use randA method17

presented in [49, Sec. IV] to obtain {m⋆
nl,s }n∈N ,l∈L(n),s∈S.

Then the power and direction of the transmit beamformer

associated with lth user of BS n in subchannel s can be set

to pnl,s = ‖m⋆
nl,s‖

2
2 and vnl,s = m⋆

nl,s/‖m⋆
nl,s‖2, respectively.

It is worth to point out that, in Algorithm 3, operators do

not need to share their users’ data and the channel state

information with each other.

C. Early Termination of ADMM Iteration

To speed up Algorithm 3 we can stop ADMM iteration

after a finite number of iterations before it converges. In this

case the intermediate solutions {bi+1
ns }n∈N ,s∈S provided by

ADMM iteration do not necessarily result a feasible solution

for the original problem (33). In particular constraint (33b)

may not hold
(

i.e.,
∑

n∈N bi+1
ns �= 1 for some s ∈ S

)

. Thus,

we need to project {bi+1
ns }n∈N ,s∈S on the set F , defined as

F = {{bns}n∈N ,s∈S|
∑

n∈N bns = 1, s ∈ S}, to evaluate

expressions φ̂nl(znl , bn) and ζ̂ (bn) at step 2 of Algorithm 3.

Projection of {bi+1
ns }n∈N ,s∈S on the set F can be obtained by

solving problem (60), with v i
ns set to zero for all n ∈ N and

s ∈ S. Hence the projection of {bi+1
ns }n∈N ,s∈S on the set F

is {bi+1
ns − b̃i+1

s + 1/N}n∈N ,s∈S , which is obtained by setting

v i
ns = 0 for all n ∈ N and s ∈ S in expression (61).

D. Complexity of Algorithm 2 and Algorithm 3

Algorithm 2 and Algorithm 3 are iterative18 algorithms.

Thus, we focus on characterizing their complexity per itera-

tion. Note that both algorithms are solving convex problems at

each iteration (i.e., problem (49) is solved in Algorithm 2, and

problem (66) is solved in Algorithm 3). Thus, these problems

can be efficiently solved by using interior-point method that

relies on the Newton’s method applied to a sequence of

modified versions of the original problem [50, Ch. 11]. The

complexity of solving a Newton step for problem (49) is

O((LS(T 2 + 2) + N S + N + S)3), where L =
∑

n∈N Ln ;

and that of problem (66) is O((Ln S(T 2 + 2) + S + 1)3)

17Dominant eigenvalue and corresponding eigenvector of Mi+1
nl,s can also be

used to obtain a rank one approximation.
18It is important to point out that, in practice, the quality of the solution

achieved within the first few iterations are more important than the asymptotic
results, as we usually have time to perform only small number of iterations.

Fig. 2. A cell with two coexisting BSs belonging to different operators.
BSs are placed on the same cell site. N = {1, 2}, L(1) = {1, 2, 3}, and
L(2) = {1, 2, 3, 4, 5, 6}.

[50, Ch. 10.4]. 19 Note that, in general, a convex prob-

lem requires only a modest number of Newton steps to

solve it with high accuracy (i.e., a number of Newton steps

between 30 − 100 are enough for most of the applications)

[50, Ch. 11.3.2].

VI. SIMULATION RESULTS

We illustrate the performance of the proposed Algorithm 1

by using the setup as shown in Fig. 2. The network consist of a

cell with two coexisting BSs, belonging to two operators. The

BSs are assumed to be installed in a same tower [52, Sec. 9],

[53, Sec. 3], and they are placed at different height levels of

the tower.20 Each BS consists of T = 2 transmit antennas.

We assume a circular cell, with a radius RBS. We assume that

there are L1 = 3 users associated with BS 1, and L2 = 6

users associated with BS 2. The locations of users associated

with each BS are arbitrarily chosen as shown in Fig. 2.

We assume that each operator shares B = 2 MHz spectrum

band, and hence, the total spectrum band of 4 MHz is available

for both operators. We split the spectrum band 4 MHz into

S = 4 subchannels, and the bandwidth of each subchannel

ws = 1 MHz.

We assume an exponential path loss model, where the

channel vector from nth BS to its lth user on subchannel

s is modeled as hnl,s (t) = (dnl(t)/d0)
−η/2 cnl,s(t), where

dnl(t) is the distance from BS n to its lth user, d0 is the

far field reference distance [54], η is the path loss exponent,

and cnl,s (t) ∈ CT is arbitrarily chosen from the distribution

CN (0, I) (i.e., frequency-flat fading channel with uncorrelated

antennas). Note that the term (dnl(t)/d0)
−η/2 denotes large

scale fading, and the term cnl,s(t) denotes small scale fading.

19The complexity order are computed by relaxing the first and second
equality constraints of problem (49) and (66), as they hold with equality
at the optimal solution.

20This particular setup is chosen to illustrate that operators are operating in a
same geographical area. However, our problem formulation and the proposed
algorithms are general, and they are applicable when the BSs of the operators
are far apart and also to the case of correlated channels.



Fig. 3. WSR [Mbits/s] versus iteration for SNR = 5 dB and 10 dB of
Algorithm 2.

Here, we refer an arbitrarily generated set of fading coeffi-

cients Č (t) = {cnl,s(t), dnl (t)|n ∈ N , l ∈ L(n), s ∈ S} as a

single fading realization.

We assume that pmax
n = pmax

0 for all n ∈ N . We define

the signal-to-noise ratio (SNR) operating point at a distance

R as SNR(R) = (R/d0)
−η pmax

0 /(N0ws). In the following

simulations, we set d0 = 1, η = 4, and the cell radius RBS is

fixed throughout the simulations such that SNR(RBS) = 10dB

for pmax
0 /(N0ws) = 40dB.

To solve step 4 of Algorithm 1, we use either centralized

Algorithm 2 or distributed Algorithm 3. Thus, we first present

the performance of Algorithm 2 and Algorithm 3. Then,

we evaluate the performance of Algorithm 1. In Algorithm 2

and Algorithm 3, we set penalty parameter δ = (0.1ws)k.

That is a varying penalty parameter δ is used such that more

weight is given to the penalty function ζ̂ (bn) as algorithm

progress. In Algorithm 3, for the ADMM iteration, we use

the standard stopping criteria presented in [32, Sec. 3.3.1].

The stopping criteria in [32, Sec. 3.3.1] calculates the primal

residual r i
pri = (

∑

n∈N

∑

s∈S(b
i
ns − x i

ns)
2)1/2 and the dual

residual r i
dual = (ρ

∑

n∈N

∑

s∈S(x i
ns − x i−1

ns )2)1/2, see (61)

for the expression of x i
ns . Then ADMM iteration is stopped,

if r i
pri ≤ ǫ and r i

dual ≤ ǫ, where ǫ > 0 is a given tolerance.

In the simulation, we set ǫ = 0.1. Furthermore, we limit the

ADMM iteration to a maximum of 10 iterations.

To evaluate the performance of Algorithm 2 and

Algorithm 3, we consider a single fading realization. The

weight Qnl (t) associated with each user is set to one for all

n ∈ N and l ∈ L(n); and the price per-unit spectrum qn(t) of

each operator is set to zero for all n ∈ N . As we set qn(t) = 0

for all n ∈ N , Algorithm 2 and Algorithm 3 solve a weighted

sum-rate (WSR) maximization problem (see problem (33)),

and that jointly allocates spectrum band to the operators and

design transmit beamformers.

Fig. 3 shows the convergence behavior of the centralized

Algorithm 2 for SNR = 5dB and SNR = 10dB. The

WSR values of problem (33) are computed after step 3 of

the algorithm. Results show that the proposed Algorithm 2

converges within the first few iterations.

Fig. 4. WSR [Mbits/s] versus iteration for SNR = 5 dB of Algorithm 3.

Fig. 4 shows the convergence behavior of the distributed

Algorithm 3 for SNR = 5dB, along with the objective value

obtained by the centralized Algorithm 2. We set the ADMM

penalty parameter ρ = 5ws and 10ws . The WSR values of

problem (33) are computed after step 3c of Algorithm 3. The

markers “circle” and “asterisk” in the figure for ρ = 5ws

and 10ws , respectively, represent the start of ADMM iteration

for a new point
(

{ẑnl}n∈N ,l∈L(n), {b̂n}n∈N

)

that is set at step 2

of the algorithm. Results show that the proposed distributed

algorithm converges to the centralized objective value for

different values of ρ. Furthermore, results show that a number

of iterations between two successive “circle” markers (and

also between two successive “asterisk” markers) reduces as

the algorithm progress. That is, a fewer number of ADMM

iterations (i.e., step 3 of Algorithm 3) is required as the

algorithm progress.

In order to see the average behavior of Algorithm 2

and Algorithm 3, we next consider the fading case. For

Algorithm 3, we set ρ = ws, 5ws , and 10ws . Let

f̆ k
0 denote the objective value of problem (46) obtained

at kth iteration, i.e., f̆ k
0 = f0({u

k
nl , bk

n, θ k
n }n∈N ,l∈L(n)) −

g0({z
k
nl , bk

n}n∈N ,l∈L(n)); we stop both algorithms when either21

| f̆ k+1
0 − f̆ k

0 |/| f̆ k
0 | ≤ 0.001, or algorithms run for a maximum

of 25 iterations (see step 4 of both algorithms). To the best

of our knowledge there is no algorithm for joint subchannel

allocation and beamforming design for problem (33) in lit-

erature. Thus, as a benchmark, we consider the zero-forcing

beamforming (ZFBF) with user selection algorithm proposed

in [56, Sec. VI.B], and partition the S subchannels among the

operators by exhaustive search and random allocation. In ran-

dom subchannel allocations, the subchannels are partitioned

between the operators such that each of them obtain equal

amount of subchannels. We refer to algorithm [56, Sec. VI.B]

combined with an exhaustive search for partitioning subchan-

nels as exhaustive-ZFBF; and the algorithm [56, Sec. VI.B]

combined with a random channel allocation as random-ZFBF.

We run all algorithms for 500 fading realizations.

21We use relative stopping criteria because it is scale-
independent [Sec. 8.2], [55].



Fig. 5. Average WSR [Mbits/s] versus SNR.

Fig. 6. Distribution of variables {bns}n∈N ,s∈S for SNR = 10 dB.

Fig. 5 shows the average WSR, obtained by Algorithm 2

and Algorithm 3, versus SNR. Results show that the proposed

algorithms perform slightly better than exhaustive-ZFBF at

low to medium SNR values, while exhaustive-ZFBF per-

forms better at high SNR values. However, exhaustive-ZFBF

partitions the S subchannels by exhaustive search, and its

complexity is exponential in the number of subchannels. Thus,

it quickly become intractable as the number of subchannels

increases. On the other hand, both proposed algorithms outper-

form random-ZFBF for the entire range of SNR values. Fur-

thermore, results show that distributed Algorithm 3 achieves

WSR values closer to the centralized Algorithm 2.

Fig. 6 shows the distribution of variables {bns}n∈N ,s∈S.

Results show that the values of {bns}n∈N ,s∈S are (almost)

either near to zero or one. Hence, the proposed algorithms can

allocate sth subchannel to a single operator. In the following

simulations, if values of {bns}n∈N ,s∈S are not exactly binary,

we round it to the nearest binary value to assign sth subchannel

to a single operator.

We now evaluate the performance of Algorithm 1.

We suppose that the utility functions of users are given by

Fig. 7. Objective values of problem (7) versus parameter V .

Fig. 8. Average network backlog versus parameter V .

gnl(anl) = log(1 + anl) for all n ∈ N and l ∈ L(n). The

parameter Amax is computed as described in [23, Sec. 4.2.1],

and it is given by Amax = Sws log2(1 + pmax
0 /N0ws). In fact,

parameter Amax is an upper bound on the total transmis-

sion rate obtained by using S subchannels with the transmit

power pmax. The maximum per-unit price of the spectrum

band is set to qmax = gnl(Amax) [unit/MHz]. 22 The parameter

µmax is set such that it contains the optimal value of Un −U0
n

for all n ∈ N [29, Ch. 5]. Since Amax is an upper bound on the

total transmission rate, we have U n −U0
n ≤ Amax +qmax B . 23

Thus, we set µmax = Amax + qmax B . A value of disagreement

point U0
n is obtained by solving a problem in Appendix.

For simplicity, we assume that the transport layer storage

reservoirs are saturated, i.e., there is always enough data

waiting to be sent.

We run centralized and distributed versions of Algorithm 1

for T max = 1000 time slots (fading realizations). Centralized

22The proposed dynamic algorithms are independent of the unit of price,
and hence we work with a normalized unit. But the results could be scaled
with a proper value of price-unit that operators mutually agree.

23Under network stability
∑

l∈L(n) ānl (t) ≤ Amax for all n ∈ N . Hence

from expression (6), we have Un ≤ Amax + qmax B for all n ∈ N .



version of Algorithm 1 is obtained by solving step 4 of

the algorithm by using Algorithm 2. Distributed version of

Algorithm 1 is obtained by solving step 4 of the algo-

rithm by using Algorithm 3. As a benchmark, we consider

the exhaustive-ZFBF and random-ZFBF algorithms to solve

step 4 of Algorithm 1. Furthermore, to evaluate the perfor-

mance of the proposed algorithms, we also consider time-

division multiple access (TDMA) approach to solve step 4 of

Algorithm 1; specifically, operators are allowed to fully access

the common spectrum pool in alternating time slots. We run

Algorithm 1 embedded with TDMA approach, with and with-

out considering the spectrum pricing strategy of Section II-A,

for T max = 4000 time slots.24 In the simulations, we set

SNR = 10 dB, and the ADMM penalty parameter ρ = 10ws .

Fig. 7 shows the objective values of problem (7) versus

parameter V . Results show that the objective value improves

as V increases. Fig. 8 shows the time average network back-

log, i.e., 1/T max
∑T max

τ=1

∑

n∈N

∑

l∈L(n) Qnl(τ ) versus parame-

ter V . Results show that the time average network backlog

increases with the parameter V . For TDMA based algorithm,

the plots are drawn starting from V = 50, as below this

value the algorithm is unable to obtain operators’ utilities

above the disagreement points.25 Fig. 7 and Fig. 8 show

that there is a trade-off between the achieved objective value

of problem (7) and the network congestion. That is when

the objective value increases, the network backlog is also

increased. Furthermore, results show that both centralized

and distributed versions of Algorithm 1 perform almost the

same, and very close to that obtained by using exhaustive-

ZFBF based dynamic control algorithm. However, proposed

centralized and distributed versions of Algorithm 1 outperform

control algorithms that are implemented using random-ZFBF,

TDMA, and TDMA with pricing (TDMA-pricing) to solve

step 4 of Algorithm 1. In addition, the TDMA based algo-

rithms show that the pricing strategy of Section II-A improves

the objective of problem (7) while increasing the queue

backlog.

Fig. 9 shows the average profits of the operators {Un}n∈N

versus parameter V . Results show that the average profits

of both the operators obtained by sharing their spectrum

band with each other are greater than their disagreement

points, i.e., U n ≥ U0
n for all n ∈ N . In other words,

both operators gain in their profits by sharing their licensed

spectrum band with each other, rather than using them exclu-

sively. Furthermore, results show that the proposed algorithms

outperform the control algorithms that are implemented by

solving step 4 of Algorithm 1 with TDMA approach. More-

over, results show that when Algorithm 1 is embedded with

TDMA approach, the operator with low spectrum demand (see

operator 1) increases its profit by using the pricing strategy of

Section II-A. That is the operator with low spectrum demand

is getting paid for leasing its spectrum. Figure shows that the

profit of each operator converges to its maximum value as V

increases.

24We used larger averaging window as TDMA based algorithm requires
slightly longer time to reach a near steady state [29].

25Recall that in Algorithm 1 the value of V puts emphasis on the objective
of problem (7), see expression (19).

Fig. 9. Profits of the operators versus parameter V .

Fig. 10. Queue evolution Qsum(t) for V = 10 and 1000.

Fig. 10 shows the evolution of the network queue back-

log defined as Qsum(t) =
∑

n∈N

∑

l∈L(n) Qnl (t). Here,

step 4 of Algorithm 1 is solved by using Algorithm 2. The

algorithm is run for V = 10 and 1000. Results show that the

network queue backlog Qsum(t) increases until it reaches a

certain value (e.g., for V = 1000 around 1400 Mbits), and then

it oscillates. This is because of the negative drift property of

the Lyapunov function [23, Ch. 4.4], and it ensures all queues

are bounded and the network is stable.

VII. CONCLUSION

We have considered a spectrum sharing problem between

two operators in a dynamic network environment. We have

allowed both operators to share their licensed spectrum bands

with each other by forming a common spectrum band.

Two-person bargaining framework has been used to model the

spectrum sharing problem, and we have cast it as a stochastic

optimization problem. To solve this problem, we have pro-

posed both centralized and distributed dynamic control algo-

rithms by using Lyapunov optimization. Numerically, we have

shown that the proposed distributed algorithm achieves almost



the same performance as the centralized one. Furthermore,

it has been shown that operators gain in their profits by sharing

their licensed spectrum band with each other, rather than using

them exclusively; and there is a trade-off between the achieved

profits of the operators and the network congestion. The

proposed algorithms can be extended for multiple operators

by redefining appropriately the spectrum pricing strategy of

Section II-A. However, this extension is nontrivial and it falls

outside the main scope of this paper; thus it is left as a future

interesting work.

APPENDIX

We set U0
n to a value of utility that nth operator gain

by using B Hz of spectrum band (i.e., without sharing its

spectrum band with other operator). The resource allocation

problem for nth operator without sharing its licensed spectrum

band can be obtained by modifying problem (32). Specif-

ically, by dropping the constraint associated with orthogo-

nal subchannel allocation of problem (32), and the payment

terms with the spectrum pricing in the objective function,

the resource allocation problem for operator n ∈ N during

time slot t can be expressed as

maximize
∑

l∈L(n)

Qnl(t)
∑

s∈S(n,t)

ws log2

(

1

+
|hH

nl,s(t)mnl,s |
2

N0ws +
∑

j∈L(n), j �=l |h
H
nl,s (t)mnj,s |2

)

subject to
∑

l∈L(n)

∑

s∈S(n,t) ‖mnl,s‖
2
2 ≤ pmax

n , (67)

with variables {mnl,s}l∈L(n),s∈S(n,t). Note that problem (67) can

be solved with the approach presented in Section IV. Let us

denote {m⋆
nl,s(t)}l∈L(n),s∈S(n,t) the solution of problem (67),

and the transmission rate be r⋆
nl(t) of lth user of nth operator

(

transmission rate can be calculated by using expression (2)
)

.

Let r̄nl (t) denotes the time average rate defined as r̄nl(t) =
1
t

∑t
τ=1 r⋆

nl(τ ). Then the utility gain of lth user of nth operator

based on its current data rate r̄nl (t) is gnl(r̄nl(t)). To estimate a

value of {U0
n }n∈N , we solve problem (67) with Qnl(t) = 1 for

all n ∈ N and l ∈ L(n), and run simulation for 5000 fading

realizations. Then a disagreement point for nth operator is set

to U0
n =

∑

l∈L(n) gnl(r̄nl (5000)).
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