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Abstract

To date, non-pharmacological interventions (NPI) have been the mainstay for controlling the coronavirus disease-2019 

(COVID-19) pandemic. While NPIs are effective in preventing health systems overload, these long-term measures are 

likely to have significant adverse economic consequences. Therefore, many countries are currently considering to lift the 

NPIs—increasing the likelihood of disease resurgence. In this regard, dynamic NPIs, with intervals of relaxed social distanc-

ing, may provide a more suitable alternative. However, the ideal frequency and duration of intermittent NPIs, and the ideal 

“break” when interventions can be temporarily relaxed, remain uncertain, especially in resource-poor settings. We employed 

a multivariate prediction model, based on up-to-date transmission and clinical parameters, to simulate outbreak trajectories 

in 16 countries, from diverse regions and economic categories. In each country, we then modelled the impacts on intensive 

care unit (ICU) admissions and deaths over an 18-month period for following scenarios: (1) no intervention, (2) consecutive 

cycles of mitigation measures followed by a relaxation period, and (3) consecutive cycles of suppression measures followed 

by a relaxation period. We defined these dynamic interventions based on reduction of the mean reproduction number during 

each cycle, assuming a basic reproduction number (R0) of 2.2 for no intervention, and subsequent effective reproduction 

numbers (R) of 0.8 and 0.5 for illustrative dynamic mitigation and suppression interventions, respectively. We found that 

dynamic cycles of 50-day mitigation followed by a 30-day relaxation reduced transmission, however, were unsuccessful in 

lowering ICU hospitalizations below manageable limits. By contrast, dynamic cycles of 50-day suppression followed by a 

30-day relaxation kept the ICU demands below the national capacities. Additionally, we estimated that a significant number 

of new infections and deaths, especially in resource-poor countries, would be averted if these dynamic suppression measures 

were kept in place over an 18-month period. This multi-country analysis demonstrates that intermittent reductions of R below 

1 through a potential combination of suppression interventions and relaxation can be an effective strategy for COVID-19 

pandemic control. Such a “schedule” of social distancing might be particularly relevant to low-income countries, where a 

single, prolonged suppression intervention is unsustainable. Efficient implementation of dynamic suppression interventions, 

therefore, confers a pragmatic option to: (1) prevent critical care overload and deaths, (2) gain time to develop preventive 

and clinical measures, and (3) reduce economic hardship globally.
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Introduction

Coronavirus disease 2019 (COVID-19) pandemic has 

imposed an unprecedented challenge to global healthcare 

systems, societies, and governments [1]. As of May 16, 

2020, the severe acute respiratory syndrome coronavirus-2 

(SARS-CoV-2, causative pathogen for COVID-19) has 

been detected in every country, with more than 4.6 million 
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confirmed cases and a death toll exceeding 300,000 world-

wide [2]. Furthermore, recent pandemic model projections 

estimate that COVID-19 could result in ~ 40 million deaths 

globally this year, if no interventions are implemented 

[3]. To date, in the absence of efficacious pharmaceuti-

cal measures for prevention or treatment, the principal 

strategy to control COVID-19 has focused on community-

based, non-pharmaceutical interventions (NPIs) [4]. These 

NPIs typically include a package of mitigation and sup-

pression measures (e.g., case-based isolation, shielding 

of vulnerable groups, school closures, restricting public 

events and lockdowns), that aim to minimize person-to-

person transmissions of SARS-CoV-2 through social dis-

tancing [5].

While NPIs are effective (e.g., in blunting the peak 

of the epidemic, preventing health systems overload and 

reducing incidence) [4, 6, 7], these long-term measures 

are also associated with significant unemployment, eco-

nomic hardship and social disruption (with surveys from 

resource-poor settings showing an average fall in income 

by 70% and consumption expenditure by 30%) [8]. There 

is a growing concern whether these prolonged interven-

tions are sustainable given the widespread disparities in 

economic resilience and health sector capacities glob-

ally [9]. As a result, many countries worldwide are cur-

rently considering to lift the lockdowns—increasing the 

likelihood of disease resurgence. In this regard, dynamic 

NPIs with intervals of relaxed social distancing, may serve 

as a realistic alternative to achieve the NPI goals, with 

minimal adverse socioeconomic consequences. However, 

it remains unclear (1) what should be the frequency and 

duration of such dynamic NPIs, (2) what should be the 

ideal “break” when interventions can be relaxed temporar-

ily before case numbers resurge, and (3) which dynamic 

NPI strategy should be adapted globally across regions 

with diverse health and economic infrastructures. Address-

ing these issues is essential to devise feasible, context-

specific policies to prevent collapse of healthcare sys-

tems, reduce premature deaths and minimize detrimental 

impacts on national economies associated with prolonged 

continuous NPIs.

To address these uncertainties, we have employed a 

transmission dynamic model comparing sixteen countries 

that vary in setting and income groupings. Our key aims 

were to: (1) calculate age-standardized estimates of case-

severity and fatality in included countries; (2) estimate 

the impact of an uncontrolled course of the pandemic in 

each country, given the current resources of their health 

systems (counterfactual), (3) compare continuous versus 

intermittent combinations of mitigation/suppression and 

relaxation strategies, over an 18-month period (i.e., opti-

mistic timeline for an efficacious vaccine to be developed 

[10]); and (4) identify strategies that help keep the number 

of projected cases requiring critical care within a manage-

able limit, while also considering a feasible duration of 

these interventions.

Methods

This study was conducted according to the to the TRIPOD 

reporting guideline [11] for prediction modelling studies 

(Supplementary Appendix 1).

Study design, source of data and study settings

We have employed a multivariate prediction model to 

describe COVID-19 transmission dynamics under various 

NPIs. Since the distributions of age and underlying co-

morbidities may differ importantly by country, region and 

economic status [4] we have hypothesised that the predicted 

mortality impacts for NPI strategies will differ importantly. 

Therefore, for this current study, we have considered sev-

eral circumstances. First, we used age-standardized clinical 

dynamic estimates to model the epidemic trajectories in 16 

different countries (which comprise roughly a quarter of the 

global population), by accessing available country-specific 

age structure data. Second, we selected these countries from 

diverse geographical regions: Western Europe (The Nether-

lands, Belgium), South America (Chile, Colombia), North 

America (Mexico), Africa (South Africa, Nigeria, Ethiopia, 

Tanzania, Uganda), South Asia (India, Bangladesh, Pakistan 

Sri Lanka), West Asia (Yemen), and the Pacific (Australia). 

Third, these countries also represent all income categories 

equally, as defined by the World Bank [12]: four countries 

in every high (HIC), higher-middle (HMIC), lower-middle 

(LMIC) and low income (LIC) groups, respectively.

Intervention scenarios, predictors and outcomes

We considered case isolation at home, voluntary home 

quarantine, closure of schools and universities, and social 

distancing of the entire population as physical distancing 

measures. We defined the study interventions scenarios 

based on reduction of the reproduction number during the 

duration of intervention (R). For this, we assumed a basic 

reproduction number [13] (R0, the average number of sec-

ondary infections arising from a typical single infection in a 

completely susceptible population) of 2.2 for uncontrolled 

spread of COVID-19, and effective reproduction numbers 

(R, average number of secondary cases per infectious case 

in presence of control measures and a partially immune 

population) of 0.8 and 0.5 for mitigation and suppression 

interventions, respectively. These assumptions were based 
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on recent work by Jarvis et al. [14] who reported a 73% 

reduction in the average daily number of contacts observed 

per participant for physical distancing measures. This cor-

responded to a pre-intervention R0 value of 2.6 to reduce to 

a post-intervention R value of 0.62 (95% confidence inter-

val: 0.37–0.89) following strict suppression measures. Even 

though the exact relationship between changes in the number 

of social contacts and R0 remains unclear, we used these 

findings as the rationale to calculate our study’s effective R 

values of 0.5 and 0.8 for the interventions. These numbers 

are in agreement with recent estimates for several European 

countries and arguably reflect the expected effects of a some-

what relaxed and more stringent lockdown [15].

Based on this approach, or each country, the following 

intervention scenarios were considered: (1) no intervention 

(i.e., counterfactual scenario), (2) consecutive cycles of miti-

gation (a combination of measures, such as general social 

distancing measures, hygiene rules, case-based isolation, 

shielding of vulnerable groups, school closures or restricting 

of large public events; target R = 0.8), followed by a relaxa-

tion period (comprising of case-based home isolation of 

positive cases and shielding of vulnerable groups), (3) con-

secutive cycles of suppression (additional measures of strict 

physical distancing, including lockdowns; target R = 0.5) fol-

lowed by a relaxation period (as defined above), and (4) a 

continuous suppression measure with no relaxation.

In the absence of intervention, the assumed parameters 

for transmission dynamics yielded a characteristic rise-and-

fall timescale of infections of about 50 days, which we set 

to be the illustrative duration of intervention. Choosing a 

slightly longer period (e.g. 60 days) yielded similar out-

comes. The duration of breaks between interventions needs 

to be less than the intervention period for the interventions 

to be effective; therefore, we set the break duration to be 30 

days. When to intervene was determined by the initial frac-

tion of the population that was infected. For example, if the 

fraction was on the order of 1 part in 10,000 (or more), we 

set the initiation point for the intervention at Day 20. How-

ever, if the fraction was on the order of 1 part in 100,000 to 

1 million, we set the initiation point as Day 30. Similarly, if 

the fraction was on the order of 1 part in 10 million, we set 

this at Day 50. Changes in the initial fraction simply shift the 

curves back and forth in time without altering their shapes.

For each country, the outcomes of interest were (1) the 

number requiring intensive care unit (ICU) beds (primary 

outcome); and (2) total number of hospitalizations and 

deaths (secondary outcome), by different scenarios of NPIs, 

and within a time horizon of 18 months. We prioritized ICU 

care needs as the main outcome since this healthcare com-

ponent is in short supply in many resource-limited settings, 

and therefore, is a major determinant for adverse COVID-19 

outcomes.

Statistical methods for model calibration 
and age-standardization

The analyses were based on a standard susceptible-

exposed-infected-recovered (SEIR) compartmental model 

[16] to describe the transmission of SARS-CoV-2 in 16 

countries under various NPI scenarios. The model consid-

ered additional compartments for hospitalization and ICU 

demand. Susceptible individuals S are infected by infec-

tious individuals I at a rate β. After an incubation period of 

1/σ = 5·2 days [17], exposed individuals E becomes infec-

tious I, and either clear the infection at a rate γ or progress 

to severe infection P with probability fP. The infectious 

period is taken to be 1/γ = 2·3 days, corresponding to a 

serial interval and generation time of 1/σ + 1/γ = 7·5 days 

[17]. The quantity fP is the proportion of infections that 

require hospitalization, for which we obtained age-specific 

estimates from a recent analysis of COVID-19 cases in 

China [18].

We applied these age-specific estimates to each indi-

vidual country’s population to get country-specific age-

standardized proportion of infections that require hospitali-

zation. We considered the delay between severe infection 

and hospitalization is 1/ω = 2·7 days [4]. Severely infected 

individuals P enter the hospital as H, after which they either 

leave the hospital at a rate κ or enter the ICU with prob-

ability fU. Age-stratified proportions of hospitalized cases 

requiring ICU care (fU) were based on the Imperial College 

COVID-19 Response Team’s Report [4], and then standard-

ized according to each country’s population age structure. 

The quantity 1/κ is the duration of non-ICU hospital stays, 

which we considered 8 days [4]. Patients U stay in ICU 

for 1/δ = 8 days [4], after which a fraction of them die (fD). 

The age-specific infectious fatality rate (IFR) were obtained 

from Verity et al. [18]. Those were subsequently applied 

to individual country’s population to get country-specific 

age-standardized IFRs (Supplementary Tables S1–S16). 

IFR is the product of fP, fU, and fD. The basic reproduc-

tion number is R0 = βN/γ = 2·2 [17, 19, 20], with N being 

the total population size of the country. The set of coupled 

ordinary differential equations that underpin our model are 

Box 1  Equations used in SEIR compartmental model

dS

dt
= −�IS,

dE

dt
= �IS − �E,

dI

dt
= �E − �I,

dP

dt
= fP�I − �P,

dH

dt
= �P − �H,

dU

dt
= fU�H − �U,

dR

dt
=
(

1 − fP
)

�I +
(

1 − fU
)

�H + (1 − fD)�U,

dD

dt
= fD�U.
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presented in the Box 1. These equations in the SEIR model 

were solved numerically using the solve_ivp package in the 

Python programming language suite [21]; plots were cre-

ated using the matplotlib graphics package [22].

Results

Country-speci�c characteristics and clinical 
dynamics

Demographic and health system-related characteristics 

Table  1 presents a summary of the demographic and 

health system-related characteristics for the included 

countries, grouped by their respective income levels. 

Briefly, the countries varied in population size (ranging 

from 11,539,326 in Belgium to 1,366,417,755 in India). 

The first cases were identified in a much later date in the 

LICs (~ late February–early March, 2020) compared to 

HIC countries such as Australia, the Netherlands and 

Belgium. Additionally, there were significant differences 

across countries with respect to healthcare infrastructure. 

For example, in the majority of LICs and LMICs, avail-

able hospital and ICU beds were < 1 bed per 1000 popu-

lation and < 1 bed per 100,000 population, respectively 

(Table 1).

Age-standardized estimates of case-severity and fatality 

Table 2 summarizes various COVID-19 relevant clinical 

dynamics estimated for each of the 16 included countries. 

Briefly, proportion of infected individuals who require 

hospitalization ranged from 1.61% in Uganda to 6.12% 

in the Netherlands, with higher proportions observed in 

HIC and UMICs compared to the other country categories. 

This pattern was similar for the proportion of hospitalized 

Table 1  Key demographic and health system-related characteristics of the 16 included countries

ICU intensive care unit
a Taken from various country-specific reports
b Taken from The World Bank Data on hospital bed [23]
c Taken from various country-specific reports

Size of popula-

tion

Number of 

initial infections 

(as of 1 April 

2020)a

Date of first 

case

Hospital beds 

per 1000 

 populationb

Total hospital 

beds

Total ICU  bedsc ICU beds per 

100,000 popu-

lation

High-income

 Australia 25,203,200 9618 25 January 2020 3.8 95,772 2200 8.7

 Belgium 11,539,326 11,899 04 February 

2020

6.2 71,544 1900 16.5

 Chile 18,952,035 2449 03 March 2020 2.2 41,694 1000 5.3

 The Nether-

lands

17,097,123 11,750 27 February 

2020

4.7 80,356 1150 6.7

Upper-middle income

 Colombia 50,339,443 702 06 March 2020 1.5 75,509 5600 11.1

 Mexico 127,575,528 993 28 February 

2020

1.5 191,363 3000 2.4

 South Africa 58,558,267 1326 05 March 2020 2.5 146,396 1500 2.6

 Sri Lanka 21,323,734 112 27 January 2020 3.6 76,765 519 2.4

Lower-middle income

 Bangladesh 163,046,173 49 08 March 2020 0.8 130,437 1174 0.7

 India 1,366,417,755 1251 30 January 2020 0.9 1,229,776 29,997 2.2

 Nigeria 200,963,603 111 27 February 

2020

0.5 100,482 128 0.1

 Pakistan 216,565,317 1865 26 February 

2020

0.6 129,939 3142 1.5

Low-income

 Afghanistan 38,041,757 166 24 February 

2020

0.5 19,021 100 0.3

 Burkina Faso 20,321,383 246 09 March 2020 0.4 8,129 50 0.2

 Tanzania 58,005,461 19 16 March 2020 0.7 40,604 38 0.1

 Uganda 44,269,587 33 20 March 2020 0.5 22,135 55 0.1
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cases requiring critical care (Table 2). IFR estimates were 

significantly higher in the HICs, compared to LMIC and 

LICs (range 0.17 in Burkina Faso to 1.13 in Belgium). 

Model development and predicted impact 
of the interventions

 Impact of uncontrolled or no intervention scenario In the 

unlikely scenario of no NPI, the number of cases requiring 

ICU care would exceed the available capacity significantly 

for every single country (Fig. 1). This unmitigated scenario, 

in aggregate, would also result in 7,840,444 deaths in all 

16 countries. This estimate would have been equivalent to 

approximately 46% of all deaths recorded in these countries 

in 2017. Additionally, an uncontrolled epidemic would pre-

dict 583,738 total deaths in the HIC, 1,026,361 deaths in the 

HMIC, 6,000,220 deaths in the LMIC, and 230,125 deaths in 

the LIC settings. The majority of these deaths will occur in 

India, proportionate to the large population of this country. 

Under this scenario, the duration of the epidemic will last 

nearly 200 days in the majority of the included countries 

(Fig. 1).

Comparing impacts of dynamic cycles of mitigation/

suppression and relaxation Our models predict that simul-

taneous cycles of 50-day mitigation intervention followed 

by a 30-day relaxation would likely to reduce the effective 

reproduction number R to 0.8 in all countries. However, 

this rolling mitigation measure was insufficient to keep the 

number of patients requiring healthcare below the avail-

able critical care capacity (Fig. 1). In this NPI scenario, 

the duration of pandemic appeared approximately 12 

months in the HIC, and was close to 18 months in the other 

settings. Additionally, dynamic mitigation interventions 

were effective at the first 3 months for all the countries, 

but after the first relaxation, the pandemic would exceed 

the hospital capacity in all the countries and would result 

in 3,534,793 deaths. By contrast, we found that dynamic 

cycles of 50-day suppression followed by a 30-day relaxa-

tion, aimed at reducing the effective R to 0.5, were suitable 

for all settings to keep ICU demand within national capac-

ity (Fig. 1). Since more individuals remain susceptible at 

Table 2  Age-standardised estimates for case severity and fatality of COVID-19 for 16 included countries

All estimates are standardised according to the age structure of the respective country
a Age-specific proportions of infected individuals hospitalised were taken from Verity et  al. [18]. These proportions were adjusted for under-

ascertainment and corrected for demography. We assumed that cases defined as severe would be hospitalised
b Age-specific proportions of hospitalised cases requiring critical care were taken from Imperial COVID-19 Response Team Report [4]
c Age-specific proportions of individuals requiring critical care die were calculated by dividing the IFRs with proportions of infected individuals 

hospitalised and proportions of hospitalised cases requiring critical care
d Age-specific IFRs were taken from Verity et al. [18]

Proportion of infected indi-

viduals  hospitaliseda (%)

Proportion of hospitalised cases 

requiring critical  careb (%)

Proportion of individuals requir-

ing critical care  diec (%)

Infection fatality 

ratio (IFR)d (%)

High-income

 Australia 5.34 29.3 59.6 0.93

 Belgium 6.01 31.5 59.6 1.13

 Chile 4.69 25.8 59.5 0.72

 The Netherlands 6.12 30.6 59.6 1.12

Upper-middle income

 Colombia 3.93 23.3 59.4 0.54

 Mexico 3.57 22.3 59.4 0.47

 South Africa 3.09 19.1 59.2 0.35

 Sri Lanka 4.38 24.2 59.5 0.63

Lower-middle income

 Bangladesh 3.10 19.6 59.3 0.36

 India 3.35 20.3 59.3 0.41

 Nigeria 1.96 16.3 59.1 0.19

 Pakistan 2.55 19.0 59.2 0.29

Low-income

 Afghanistan 1.86 16.4 59.1 0.18

 Burkina Faso 1.81 16.0 59.0 0.17

 Tanzania 1.90 16.3 59.0 0.18

 Uganda 1.61 15.1 58.9 0.15
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the end of each cycle of suppression and relaxation, such 

approach would result in a longer pandemic, beyond 18 

months in all countries; however, global mortality would 

drop to 131,643 during that period (Fig. 1).

Estimated impacts of dynamic mitigation and sup-

pression strategies on new infections, hospitalisations 

and deaths in all 16 countries have been summarised in 

Table 3. Briefly, the numbers of new infections per day 

(during the peak of epidemic) were significantly higher 

for all countries in no and dynamic mitigation intervention 

scenarios. Both new infections and ICU bed requirements 

per day (during the peak of epidemic) were significantly 

lower, especially for low-income settings, for dynamic 

suppression and relaxation strategy (Table 3). For dynamic 

mitigation strategies, mortality estimates were 266,835 

in HICs, 463,499 in HMICs, 2,700,162 in LMICs, were 

and 104,297 in LICs. The corresponding estimates for 

the dynamic suppression strategies were markedly lower: 

63,166 in HICs, 32,419 in HMICs, 32,210 in LMICs and 

3,848 in LICs (Table 3).

Sensitivity analyses As sensitivity analyses, we found 

that a single but continuous yearlong mitigation or sup-

pression strategy would be effective to keep the number 

of patients well below the available hospital capacity 

(Fig. 2). In case of suppression, in 3 months, most of 

the countries would not have any new cases to report. 

In case of sustained mitigation, countries would require 

approximately 6.5 months to reach a no-new-case sce-

nario (Fig.  2). Additionally, dynamic mitigation and 

suppression interventions implemented for a period of 

time less than 50 days led to an increase in the number 

of infections beyond the ICU healthcare capacities. The 

Fig. 1  Impact of dynamic interventions and relaxation on ICU beds requirement in 16 countries over an 18-month period
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same was observed for relaxation periods longer than 30 

days. 

Discussion

In this mathematical modelling study, we have assessed 

the potential impact of dynamic community-based NPIs, 

involving sixteen economically diverse countries, as a 

pragmatic strategy for controlling the COVID-19 pandemic 

in order to provide a practical illustration of interventions 

and strategies implemented to reduce the reproduction rate 

of COVID-19. Our study has several inter-related findings. 

First, we show that simultaneous cycles of 50-day mitiga-

tion (R value of 0.8) followed by a 30-day relaxation could 

provide means to reduce the effective reproduction number, 

however, will be insufficient to keep the number of patients 

requiring ICU care within manageable levels. Second, by 

contrast, we found that dynamic cycles of 50-day suppres-

sion (R value of 0.5) followed by a 30-day relaxation would 

be required, for all countries, to keep ICU demands below 

the national capacities. Third, significant number of new 

infections and deaths could be prevented if these “rolling” 

suppression measures can be maintained for an 18-month 

period, or until a suitable treatment and/or vaccination 

become available. Finally, a continuous, yearlong suppres-

sion strategy may also reduce overall attack rates signifi-

cantly and appears effective. However, implementation (and 

socioeconomic sustenance) of such stringent measure could 

be challenged by its detrimental impacts on population well-

being and livelihood.

Our findings may have several explanations. First, despite 

higher rates of contact across older age groups [3], we pre-

dict a somewhat lower incidence of ICU hospitalisation and 

deaths in low-income settings. This can be explained, at 

least partly, by the demographic differences with a relatively 

younger average age structure of these populations, and 

absence of integrated death registration system. However, 

given the significant inequalities in baseline health, test-

ing capabilities and critical care infrastructure across the 

Table 3  The estimated impacts of various interventions on COVID-19 outcomes in 16 countries

Countries 

and income 

categories

Uncontrolled, no intervention scenario Intermittent cycles of mitigation and 

relaxation

(Effective R = 0.8)

Intermittent cycles of suppression and 

relaxation

(Effective R = 0.5)

New infec-

tions/day 

during the 

peak

ICU bed 

needs/day 

during the 

peak

No. of total 

deaths over 

18 months

New infec-

tions/day 

during the 

peak

ICU bed 

needs/day 

during the 

peak

No. of total 

deaths over 

18 months

New infec-

tions/day 

during the 

peak

ICU bed 

needs/day 

during the 

peak

No. of total 

deaths over 

18 months

High-income

 Australia 1,434,638 59,803 197,746 418,643 14,798 89,091 54,748 1734 19,996

 Belgium 657,883 33,213 109,785 253,150 10,674 51,151 63,135 2404 15,846

 Chile 1,078,061 34,818 115,060 357,316 9716 53,210 18,351 450 7505

 The Neth-

erlands

973,779 48,724 161,147 354,373 14,831 73,383 63,412 2395 19,819

Upper-middle income

 Colombia 2,862,000 69,878 230,682 988,841 20,225 104,040 30,730 570 9239

 Mexico 7,253,642 154,507 509,794 2,082,308 37,598 228,879 53,308 863 12,047

 South 

Africa

3,329,773 52,421 172,416 1,189,739 15,674 79,091 44,377 531 9094

 Sri Lanka 1,212,623 34,335 113,469 282,813 6876 51,489 7875 170 2039

Lower-middle income

 Bangladesh 9,270,170 150,503 495,420 2,427,104 33,631 226,700 36,597 452 4908

 India 77,698,771 1,414,384 4,660,013 26,185,375 399,982 2,093,893 87,558 1211 15,379

 Nigeria 11,426,973 97,411 319,598 2,944,575 21,424 144,049 7894 51 659

 Pakistan 12,316,925 159,636 525,189 3,653,682 40,072 235,520 86,084 848 11,264

Low-income

 Afghani-

stan

2,163,088 17,640 57,851 550,669 3839 26,401 6989 43 614

 Burkina 

Faso

1,155,479 8918 29,228 388,909 2519 13,154 11,838 69 1080

 Tanzania 3,297,673 27,308 89,543 809,325 5740 40,755 16,653 105 905

 Uganda 2,516,788 16,350 53,503 804,079 4397 23,987 20,095 99 1249
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countries, in reality, a higher overall level of excess deaths 

are likely in resource-poor settings owing to health systems 

failure, especially in uncontrolled or mitigation intervention 

scenarios. Second, it was unsurprising that a more restric-

tive suppression strategy (R: 0.5) in our study reduced ICU 

hospitalisations and deaths for all countries. This is because 

a further reduction in the reproductive number secondary 

to more stringent interventions can maximally reduce the 

population transmissibility of the SARS-CoV-2 [24]. Nota-

bly, implementation of such strategies also creates a policy 

dilemma for many low-income countries: how to address the 

“competing priorities” of preventing COVID-19 associated 

deaths and public health system failure with the long-term 

economic collapse and hardship. In this regard, we have 

observed that in contrast to a long fixed-duration social 

distancing, dynamic NPIs (that reduce the overall attack 

rates effectively) may offer a helpful balance.

Third, in our study, dynamic cycles of 50-day suppres-

sion followed by a 30-day relaxation were effective to lower 

the deaths significantly for all countries since both trans-

missibility and case severity (and by extension, critical 

care demands) were significantly reduced throughout the 

18-month period. Notably, this intermittent combination 

of strict social distancing, and a relatively relaxed period 

(with efficient testing, case isolation, contact-tracing and 

shielding of the vulnerable), may allow populations and the 

national economies to “breathe” at intervals—a potential 

that might make this solution more sustainable, especially in 

resource-poor regions [25]. The specific durations of these 

interventions can be defined by specific countries according 

to their needs and local facilities, what is key is to identify a 

Fig. 2  Impact of single, sustained mitigation or suppression strategy on total deaths in 16 countries over a 12-month period



397Dynamic interventions to control COVID-19 pandemic: a multivariate prediction modelling…

1 3

combination pattern that allows to protect the health of the 

population not only from COVID-19 but also from economic 

hardship and mental health issues. Finally, these findings 

reinforce the value of dynamic social distancing strategies 

estimated by earlier studies for the UK, Canada and China 

[3, 25, 26], and extend these to multiple global regions under 

various dynamic intervention scenarios.

The strengths and limitations of our study merit care-

ful consideration. First, as restrictive NPIs may need to be 

maintained worldwide for many months, we have examined 

the impacts of dynamic NPIs to “switch on” and “switch 

off” at regular intervals. These measures have shown to be 

largely unaffected to uncertainties in effective R estimates 

and in the severity of the virus [4]. Second, NPI strategies 

only blunt (however prolong) the epidemic cycle, since there 

is lesser build-up of herd immunity while these interven-

tions are kept in place. If these measures are, however, lifted 

altogether, a second (potentially more serious) outbreak 

could occur [27]. Therefore, in the absence of individual-

level data and more detailed country-specific parameters, 

our study provides an illustrative comparison of different 

“rolling” strategies to suggest (a) when such measures could 

be lifted, and (b) for how long. Third, we used the most up-

to-date disease transmission parameters [4, 17, 18, 20] to 

construct our adaptive models, based on well-established 

SEIR model of epidemic dynamics for infectious diseases. 

Fourth, since different interventions are likely to be imple-

mented differentially and may have a heterogeneous effect 

in multiple locations, we have chosen a broad illustrative 

target of reducing the reproduction number R rather than 

specific community measures that may differ significantly 

by context. Fifth, we employed age-standardized estimates 

of hospitalization and infection-fatality-ratios in countries 

with diverse demographic structures, and considered coun-

tries at various categories of national income, in order to 

provide useful “context-specific” estimates. Finally, we used 

rise-and-fall timescale of infections (50 days, in the absence 

of intervention) as the ideal intervention duration and cal-

culated 30-day as the optimal break duration before trigger-

ing the next cycle, however specific to each country other 

combinations could be considered depending the specific 

settings and availability of resources. In this regard, trigger-

ing dynamic interventions based on a specific pre-specified 

mortality number or rate, as was done in earlier modelling 

for the UK [3], would not be optimal for under-developed 

countries since (a) the health systems are less efficient to 

ascertain all new cases comprehensively, and (b) a younger 

demographic would mean that by the time the target mortal-

ity threshold is reached for the trigger, the countries have 

already accrued a significantly large number of cases.

Our study also had several important limitations. In the 

absence of country-specific, real-time, reproduction numbers 

for the epidemic, we assumed a constant transmission rate 

during each modeled cycle. These estimates are likely to 

vary by a population’s adherence to the NPI and the mix of 

specific measures put in place. In this respect, our chosen 

effective R estimates of 0.8 and 0.5 reflect two scenarios 

of weaker and stronger reduction in transmission, respec-

tively, which could be achieved through social distanc-

ing measures and the interruption of transmission chains 

(e.g., through ramping up testing, contact tracing, isolation 

and quarantine and other potential strategies chosen by indi-

vidual countries). We anticipate that the countries will be 

able to introduce additional control measures with time that 

might counterbalance the detrimental effect of decreasing 

compliance. The age-standardisation analyses were based on 

public sector surveillance data, which may not be robust for 

all LMIC and LIC countries, with potentials for underesti-

mation of cases and deaths. Furthermore, given unavailabil-

ity of relevant data, we were unable to adjust for wider social 

and economic costs of the dynamic approaches; further stud-

ies will be needed to quantify these aspects. Additional fac-

tors such as potential seasonal variations, environmental pol-

lutions or structural determinants may influence, at least in 

part, these interventions, highlighting the need of flexibility 

in terms of the suitable strategy and combination of inter-

ventions that can be implemented in each country. Finally, 

similar to all modelling studies, our analyses were based 

on several transmission parameter assumptions. Since some 

uncertainties exist around the natural history and local trans-

mission dynamics of the SARS-CoV-2, the precise efficacy 

and optimal duration of the dynamic strategies may differ 

for other countries and will need to be tailored accordingly.

Our study may have important implications. First, we 

have reported several findings relevant to COVID-19 man-

agement and policy development. We provide an action-

able strategy option for COVID-19 control by employing 

dynamic interventions that could delay the epidemic peak, 

while allowing time to enhance health systems capacities 

and efforts to develop therapies or vaccines. These dynamic 

measures also allow interim periods of relaxation in order 

to minimise socioeconomic disruptions and maximise popu-

lation compliance to these stringent suppression measures. 

However, these should be weighed carefully against costs, 

any risks imposed to the society, and the social protection 

available in each setting. Second, these findings also stimu-

late further relevant research that may involve: (a) more in-

depth analyses of detailed natural history of the disease (e.g., 

including transmissibility in asymptomatic state) based on 

patient-level data, when available, from various countries 

[28], (b) various spatial pathways and patterns of epidemic 

in different circumstances (e.g., co-morbidity, reinfection) 

and settings (e.g., urban vs. rural); and (c) targeted mod-

elling studies accounting for genomic susceptibility [29], 

social behaviour [30] and economic diversity [3].



398 R. Chowdhury et al.

1 3

In conclusion, this multi-country analysis demonstrates 

that intermittent reductions of R below 1 through a poten-

tial combination of suppression interventions and relaxa-

tion can be a pragmatic strategy for COVID-19 pandemic 

control. Such a “schedule” of social distancing might be 

particularly relevant to low-income countries, where a sin-

gle, prolonged suppression intervention is unsustainable. As 

a policy option, efficient implementation of dynamic sup-

pression interventions worldwide, therefore, would help: (1) 

prevent critical care overload and deaths, (2) gain time to 

develop preventive and clinical measures, and (3) reduce 

economic hardship globally.
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