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Abstract. This paper presents a new method
for approximate dynamic inversion for nonaffine-in-
control systems via time-scale separation. The control
signal is sought as a solution of “fast” dynamics and is
shown to asymptotically stabilize the original nonaffine
system. Sufficient conditions are formulated, which are
consistent with the assumptions of Tikhonov’s theorem
in singular perturbations theory. Several examples illus-
trate the theoretical results.

I. INTRODUCTION

Dynamic inversion, or equivalently feedback lineariza-
tion, is one of the most popular control design method-
ologies for nonlinear systems that are affine in the control
variables [1]–[4]. However, many practical applications give
rise to nonaffine nonlinear systems, for which an explicit
inversion is not possible. For example, the system ẋ =
u+exp(u) is nonlinear, u+exp(u) is a monotonous function
of u, yet an explicit inversion in terms of elementary
functions is not possible: that is, given v, find u such that
u + exp(u) = v is not possible. In this paper, we propose
a control design methodology for a class of nonaffine non-
linear systems whose dynamic inversion solution exists but
cannot be found explicitly. In other words, a transcendental
equation arises when one attempts to invert the system
dynamics.

In order to motivate our approach, consider a scalar
nonlinear nonaffine in control system:

ẋ = f(x, u), x(0) = x0, t ≥ 0 (1)

where x(t) ∈ R is the system state at time t, u(t) ∈ R is
the control input at time t, and f is a Lipschitz function
of its arguments. Assume that ∂f

∂u
is bounded away from

zero for (x, u) ∈ Ωx × Ωu ⊂ R × R, where Ωx,Ωu are
compact sets that contain their respective origins; that is,
there exists b0 > 0, such that

∣∣∣∂f
∂u

∣∣∣ > b0. The control
objective is to find a feedback law that will stabilize (1) from
an arbitrary initial condition x0 ∈ Ωx. Since sign

(
∂f
∂u

)
is constant, it follows that f(x, u) is monotonous in u,
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and, consequently, invertible with respect to its second
argument. Dynamic inversion controller design leads to the
(in general) transcendental equation f(x, u) = −ax, where
given x, we seek a solution for u and a > 0. Note that
it is assumed that the ideal dynamic inversion solution
exists, but is not available explicitly. We attempt to find
an approximate dynamic inversion controller using the so-
called “fast” dynamics:

εu̇ = −sign

(
∂f

∂u

)
(f(x, u) + ax), ε � 1. (2)

In fact, choosing the positive constant ε small enough, the
dynamics in (2) become faster than the “slow” dynamics of
the original system in (1). We propound that subject to a
set of mild assumptions, the system in (1) can be stabilized
via the solution of (2).

To briefly illustrate the heuristics behind our design
approach, consider the problem of stabilization of the scalar
nonlinear system given by

ẋ = exp(x) + u + u2 tanh(u). (3)

A stabilizing dynamic inversion controller can be obtained
by solving the following equation for u:

exp(x) + u + u2 tanh(u) = −x. (4)

It can be checked that for u ∈ R, ∂f
∂u

has a constant sign.
Hence the system is controllable. Notice however that the
equation (4) cannot be solved explicitly for u, and hence the
ideal dynamic inversion solution for u cannot be found. So
we approximate the dynamic inversion solution via time-
scale separation. Consider the following fast dynamics:

εu̇ = −sign

(
∂f

∂u

)
(exp(x)+u+u2 tanh(u)+x), ε � 1.

(5)
When ε = 0, the relationship in (5) reduces to the algebraic

relationship in (4), the solution of which renders the system
(3) exponentially stable: ẋ = −x. It can be shown that for a
suitably chosen small ε, the solution of differential equation
(5), achieves asymptotic stabilization of the system (3), as
shown in Figure 1.

The paper is organized as follows. In Section II, we re-
call Tikhonov’s theorem from singular perturbation theory,
which is the key result used in proving our main theorem.
We give our main result on tracking a given reference
signal for single input systems in Section III. A simulation
example on tracking is given in Section IV. Finally, in
Section V we give an extension to systems with multiple
inputs.
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II. PRELIMINARIES ON SINGULAR PERTURBATIONS

For proving our main result we will use Tikhonov’s
theorem on singular perturbations, which we recall below
(see for instance Theorem 11.2 on page 439 of [1]).

Consider the problem of solving the system

Σ0 :

{
ẋ(t) = f(t, x(t), u(t), ε), x(0) = ξ(ε)
εu̇(t) = g(t, x(t), u(t), ε), u(0) = η(ε)

}
, (6)

where ξ : ε �→ ξ(ε) and η : ε �→ η(ε) are smooth.
Assume that f and g are continuously differentiable in their
arguments for (t, x, u, ε) ∈ [0,∞]×Dx×Du×[0, ε0], where
Dx ⊂ R

n and Du ⊂ R
m are domains, ε0 > 0. In addition,

let Σ0 be in standard form, that is,

0 = g(t, x, u, 0) (7)

has k ≥ 1 isolated real roots u = hi(t, x), i ∈ {1, . . . , k}
for each (t, x) ∈ [0,∞] × Dx. We choose one particular
i, which is fixed. We drop the subscript i henceforth. Let
v(t, x) = u − h(t, x). In singular perturbation theory, the
system given by

Σ00 : ẋ(t) = f(t, x(t), h(t, x(t)), 0), x(0) = ξ(0), (8)

is called the reduced system, and the system given by

Σb :
dv

dτ
= g(t, x, v+h(t, x), 0), (9)

v(0) = η0−h(0, ξ0)

is called the boundary layer system, where η0 = η(0)
and ξ0 = ξ(0), (t, x) ∈ [0,∞) × Dx are treated as fixed
parameters. The new time scale τ is related to the original

time t via the relationship τ =
t

ε
. The following result is

due to Tikhonov.
Theorem 2.1: Consider the singular perturbation system

Σ0 given in (6) and let u = h(t, x) be an isolated root of
(7). Assume that the following conditions are satisfied for
all [t, x, u − h(t, x), ε] ∈ [0,∞) × Dx × Dv × [0, ε0] for
some domains Dx ⊂ R

n and Dv ⊂ R
m, which contain

their respective origins:

A1. On any compact subset of Dx × Dv , the functions f ,
g, their first partial derivatives with respect to (x, u, ε),

and the first partial derivative of g with respect to t are
continuous and bounded, h(t, x) and

[
∂g
∂u

(t, x, u, 0)
]

have bounded first derivatives with respect to their
arguments,

[
∂f
∂x

(t, x, h(t, x))
]

is Lipschitz in x, uni-
formly in t, and the initial data given by ξ and η are
smooth functions of ε.

A2. The origin is an exponentially stable equilibrium point
of the reduced system Σ00 given by equation (8). There
exists a Lyapunov function V : [0,∞)×Dx → [0,∞)
that satisfies

W1(x) ≤ V (t, x) ≤ W2(x)
∂V
∂t

(t, x) + ∂V
∂x

(t, x)f(t, x, h(t, x), 0) ≤ −W3(x)

for all (t, x) ∈ [0,∞) × Dx, where W1,W2,W3

are continuous positive definite functions on Dx,
and let c be a nonnegative number such that {x ∈
Dx | W1(x) ≤ c} is a compact subset of Dx.

A3. The origin is an equilibrium point of the boundary
layer system Σb given by equation (9), which is
exponentially stable uniformly in (t, x).

Let Rv ⊂ Dv denote the region of attraction of the
autonomous system dv

dτ
= g(0, ξ0, v + h(0, ξ0), 0), and let

Ωv be a compact subset of Rv . Then for each compact set
Ωx ⊂ {x ∈ Dx | W2(x) ≤ ρc, 0 < ρ < 1}, there exists
a positive constant ε∗ such that for all t ≥ 0, ξ0 ∈ Ωx,
η0 − h(0, ξ0) ∈ Ωv and 0 < ε < ε∗, Σ0 has a unique
solution xε on [0,∞) and

xε(t) − x00(t) = O(ε)

holds uniformly for t ∈ [0,∞), where x00(t) denotes the
solution of the reduced system Σ00 in (8).

The following Remark will be useful in the sequel.
Remark 1: Verification of Assumption A3 can be done

via a Lyapunov argument: if there is a Lyapunov function
V (t, x, v) that satisfies

c1‖v‖
2 ≤ V (t, x, v) ≤ c2‖v‖

2

∂V

∂v
g(t, x, v + h(t, x), 0) ≤ −c3‖v‖

2,

for all (t, x, v) ∈ [0,∞)×Dx×Dv , then Assumption A3 is
satisfied. Alternately, Assumption A3 can be locally verified
by linearization. Let ϕ denote the map v �→ g(t, ξ, v +
h(t, ξ), ε). It can be shown that if there exists ω0 > 0

such that the Jacobian matrix
[

∂ϕ
∂v

]
satisfies the eigenvalue

condition

Re

(
λ

[
∂ϕ

∂v
(t, x, h(t, x), 0)

])
≤ −ω0 < 0,

for all (t, x) ∈ [0,∞)×Dx, then Assumption A3 is satisfied.
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III. TRACKING DESIGN FOR SINGLE INPUT SYSTEMS

Consider the following nonlinear single-input system in
normal form:

ẋ1(t) = x2(t)
ẋ2(t) = x3(t)

...
ẋr−1(t) = xr(t)
ẋr(t) = f(x(t), z(t), u(t))
ż(t) = ζ(x(t), z(t), u(t)),

(10)

with x(0) = x0, z(0) = z0, for (x, z, u) ∈ Dx ×
Dz × Du, where Dx ⊂ R

r, Dz ⊂ R
n−r and Du ⊂

R are domains containing their respective origins. Here
[x�(t) z�(t)]� denotes the state vector of the system,
x(t) = [x1(t) · · · xr(t)]

� ∈ R
r, u(t) is the control

input, r is the relative degree of the system, and f :
Dx × Dz × Du → R, ζ : Dx × Dz × Du → R

n−r

are continuously differentiable functions of their arguments.
Furthermore, assume that ∂f

∂u
is bounded away from zero

for (x, z, u) ∈ Ωx,z,u ⊂ Dx × Dz × Du, where Ωx,z,u is
a compact set of possible initial conditions; that is, there
exists b0 > 0, such that

∣∣∣∂f
∂u

∣∣∣ > b0. In addition, assume that
the function f cannot be inverted explicitly with respect to
u.

Let the reference model dynamics be given by:

ẋr(t) = Arxr(t) + Brr(t) , xr(0) = xr,0 ,

where r(t) is a continuously differentiable reference input
signal, xr(t) = [xr,1(t) · · · xr,r(t)]

� ∈ R
r is the state of

the reference model, and the Hurwitz matrix Ar and the
column vector Br have the following structure:

Ar =

⎡
⎢⎢⎢⎣

0 1
...

. . .
0 1

−a1 −a2 . . . −ar

⎤
⎥⎥⎥⎦ , Br =

⎡
⎢⎢⎢⎣

0
...
0
b

⎤
⎥⎥⎥⎦ .

Let e(t) = x(t) − xr(t) be the tracking error signal. Then
the open loop (time-varying) error dynamics are given by:

ė(t) = F (e(t)+xr(t), z(t), u(t))−Arxr(t)−Brr(t) (11)

ż(t) = ζ(e(t) + xr(t), z(t), u(t)) (12)

where F (x, z, u) = [x2 · · · xr f(x, z, u)]
�. Ideal dynamic

inversion based control is found by solving the equation

f(x, z, u) = −arxr − · · · − a2x2 − a1x1 + br (13)

resulting in the exponentially stable closed-loop tracking er-
ror dynamics ė(t) = Are(t). Since (13) cannot (in general)
be solved explicitly for u, we construct an approximation
of the dynamic inversion controller by introducing the
following fast dynamics:

εu̇(t) = −sign

(
∂f

∂u

)
f(t, e, z, u), u(0) = u0, (14)

where

f(t, e, z, u) = f(e + xr(t), z, u) + ar(er + xr,r(t)) +

· · · + a1(e1 + xr,1(t)) − br(t).

Let u = h(t, e, z) be an isolated root of f(t, e, z, u) = 0.
The reduced system for the dynamics in (11)-(12) is given
by:

ė(t) = Are(t) (15)

ż(t) = ζ(xr(t) + e(t), z(t), h(t, e(t), z(t)) (16)

with e(0) = e0, z(0) = z0. The boundary layer system is
given by:

dv

dτ
= −sign

(
∂f

∂u

)
f(t, e, z, v + h(t, e, z)). (17)

Applying Theorem 2.1, we now get our main result for
single input systems:

Theorem 3.1: Assume that the following conditions are
satisfied for all [t, e, z, u − h(t, e, z), ε] ∈ [0,∞) × De,z ×
Dv × [0, ε0] for some domains De,z ⊂ R

n and Dv ⊂ R,
which contain their respective origins:

B1. On any compact subset of De,z × Dv , the functions
f , ζ, and their first partial derivatives with respect
to (e, z, u), and the first partial derivative of f with
respect to t are continuous and bounded, h(t, e, z)
and ∂f

∂u
(t, e, z, u) have bounded first derivatives with

respect to their arguments, ∂f
∂e

, ∂f
∂z

as functions of
(t, e, z, h(t, e, z)) are Lipschitz in e, z, uniformly in
t.

B2. The origin is an exponentially stable equilibrium point
of the system

ż(t) = ζ(xr(t), z(t), h(t, 0, z(t)).

The map (e, z) �→ ζ(e+xr(t), z, h(t, e, z)) is continu-
ously differentiable and Lipschitz in (e, z), uniformly
in t.

B3. (t, e, z, v) �→ ∂f
∂u

(t, e, z, v + h(t, e, z)) is bounded
below by some positive number for all (t, e, z) ∈
[0,∞) × De,z .

Then the origin of (17) is exponentially stable. Moreover,
let Ωv be a compact subset of Rv, where Rv ⊂ Dv denotes
the region of attraction of the autonomous system

dv

dτ
= −sign

(
∂f

∂u

)
f(0, e0, z0, v + h(0, e0, z0)).

Then for each compact subset Ωz,e ⊂ Dz,e there exists a
positive constant ε∗ and a T > 0 such that for all t ≥ 0,
(e0, z0) ∈ Ωe,z , u0 − h(0, e0, z0) ∈ Ωv and 0 < ε < ε∗, the
system of equations (10), (14) has a unique solution xε(t)
on [0,∞) and

xε(t) = xr(t) + O(ε) (18)

holds uniformly for t ∈ [T,∞).
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Proof. We need to verify that Assumptions A1, A2, A3 in
Theorem 2.1 are satisfied. Assumption B1 clearly implies
that A1 holds.

We now show that Assumption A2 holds. Assumption B2
implies (see Lemma 4.6, page 176 of [1]), that the system

ż(t) = ζ(xr(t) + e(t), z(t), h(t, xr(t) + e(t), z(t))

(with e viewed as the input) is input to state stable. Thus
there exists class K and class KL functions γ and β,
respectively, such that

‖z(t)‖ ≤ β(‖z(t0)‖, t − t0) + γ

(
sup

t0≤τ≤t

‖e(τ)‖

)

for all t ≥ t0, t0 ∈ [0,∞). Furthermore from the proof
of Lemma 4.6 of [1], it follows that γ(ρ) = cρ, for some
constant c > 0. Using the fact that the unforced system ż =
ζ(xr, z, h(t, 0, z)) has 0 as an exponentially stable equilib-
rium point, it can be seen from the proof of Lemma 4.6 of
[1] that β(ρ, t) = kρ exp(−ωt) for some positive constants
k and ω. Thus the solution to the reduced system (15)-
(16) satisfies ‖e(t)‖ ≤ ‖e0‖c1 exp(−ω0t) and ‖z(t)‖ ≤
(‖x0‖ + ‖z0‖)c2 exp(−ω0t) for all t ≥ 0 and for some
ω0 > 0. Hence, the origin (0, 0) is an exponentially stable
equilibrium point of (15)-(16). From a converse Lyapunov
theorem (Theorem 4.14 on pages 162-163 of [1]), it follows
that there exists a Lyapunov function V : [0,∞)×De,z → R

such that w1‖(e, z)‖2 ≤ V (t, e, z) ≤ w2‖(e, z)‖2 and
∂V
∂t

(t, e, z) + ∇e,zV · F(t, e, z) ≤ −w3‖(e, z)‖2, where

F(t, e, z) =

[
Are

ζ(e + xr, z, h(t, e, z))

]
.

We note that any positive c can be chosen in A2 of Theorem
2.1, and so a compact Ωe,z ⊂ {(e, z) ∈ De,z | W2(e, z) ≤
ρc, 0 < ρ < 1} can be chosen to be any subset of De,z .

In light of the Remark 2.1, it is easy to see that with the
definition of the boundary layer system given by (17), its
exponential stability can be verified locally by linearization
with respect to v.

Hence Theorem 2.1 applies and so it follows that for each
compact set Ωe,z ⊂ De,z there exists a positive constant ε∗
and such that for all (e0, z0) ∈ Ωe,z , u0−h(0, e0, z0) ∈ Ωv

and 0 < ε < ε∗, the system of equations given by (10), (14)
has a unique solution xε, zε on [0,∞) and

xε(t) = xr(t) + O(ε),

zε(t) = zr(t) + O(ε)

hold uniformly for t ∈ [T,∞), where zr denotes the
solution of

ė(t) = Are(t), e(0) = e0,

ż(t) = ζ(xr(t) + e(t), z(t), h(t, e(t), z(t))), z(0) = z0,

and T ≥ 0 is such that ‖ exp(TAr)x0−exp(TAr)xr,0‖ ≤ ε.
Remark 2: The reference system in Theorem 3.1 is lin-

ear. However an application of Theorem 2.1 to the scalar
system

ẋ(t) = f(x(t), u(t))

εu̇(t) = −sign

(
∂f

∂u

)
(f(x(t), u(t)) − g(x(t), r(t)))

yields a similar result for tracking the state of the scalar
nonlinear reference system ẋr(t) = g(xr(t), r(t)).

IV. SIMULATIONS

Consider the nonlinear system given by:

ẋ1(t) = x2(t)

ẋ2(t) = x1(t) exp(x2(t)) + u(t) + (u(t))2 tanh(u(t))

ż(t) = −z(t) − ((x1(t))
2 + (x2(t))

2)(z(t))3.

The control objective is to design u such that x =[
x1 x2

]�
tracks the state of the linear system

ẋr(t) =

[
0 1
−4 −4

]
xr(t)+

[
0
1

] ∞∑
k=0

1[2k,2k+1]

(
2

25
t

)

with xr(0) = [0.5 − 0.5]�, where 1[a,b] denotes the
indicator function of the interval [a, b]:

1[a,b](t) =

{
1 if t ∈ [a, b],
0 if t �∈ [a, b].

It can be checked that the Assumptions B1 and B2 of
Theorem 3.1 are satisfied with the domains De = R

2 and
Dv = R (which contain their respective origins), ε = 1, h

as the map

(t, e) �→ ψ−1
(
− (e1 + xr,1(t)) exp(e2 + xr,2(t))

−4x1(t) − 4x2(t) +
∞∑

k=0

1[2k,2k+1]

(
2

25
t

))
,

where ψ denotes the diffeomorphism u �→ u +
u2 tanh(u) from R onto R, and f(t, e, u) = (e1 +
xr,1(t)) exp(e2 + xr,2(t)) + u + u2 tanh(u) + 4x1(t) +
4x2(t)−

∑∞

k=0 1[2k,2k+1]

(
2
25 t

)
. Figure 2 shows the track-

ing performance of the components of the state vector
versus the states of the reference model. Figure 3 shows
the stabilization of the internal state and the input history.
The values of the parameters used in simulations are: ε =
0.04, x0 = [1 1]�, u0 = 0.

V. EXTENSION TO SYSTEMS WITH MULTIPLE INPUTS

Consider the following nonlinear system in nonaffine
normal form:⎡

⎢⎢⎢⎣
ẋk,1(t)

...
ẋk,rk−1(t)
ẋk,rk

(t)

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0 1
...

. . .
0 1
0 0 . . . 0

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

xk,1(t)
...

xk,rk−1(t)
xk,rk

(t)

⎤
⎥⎥⎥⎦

+

⎡
⎢⎢⎢⎣

0
...
0

fk(x(t), z(t), u(t))

⎤
⎥⎥⎥⎦ , k ∈ {1, . . . , m},

ż(t) = ζ(x(t), z(t), u(t)), (19)
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Fig. 2. Tracking

with x(0) = x0, z(0) = z0, where x =[
x1,1 . . . x1,r1

. . . xm,1 . . . xm,rm

]�
, u =[

u1 . . . um

]�
and [x� z�]� ∈ R

n. The control
objective is to design u such that the state x tracks the
state xr of the reference system

ẋr(t) = Arxr(t) + Brr(t), t ≥ 0, xr(0) = xr,0 (20)

Here xr = [xr

1,1 . . . xr

1,r1
. . . xr

m,1 . . . xr

m,rm
]� is the

state of the reference model, r = [r1 · · · rm] is a vector
of continuously differentiable reference input signals. The
pair (Ar, Br) is assumed to be in block-diagonal Brunovsky
canonical form, that is,

Ar =

⎡
⎢⎣

Ar,1

. . .
Ar,m

⎤
⎥⎦ , Br =

⎡
⎢⎣

Br,1

. . .
Br,m

⎤
⎥⎦

where Ar,k, Br,k are of the form:

Ar,k =

⎡
⎢⎢⎢⎣

0 1
...

. . .
0 1

−ark,1 −ark,2 . . . −ark,rk

⎤
⎥⎥⎥⎦ ,

Br,k =

⎡
⎢⎢⎢⎣

0
...
0
bk

⎤
⎥⎥⎥⎦ , j ∈ {1, . . . , rk}, k ∈ {1, . . . , m}.

We also assume that ark,j > 0 for all j ∈ {1, . . . , rk},
k ∈ {1, . . . , m}. Let e(t) = x(t) − xr(t) be the tracking
error. The open-loop time-varying error dynamics are given
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by:

ė(t) = F (e(t) + xr(t), z(t), u(t)) − Arxr(t) − Brr(t) (21)

ż(t) = ζ(x(t), z(t), u(t)), k ∈ {1, . . . , m} (22)

where F (x, z, u) = [x1,2 . . . x1,r1
f1(x, z, u) . . . xm,2

. . . xm,rm
fm(x, z, u)]�. For dynamic inversion based

control, we seek a m-dimensional solution u of the fol-
lowing system of m equations⎡

⎢⎣
f1(x, z, u)

...
fm(x, z, u)

⎤
⎥⎦

=

⎡
⎢⎣

−ar1,1x1,1 − · · · − ar1,r1
x1,r1

+ b1r1

...
−arm,1xm,1 − · · · − arm,rm

xm,rm
+ bmrm

⎤
⎥⎦ (23)

resulting in asymptotically stable closed loop tracking error
dynamics ė(t) = Are(t). Since the exact solution of (23)
cannot be found explicitly, we consider its approximation
via the fast dynamics:

εu̇(t) = P f(t, e(t), z(t), u(t)), u(0) = u0 , (24)

where P ∈ R
m×m and

f(t, e, z, u)

=

⎡
⎢⎢⎢⎣

f1(e+ xr(t), z, u) + ar

1,1(x
r

1,1(t) + e1,1)
+ · · · + ar

1,r1
(xr

1,r1
(t)+ e1,r1

) − b1r1(t)
...

fm(e+ xr(t), z, u) + ar

m,1(x
r

m,1(t) + em,1)
+ · · · + ar

m,rm
(xr

m,rm
(t)+ em,rm) − bmrm(t)

⎤
⎥⎥⎥⎦.
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Let u = h(t, e, z) be an isolated root of f(t, e, z, u) = 0.
The reduced system for (21)-(22) is given by:

ė(t) = Are(t), e(0) = e0

ż(t) = ζ(e(t) + xr(t), z(t), u(t)), z(0) = z0.

The boundary layer system is given by:

dv

dτ
= P f(t, e, z, v + h(t, e, z)). (25)

A straightforward extension of Theorem 3.1 yields the
following result:

Theorem 5.1: Let the following conditions be satisfied
for all [t, e, u− h(t, z, e), ε] ∈ [0,∞)×Dz,e ×Dv × [0, ε0]
for some domains De,z ⊂ R

n and Dv ⊂ R
m, which contain

their respective origins:
C1. On any compact subset of De,z × Dv , the function

f , ζ, and their first partial derivatives with respect
to (e, z, u), and the first partial derivative of f with
respect to t are continuous and bounded, h(t, e, z)
and ∂f

∂u
(t, e, z, u) have bounded first derivatives

with respect to their arguments, ∂f
∂z

(t, e, z, h(t, e, z),
∂f
∂e

(t, e, z, h(t, e, z) is Lipschitz in e, z, uniformly in t.
C2. The origin is an exponentially stable equilibrium point

of the system ż(t) = ζ(xr(t), z(t), h(t, 0, z(t))). The
map (z, e) �→ ζ(e+xr(t), z, h(t, z, e)) is continuously
differentiable and Lipschitz in (z, e), uniformly in t.

C3. (t, e, z, v) �→ dist(co spec(P [ ∂f

∂u
(t, e, z, v +

h(t, e, z))]), iR) is bounded below by a positive
number for all (t, e, z) ∈ [0,∞) × De,z , where
co spec(M) denotes the convex hull of the eigenvalues
of the square matrix M and dist(·, iR) denotes the
distance from the imaginary axis.

Then the origin of (25) is exponentially stable. Moreover,
let Ωv be a compact subset of Rv, where Rv ⊂ Dv

denotes the region of attraction of the autonomous system
dv
dτ

= P f(0, z0, e0, v+h(0, z0, e0)). Then for each compact
Ωz,e ⊂ Dz,e there exists a positive constant ε∗ and a T > 0
such that for all t ≥ 0, (z0, e0) ∈ Ωz,e, u0 − h(0, z0, e0) ∈
Ωv and 0 < ε < ε∗, the system of equations (19),(24) has
a unique solution xε(t) on [0,∞) and

xε(t) = xr(t) + O(ε)

holds uniformly for t ∈ [T,∞).
The proof is a straightforward extension of the proof of

Theorem 3.1, and is therefore omitted. We make several
remarks regarding verification of Assumption C3.

Remark 3: 1) a) If ∂fi

∂uj
= 0 for all i and j such

that i �= j (and so
[

∂f

∂u

]
is diagonal) and

(t, z, e, v) �→ sign
(

∂fk

∂uk
(t, z, e, v + h(t, z, e))

)
is bounded away from zero, then Assumption
C3 is satisfied with

P =

⎡
⎢⎢⎢⎣

−sign
(

∂f1

∂u1

)
. . .

−sign
(

∂fm

∂um

)

⎤
⎥⎥⎥⎦ .

b) If (t, z, e, v) �→ dist
(
co spec

([
∂f

∂u
(t, z, e, v +

h(t, z, e))
])

, iR
)

is bounded below by a pos-

itive number for all (t, z, e) ∈ [0,∞) × Dz,e,
then Assumption C3 is satisfied with P =
sign

(
tr

([
∂f

∂u
(t, z, e, u)

]))
.

2) We notice that since Theorem 2.1 is true for time-
varying systems, the approximate dynamic inversion
control methodology can also be applied to solve
stabilization and tracking problems for time-varying
systems as well.

Remark 4: We notice that Tikhonov’s theorem allows
for the equation f(t, e, z, u) = 0 to have multiple isolated
roots, and not just single isolated root. In that case, one
needs the knowledge of the sign

(
∂f
∂u

)
in the neighborhood

of every isolated root to construct the boundary layer
system with exponentially stable origin. Then the tracking
problem can be solved via a set of controllers, provided
that the initialization of the fast dynamics is such that the
corresponding boundary layer system has an exponentially
stable equilibrium.

VI. CONCLUSIONS

In this paper, we have considered systems that are non-
affine in control and for which ideal dynamic inversion is
well-defined, but the solution is not explicitly available. For
these systems, we have developed an approximate dynamic
inversion control method using time-scale separation. We
have given sufficient conditions for tracking in single-input
systems and extended it to systems with multiple inputs.
In Part II we extend these results to uncertain systems via
adaptive dynamic inversion [5].
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