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Abstract After the seismic events of the 20th and 29th of May 2012 in Emilia (Italy), most

of the monumental and historic buildings of the area were severely damaged. In a few

structures, partial collapse mechanisms were observed (e.g. façade tilting, out-of-plane

overturning of panels…). This paper presents the case-study of the bell tower of the Santa

Maria Maggiore cathedral, located in Mirandola (Italy). The dynamic response of the

structure was evaluated through operational modal analysis using ambient vibrations, a

consolidated non-destructive procedure that estimates the dynamic parameters of the bell-

tower. The dynamic tests were carried out in pre-intervention and post-intervention con-

ditions in order to understand the sensitivity of dynamic measurements to safety inter-

ventions. Furthermore, a comparative study is made with similar cases of undamaged

masonry towers up to the 6th mode. Finally, an investigation on the state of connections

and of the building itself is carried out via FE model updating.
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1 Introduction

Masonry heritage structures are among the most vulnerable typologies when seismic

swarms strike the territory. It is not rare that aftershocks may cause more damage than

the main shock itself on this typology (e.g. due to accumulated damage in masonry or

due to damage on the structure that exposes vulnerabilities). In the first phase of a post-

earthquake emergency, one of the most critical problems of authorities and technicians

is securing damaged structures by means of temporary interventions (e.g. demolition,

shoring, installation of metal rods, and hoops, etc.). In fact, timely provisional inter-

ventions are often required in post-seismic scenarios. Their aim is to avoid further

damage (or even the full collapse) to the structure due to aftershocks or to other

external sources (e.g. atmospheric agents, etc.). The complexity is due to the choice of

the adequate type of intervention for that particular type of structure, the performance

and the cost of it. This latter point is relevant, especially considering the number of

operations carried out after an earthquake that are generally going to be removed in the

permanent repair phase. Moreover, the typology of intervention is often chosen by just

resorting to static considerations or by mechanism that can be triggered by the seismic

event. The real dynamic of the system is typically not considered due to lack of time

and structural complexity. A promising way to meet both the requirements could push

through the application of vibration-based monitoring (VBM) systems, inasmuch as they

allow to investigate the global response of a structure, highlighting the occurrence of

damages, their typologies and evolutions (Russo 2013). In fact, dynamic monitoring

systems have proven to be particularly suited for cultural heritage structures such as

palaces, churches and towers, whose structural behaviour is strongly influenced by their

geometric complexity, the nonlinearity and inhomogeneity of masonry material (Cer-

avolo et al. 2016). In particular, because of their non-destructive and non-invasive

nature, vibration-based monitoring can be safely applied to damaged structures,

potentially dangerous under other test conditions. Furthermore, the analysis of vibration

data can reveal the structural weaknesses or deficiencies induced by the seismic event.

In fact, the monitoring of a set of appropriately chosen features, capable to seize the

global or local structural weaknesses, may reveal the effectiveness of the safety and

retrofitting interventions or the progression in structural damage (Ceravolo et al. 2016).

For their non-invasive peculiarities the VBM procedures are widely used in historic

masonry structures. Several researches have addressed structural identification of cul-

tural heritage using ambient vibration data (Pau and Vestroni 2008; Casciati and Far-

avelli 2010; Ramos et al. 2010; Pau and Vestroni 2013).

This paper proposes a benchmark study for VBM applied to the bell-tower of Santa

Maria Maggiore Cathedral in Mirandola (Italy), which was heavily damaged by the

2012 Emilia earthquake sequence. In fact, valuable data gathered during two testing

campaigns on the structure evidenced a correlation of different modal features with

the post-earthquake scenario. A first dynamic test campaign, conducted in the after-

math of the earthquake, allowed to identify the modal parameters related to the

damaged state of the tower bell, whereas the analysis of vibration data collected

during a second campaign showed how the provisional interventions influenced the

dynamic behaviour, increasing the global stiffness and varying the modal shapes of

the structure.
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2 Case study: bell-tower of Mirandola

The construction of the bell-tower of S. Maria Maggiore cathedral in Mirandola (Modena,

Italy) (Fig. 1) started in the late fourteenth century. The bell-tower, made of brick masonry,

is located on the south-east side of the cathedral. It is square in plan with dimension of

5.90 m and has a current height of 48 m. The building, like the whole cathedral, is the

result of several alterations which occurred over the centuries. The most relevant modi-

fications were made in the seventeenth century when the height of the original tower was

tripled (Ceretti 1889) and the structure was reinforced and partially rebuilt to withstand the

new loads. Another important alteration dates back to the eighteenth century, when the

bell-tower was completed with an octagonal stone roofing.

The bell tower has two orders of large openings close to the top, unusually the larger

ones are at the lower level (21 m) and the top ones at the belfry level (30.5 m). In the

Fig. 1 Main fronts of the bell-tower and plan
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bottom part of the tower there are other modestly sized openings and some of these have

been successively walled up. The internal flooring of the tower bell are masonry vaults, as

visually confirmed by a post-earthquake survey. Moreover, a series of small stone flights of

stairs connects the various levels of the structure up to the belfry. There is no information

available about the foundations of the tower to the authors. The geologic settings of the

area of Mirandola were analysed by Milana et al. (2014). The area of Mirandola is

characterized by a modest historical seismicity. Until the 2012 Emilia Earthquake in which

the maximum intensities were recorded, the seismic events occurred did not cause sig-

nificant damages to the tower.

2.1 Damage after the 2012 Emilia Earthquake

The May 2012 Emilia earthquake sequence severely damaged the cathedral, with two

events on May 20th and 29th. The epicentre of the May 29th event was less than 1 km far

from the site of the bell tower, which led to massive destruction to the historical city centre

of Mirandola. It resulted in the collapse of the aisle, the side aisle, the roof and in several

cracks on the bell-tower (Fig. 2).

An exterior laser scanner survey of the cracking patterns, carried out by the INGV

(Istituto Nazionale di Geofisica e Vulcanologia) within the ILRIS 3D project (Pesci et al.

2012), highlighted the activation of a twisting mechanism leading to a rotation of about 1

degree of the building portion located between 20 and 32 m. The structural damages are

mainly concentrated in this section of the bell tower, where deep diagonal cracks right

below the first order of openings on all four sides can be noted, extending down to the

openings of the underlying level. Furthermore, various lintels failed on the South, West and

East fronts. The twisting mechanism and the high local stresses caused the crushing of

masonry near the area of the tower in contact with the adjacent building, especially at the

Fig. 2 Post-earthquake damage survey of the Mirandola bell-tower
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height of 21 m (Fig. 3a, b). Metal chains were revealed by the occurred damages inside the

masonry layer around the perimeter at the base of this level of the structure, as shown in

(Fig. 3c). The visual and laser scanner surveys did not confirm for the other levels.

The internal state of the bell tower was assessed by visual inspection and this was

compared to the laser scanner survey. Only two masonry vaults in the basement are still

standing with clearly visible cracks (Fig. 4a, b). The internal staircases are partially col-

lapsed and only the flight between 0 and 9.5 m (Fig. 4c) is still accessible. From this level

up to the belfry all ceilings and stairs are collapsed as can be seen in Fig. 4d which depicts

the remains of a flight of stairs at 9.5 m of height.

2.2 Provisional safety interventions

In order to guarantee the stability of the building and to avoid further damages, provisional

post-earthquake safety interventions were put in place by the authorities between the 14th

and the 18th August 2012. The bell-tower of S. Maria Maggiore was reinforced with eight

metal tie-rods located at two levels of the structure (see Fig. 5-1). Moreover, the main and

large openings were reinforced using wooden falseworks, as shown in Fig. 5-2, 3, together

with wooden ribs in the smaller openings (Fig. 5-4).

3 Operational modal analysis

The authorities ordered safety interventions in order to prevent the collapse of the cathedral

and of the bell tower immediately after the first emergency phase. A temporary vibration

monitoring system was put in place before and after the installation of the safety inter-

ventions in order to investigate and validate the dynamic behaviour of the bell-tower in the

two scenarios.

3.1 Dynamic monitoring

A first test campaign was carried out on the damaged structure after the main seismic

events on the August 2012 by the laboratory of Strength of Materials of the IUAV (Istituto

Fig. 3 Damage at the level of the belfry of the bell-tower (a, b) and the metal chains (c) at 20 m
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Universitario di Venezia—University). A second test was carried out in September 2012,

after the post-earthquake safety interventions. The dynamic responses to ambient noise

were recorded. The experimental setup was designed to investigate the global dynamic

behaviour of the tower, as far as was possible by the precarious structural conditions. The

accelerometers were placed at different levels of the south side and at two levels on the east

side. The test setup, as presented in Fig. 6, was constituted by eight uniaxial piezoelectric

accelerometers (PCB Piezotronics type 393C) with a nominal sensitivity of about 1 V/g,

and a measurement range of ±2.5 g peak.

Fig. 4 Damage on vaulted slabs at 3.6 m (a) and at 9.5 m (b) and internal staircase (c, d)
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The accelerometers were installed by means of special metal bases fixed directly on the

wall with expansion anchors (Fig. 6b). The metal bases were left in place to simplify the

execution of more tests to assess further damage and the long-term effectiveness of the

Fig. 5 Post-earthquake provisional safety-interventions: metal tie rods (1), wooden falsework in the small

opening of the first and second level (2, 4), wooden falsework in the large opening of the third level (3)
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safety interventions. A total of 8 channels were acquired with a sampling frequency of

192 Hz, for an average signal length of 300 s. The setup was designed to capture the first

main modes of the bell-tower (Boscato et al. 2016). Pre-processing and data conditioning

involved subsampling (sampling frequency was reduced to 48 Hz), mean removal and de-

trending through a polynomial fitting of the signals (Ceravolo et al. 2016). The acquisition

of the signals was conducted in similar environmental conditions, with a temperature of

about 20 �C and 40 % of humidity.

3.2 Dynamic identification procedure

Table 1 shows the modal parameters identified before (PR-I) and after (PS-I) the imple-

mentation of the safety interventions. System identification was carried out in the time

domain, using the Stochastic Subspace Identification (SSI) algorithm, with the so-called

Fig. 6 a Instrumentation setup, location and orientation of accelerometers. b Detail of the installation of the

accelerometer on the bell-tower
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‘‘Canonical Variate Analysis’’ (Van Overschee and De Moor 1996). The output only SSI

implementation identifies systems by assuming input excitation as white Gaussian noise.

This assumption is commonly accepted in ambient vibrations testing and it was respected

during the test phases, being the absence of external excitation sources like machineries or

occupants. Signal intervals affected by occasional spikes or anomalous vibration levels

have been discarded from analyses. The subspace algorithm identifies the matrix

describing the linear system starting from subspaces containing the projections of data

matrices. In particular, these types of algorithms project the space of the matrix rows of

future outputs into the space of the rows of past outputs.

Figure 7 shows the stabilisation diagrams obtained for some of the signals made available

by dynamic monitoring. The identification procedure entails a series of pre-processing

operations on the signals (mean removal, de-trending, filtering) carried out by an expert

operator in order to ease the identification process of the algorithm. For a detailed discussion

on the identification process for masonry structures one can refer to Ceravolo et al. (2016).

From the modal frequencies and from Df it can be clearly noticed how the installation of

the safety interventions mitigated the effects of the extensive damage suffered by the bell-

tower (De Stefano and Ceravolo 2007). In fact, the first two bending modes (Table 1)

increased of the 16 and 21 %, from 0.68 and 0.72 to 0.79 and 0.87 Hz; whereas the first

torsional mode had an increase of 32 %, from 1.41 to 1.86 Hz. For what concerns the

damping ratios, the trend is not as clear. Anyhow, 6 out of the 8 modes listed in Table 1

show an increase in the damping ratios after the interventions.

In order to clarify the significance of these results, a comparison is made with another

bell-tower where dynamic identifications were carried out before and after the safety

interventions. Extensive dynamic campaigns were performed on the S. Annunziata in

Roccaverano bell-tower (De Stefano and Ceravolo 2007) before and after a strengthening

intervention with grouting and tie-bars. In that case, the bending modes rose from 1.66 and

2.26 to 1.97 and 2.34 Hz, showing an increase of 19 and 4 %, respectively. On the other

hand, the torsional mode had an 8 % reduction, from 4.67 to 4.3 Hz.

The first three modes of the bell tower were then compared with those of about 40

masonry towers or bell towers from across Europe. This highlighted how the two flexural

modal frequencies of the damaged scenario are significantly lower than the typical ones of

other bell-towers of comparable height. From these same data it can be inferred that the

torsional mode is even more distant from the ‘‘ideal’’ trend of frequency as a function of

Table 1 Identified modal frequencies and damping ratios in Pre- (PR-I) and post-safety intervention (PS-I)

configurations

PR-I PS-I Df (%) Df (%)

Frequency (Hz) Damping ratio (%) Frequency (Hz) Damping ratio (%)

0.68 1.6 0.79 1.7 16.2 6.2

0.72 1.5 0.87 0.5 20.8 -66.7

1.41 2.2 1.86 2.6 31.9 18.2

2.30 1.1 2.48 2.3 7.8 109.1

2.71 1.9 3.05 2.2 12.5 15.8

3.68 4.4 4.66 3.1 26.6 -29.5

3.86 0.9 5.48 3.5 42.0 288.9

3.92 0.9 6.26 2.2 59.7 144.4
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height represented by the lines in Fig. 8. This is most probably a symptom of a severely

damaged structure, where box-like behaviour has been strongly affected. In fact, stiffness

along the plane of the masonry walls is relatively less affected by the presence of cracks

than torsional stiffness, which is influenced by the state of the connections between

orthogonal wall panels. The full list of bell tower modes, up to the sixth, can be found in

Table 2.

Fig. 7 Bell-tower modal identification results (frequency-damping clustering and stabilisation diagram): a,

b PR-I, c, d PS-I. The stabilisation parameters chosen for the graph were: df = 0.005, df = 0.1,

MAC = 0.95
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Fig. 8 Frequency dependency of the first 2 bending and the torsional mode with respect to height of the

building from literature data. The red circle and the blue square represents the Mirandola bell-tower

frequencies in the PR-I and PS-I configuration respectively, whilst the regression line is obtained with a

generic exponential law
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Table 2 Comparative study of various experimental frequency identified on undamaged masonry towers

and bell tower across Europe

Building Height

(m)

Frequency (Hz)

1st 2nd 3rd 4th 5th 6th

Foti et al. (2012a) Maddalena Church,

Bari

16 4.46b 4.58b 12.16t

Lund et al. (1995) St Michael’s

Heighington

16.2 3.16b 3.63b

Lund et al. (1995) Christchurch Consett 16.3 2.48b 3.38b

Lund et al. (1995) St Margaret’s Tanfield 16.5 3.13b 3.88b

Lund et al. (1995) St John’s Shildon 18.5 3.49b 3.68b

Lund et al. (1995) St Brandon’s

Brancepeth

20 2.59b 2.84b

Ramos et al.

(2010)

Clock Tower,

Mogadouro

20.4 2.15b 2.58b 4.98t 5.74 6.76 7.69

Lund et al. (1995) St Andrew’s Roker 20.5 5.28b 5.34b

Foti et al. (2012b) Administration

Building, Bari

21 2.30b 2.43b 4.19b 4.60t 5.02b

Lund et al. (1995) St Michael’s Houghton 21.4 2.71b 2.98b

Bayraktar et al.

(2009)

Hagia Sofia, Trabzon 22 2.56b 2.65b 6.22t

Lund et al. (1995) St Andrew’s B.

Auckland

23.2 2.20b 2.51b

Bonato et al.

(2000)

S Annunziata,

Roccaverano

24 1.66b 2.26b 4.67t 6.18b 6.40t 8.90b

Lund et al. (1995) St Mary’s Richmond 24 2.55b 3.04b

Lund et al. (1995) St Oswald’s, Durham 24.8 2.01b 2.05b

Lund et al. (1995) St Edmund’s

Sedgefield

25.4 2.20b 2.28b

Lund et al. (1995) St Matthew’s

Newcastle

28 1.49b 1.92b

Abruzzese (2005) Capocci Tower, Rome 33.1 2.00b 2.17b 6.70t 8.52b 9.01b

Lund et al. (1995) St Cuthbert’s

Benfieldside

33.8 2.25b 2.27b

Orihuela-spain

et al. (2008)

Santa Justa y Rufina 33.9 2.30b 2.40b 5.50t

Júlio et al. (2008) Tower of the

University, Coimbra

34 2.13b 2.47b 6.55t 8.25b 9.71b

Bennati et al.

(2005)

Tower of Matilde, S.

Miniato

34.3 1.20b 1.91b 3.22t 5.98b 7.055b 8.31t

Russo et al. (2010) St Andrea, Venice 36.2 0.61b 0.73b 2.81t 3.54b 5.39

Gentile et al.

(2012)

Arcisate bell tower 36.72 1.25b 1.32b 3.52t 4.06b 4.25b

Casciati and Al-

Saleh (2010)

Soncino Civic Tower 39.24 1.05b 1.15b 2.50t 4.10b 4.30b

Ivorra and Pallarés

(2006)

Nuestra Sra

Misericordia,

Valencia

41 1.29b 1.49b 3.98t 4.32b 4.37b

Ivorra et al. (2009) San Nicolas, Valencia 42.5 0.85b 0.87b 3.69t
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It is also worth noting that, in the PR-I condition, the first and the second flexural modal

shapes, directed along E–W and N–S directions respectively, show a coupled behaviour

and a value of Modal Assurance Criterion (MAC) of 0.495, whereas after the strengthening

interventions they appear almost perfectly aligned with the principal axes of the tower, the

MAC decreases to 0.001 (Fig. 9).

4 FE model calibration

A finite element (FE) model was built using Ansys code on the basis of the information

gathered with both geometric surveys and historical documentation, and then calibrated by

using the experimental results. The geometric model was created according to both his-

torical data and a laser scanner survey. The masonry panels composing the bell-tower were

idealised as plane and curved surfaces. This led to the use of shell-type finite elements to

discretise the geometric model. FEs were successively grouped in sub-parts defined in

terms of historical, structural and typological homogeneity (Ceravolo et al. 2014; Boscato

et al. 2015). In total, five different sub-parts were individuated, at different levels of the

bell-tower (Fig. 10). The first and the second sub-parts are the basement and the following

upper level which were both built in the late fifteenth century. The masonry vaults

belonging to the basement level were also modelled by shell-type finite elements,

Table 2 continued

Building Height

(m)

Frequency (Hz)

1st 2nd 3rd 4th 5th 6th

Diaferio et al.

(2014)

Cathedral Trani, Trani 43 2.04b 2.26b 7.03b 7.60t 9.16b

Lund et al. (1995) St Nicholas’, Durham 43.5 1.38b 1.82b

Ceravolo et al.

(2016)

S. Giovenale, Fossano 46 1.29b 1.34b 3.28t 4.11b 4.74b 6.65t

Cunha et al. (2014) Clerigos Tower, Porto 50.6 1.02b 1.21b 1.99b 2.84t 3.19b

Saisi and Gentile

(2015)

Gabbia Tower, Mantua 54 0.98b 1.03b 3.891b 4.763t 6.925b

Ceroni et al. (2009) St Maria del Carmine,

Naples

58 0.69b 0.76b 2.28b 2.35b 2.76t

Bassoli et al.

(2015)

St Antonio, Ficarolo 59 0.55b 0.56b 2.16b 2.17b 3.07t 6.24b

Lund et al. (1995) Cathedral Durham 66 1.28b 1.31b

Gentile and Saisi

(2007)

Monza Cathedral (P-I) 74 0.59b 0.71b 2.46t 2.73b 5.71b

Modena et al.

(2002)

Monza Cathedral (PS-

I)

74 0.65b 0.66b 3.18t 3.23b 3.31b 5.71t

Pieraccini et al.

(2014)

Torre del Mangia,

Siena

85 0.35b 0.39b 1.8b 1.91b

Sabia et al. (2015) Ghirlandina Tower,

Modena

85 0.74b 0.85b 2.77b 2.99b 3.66t 4.81b

Binda et al. (2000) Torrazzo Cremona 112 0.44b 0.44b 1.66b 1.66 2.36 2.81b

b Bending modes, t torsional modes
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attributing a modified equivalent density property in order to take into account the inertial

contribution of the staircase and the slabs. The third sub-part roughly corresponds to the 1st

belfry, built in the eighteenth century, and it is characterised by its large openings. The last

two levels are the 2nd belfry, rebuilt in 1888, and the stone roof of the belfry.

The initial properties of the masonry were assumed from the literature (Fernandes et al.

2010) and from the current Italian code (i.e. Young modulus: 1.5 GPa, Poisson’s ratio: 0.4,

density: 1900 kg/m3). A second type of material (Young modulus: 1.5 GPa, Poisson’s

ratio: 0.4, density: 1700 kg/m3) was attributed to the shell elements of the stone dome. In

the baseline FE model, a thickness of 1.15 m was set for the two first levels according to

the available data, whilst thickness of 0.55 and 0.35 m were assigned to the other two sub-

part levels according to the visual inspection.

For the boundary conditions of the tower, and specifically its interactions with the

adjacent buildings (i.e. the Cathedral of Santa Maria Maggiore and the rectory), linear

spring elements were used on each side (East, West and North) in correspondence to the

rectory wall, the apse arches and the nave walls, as it is possible to notice in Fig. 11. In the

Fig. 9 Bell-tower identified frequencies and modal shapes in the PR-I scenario and the PS-I scenario
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baseline FE model, the stiffness coefficient was set to 1 9 1011 N/m for all the spring

elements. Concerning the foundations, it was chosen not to model them and to assume the

structure as fixed at its base. This assumption was made according to the decision of

avoiding the investigation of rocking motion in the dynamic behaviour of the tower that

commonly occurred in slender structures (Sabia et al. 2015). In fact, the monitoring setup

was not specifically designed to detect rocking motion in the structure, and these effects

can be assumed negligible in case of low vibration levels, as recorded during the ambient

vibration testing.

In a second phase, the safety interventions were added to the FE model (Fig. 12b). The

interventions were modelled resorting to beam and truss type finite elements idealising the

wooden falsework installed in the openings of the bell-tower at the different levels (Fig. 5).

The material properties (Young modulus: 8 GPa, Shear Modulus: 0.5 GPa, density 370 kg/

m3) assigned to these elements were chosen according to the Italian Fire Department’s

manual for safety wooden interventions (Ministero dell’Interno and Corpo Nazionale dei

Vigili del Fuoco 2011). The metal tie-rods were not modelled with specific finite elements,

but the effect of their presence is evaluated indirectly during the model updating phase by

the variation of the mechanical properties. If the intervention is effective, the metal tie-rods

Fig. 10 The five sub-parts of the bell-tower
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should lead to a partial closure of the cracks and to the rehabilitation of the original box-

like behaviour of the structure. Thus, the efficacy of the intervention can be inferred by the

equivalent stiffness increase of the respective sub-part.

4.1 Model updating

Model updating is nowadays a common procedure for damage evaluation or assessment of

cultural heritage and, more specifically, of masonry structures (Ceravolo et al. 2016). The

intrinsic difficulties in the procedure (e.g. heterogeneity of the material, uncertainty in

boundary conditions) are overshadowed by the advantage of being able to monitor and tune

the model with global indicators of the physical system. Although this type of approach

may lead to higher uncertainties for local values of physical quantities, it minimises the

uncertainties of the overall system response.

The experimental modal quantities listed in Table 1 have been used to calibrate the

baseline FE model, resorting to an indirect method of model updating (Friswell and

Mottershead 1995). Indeed, the updating procedure consists in the minimisation of a

penalty function which correlates the updating parameter vector (p), the i-th numerical

frequency (fID,i),the i-th experimental frequency (fFEM,i) and the Modal Assurance Crite-

rion (MACi) between the i-th identified mode-shape and the corresponding i-th analytical

mode-shape. The a and b terms are the weight factors for the frequency and the mode-

shape errors, respectively (in the described application both were set equal to 0.5).

Fig. 11 a Idealisation of spring elements as boundary conditions due to nearby buildings. b Localization of

the 3D-linear spring elements on the FE model

Bull Earthquake Eng (2017) 15:313–337 327

123



e pð Þ ¼
X

m

i¼1

ai
fID;i � fFEM;i

fID;i

� �2

þbi
1�

ffiffiffiffiffiffiffiffiffiffiffiffi

MACi

p� �2

MACi

" #

ð1Þ

The parameters selected for the updating process are the Young modulus and the

Poisson’s ratio for the sub-parts 1–4. Parameters have been chosen on the basis of a

previously sensitivity analysis on the model, in order to discriminate among the most

significant parameters to be updated. For instance, for what concerns the sub-part number

5, since no sensors were placed at that level, the sensitivity of the penalty function with

respect to the parameter of this sub-part is too low to be considered for updating. More-

over, the 6 link-elements stiffness were updated for a total of 11 updating parameters

(Fig. 13). It is worth to remark that at this stage it is unknown the level of connection

existing between the bell tower and the body of the church.

In Table 3 the comparison between the analytical and the experimental modal param-

eters can be appreciated in terms of both frequency and MAC in the pre-intervention

scenario. The MAC value between analytical and identified modal shapes is greater than

0.8 for 3 modes out of 6. Firstly, the parameters of the connection with the adjacent

buildings were updated, thus assessing the conditions of restraint of the bell tower. From

the obtained values, the most influential connections are those with the nave of the church

Fig. 12 Baseline FE model of the bell-tower subdivided in sub-parts (a), FE model with safety

interventions (b)
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on the North side, whilst the parameters related to the arches of the nave and apse have

values definitely lower. This is probably due to the collapse of the roof of the church, the

absence of connection between the walls of the nave reduces its constraint action for the

bell-tower. A first rough manual tuning of the masonry density and the Poisson’s ratio and

also the thickness of the third and fourth level was carried out with respect to the first three

natural frequencies. Then, the updating process was performed for the Young’s modulus

parameter of the four masonry levels starting from the initial values of 1.5 GPa.

The results of the updating procedure provide further information about the bell-tower

damage state (Fig. 14b): the value of 0.508 GPa for the Young modulus of the first sub-part

and the others of the upper levels, 0.806 GPa for the second level and 0.85 GPa for the

third one, refer to heavily cracked regions of the building. Moreover, these results suggest

that the first sector is strongly influenced by adjacent bodies, that have stiffened the

basement of the tower, especially on the west side, where the spring-element

R1 = 4.13 9 106 N/m represent the external wall of the church’s nave; and on the east-

side where R5 = 1.5 9 109 N/m, R4 = 6.34 9 105 N/m, R6 = 106,250 N/m model the

rectory building.

The results of the updating in terms of frequency errors and MAC for the PS-I are listed

in Table 4: the frequency errors are slightly higher in this case but the MAC values

Fig. 13 Finite element model discretization associated to the chosen updating parameters and related initial

values
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confirmed a good match between the numerical model and the experimental data. Also in

this second case, 3 modes have a MAC value higher than 0.9 (Table 4).

The second updating procedure (on the PS-I model) was carried out by varying only the

values of Young’s modulus of the masonry (E1, E2, E3, E4). The parameters related to the

adjacent bodies are set equal for both conditions as the configuration is assumed to be

unchanged: in fact, the safety interventions should affect the bell tower but not the

Table 3 Comparison between the analytical and the experimental modal model of bell-tower in pre-

intervention condition

Mode Frequency ID (Hz) Frequency FEM (Hz) Err (%) MAC

1 0.68 0.68 0.2 0.98

2 0.72 0.69 3.8 0.98

3 1.41 1.73 18.3 0.91

4 2.29 2.33 1.6 0.68

5 2.70 2.42 11.8 0.66

6 3.68 3.80 3.3 0.35

Fig. 14 Model updating results: initial values (a) and the updated values for the pre-intervention scenario

(b) and in the post-intervention scenario (c)
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connection with the surrounding buildings. The first sub-part, where there are only the

wooden false works in correspondence of the opening, does not show any significant

variation in the Young’s modulus parameter. On the other hand, the second sub-part is the

most influenced by the safety interventions (tie-rods are located on this level), the related

Young’s modulus parameter has a significant increase from the value of 0.805–1.47 GPa

(parameter E2, Fig. 14c). The third sub-part, also affected by the installation of tie rods,

reveals a relevant increase of stiffness with a Young’s modulus value of 1.31 GPa respect

the starting updated value of the pre-intervention scenario (parameter E3, Fig. 14c). These

results highlight how the equivalent stiffness is modified in correspondence of the areas

that underwent more invasive interventions. Therefore, the updated model has been a valid

support to confirm the experimental model and measurements, and also to plan any

additional tests on the bell-tower.

4.2 Dynamic response to aftershock events

In a post-earthquake scenario, the evaluation of the structural safety is a challenging task,

since a decision has to be made in the shortest time possible. Thus, complicated non-linear

FE models, where the nonlinear laws of the materials requires the initialisation of several

parameters, may not always be the best answer for a timely response. The use of linear-

elastic models may be of some use in order to roughly assess the dynamic behaviour of the

building. The approach proposed in this paragraph is a quick but reliable assessment of the

dynamic behaviour of the Mirandola bell tower using the linear but calibrated model. It has

been seen from the previous paragraph that a dependency between frequency and PS-I state

may be inferred from the results. Consequently, the updated FE model may be used in

order to investigate the structural response considering just the linear dynamic behaviour of

the structure. Different time-history analyses have been carried out, in order to compare the

seismic responses of the two tuned FE models (in the pre- and post-earthquake safety

intervention configurations) in terms of displacements using three aftershocks accelero-

grams (referring to the 20–21 May event). The three main events with aftershocks were

recorded by the same station in Mirandola (MRN), which is part of the Italian accelero-

metric network (ITACA). Table 5 lists the aftershock events, with their respective mag-

nitudes and peak ground accelerations (PGA).

Figure 15 shows the aftershock accelerograms used as input for the dynamic analysis

and their frequency content. For brevity’s sake, only the accelerograms referring to the

main direction of the earthquake are reported (which are respectively N–S for the first two

and E–W for the third one) but a three component excitation has been applied to the FE

model.

Table 4 Comparison between

the analytical and the experi-

mental modal model of bell-

tower in post-intervention

condition

Mode Frequency ID (Hz) Frequency FEM (Hz) Df (%) MAC

1 0.79 0.71 11 0.97

2 0.87 0.75 16 0.97

3 1.86 2.03 8 0.96

4 2.48 2.85 13 0.85

5 3.05 3.05 0 0.68

6 4.66 4.66 0 0.28
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Table 5 Aftershock events, related Magnitude and PGA

Date and time Label Magnitude PGA (g) Depth (km) Epicentral distance (km)

29/05/2012 11:00:22 (UTC) AS1 5.4 0.204 5.4 10

03/06/2012 19:20:33 (UTC) AS2 5.1 0.175 9.2 5.1

12/06/2012 01:48:26 (UTC) AS3 4.3 0.064 10.8 14.6

Fig. 15 Acceleration and frequency response spectra of the three aftershocks related to the respective main

direction
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Fig. 16 Comparison between the displacement responses related to CH7-position (direction x—first

column, direction y—second column) in the pre (red line) and post (blue line) condition
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Finally, the results of two points (roughly corresponding to CH-3 and CH-7 in Fig. 6)

carefully chosen in the structure, respectively at 12 and 28 m of height were used as a

benchmark of comparison for the PR-I and PS-I configurations. Both points should be

affected by the false works at the openings and the safety interventions, and the updating

results seemed to confirm this effect, because the elastic modulus in correspondence of the

2nd and 3rd sub-part showed a sensible variation.

The maximum displacements values are obtained for the CH-7 position, located in a

higher, thus more flexible region of the tower, where the most severe damages were

assessed (see Fig. 2). Observing the time-history responses in Fig. 16 and the results in

Table 6 it is possible to notice how the amplitude of the response in the PR-I and PS-I

configurations is quite similar with all the three aftershocks. As shown in Fig. 16, the

response in the direction of the x and y reveals quite similar results between PR-I and PS-I

differing only by the time of occurrence of the peak displacement. Only the responses to

AS1 and AS3 aftershocks show an improvement of global behaviour when considering the

maximum response in terms of displacement.

5 Conclusions

This work has presented the results of an experimental dynamic campaign carried out on

the bell-tower of S. Maria Maggiore in Mirandola, struck by the 2012 Emilia earthquake.

Data were acquired in two distinct phases: one immediately after the seismic event, with

extensive damage on the structure, and the second one after the realisation of the provi-

sional safety interventions. This allowed for a comparison of the dynamic behaviour of the

structure in a pre- and post-intervention scenario. A series of considerations can be drawn.

1. Comparing the results, a general increase in terms of modal frequencies is observed,

which can be directly related to the stiffening effects provided by the safety

interventions realised. For what concerns the damping ratios, the modes in direction X

and the torsional ones show an increase of the equivalent viscous damping, whilst the

flexural modes in direction Y show a decrease in the damping after the interventions.

2. A comparison between the case study and literature bell-towers highlights how after

the seismic event the frequencies of the first three modes were found to be sensibly

low. After the strengthening intervention frequency values are seen to substantially

match those expected for undamaged bell-towers of similar height.

Table 6 Comparison of the dynamic response of the bell-tower to the accelerograms of Fig. 15 in terms of

maximum displacement in the PR-I and PS-I configurations

Disp (mm) AS1 AS2 AS3

PR-I PS-I D (%) PR-I PS-I D (%) PR-I PS-I D (%)

CH7-x 11.30 12.20 8.0 7.70 10.90 41.6 1.50 1.50 0.0

CH7-y 22.60 16.40 -27.4 6.30 7.40 17.5 1.80 1.70 -5.6

CH3-x 2.30 3.80 65.2 1.70 4.10 141.2 0.75 0.99 32.3

CH3-y 5.20 6.00 15.4 2.30 3.80 65.2 0.65 0.97 49.4
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3. Vibration-based monitoring allows to calibrate a FE model that can be potentially used

for assessing the intrinsic characteristics of masonry, the structural interaction with

adjacent buildings and the structural effects of safety measures and strengthening

interventions. It is worth to add that a set of dynamic test on the pristine (or pre-

earthquake) state of the structure may strongly improve the quality of the results

obtained.

4. The model updating procedure allowed a significant number of parameters of the

different structural portions to be calibrated, as required in the analysis of complex

structures.

5. The observed increase in modal frequency values proves that the confinement

provided by safety measures limits the flexural mechanism; the increase of Young

modulus in the portion of structure interested by post-earthquake measures implies the

increment of global flexural stiffness.

In conclusion, the model updating procedure confirmed to be an effective tool for

investigating the behaviour of structures in complex scenarios. Moreover, results show

how the presence of a dynamic monitoring system in the aftermath of a seismic event can

be helpful to assess the residual structural performances, the degradation of mechanical

characteristics and the effectiveness of safety interventions immediately after their

installation and over time, up to the retrofitting of the structure.
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