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ABSTRACT

Several recent reports have demonstrated that microRNAs (miRNAs) can exhibit heterogeneous ends and post-transcriptional
nontemplate 39 end additions of uridines or adenosines. Using two small RNA deep-sequencing data sets, we show here that these
miRNA isoforms (isomiRs) are differentially expressed across Drosophila melanogaster development and tissues. Specifically, we
demonstrate that: (1) nontemplate nucleotide additions of adenosines to miRNA 39 ends are highly abundant in early development;
(2) a subset of miRNAs with nontemplate 39 Us are expressed in adult tissues; and (3) the size of at least eight ‘‘mature’’
(unmodified) miRNAs varies in a life-cycle or tissue-specific manner. These results suggest that subtle variability in isomiR
expression, which is widely thought to be the result of inexact Dicer processing, is regulated and biologically meaningful. Indeed,
a subset of the miRNAs enriched for 39 adenosine additions during early embryonic development, including miR-282 and miR-312,
show enrichment for target sites in developmental genes that are expressed during late embryogenesis, suggesting that nontemplate
additions increase miRNA stability or strengthen miRNA:target interactions. This work suggests that isomiR expression is an
important aspect of miRNA biology, which warrants further investigation.
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INTRODUCTION

MicroRNAs (miRNAs) are z19–24-nucleotide (nt) small

RNAs that principally inhibit the translation of partially com-

plementarymRNAs, although a range of other actions, includ-

ing transcriptional inhibition, have also been recently de-

scribed (Brodersen and Voinnet 2009). MicroRNA biogenesis

begins with transcription of az1–3-kb primary miRNA tran-

script, which forms a stem–loop that is recognized and
processed by the RNase III Drosha and its partner Pasha

(Morlando et al. 2008). The resulting z70-nt pre-miRNA

hairpin is transported to the cytoplasm, where it is cleaved by

the RNase III Dicer (Dcr-1) and its partner Loquacious (Loqs)

(Ghildiyal andZamore 2009). InDrosophilamelanogaster, one

strand of themiRNA duplex, known as the ‘‘maturemiRNA,’’

is then loaded into a member of the Argonaute family of pro-

teins, AGO1. The remaining strand, known as the miRNA*,
was long thought to be discarded; however, recent evidence

indicates that it can also be loaded into AGO2 (Czech et al.

2009; Ghildiyal et al. 2009; Okamura et al. 2009). Dcr-1 and

Loqs-PB (a Loquacious isoform) bind to AGO1 to form the

RNA-Induced Silencing Complex (RISC) (Marques et al.

2010), which is the primary effector of miRNA action in

eukaryotic cells (Davis and Hata 2009).

Several recent reports have shown that in both animals
(humans, mice, D. melanogaster, and Caenorhabditis elegans)

and plants (Arabidopsis thaliana, Oryza sativa, and Populus

trichocarpa) miRNAs exhibit heterogeneous 59 and 39 ends,

and post-transcriptional nontemplate 39 end additions of uri-

dines or adenosines (Li et al. 2005; Landgraf et al. 2007; Ruby

et al. 2007; Azuma-Mukai et al. 2008; Morin et al. 2008; Reid

et al. 2008; Seitz et al. 2008; Ebhardt et al. 2009; Lu et al. 2009).

Although thebiological relevanceof thesemiRNA isoforms, or
isomiRs, has been questioned, there is evidence in A. thaliana

that terminal nucleotide additions occur after Dicer process-

ing of the miRNA precursor (Li et al. 2005), and that some

variants are differentially loaded into Argonautes (Seitz et al.

2008; Ebhardt et al. 2009). Likewise, inP. trichocarpa, miRNAs

that possess adenosine additions are less prone to degradation

(Lu et al. 2009).

Two enzymes have been associated with the addition of
isomiR nontemplate nucleotides in animals. Zcchc-11 uri-

dylates miR-26a in mouse epithelial cells, leading to the

abrogation of the translational repression of human Inter-

leukin 6 (IL-6) (Jones et al. 2009). Similarly, the polynucleo-

tidyl transferase GLD-2 was recently shown to adenylate

miR-122 in human andmouse liver (Katoh et al. 2009), which,

like adenylation in plants, increases stability. Interestingly,
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the Drosophila homolog of this protein,

Wispy, is involved in long-termmemory

formation (Kwak et al. 2008) and oogen-

esis (Cui et al. 2008), suggesting that

miRNA terminal nucleotide additions

may play a role in fly development.

Here we address whether nontemplate

additions to miRNAs are biologically
regulated, by determining whether such

additions show specificity with respect to

particularmiRNAs and/or developmental

stages inDrosophila.Our results show that

39 end nontemplate additions change dy-

namically throughout fly development in

a stage- andmiRNA-specificmanner, and

surprisingly, that the size of at least eight
miRNAs changes across tissues and devel-

opment time.

RESULTS

We analyzed two publicly available D.

melanogaster small RNAs deep-sequenc-

ing data sets generated onboth theRoche/
454 (Ruby et al. 2007) and Illumina

(Chung et al. 2008) platforms, the latter

ofwhich includes twobiological replicates

(Supplemental Table S1).We focused our

analysis largely on three embryonic de-

velopment stages (0–1 h, 2–6 h, 6–10 h),

imaginal discs, and adult heads and bod-

ies. For clarity we will refer to a single
deep-sequencing read as a ‘‘tag,’’ and the

number of times this read appeared in a

library as its ‘‘count.’’ Of 152 mature

miRNAs in miRBase 14.0 we found that

130 were expressed with an absolute ex-

pression of 150 counts in at least one time

point. Themost abundantmiRNA species

were dominantly 22 nt, as expected (Supplemental Fig. S1).
To identify deep-sequencing tags with nontemplate addi-

tions we queried for tags that mapped uniquely to known

miRNA loci and possessed 1–5 terminal mismatches com-

posed of one ormore adenine (A), uracil (U), cytosine (C), or

guanine (G) residues at the 39 end of the tag (Fig. 1A). For

simplicity, individual miRNAs or isomiRs with nontemplate

39 additions are hereafter appended with ‘‘-X,’’ where X is A,

U, C, or G (e.g., miR-282-A or isomiR-A).
Although tags with nontemplate additions were more

weakly expressed thanunmodified tags (e.g., canonicalmature

miRNAs; Supplemental Figs. S2, S3), those with terminal A

(and sometimes U, see below) additions were unexpectedly

abundant. We identified 101,173 isomiR-A counts represent-

ing 3.9% of total miRNA expression, and found that 58% of

modified tags were derived from isomiR-As. The majority of

isomiR-As were 23 nt or longer (Supplemental Fig. S1), in-

dicating that inmost cases nontemplate nucleotides are added

to a ‘‘miRNA core’’ (hereafter denoted miRNA^), which is

identical to the mature miRNA (Fig. 1A; Supplemental Fig.

S1B), although there are some exceptions and variability in
miRNA^lengths (seebelow).This is consistentwithaprevious

report indicating that terminal nucleotides are added after

Dicer processing in animals (Katoh et al. 2009).

To test whether A additions occur uniformly or non-

randomly, the percentage of isomiR-As derived from 124

high-confidence miRNAs was calculated. This subset of

DrosophilamiRNAs is refractory to multimapping (de Hoon

et al. 2010), thus ensuring that the observed modifications
are not due to spurious matches between highly similar loci.

Additionally, to ensure that weakly expressed tags did not

bias our analysis, we used a lower threshold of 150 isomiR-A

FIGURE 1. IsomiRs in various Drosophila developmental time points and anatomical regions.
(A) A schematic of isomiR species derived from a hypothetical miRNA hairpin. In addition to
a mature miRNA, the hairpin produces a noncanonical 21-nt species whose abundance may
rival or exceed the canonical mature species. Nontemplate A’s (red) and U’s (purple) are added
to a miRNA core (miRNA^, outlined by dashed gray lines; see text for more detail), which, in
this case, is synonymous with the canonical mature miRNA. (B) The percentage of total
miRNA expression driven by isomiR-As (red), isomiR-Us (purple), isomiR-Cs (yellow), or
isomiR-Gs (green) is plotted against the miRNA^ of each tag. IsomiR-As are dominant across
all samples but are most abundant in early embryonic time points. (*) Samples obtained from
male and female tissues.
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counts derived from a single tag per

miRNA locus. We observed no correla-

tion between the level of miRNA expres-

sion and nontemplate 39 additions, in-

dicating that isomiR-As are unlikely to be

the result of either a random addition in

vivo or related to endogenous degrada-

tion (Supplemental Fig. S4). Indeed, four
highly expressed embryonic miRNAs,

including miR-12 and miR-286 (Aravin

et al. 2003; Biemar et al. 2005), have <1%

of their expression driven by isomiR-As

(Supplemental Table S2).

IsomiR-A enrichments are consistent

between data sets generated on both the

Illumina and Roche/454 platforms and
are most pronounced early in Drosophila

development (Fig. 1B; Supplemental Fig.

S5). Indeed, these enrichments are present

in each of the three replicates of each developmental stage

or tissue library despite more than eightfold variation in

total sequence depth (Supplemental Table S1; Supplemental

Fig. S5). To rule out the possibility that the enrichment in

isomir-As and isomiR-Us in early Drosophila developmental
time points are caused by a systematic deep-sequencing ar-

tifact shared by the Illumina and the Roche/454 platforms, we

analyzed isomiR expression in three Illumina data sets of

473 human synthetic miRNAs sequenced at equal molarity

(Linsen et al. 2009). Consistent with the hypothesis that

isomiRs are a biologically meaningful species, we found

that in this synthetic RNA set the highest percentage repre-

sented by any isomiR variant was <0.3% and was randomly
distributed between isomiR-As, isomir-Cs, isomiR-Us, and

isomiR-Gs, the latter being themost abundant (Supplemental

Figs. S6, S7). There was no synthetic miRNA that showed

a specific enrichment for isomiR tags (data not shown).

In contrast, when we queried for specific miRNAs enriched

for isomiR variants in Drosophila, we identified six miRNAs

with a wide range of expression values that were strongly

enriched for isomiR-A tags in early development (Supple-
mental Table S3). Each had >15% of its counts driven by

a single isomir-A tag in an early embryonic time point (Fig. 2;

Supplemental Table S3). For example, in 0–1h embryos miR-

282-A tags account for >26% of miR-282 expression, and

overall, constitute nearly one-fourth of all mir-282 counts in

all embryonic time points. Intriguingly, although the domi-

nantmiR-282 isoform is 22 nt, themost abundantmiR-282-A

has a miRNA^ of 21 nt (Fig. 3A), which may suggest that
some isomiR-A species result from specific Dicer cleavage

events. Similarly, 20% of miR-8 expression is driven by a

23-nt isomiR-A in 2–6-h embryos (Fig. 3B), and abundant

isomiR-As are derived from both the mature and star strands

of miR-312 (Fig. 3C).

We also identified a further nine miRNAs with 5%–15%

of their total counts driven by isomiR-As and found that, like

the highly modified miRNA discussed above, all show peak

isomiR-A abundance in early development (Supplemental

Fig. S8). This strongly suggests that nontemplate A additions
are linked with fly development. Indeed, isomiR-A expression

amongst all 15 modified miRNAs is highly replicable between

the early embryonic libraries in both the Roche/454 and

Illumina data sets (Supplemental Fig. S8), and is strongly

diminished or undetectable in adult biological replicates and

samples derived from larval and pupal life-cycle stages (Sup-

plemental Fig. S9).

MicroRNAs with similar expression profiles can act co-
operatively to target a subset of genes or a particularmolecular

pathway (Enright et al. 2003; Bartel 2009). To test whether

similar patterns were present amongst the six miRNAs with

highly abundant isomiR-As, we queried TargetScanFly 5.7

(Ruby et al. 2007) and identified 33 genes with two target sites,

and a further five genes with three target sites. Using FlyMine

(Lyne et al. 2007)we found that these 38 genes are significantly

enriched for eight GeneOntology (GO) terms (Table 1), most
of which refer to developmental and morphogenic processes,

including instar, larval, and pupal development. A similar GO

term analysis on our less-stringent isomiR-A set, comprised

of 15 miRNAs (see above), revealed 118 genes with two or

more target sites that show a similar but more extensive GO

enrichment (Supplemental Table S4). At least 68% of GO

terms in this set correspond to biological processes that take

place in late development. The observation that isomiR-As are
more abundant during early development, and the fact that

their target genes are active in developmental processes sug-

gests that isomiR-As delay or stabilize miRNA action.

We also found 46,821 counts from isomiR-U tags, com-

prising nearly 2% of total miRNA expression and 27% of all

modified isomiR counts. While nontemplate U additions are

less common than As, and only four miRNAs have >150

isomiR-U counts and >5% of their expression constituted by
these tags, we found that the former are moderately enriched

FIGURE 2. miRNAs with abundant isomiR-As. MicroRNAs with >15% of their total
expression driven by a single isomiR-A tag in at least one time point are shown. Data are
derived from the deepest GSE11624 replicate (see Supplemental Table S1). The miRNA^ size is
shown on the x-axis as columns, and individual miRNAs are shown as rows on the y-axis. The
size of each dot reflects the isomiR-A expression as a percentage of total miRNA expression
(defined as the sum of the counts of all unmodified and all isomiR tags). IsomiR-A counts are
shown by the color of the dot—high (red) to low (blue). The miRNAs are ordered by the
percentage of isomiR-As, from high (top) to low (bottom).
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in adult tissues (Supplemental Fig. S10). Interestingly, we

found thatmiR-8 shows evidence of developmental regulation

of both 39 U and A additions. While the dominant miR-8-A

tags from 2–6-h embryos (20% of expression, 1232 counts)

has a miRNA^ of 23 nt, the dominant miR-8-U in female
heads (8% of expression, 1042 counts) has a miRNA^ of 22

nt, further suggesting that terminal nucleotide additions are

regulated post-Dicer events (Figs. 2, 3C; Fig. S10).

Despite the fact that miRNA 59 and 39 end variation is well

documented, it is frequently assumed that the dominant

isoform (i.e., the mature miRNA) expressed from any given

locus is constant across time and tissue type, and that variation

in expression is restricted to weakly expressed (and pre-
sumably aberrant) isomiRs. To investigate whether mature

miRNA sizes are, in fact, invariable, we examined the size of

the most abundant unmodified tags derived from each of the

124 high-confidence miRNAs across de-

velopmental time and anatomical region.

Surprisingly, we identified eight cases

where the dominant isoform changes

dramatically (Fig. 4A); in some cases, by

as much as 10-fold (Fig. 4B). These iso-

miRs share the same 59 start sequence, but

shift in length. For example, the primary
isoform expressed by miR-124 is 22 nt in

Drosophila embryos, but 22- and 21-nt

species are equally abundant in imaginal

discs, and adult bodies and heads almost

exclusively produce 21-nt species (Fig.

4B). Likewise, miR-12 shows a shift from

20-nt species in 0–1-h embryos to 23-nt

species in6–10-h embryos, and equivalent
production of both in adult heads and

bodies (Fig. 4A).These results suggest that

variations in mature miRNA size are reg-

ulated events.

DISCUSSION

Here, we have shown (1) that isomiRs
with nontemplate 39 As are specifically

enriched in early developmental stages

amongst miRNAs that target genes active

in development, (2) that a small subset

of miRNAs with nontemplate 39 Us are

expressed in adult tissues, and (3) that the

size of the mature miRNA can change

across developmental time or anatomic
region.

Similar to adenylation of mRNAs

(Barnard et al. 2004), it is possible that

isomiR-As act to regulate maternally in-

herited miRNAs and ensure the success

of the embryonic developmental program

by making them resistant to degradation

and/or altering their temporal activity. Indeed, miR-282, 26%
of whose embryonic expression is driven by isomiR-As, has

been genetically linked to dorso-ventral boundary establish-

ment in Drosophila embryos (Bejarano et al. 2008). Indeed,

stabilization of miRNAs by adenylation has been previously

shown inblack cottonwood (Lu et al. 2009) andmouse (Katoh

et al. 2009). Additionally, a recent study has shown segment-

specific repression by another highly modified miRNA, miR-

312, inDrosophila embryos (Reich et al. 2009), suggesting that
adenosine additions may stabilize miRNAs in certain regions,

while facilitating their degradation in others. In fact, both

functions have been previously ascribed to mRNA poly(A)

tails and are essential for successful Drosophila embryo de-

velopment (Benoit et al. 2008).

A GLD family (‘‘defective in Germ Line Development’’)

protein is the likely Drosophila miRNA adenosyltransferase

FIGURE 3. IsomiRs derived from dme-mir-282, dme-mir-312, and dme-mir-8. The most
abundant unmodified and isomiR tags derived from dme-mir-282 (A), dme-mir-312 (B), and
dme-mir-8 (C) are shown. Unmodified tags are shown in blue, isomiR-A tags are shown in
red, isomiR-U tags are shown in purple, and miRNA* tags are shown in gray. The counts for
each tag are given on the right. The terms embryo, imaginal, and female are abbreviated as
‘‘Emb,’’ ‘‘Imag,’’ and ‘‘Fem,’’ respectively, in the column headers. Tag counts were retrieved
form the deepest replicate of the GSE11624 data set.
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candidate. The cytoplasmic poly(A) polymeraseWispy (GLD-

2 in other animals) is responsible for adenosine additions to

miR-122 in humans and mice, and has been linked to oocyte

maturation in mice, Xenopus laevis, C. elegans, M. musculus,

and Drosophila (Kadyk and Kimble 1998; Barnard et al. 2004;
Nakanishi et al. 2006; Benoit et al. 2008; Cui et al. 2008).

Maternal Drosophila wispy mutants show defects in bicoid

mRNA localization and microtubule activity in female meio-

sis, leading to early developmental arrest (Brent et al. 2000).

bicoid expression is activated by cytoplasmic polyadenylation

in early embryogenesis (Coll et al. 2010). Consistent with our

finding that isomiR-A levels are most abundant early in

development, high levels ofWispy have been detected in adult
female bodies, oocytes, and 0–2-h embryos (Cui et al. 2008). It

is possible that Wispy adenylates miRNAs during oogenesis

and/or early in Drosophila development.

It is widely held that, other than the ‘‘mature miRNA’’

(defined in miRBase), the wide diversity of small RNAs

derived from any given miRNA locus are nonfunctional by-

products of inexact of pre-miRNA cleavage. We have shown

that the size of at least eight mature miRNAs changes in
a developmental stage or tissue-specific manner. Although

we prefer the hypothesis that these species are the result of

regulated Dicer processing events, our data cannot resolve

whether this is indeed the case orwhether they are the result of

degradation or 39 exonuclease activity. Irrespective of their

biogenesis, however, their precise and highly reproducible

expression in two different deep experiments carried out in

two different platforms suggests they are biologically regu-
lated, thus likely to be functional. Indeed, size variant isomiRs

share a common 59 end, and therefore also a common ‘‘seed’’

sequence (nucleotides 2–8 of the mature miRNA), which

guides mRNA targeting (Farazi et al. 2008). For example, two

members of the miR-9 family show ‘‘mature switching,’’ but

possess exactly the same seed sequence and differ only in their

39 end (Fig. 4A). Thismay suggest thatmiRNA 39 end binding

or targeting ismore important than previously thought, as has
been reproposed recently (Lee et al. 2009). Indeed, small

changes to miRNA 39 ends may facilitate or inhibit loading of

these variants onto Argonaute proteins (or alternative Argo-

naute complexes), facilitate localization

to subcellular regions, or regulate target

choice or the intensity of miRNA action.

Overall, the precise and replicable alter-

ations in miRNA size, which appear to

be dependent on both temporal and

anatomic cues, suggest that variations in

miRNA expressionmight be analogous to
mRNA alternative splicing.

The fact that we find evidence for

adenylation and reproducible generation

of different isomiR variants from several

single genomic miRNA locus points to

the possibility that similar strategies reg-

ulate the presence of both mRNAs and

miRNAs during development. Further studies should reveal
whether embryonic expressionof isomiR-As is shared amongst

metazoans, as well as to elucidate the mechanisms by which

isomiR production is regulated. In addition, advances in deep-

sequencing technologies combined with the simultaneous

identification of miRNA and isomiR targets may soon shed

light on their biological functions.

MATERIALS AND METHODS

Data set selection and mapping strategy

We analyzed two publicly available small RNA deep-sequencing

data sets (18–26 nt with 59 monophosphate and 39 OH) from the

Gene Expression Omnibus Database (GEO) (http://www.ncbi.nlm.

nih.gov/geo/). Data series GSE11624 was sequenced using the

Illumina platform (Chung et al. 2008), while data series GSE7448

was sequenced using the Roche/454 platform (Ruby et al. 2007).

These data sets were selected due to their depth and breadth

of coverage, and the availability of unmapped (i.e., raw or adaptor

trimmed) sequences. Three raw runs of a set of 473 synthetic

miRNAs sequenced in the Illumina platform were obtained from

GEO series GSE16374 (Linsen et al. 2009).

Each data set was retrieved and the adaptor sequence was

trimmed, if necessary, using a custom-generated script (http://

www.biopieces.org). The resulting sequence tags were mapped to

the D. melanogaster genome (UCSC dm3, BDGP Release 5) using

Bowtie (Langmead et al. 2009). Tags that could not be mapped

with 0 mismatches were trimmed 1 nt from their 39 end and

mapped again to the genome; this step was iterated until up to

5 nt were clipped from the 39 end of the unmappable tags. The

synthetic miRNA tags were mapped using the same strategy, but

against the Homo sapiens genome (UCSC hg18, NCBI Build 36.1).

Only tags that mapped uniquely to the sense strand of pre-

miRNA in miRBase (miRBase Release 14.0, http://microrna.sanger.

ac.uk/sequences/index.shtml) (Griffiths-Jones et al. 2008) were ana-

lyzed further.

Analysis of deep-sequencing data

Only tags that mapped perfectly to the mature/star miRNA locus

(as reported in miRBase) and tags that had one or more mono-

nucleotide stretches in their 39 end that did not correspond to the

TABLE 1. Target site Gene Ontology enrichment for miRNAs with abundant isomiR-As

GO ID GO description Number of genes (%*) P-value

GO:0007435 Salivary gland morphogenesis 4(19) 4.28 3 10�4

GO:0022612 Gland morphogenesis 4(19) 4.28 3 10�4

GO:0007431 Salivary gland development 4(19) 7.59 3 10�4

GO:0035272 Exocrine system development 4(19) 7.59 3 10�4

GO:0048732 Gland development 4(19) 1.27 3 10�3

GO:0009653 Anatomical structure morphogenesis 9(43) 1.93 3 10�3

GO:0002165 Instar larval or pupal development 5(24) 3.61 3 10�3

GO:0009791 Post-embryonic development 5(24) 4.39 3 10�3

GO:0009888 Tissue development 5(24) 6.62 3 10�3

GO:0045449 Regulation of transcription 6(29) 7.17 3 10�3

(*) Percentage calculated over the 21 genes that have Gene Ontology term annotation.
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genomic sequence were retrieved and considered as modified

isomiRs.

To ensure that the modifications we observed were transcribed

from a specific miRNA locus and not due to incorrect matching of

a tag produced by a miRNA locus of another member of the same

miRNA family, we analyzed 124 miRNAs with exclusively single-

mapping isomiR tags. We only regarded a miRNA as modified if it

had at least 150 isomiR-A or isomir-U counts and constituted >5%

of total miRNA expression. For each of these miRNAs, the counts of

each isomiR tag were recorded and the percentage that isomiR type

represented in each sample was calculated to correct for sequencing

depth. To compare each individual miRNA locus across samples, we

recalculated the percentage of total expression each tag represented

over the total counts of modified and unmodified isomiR tags

derived from each miRNA loci.

These analyses were performed using a se-

ries of perl scripts (available upon request)

and the R statistical analysis software. Plotting

was performed with the R package ggplot2

(http://had.co.nz/ggplot2/).

Gene ontology enrichment analysis

We selected the miRNAs that had >15%

isomiR-A counts driven by a single tag in at

least one time point (shown in Fig. 2) and

identified the genes that had two or more

target sites for those miRNAs according to

TargetScanFly 5.1 (Ruby et al. 2007). This

yielded 38 genes, which were then queried

for Gene Ontology Enrichments using Fly-

Mine (http://www.flymine.org/) (Lyne et al.

2007). We only retained GO terms en-

riched with P-values higher than 0.01 (after

Bonferroni correction) and at least four genes

per term. A similar procedure was followed

for 118 genes that were targeted by miRNAs

that had >150 isomir-A counts representing

at least 5% of their expression (Supplemen-

tal Fig. S8), just changing the enrichment

threshold to 0.001 and more than five genes

per enrichment.

Isomir identification

Altered size isomiRs were identified by re-

trieving the two most abundant isoforms in

each developmental time point from the

deepest GSE11624 replicate (marked with

an asterisk [*] in Supplemental Table S1)

and the GSE7448 data set. Only one replicate

of GSE11624 was analyzed, because there are

no replicates for the imaginal disc sample in

this data set. We focused on miRNA loci

with >150 counts of altered size isomiR

tags, the most abundant of which repre-

sented >20% of that miRNA expression. We

then asked whether the most abundant

isomiR was the same in all developmental

time points, and found eight examples (Fig.

4), in which two isomiRs changed in relative

abundance in both data sets. These analyses were also performed

using a series of perl scripts (available upon request) and the R

statistical analysis software.

DATA SUBMISSION

Data used in this analysis is publicly available at NCBI’s Gene

ExpressionOmnibus (http://www.ncbi.nlm.nih.gov/geo/)

with Accession Series numbers GSE11624, GSE7448, and

GSE16374.

SUPPLEMENTAL MATERIAL

Supplemental material can be found at http://www.rnajournal.org.

FIGURE 4. Differential isomiR expression. (A) The expression of the two most abundant
unmodified tags for each miRNA is shown. These tags share the same 59 end and differ only in
length at their 39 end. The size of each tag is differentiated by color—20 nt (pink), 21 nt
(green), 22 nt (blue), 23 nt (purple). Data are shown for the deepest of the GSE11624 replicate
samples and GSE7448. (B) The two most abundant dme-miR-124 tags are shown in blue and
green and correspond to the 21- and 22-nt species depicted in the bottom of A. The table on the
right displays the count for each tag in the deepest GSE11624 replicate (black) and GSE7448
(gray). The terms embryo, imaginal, female, and adult are abbreviated as ‘‘Emb,’’ ‘‘Imag,’’
‘‘Fem,’’ and ‘‘Ad,’’ respectively, in the column headers in B and the x-axis of A. The ratio of
abundance (blue/green) for the GSE11624 samples is highlighted in red beside column. (*)
Samples obtained from male and female tissues. (+) Counts from female (black) and male and
female tissues (gray).
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