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Abstract— Electroencephalogram (EEG) has been widely
used in brain computer interface (BCI) due to its conve-
nience and reliability. The EEG-based BCI applications
are majorly limited by the time-consuming calibration
procedure for discriminative feature representation
and classification. Existing EEG classification methods
either heavily depend on the handcrafted features or require
adequate annotated samples at each session for calibration.
To address these issues, we propose a novel dynamic joint
domain adaptation network based on adversarial learning
strategy to learn domain-invariant feature representation,
and thus improve EEG classification performance in the
target domain by leveraging useful information from
the source session. Specifically, we explore the global
discriminator to align the marginal distribution across
domains, and the local discriminator to reduce the
conditional distribution discrepancy between sub-domains
via conditioning on deep representation as well as the
predicted labels from the classifier. In addition, we further
investigate a dynamic adversarial factor to adaptively
estimate the relative importance of alignment between
the marginal and conditional distributions. To evaluate
the efficacy of our method, extensive experiments are
conducted on two public EEG datasets, namely, Datasets
IIa and IIb of BCI Competition IV. The experimental results
demonstrate that the proposed method achieves superior
performance compared with the state-of-the-art methods.

Index Terms— Deep neural network (DNN), domain adap-
tation, adversarial learning, electroencephalogram (EEG),
motor imagery (MI), brain-computer interface (BCI).

I. INTRODUCTION

B
RAIN computer interface (BCI) systems provide a

novel communication pathway for users to manipulate

external electrical devices by directly decoding their neuronal
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activities into specific commands [1]–[5]. To capture such

neuronal activities, electroencephalogram (EEG) measures

voltage fluctuations on the scalp from multiple electrodes

with a fixed spatial arrangement [6]. Due to the great

advantages of non-invasiveness and high temporal resolution,

EEG has been widely employed in various BCI applications,

including military affairs, emotion recognition, driver fatigue

detection and epileptic seizure detection [7]–[11]. Since the

classification of EEG signals plays a key role in BCI systems,

it is highly demanded to develop a reliable and effective EEG

decoding scheme to promote the BCI applications.

Recently, many machine learning methods have been

investigated for EEG signal decoding. Such methods usually

extract discriminative patterns as the first step and then train

a classifier, such as linear discriminant analysis (LDA) [12]

and support vector machine (SVM) [13] to identify the

user’s intention. However, these traditional methods depend

heavily on handcrafted features that are designed beforehand

by human experts, such as frequency band power [14] and

common spatial pattern (CSP) [15], [16], which may not

cope well with non-stationary EEG signals. Inspired by the

excellent performance of deep learning in computer vision,

convolutional neural networks (ConvNets) have also been

proposed to learn domain agnostic features and non-linear

classifiers for EEG decoding. For example, Zheng and

Lu [17] explored a probabilistic deep learning algorithm

based on deep belief networks for EEG emotion classification.

Kumar et al. [18] developed a ConvNet framework to classify

the CSP features extracted from motor imagery EEG trials.

Schirrmeister et al. [19] proposed an end-to-end shallow

ConvNet architecture for motor imagery recognition. While

all aforementioned methods have achieved impressive

performance, they generally assumed that test data had the

same or similar generation process/distribution as the training

set. Yet, in many BCI applications, it is often not the case,

since different human mental states and equipment noises may

result in large cross-session and cross-subject variance in EEG

data. Such shift in data distribution would greatly degrades

the performance of well-trained models in test phases.

To tackle these distribution variations, domain adaptation

has been applied to BCIs for distribution calibration, where

sufficient knowledge annotated EEG signals from previous

sessions or subjects (i.e., source domain) are transferred to

boost the model’s performance on the unlabeled data from a

new session or subject (i.e., target domain) [20]. It aims to
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Fig. 1. Triangles and dots denote EEG data belonging to different
categories. The EEG data between the source and target domains may
be different in both marginal and conditional distributions.

adapt the feature representation or classifier models to reduce

the distribution discrepancy between the source and target

domains. Traditional methods perform adaptation by either

re-weighting source data to achieve a similar distribution as

the target one, or discovering an explicit transformation that

aligns the feature representation in both domains [21], [22].

For instance, He and Wu [23] aligned EEG trials from different

subjects before classification under the assumption that the

mean Euclidean covariance matrix should be an identity matrix

for all subjects after alignment. While, the latest studies have

indicated that domain adaptation combined with deep net-

works are capable of learning more transferable representation

for EEG classification [24].

Recently, inspired by generative adversarial network (GAN),

adversarial learning has been embedded in domain adapta-

tion networks in a two-player game mode. In the training

process, the deep classification model learns domain-invariant

representations with respect to the shift between different

domains, while the domain discriminator is used to contest

with the classification model, and distinguish which domain

the features come from. For instance, Li et al. [25] proposed a

bi-hemisphere domain adaptation network (BiDANN) for EEG

emotion recognition. In BiDANN, a domain discriminator is

integrated in a ConvNet framework to reduce the marginal

distribution discrepancy between different subjects. In this

way, EEG features from different subjects are aligned, and

classifiers subsequently trained on aligned EEG features from

source subjects can improve the prediction performance for

target subjects. However, such domain-adversarial networks

only consider the marginal distribution difference but ignore

the complex multi-modal structures within EEG data. It may

still fail to guarantee that two domains have sufficiently

similar distributions between sub-domains even if the marginal

distributions are completely aligned. For example, in Fig. 1,

labeled source and unlabeled target domains may be different

in both marginal (global) and conditional (local) distributions.

When marginal distributions of both domains are dissimilar

(source domain → target domain I), the alignment of marginal

distributions are supposed to be given more attention. When

marginal distributions of both domains are very similar (source

domain → target domain II), the conditional distributions may

be inconsistent between sub-domains. In addition, the align-

ment of global and local distributions across domains usually

contributes differently to the adaptation (source domain →

target domain III). While existing domain adaptation methods

seldom quantitatively evaluate the relative importance between

the global and local distributions.

To address the above issues, in this paper, we propose an

unsupervised domain adaptation method, referred to dynamic

joint domain adaptation network (DJDAN), for cross-session

motor imagery classification. Our DJDAN model learns

the domain-invariant feature representation by considering

both the marginal and conditional distribution discrepancies

between different domains with end-to-end adversarial learn-

ing. This is achieved by jointly optimizing four modules,

namely, feature extractor, classifier, global and local dis-

criminators. Firstly, the feature extractor based on ConvNet

[19] is employed to learn deep feature representation for

discriminative motor imagery information. The extracted deep

features are subsequently fed into the classifier to predict

the output labels. Then, the global domain discriminator is

designed to distinguish in a global perspective which domain

(source/target) the deep features come from so as to reduce the

marginal distribution shift across domains. Similarly, the local

domain discriminator is leveraged to constrain conditional

distribution inconsistency across sub-domains. However, it is

difficult to condition the local domain discriminator on dis-

criminative information since the label information for target

domain is unavailable. In this regard, we leverage the discrim-

inative information embedded in the classifier predictions to

assist adversarial adaptation for unlabeled target data. Namely,

the local discriminator is conditioned on the uncertainty of

classifier predictions. In addition, we further introduce a

dynamic adversarial factor to adaptively evaluate the relative

importance of the marginal and conditional distribution align-

ment during training. When two domains are very different,

adaptation pays more attention to the global discriminator

for marginal distribution shift. When global distributions are

close, the local discriminator is given more attention to align

conditional distributions across sub-domains. This leads to a

flexible adaptation of global and local adversarial learning

between feature extractor and domain discriminators.

The major contributions of this paper are summarized as

follows.

• We propose a novel dynamic adversarial network, namely,

DJDAN, to learn domain-invariant feature representation

for motor imagery task. It is general and does not require

to explicitly learn a transformation for feature extractor

and classification.

• Our method performs domain adaptation not only by

simultaneously considering both the marginal and con-

ditional distribution discrepancies, but also dynamically

estimating their relative importance during training.

• We analyze the efficacy of our method and theoretically

guarantee a generalization bound on the target error.

• We extensively evaluate the proposed DJDAN model

on two public motor imagery datasets (Dataset IIa and

Dataset IIb of BCI Competition IV). The experimental
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results show that our DJDAN model achieves the state-

of-the-art performance.

The remainder of this paper is organized as follows.

Section II reviews the related studies on domain adaptation

used in EEG signal classification. Section III presents our

unsupervised domain adaptation method in details. The exper-

iments and results are presented and discussed in Section IV.

Finally, Section V concludes the paper.

II. RELATED WORKS

Extracting discriminative features from EEG signals is the

key for single-trial EEG classification. Traditional methods

such as power spectral density, differential entropy and

differential asymmetry have achieved promising results

[26]–[29]. Among them, common spatial pattern (CSP) [15],

[16] is one of the most popular algorithm to detect discrim-

inative movement-related patterns for motor imagery tasks.

It employs a single frequency band to compute the optimal

spatial filter such that the ratio of filtered variance between

different categories is maximized. Inspired by CSP, filter bank

CSP (FBCSP) [30] further decomposes the fixed frequency

used in CSP into multiple non-overlapped sub-bands, and

stacks the filtered signals in each band as the discriminative

features. Moreover, some novel CSP-based algorithms based

on feature selection and channel selection methods are

proposed to extract effective features [31], [32]. Recently,

several deep learning architectures [19], [33]–[35] have been

exploited to learn deep representation and classifier for EEG

signals in an end-to-end manner. A review of deep learning

analysis of EEG signals see [36]. However, these deep methods

usually require sufficient annotated data to train the networks

with thousands of parameters. Moreover, all aforementioned

methods assume that both training and test data are generated

from the same or similar distribution. It is often not the

case since that different mental states or complex equipment

noises may result in distribution shift between the training

and the test data. Typically, a classifier trained on the features

derived from previous sessions generally suffers performance

degradation when tested on those from a new session.

Domain adaptation is a practical and promising technique

that leverages prior knowledge learned from the relevant

source domain to boost the performance on the target domain,

which is helpful to reduce the calibration time and reliance

on annotated data required for EEG classification. For exam-

ple, inspired by maximum mean discrepancies (MMD) [37],

He and Wu [23] aligned EEG trials from different subjects

in the Euclidean space under the assumption that mean

covariance matrices should be an identity matrix, and thus

improved the classification performance for new subjects.

Azab et al. [21] proposed the S-wLTL framework to leverage

useful information from similar subjects for training a logistic

regression classifier. In S-wLTL, source data are assigned

different weights according to the Kullback-Leibler divergence

of subject-specific CSP features between the source and target

domains. Similarly, Jeon et al. [24] investigated another simi-

larity estimation to select source data by using power spectral

density of EEG signals in the resting state. Then, both the

target data and selected source data are fed into a domain

adversarial network. During training, the discrepancy of deep

representation from different domains would be reduced by

the adversarial learning between the domain discriminator and

feature extractor. Tang and Zhang [38] integrated a conditional

domain discriminator into a convolutional neural network to

learn commonly shared intra-subject EEG features. However,

marginal and conditional distribution discrepancies usually

contribute differently to the adaptation. These works focus on

aligning either the marginal distributions or the conditional

distributions, which may fail to simultaneously account for the

global and local domain mismatch across domains especially

when EEG data are of complex multi-modal structures.

To address these issues, we are motivated to exploit an

adversarial neural network to simultaneously consider mar-

ginal and conditional distribution adaptation. Inspired by [39],

we also utilize a dynamic adversarial factor to adaptively

measure the relative importance of marginal and conditional

distribution alignment. With this factor, the network is able

to dynamically adjust the domain alignment preference during

training.

III. METHOD

A. Notations and Problem Definition

The EEG data collected in a session is defined as

{(xi , yi )}
n
i=1, where n represents the number of EEG trials.

xi ∈ R
E×T denotes an EEG trial with E electrodes and T

sampling points and yi ∈ R
C is the corresponding label of C

categories. In unsupervised domain adaptation, we are given a

source domain Ds = {(xs
i , ys

i )}
ns

i=1 of ns annotated EEG trials

from previous sessions and a target domain Dt = {(xt
j )}

nt

j=1 of

nt unlabeled trials from a target session. Both Ds and Dt share

the same feature space and label space, i.e., xi , x j ∈ R
E×T

and yi , y j ∈ R
C . The source and target domains are sampled

from different joint distributions Ps(x
s, ys) and Pt (x

t , yt ),

respectively. When Ps(x
s, ys) 6= Pt (x

t , yt ), it may be insuf-

ficient to adapt only the marginal distribution of the feature

representation [21], [23]. For instance, in the real scenario of

multi-class classification, even if the feature distributions are

similar, there is no guarantee that multi-modal distributions are

identical across domains due to the discriminative information

from labels. We are motivated to propose a novel deep network

h(x) that formally reduces the data distribution shift across

domains and achieves better performance on the target domain,

such that the target risk �t (h) = E(x,y)∼Pt[h(x) 6=y] can be safely

bounded by using the source domain.

B. Network Architecture

Inspired by GAN, adversarial domain adaptation networks

[40] have been investigated to integrate domain adaptation and

adversarial learning to learn domain-invariant features in a

two-player game. We are further motivated to propose a novel

adversarial domain adaptation network to simultaneously align

the marginal and conditional distributions for feature represen-

tation. Then, the classifier trained on the annotated source data

can be safely applied to predict labels for the target data.

Fig. 2 shows the overall architecture of our proposed

DJDAN model. Firstly, EEG signals xs and xt are trans-

formed into high-level discriminative features fs and f t by
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Fig. 2. The architecture of the proposed DJDAN model, which consists of four components, including the feature extractor, the classifier, the marginal
discriminator and the conditional discriminator.

⊗
denotes the product operator, f denotes the feature representation and p represents the predicted

labels.

the feature extractor F for both the source and target domains,

respectively. Then, these features are subsequently fed into the

classifier G to obtain the corresponding predicted labels. Based

on the extracted features and predicted labels, the adaptation

of marginal and conditional distribution is achieved by the

global domain discriminator DG and the local domain dis-

criminator DL . The global domain discriminator pays atten-

tion to the marginal distributions and is trained to recognize

which domain the high-level features come from. Meanwhile,

the local domain discriminator considers the local multi-modal

structures and recognizes the data domains with assistance of

discriminative information conveyed in the predicted labels.

To measure the importance between the global and local

distribution alignment, we also utilize a dynamic adversarial

factor ω to evaluate the weight between the global and local

discriminators during training. In the adversarial procedure,

DG and DL , as the first player, are trained to distinguish

the source domain from the target domain w.r.t, the global

and local distributions. Then, as the second player, the feature

extractor and the classifier are jointly trained to learn global

and local domain-invariant features, and thus confuse the first

player. In the following, we will introduce the feature extractor,

classifier, marginal discriminator and conditional discriminator

in details.

1) Feature Extractor: Different from images,

the multi-electrode EEG signal x ∈ R
E×T as the network

input has inconsistent dimension units in the spatial and

temporal dimensions. Thus, it results in a non-trivial choice

of convolutional network and kernel sizes. Similar to the

shallow ConvNet [19], our feature extractor also employs two

one-dimensional convolutional operations, namely, temporal

and spatial convolutions for feature extraction. The first layer

performs temporal convolution along the time axis. It learns

temporal and frequency information with 40 kernels of length

25, which is analog to the electrode-wise band-pass filtering

operations in previous works [15]. Then, a spatial convolution

layer is connected to learn the spatial representation along the

electrode axis, where the kernel length is equal to the number

of electrodes. The extracted features of spatial convolution

are fed into a batch normalization (BN) layer before the

squaring activation to avoid gradient vanishing problem. The

output is subsequently connected to an average pooling layer,

logarithm activation and dropout layer to prevent over-fitting.

The details of hyper-parameters are listed in Table I. As a

result, we obtain a group of high-level feature representation

fs and f t for source and target domain, respectively.

2) Classifier: The classifier follows the feature extractor

module, and is connected to high-level features fs and f t to

learn the label prediction. Specifically, fs and f t are fed into

a fully convolutional layer with the number of output neurons

being equivalent to the task categories C . Then, a softmax

operation is employed to transform the output results into

probability estimate for each category. Since only the source

EEG data are annotated, the classifier and feature extractor are

trained on the source data with:

Lc(θ f , θc) = E(xs
i ,y

s
i )∼Ds

L(ps
i , ys

i ), (1)

where θ f and θc denote the model parameters in the feature

extractor and classifier, respectively, ps
i is the conditional

probability vector generated by the softmax function, ys
i is

the corresponding label, and L(·) is the cross-entropy loss

function.

3) Global Discriminator: In BCI applications, features gen-

erated from the feature extractor may have different marginal

distributions across domains. To distinguish which domain the

features are generated from, DG performs a binary classifica-

tion in a supervised way. Specifically, the global discriminator

sets the domain labels of target features to be 1 and those of

source features to 0. Similar to [40], we calculate the loss of

the global discriminator with

Lg(θ f , θg) = −Exs∼Ds
log[DG(F(xs))]

−Ext∼Dt
log[1 − DG(F(xt ))], (2)

where F(xs) and F(xt ) denote the feature extractor in the

source and the target domain, respectively.

4) Local Discriminator: With the global discriminator,

the marginal distributions between the source and target
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TABLE I

MODEL HYPER-PARAMETERS OF DJDAN

domains are drawn closer. However, reducing the marginal

distribution discrepancy does not guarantee that the conditional

distributions are aligned, as shown in Fig. 1 (Source Domain

vs. Target Domain II). Thus, we design the local discriminator

module to align conditional distributions such that P(xs |ys) ≈

P(xt |yt). This problem is nontrivial, since there are no labels

yt available in the target domain. Inspired by [41], we assume

the labels predicted by the classifier G may contain potential

discriminative information, which can be leveraged to perform

a fine-grained domain adaptation.

Here, the local discriminator DL is conditioned on the clas-

sifier prediction, and is split into C class-wise domain discrim-

inators Dc
L , each is associated with class c ∈ {1, 2, · · · , C}.

Specifically, the classifier prediction can be used to indicate

the confidence that the feature representation should belong to

each of C categories, which is estimated by the correspond-

ing conditional domain discriminator. Similar to the global

discriminator, the loss of the local discriminator for the cth

category is calculated with

Lc
l (θ f , θl) = −Exs∼Ds

log[DL(ps
c F(xs))]

−Ext∼Dt
log[1 − DL(pt

c F(xt ))], (3)

where ps
c and pt

c denote the predicted probability distribution

of the input sample xs and xt belonging to the cth class in

the source and the target domain, respectively. The simple

combination of predicted probability and feature representa-

tion pc F(x) explores discriminative information embedded in

the multi-modal structures [41]. In this regard, each condi-

tional domain discriminator focuses on the local distributions

between the source and the target domains. The loss of the

local discriminator can be calculated as the sum of Lc
l (θ f , θl)

for all C categories.

C. Dynamic Adversarial Factor

The global and the local discriminators may make different

contributions to domain adaption, which is adjusted by the

weight ω between their loss functions. Instead of random

guessing using a fixed weight in range [0, 1], we introduce

a dynamic adversarial factor ω to easily, dynamically, and

quantitatively evaluate the relative importance of the marginal

and conditional distribution alignment. Concretely, we employ

the A-distance [42] to measure the marginal distribution and

conditional distribution discrepancies across domains. Here,

we denote the global A-distance for the global discriminator

with

dA,g(Ds,Dt ) = 2(1 − 2�g), (4)

where �g represents the classification error rate for the global

domain discriminator. Similarly, the local A-distance of the

local discriminator over the cth class is represented with

dA,l(D
c
s ,D

c
t ) = 2(1 − 2�c

l ), (5)

where Dc
s and Dc

t denote samples from the cth class and �c
l is

the classification error of local sub-domain discriminator loss

over class c.

Then, with the global and local A-distances, the dynamic

adversarial factor ω is calculated as

ω =
dA,g(Ds ,Dt )

dA,g(Ds,Dt ) + 1
C

6C
c=1dA,l(D

c
s ,D

c
t )

. (6)

For initialization, ω is set to be 0.5 in the first epoch. In

the subsequent epochs, the dynamic adversarial factor can be

estimated with the pseudo labels predicted by the classifier.

During training, if the A-distance is larger in global discrim-

inator, ω would be larger and thus drives our DJDAN to pay

more attention to the global distribution alignment, vice versa.

Eventually, our DJDAN will learn a rather robust dynamic

adversarial factor.

D. Optimization of Network

During training, the proposed DJDAN is jointly optimized

with three components, namely, the classifier loss (Eq. (1)),
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the global discriminator loss (Eq. (2)), and the local discrim-

inator loss (Eq. (3)). The overall loss function can be finally

formulated with

L(θ f , θc, θg, θl) = Lc − α(ωLg + (1 − ω)

C∑

c=1

Lc
l ), (7)

where α is the trade-off hyper-parameter between the classifier

and the discriminators, and ω is the dynamic adversarial factor,

which is adaptively updated during training.

Generally, to confuse the domain discriminators and learn

domain-invariant features, the optimal parameters θ̂ f , θ̂c, θ̂g

and θ̂l can be learned by alternately minimizing and maxi-

mizing the loss function of L(θ f , θc, θg, θl) in Eq. (7). Firstly,

we update the parameters of θ f and θc by minimizing the loss

function as follows:

(θ̂ f , θ̂c) = arg min
θ f ,θc

L(θ f , θc, θ̂g, θ̂l). (8)

Then, after obtaining the optimal values of θ̂ f and θ̂c, the opti-

mal values of θ̂g and θ̂l can be updated by maximizing the

following function:

(θ̂g, θ̂l) = arg max
θg,θl

L(θ̂ f , θ̂c, θg, θl). (9)

As a result, the feature extractor will generate the feature

representations, which can minimize the loss of classifier and

maximize the loss of domain discriminator simultaneously.

When the trained optimal discriminator cannot distinguish

whether features come from the source domain or target

domain, we obtain the common motor-imagery EEG features

that exist in both the source and target domains.

For implementation, we adopt a gradient reversal layer

(GRL) [40] that acts like an identity layer in the forward

propagation and reverses the gradients in the back-propagation

stage by multiplying the gradient with −1. In this way,

the parameters learned in the feature extractor essentially

perform gradient ascent with respect to the gradients in the

domain discriminators.

E. Data Preprocessing

Our proposed DJDAN is capable of learning discriminative

representation and only requires two simple preprocessing

operations before feeding the EEG data into the network,

namely, band-pass filtering and exponential moving stan-

dardization. For frequency filtering, a third-order Butterworth

band-pass filter of [4−38] Hz is conducted to remove unrelated

information with respect to the motor imagery task from

the raw EEG trials. With filtered EEG signals, we further

employ electrode-wise exponential moving standardization to

eliminate undesirable noises with

xk =
x̃k − µk√

σ 2
k

, (10)

where xk and x̃k denote the standardized and input filtered

signal at time k, respectively. µk and σk are the corresponding

exponential mean value and variance formulated as

µk = (1 − β)̃xk + βµk−1, (11)

σ 2
k = (1 − β)(̃xk − µk)

2 + βσ 2
k−1, (12)

where β is a decay factor and is set to be 0.999. Note that with

these two simple preprocessing operations, the resulting EEG

signals not only preserve useful motor imagery information,

but also eliminate occasional noises, which can be safely fed

into our network.

F. Generalization Error

According to the domain adaption theory [41], we provide

an analysis of the expected risk of the proposed DJDAN

model. Considering a family of source classifiers h in the

hypothesis space H, we denote the expected risk on the

source domain as �s(h, fs ) = Exs∼Ds
[h(xs) 6= fs(xs)], where

fs is the labeling function of the source domain. Similarly,

�t (h, ft ) = Ext∼Dt
[h(xt ) 6= ft (xt )] is the expected risk on the

target domain w.r.t. distribution Dt , which can be bounded by

the following inequality [42]

�t (h, ft ) ≤ �s(h, fs ) + |�t (h, fs) − �s(h, fs)|

+ |�t (h, ft ) − �t (h, fs)| . (13)

The goal of domain adaptation is to reduce the marginal

distribution discrepancy |�t (h, fs )− �s(h, fs)| and conditional

distribution discrepancy |�t (h, ft ) − �t (h, fs )|. By definition,

we have

|�t (h, ft ) − �t (h, fs)| =
∣∣∣Ext∼Dt

[h(xt) − ft (xt ) 6= 0]

−Ext∼Dt
[h(xt ) − fs(xt) 6= 0]

∣∣∣, (14)

and

|�t (h, fs ) − �s(h, fs)| =
∣∣∣Ext∼Dt

[h(xt ) − fs(xt ) 6= 0]

−Exs∼Ds
[h(xs) − fs(xs) 6= 0]

∣∣∣. (15)

Then, we define a loss hypothesis space 4 = {δ( f ) = |h(x)−

f (x)|, f ∈ H} over the labeling function f , where δ 7→ {0, 1}

outputs the distance between any h and a specific labeling

function f . According to the above loss hypothesis space 4,

we define the 4-distance as following

d4 =
∣∣∣Ext ∼Dt

[δ( ft ) 6= 0] − Ext ∼Dt
[δ( fs) 6= 0]

∣∣∣. (16)

Consequently, the conditional distribution discrepancy

|�t (h, ft ) − �t (h, fs)| can be upper-bounded by the 4-

distance. Since multilayer perceptron can fit any functions,

the family of domain discriminators HD is rich enough to

contain the loss hypothesis space 4. Then, the proposed local

discriminator DL is related to d4:

d4 ≤ sup
DL∈HD

∣∣∣Ext∼Dt
[DL( ft ) 6= 0] − Ext ∼Dt

[DL( fs) 6= 0)]
∣∣∣

≤ sup
DL∈HD

∣∣∣Ext∼Dt
[DL( ft ) = 1] − Ext ∼Dt

[DL( fs) = 0]
∣∣∣.

(17)
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Similarly, the training marginal discriminator DG is also

related to d 0
4:

d 0
4 =

∣∣∣Ext∼Dt
[δ( fs) 6= 0] − Exs∼Ds

[δ( fs) 6= 0]
∣∣∣

≤ sup
DG∈HD

|Ext ∼Dt
[DG(xt ) 6= 0] − Exs∼Ds

[DG (xs) 6= 0]
∣∣∣

≤ sup
DG∈HD

|Ext ∼Dt
[DG(xt ) = 1] − Exs∼Ds

[DG (xs) = 0]
∣∣∣.

(18)

The above suprema are achieved in the process of training

the optimal marginal discriminator DG and conditional dis-

criminator DL in DJDAN, giving an upper bound of d4 and

d 0
4, respectively.

IV. EXPERIMENTS

A. Datasets

To evaluate our proposed DJDAN model, we conduct

extensive experiments on two public motor imagery datasets,

namely, Dataset IIa and IIb of BCI Competition IV.

1) Dataset IIa of BCI Competition IV: This dataset [46]

collected 22-electrode EEG signals in two different sessions

from nine healthy subjects (refer to A1 − A9). Each subject

participated in four motor imagery tasks, including imagining

the movement of left hand, right hand, feet and tongue. It

contains 72 trials of EEG data for each task in both sessions.

In this paper, we regard EEG data in the first session as

the training data (source domain) and those in the second

session as the test one (target domain). Note that the time

segment between [2, 6] second for each trial is considered in

our experiments.

2) Dataset IIb of BCI Competition IV: This dataset [47]

recorded 3-electrode EEG motor-imagery signals in five ses-

sions from nine subjects (refer to B1 − B9). Each participant

performed binary-category movement imagery tasks, namely,

left hand or right hand. Similar to [43], we also select the first

three sessions as the training data (source domain) and the

rest for test (target domain). Then, we have about 400 trials

of EEG data in the source domain and about 320 trials in

the target domain. Note that we consider the time segment of

[3, 7] second for our experiments.

B. Experiment Settings

To demonstrate the advantages of our method, we compare

the performance of our method with the following state-

of-the-art algorithms, including FBCSP [15], CCSP [22],

SSMM [43], ConvNet [19], C2CM [44], and EEGNet [45].

Specifically, FBCSP [15], based on the filter-bank common

spatial patterns, was the winner algorithm for both datasets

in BCI Competiton IV. SSMM [43] is an efficient matrix

classifier involving two-dimensional data, like EEG features.

ConvNet [19] is a shallow convolutional neural network tai-

lored to decode band power features. C2CM [44] is a deep

convolutional neural network, which fine-tunes the network

hyper-parameters for each subject, such as hidden nodes and

kernel size. EEGNet [45] is a compact CNN framework

designed for EEG signals decoding, such as P300 event-related

potential (P300), movement-related cortical potential (MRCP),

motor imgery and so on. CCSP [22] is a modified CSP-based

method for subject-to-subject transformation, which deter-

mines the composite covariance matrices by a weighted sum

of covariance matrices from all subjects. For fair comparison,

we follow the evaluation protocol in unsupervised domain

adaptation [48], and select the annotated training data as

source data and test data without labels as target data for each

subject in both datasets.

We implement our approach in PyTorch with an Intel Core

I7 CPU and a Tesla P40 GPU. For both datasets, EEG

signals from all electrodes are used for classification and

the three electrooculography (EOG) channels are directly dis-

carded without any artifact removing operation. The proposed

DJDAN model is trained from scratch via back-propagation

with batch size of 64. We adopt the Adam optimizer with

momentum of 0.9 and the learning rate of 0.0005. α is set to be

0.3 during training. We also employ an early stop strategy [49]

to terminate the model training if no loss descent is observed

in 20 steps to avoid over-fitting.

C. Experimental Results

We evaluate different algorithms on the Dataset IIa and

report the classification accuracy for each subject and the aver-

age accuracy in Table II. As is shown, the proposed method

outperforms all state-of-the-art algorithms with a large margin.

It demonstrates that our dynamic joint domain adaptation net-

work is capable of reducing both the marginal and conditional

discrepancies across domains, and thus efficiently improves

the performance in the target domain. From the experimental

results, we have the following observations. Firstly, neural

network based methods (ConvNet, C2CM, EEGNet and ours)

can achieve comparable performance and even outperform

those traditional methods, such as FBCSP and CCSP. It

illustrates that deep neural networks are capable of learning

the discriminative features for EEG classification. Secondly,

C2CM shows superior performance compared with ConvNet,

implying that fine-tuning the architecture parameters for each

subject may improve the classification performance. However,

such fine-tuning strategy is time consuming in real-world

applications. Thirdly, different from our domain adaptation

protocol, CCSP only reduce the marginal domain discrepancy

by using data from other subjects, and show inferior classifica-

tion performance to ours. It indicates that domain discrepancy

is difficult to be reduced by using different subjects’ data, and

inaccurate weight estimation of previous subjects may result in

the negative adaptation as their data are not aligned properly.

Moreover, it may not guarantee similar conditional distribution

even with close marginal distribution, which could deteriorate

the classification performance of models.

For further verifying the effectiveness of our method,

the results on the Dataset IIb are reported in Table III. It

is noteworthy that our proposed method greatly improves

the classification accuracy compared with the state-of-the-art

methods. It demonstrates that our framework is effective for

EEG decoding and classification. Compared with ConvNet,

our method further achieves an average 3.63% improvement,

implying that the joint global and local domain adaptation is
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TABLE II

THE CLASSIFICATION ACCURACY (IN PERCENTAGE�) OF DIFFERENT ALGORITHMS ON THE DATASET IIA OF BCI COMPETITION IV

TABLE III

THE CLASSIFICATION ACCURACY (IN PERCENTAGE�) OF DIFFERENT ALGORITHMS ON THE DATASET IIB OF BCI COMPETITION IV

Fig. 3. Feature visualization by t-SNE. Triangles denote deep features from the source domain and dots represent features from the target domain.
The first column shows the features after marginal alignment (MA), the second column shows the features after conditional alignment (CA), and the
third after MA and CA.

helpful to reduce the distribution discrepancy across domains

and leverage the useful information from the source domain.

D. Effectiveness Analysis

Ablation Study We compare the performance of two

variants of the proposed DJDAN: (1) DJDAN using only

marginal discriminator for marginal distribution alignment

(MA), referred to MAAN (ω = 0). (2) DJDAN with only con-

ditional discriminator for conditional distribution alignment

(CA), termed CAAN (ω = 1). Both MAAN and CAAN can

be regarded as the special cases of our DJDAN. The average

results on both datasets are reported in Fig. 4. From the results,
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Fig. 4. Ablation study of DJDAN on datasets IIa and IIb.

Fig. 5. The sensitivity of average accuracy of DJDAN to α on datasets
IIa and IIb.

DJDAN achieves the highest classification accuracy on both

datasets compared with MAAN and CAAN. It indicates that

it is not enough to only align the marginal or conditional

distributions, and simultaneously considering both global and

local distribution alignment can achieve better performance.

Feature Visualizations Then, we are also interested in

exploring the distributions of feature representation learned

by MAAN, CAAN and our DJDAN. We randomly select

subjects A3 and B4 from these two datasets and visualize

their feature representation learned by MAAN, CAAN and

DJDAN using t-SNE embeddings [50], which are presented

in Fig. 3. The triangles represent features from the previous

session (source domain), and the dots from the current session

for same subject (target domain). For a better visualization,

we also highlight features from different categories with

different colors. The visualization shows several interesting

observations. (1) Though the global distribution discrepancy

is reduced with marginal adaptation, the local distributions

may still be very different across domains, like the “left hand

vs. right hand” features for subject A3 in Dataset IIa. (2) The

features learned with CAAN for subject A3 show that local

distributions across domains may be well aligned, implying the

conditional domain discrepancy is significantly reduced after

conditional alignment. However, the marginal distributions of

“right hand” for subject B4 are still different between the

source and target domains. (3) Compared with MAAN and

CAAN features, our method achieves better feature alignment

of both global and local distributions, via simultaneously

reducing the marginal and conditional distribution discrepan-

cies. In this regard, our method is capable of learning the

discriminative and domain-invariant features, leading to robust

and superior classification performance.

Parameter Sensitivity We further investigate the impact

of the hyper-parameter α in Eq. (7). Fig. 5 gives an illustra-

tion of the variation of transfer classification performance as

α ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1} on Dataset

IIa and IIb. We can observe that the classification accuracy

demonstrates a bell-shaped curve as α varies from 0 to 1.

This also verifies the efficacy of jointly learning deep features

and adapting distribution discrepancy, since a good trade-off

between them can enhance feature transferability. Specially,

DJDAN is less sensitive to the change of α in Dataset IIb.

V. CONCLUSION

In this paper, we have proposed a novel dynamic joint

domain adaptation neural network, referred to DJDAN,

to extract more transferable features for cross-session motor

imagery classification. Different from traditional EEG clas-

sification methods, our DJDAN model has explored a deep

architecture to learn the discriminative features in an end-

to-end manner. In addition, to learn domain-invariant features

from the multi-modal structures, our method simultaneously

reduced the marginal and conditional distribution discrepan-

cies across domains via the global and local discriminators.

Moreover, we have investigated an adversarial factor ω to

dynamically evaluate the importance between the global and

local distribution adaptation. Finally, the extensive exper-

imental results have demonstrated that our method could

achieve superior classification performance compared with

state-of-the-art methods.
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