
Dynamic Key-Updating: Privacy-Preserving Authentication for RFID Systems

Li Lu1, Jinsong Han2, Lei Hu1, Yunhao Liu2，and Lionel M. Ni2

1State Key Laboratory of Information Security, Chinese Academy of Sciences
2Dept. of Computer Science and Engineering, Hong Kong University of Science and Technology

{luli,hu}@is.ac.cn, {jasonhan, liu, ni}@cse.ust.hk

Abstract

The objective of private authentication for Radio
Frequency Identification (RFID) systems is to allow
valid readers to explicitly authenticate their dominated
tags without leaking tags’ private information. To
achieve this goal, RFID tags issue encrypted authenti-
cation messages to the RFID reader, and the reader
searches the key space to locate the tags. Due to the
lack of efficient key updating algorithms, previous
schemes are vulnerable to many active attacks, espe-
cially the compromising attack. In this paper, we pro-
pose a Strong and lightweight RFID Private Authenti-
cation protocol, SPA. By designing a novel key updat-
ing method, we achieve the forward secrecy in SPA
with an efficient key search algorithm. We also show
that, compared with existing designs, SPA is able to
effectively defend against both passive and active at-
tacks, including compromising attacks. Through proto-
type implementation, we observe that SPA is practical
and scalable in current RFID infrastructures.

1. Introduction

The proliferation of RFID applications [11] raises
an emerging requirement – protecting user privacy [13]
in RFID authentications. In most RFID systems, tags
automatically emit their unique serial numbers upon
reader interrogation without alerting their users.
Within the scanning range, a malicious reader can per-
form bogus authentication with detected tags to re-
trieve sensitive information. For example, without pri-
vacy protection, any reader can identify a consumer’s
ID via the emitted serial number from the tag. As a
result, a buyer can be tracked and profiled by unau-
thorized people. In addition, many companies usually
embed tags in items. Those tags indicate the unique
information of the items to which they attach. Thus, a
customer carrying those tags is subject to silent track
from unauthorized readers. Some sensitive personal

information would thereby be exposed: the illnesses
she may suffer from indicated by the pharmaceutical
products; the malls where she shops; the types of items
she prefers to buy, and so on. Therefore, a secure
RFID system must meet two requirements. On one
hand, a valid reader must successfully identify the
valid tags; on the other hand, misbehaving readers
should not be able to retrieve private information from
these tags.

To address the above issue, researchers employ en-
cryptions in RFID authentication. Each tag shares a
unique key with the RFID reader and sends an en-
crypted authentication message to the reader. Instead
of identifying the tag directly, the back-end database
subsequently searches all keys that it holds to recover
the authentication message and identify the tag. For
simplicity, we will denote the reader device and back-
end database by the “reader” in what follows. Two
challenging issues on the reader side must be ad-
dressed in the key storage infrastructure and search
algorithm: the search efficiency and the security guar-
antee. First, searching a key should be sufficiently fast
to support a large scale system. Second, the keys
should be updated dynamically for security concerns.

Many efforts have been made to achieve efficient
private authentication. To the best of our knowledge,
the most efficient protocols are tree-based [5, 10].
They provide an efficient key search scheme with
logarithm complexity. In such approaches, each tag
holds multiple keys instead of a single key. A virtual
hierarchical tree structure is constructed by the reader
to organize these keys. Every node in the tree, except
the root, stores a unique key. Each tag is associated
with a unique leaf node. Keys in the path from the root
to the leaf node are then distributed to this tag. If the
tree has a depth d and branching factor δ , each tag
contains d keys and the entire tree can support up to

tags. A tag encrypts the authentication mes-
sage by using each of its d keys. During authentication,
the reader performs a depth-first search in the key tree.
In each hierarchy, the reader can narrow the search set

δdN =

within δ keys. Thus, the reader only needs to search
δd keys for each tag’s authentication. Therefore, the

key search complexity of identifying a given tag from
N tags is logarithmic in N.

The tree based approaches are efficient, neverthe-
less, not secure due to the lack of a key-updating
mechanism. Most, if not all, tree-based approaches
never update tags’ keys dynamically. Since the key
storage infrastructure of tree-based approaches is static,
each tag, more or less, shares some common keys with
others. Consequently, compromising one tag might
reveal information of other tags. To address this prob-
lem, we need to provide a dynamic key-updating
mechanism to such approaches. The major challenge
of dynamic key-updating in tree-based approaches is
consistency. If a single tag updates its keys, some other
tags have to update their keys accordingly. To our
knowledge, consistent and dynamic key-updating
mechanisms have scarcely been seen in the literature.

In this paper, we propose a Strong and lightweight
RFID Private Authentication protocol, SPA, which
enables dynamic key-updating for tree based authenti-
cation approaches. Besides consistency, SPA also
achieves forward secrecy without degrading key search
efficiency. We also show that SPA outperforms exist-
ing designs in defending against both passive and ac-
tive attacks, including the compromising attack.

The rest of this paper is organized as follows. We
introduce related work in Section 2. We present the
SPA design in Section 3. In Section 4, we analyze the
security guarantee of SPA. We evaluate the perform-
ance of SPA via a prototype implementation in Section
5. We conclude this paper in Section 6.

2. Related Work

Many approaches have been proposed to achieve
private authentication in RFID systems. Weis et al. [14]
proposed a hash function based authentication scheme,
HashLock, to avoid tags being tracked. In this ap-
proach, each tag shares a secret key k with the reader.
The reader sends a random number r as the authentica-
tion request. To respond to the reader, the tag gener-
ates a hash value on the inputs of r and k. The reader
then computes h(k, r) of all stored keys until it finds a
key to recover r, thereby identifying the tag. The
search complexity of HashLock is linear to N, where N
is the number of tags in the system. Most subsequent
approaches in the literature are aimed at reducing the
cost of key search. Juels [8] classifies these approaches
into three types.

Tree based approaches: tree based approaches [5, 9,
10] improve the key search efficiency from linear

complexity to logarithmic complexity. Molnar et al.
proposed the first tree-based scheme, which employs a
challenge-response scheme [3], which achieves mutual
authentication between tags and readers. The protocol
uses multiple rounds to identify a tag and each round
needs three messages. Since it requires O(logN) rounds
to identify a tag, the exchanged messages incur rela-
tively large communication overhead. In [4], the au-
thors provide a more efficient scheme which performs
the authentication via one message from the tag to the
reader and no further interactions. However, the tree
based approaches are often vulnerable to the Tag Com-
promising Attack. Because tags share keys with others
in the tree structure, compromising one tag results in
compromising secrets in other tags.

Synchronization approaches: synchronization ap-
proaches [12] make use of an incremental counter to
enhance the authentication security. When successfully
completing an authentication, the counter of a tag aug-
ments by one. The reader can compare the value of a
tag’s counter with the record in the database. If they
match, the tag is valid and the reader will synchronize
the counter record of this tag. However, incomplete
authentications lead the tag’s counter larger than the
one held by the reader. To solve this problem, the
reader keeps a window for each tag. Such a window
limits the maximum value of the counter held by the
tag. If a tag’s counter is larger than the record held by
the reader but within the window, the reader still re-
gards this tag as valid. Such schemes are vulnerable to
the Desynchronization Attack. In such an attack, an
invalid reader can interrogate a tag many times so that
the counter of this tag exceeds the window recorded in
the valid reader. In [7], the authors proposed a protocol
to mitigate the impact from desynchronization attacks
by allowing tags to report the number of incomplete
authentications since the last successful authentication
with the reader. Dimitriou proposed a scheme in [4], in
which a tag increases its counter only after successful
mutual authentications. Those protocols, however,
degrade the anonymity of tags. An attacker is still able
to interrogate a given tag enough times so that the tag
will be immediately recognized when replying with
unchanged responses.

 Time-space tradeoff approaches: Avoine converted
the key search problem to an attempt at breaking a
symmetric key [3]. In [6], Hellman studied the key-
breaking problem and claimed that to recover a sym-
metric key k from a ciphertext needs to pre-compute
and to store O(N2/3) possible keys. Accordingly, the
key search complexity is O(N2/3) in key-breaking based
approaches. Obviously, those approaches are not effi-
cient compared with tree based approaches.

3. SPA Protocol

In this section, we first introduce the challenging is-
sues of static tree based private authentication ap-
proaches. We then present the design of SPA.

3.1 Challenges of Tree Based Approaches
Existing tree based approaches [5] construct a bal-

anced tree to organize and store the keys for all tags.
Each node stores a key and each tag is arranged to a
unique leaf node. Thus, there exists a unique path from
the root to this leaf node. Correspondingly, those keys
on this path are assigned to the tag. For example, tag
T1 obtains keys k0, k1,1, k2,1, and k3,1, as illustrated in
Fig. 1. When the reader R authenticates T1, it first
sends a nonce r to tag T1. T1 encrypts r with all its keys
and includes the ciphertexts in a response. Upon the
response from T1, the reader searches proper keys in
the key tree to recover r. This is equal to marking a
path from the root to the leaf node of T1 in the tree. At
the end of identification, if such a path exists, R re-
gards T1 as a valid tag. Usually, the encryption is em-
ployed by using cryptographic hash functions.

From the above procedure, we see that tags will,
more or less, share some non-leaf nodes in the tree. For
example, T1 and T2 share k2,1, while T1, T2, T3, and T4
share k1,1. Of course all tags share the root k0. Such a
static tree architecture is efficient because the com-
plexity of key search is logarithmic. For the example
in Fig. 1, any identification of a tag only needs log2(8)
= 3 search steps.

0k

1,1k
2,1k

1,2k 2,2k 3,2k 4,2k

1T
1,3k 2,3k 4,3k3,3k 5,3k 6,3k 8,3k7,3k

2T 3T 4T 5T 6T 7T 8T

Figure 1. A binary key tree with eight tags.

If the adversary compromises some tags, however,
it obtains several paths from the root to those leaf
nodes of the compromised tags, as well as the keys on
those paths. Since keys are never changed in the static
tree architecture, the captured keys will still be used by

uncompromised tags. As a result, the adversary cap-
tures the secret of uncompromised tags.

A practical solution is to update keys for a tag after
each authentication so that the adversary cannot make
use of keys obtained from compromised tags to attack
uncompromised ones. However, the static tree archi-
tecture is not capable of solving the key-updating
problem. Suppose we update the keys of T1 in Fig. 1,
we have to change k0, k1,1, k2,1, and k3,1 partially or to-
tally. Note that k1,1 is used by T2, T3, and T4, and k2,1 is
used by T2. To keep the updating consistent, the keys
of all influenced tags must be updated and re-
distributed. A challenging issue is that if the position
of a key is close to the root, the key-updating would
influence more tags. For example, updating k1,1 would
influence half of all the tags in the system (T1, T2, T3,
and T4). One intuitive solution is to periodically recall
all tags and update the keys simultaneously. Unfortu-
nately, such a solution is not practical in large scale
systems with millions or even hundreds of millions of
tags. Another solution is collecting those influenced
tags only and updating their keys. This is also difficult
because we need to collect a lot of tags even though
there is only one tag updating its keys.

This problem motivates us to develop a dynamic
key-updating algorithm for private authentication in
RFID systems. This is where our proposed SPA enters
the picture.

3.2 SPA Overview
SPA comprises four components: system initializa-

tion, tag identification, key-updating, and system main-
tenance. The first and second components are similar
to tree based approaches such as [5] and perform the
basic identification functions. The key-updating is
employed after a tag successfully performs its identifi-
cation with the reader. In this procedure, the tag and
the reader update their shared keys. This key-updating
procedure will not break the validation of keys used by
other tags. SPA achieves this via two techniques: tem-
porary keys and state bits. A temporary key is used to
store the old key for each non-leaf node in the key tree.
For each non-leaf node, a number of state bits are used
in order to record the key-updating status of nodes in
the sub-trees. Based on this design, each non-leaf node
will automatically perform key-updating when all its
children nodes have updated their keys. Thus, SPA
guarantees the validation and consistency of private
authentication for all tags. SPA also eases the system
maintenance in high dynamic systems where tags join
or leave frequently by using the fourth component.

R executes the basic identification procedure to
identify Ti, as represented Step 1 in Fig. 3. From the
root, the reader first encrypts r1 by using k0, and com-
pares the result with from T),(10 rkh i. If they match, R
invokes a recursive algorithm, Algorithm 1, as illus-
trated in Fig. 4 to identify Ti. For the example in Fig. 2,
the reader starts from the root and encrypts r1 by using
k1, 1 (or tk1, 1) and k1, 2 (or tk1, 2). Having the results, the
reader compares them with received , If

is equal to the result computed from k
),(11 rkh i

),(11 rkh i
1, 1 (or

tk1, 1), the tag belongs to the left sub-tree; otherwise, it
belongs to the right sub-tree.

rs0
ls0

ls 1,1
rs 1,1 ls 2,1

rs 2,1

00 ,tkk

1,11,1 ,tkk
2,12,1 ,tkk

1,2k 2,2k 3,2k 4,2k
1T 2T 3T 4T

Figure 2. A key tree with four tags (N = 4).

Level by level, R extends the path of Ti originated
from the root by invoking Algorithm 1. Suppose the
path reaches an intermediate node j at level l
(dl ≤≤1) in the tree. At this point, R computes all
hash values and by using the keys
of node j’s children, then compares them with v

),(11 rkh l+),(11 rtkh l+

l. Note
that vl is in the authentication message U received from
Ti. If there is a match, Ti must belong to the sub-tree of
the matched j’s child node. Therefore, R extends the
path to that node and continues the identification pro-
cedure until reaching a leaf node.

3.3 System Initialization
For the simplicity of discussion, we use a balanced

binary tree to organize and store keys, as shown by an
example in Fig 2. Let δ denote the branching factor of
the key tree (e.g., if the key tree is a binary tree,

2=δ). We assume that there are N tags Ti, 1 ≤ i ≤ N,
and a reader R in the RFID system. The reader R as-
signs the N tags to N leaf nodes in a balanced binary
tree S. Each non-leaf node j in S is assigned with two
keys, a working key kj and a temporary key tkj. The
usage of tkj will be illustrated in subsection 3.5. Ini-
tially, each key is generated randomly and independ-
ently by the reader, and tkj = kj for all non-leaf nodes.

In short, identifying a tag is similar to traversing
from the root to a leaf in the key tree. The path is de-
termined by using Algorithm 1.

When a tag Ti is introduced into the system, the
reader distributes the (log N⎡⎢

⎤⎥ + 1) keys to Ti. Those

keys are corresponding to the path from the root to tag
Ti (for a non-leaf node j at the path, if jj ktk ≠ , tag Ti

is assigned with kj). For example, the keys stored in tag
T1 are k0, k1,1 and k2,1, as illustrated in Fig. 2. From now
on, we use d to denote the depth of the tree and
() to denote the secret keys distributed to
T

i
d

ii kkk ,,, 10 K

i.

3.5 Key-Updating

After successfully identifying Ti, R invokes the
Key-updating algorithm in Step 2, as shown in Fig. 3.

When generating new keys, SPA still makes use of
the hash function h. Let kj be the old key of node j. The
reader computes a new key from the old key as '

jk
jk

, sychronizationσ

Request, r1

Tag Ti

Reader R

U

3.4 Tag Identification

The basic authentication procedure between the
reader and tags comprises three rounds, as illustrated
in Fig. 3. In the first round, R starts the protocol by
sending a “Request” and a random number r1 (a nonce)
to tag Ti, 1 ≤ i ≤ N. In the second round, upon request,
Ti generates a random number r2 (a nonce) and com-
putes the sequence , where
denotes the output of a hash function h on two inputs:
a key k and a random number r. T

)),(,),,((110 rkhrkh i
d

i K),(rkh

i replies R with a
message U = . For simplicity,
we denote the elements in U as . Upon U, R
begins to identify T

)),(,),,(,(1102 rkhrkhr i
d

i K

dvvu ,,, 0 K

i.

Figure 3. Authentication Procedure in SPA.
After receiving U, Reader R’s operations are:
Step 1, identifying Ti and Computes σ; Step 2,
sending σ to Ti and key-updating. Ti also up-
dates its keys after checking σ.

Algorithm 1: Identification (U, node n)
 Fix ; Nd log←
 ; falseSUCCEED ←
 ;)(eDepthofNod nl ←
 if)),(),((11 rtkhvrkhv nlnl =∨=

if () dl ≠
 if),(1rtkhv nl =
 Record n in Synchronization Message;
 for i=1 to δ
 ;),(enFindChildr inm ←
 Identification (U, m);
 else if l=d
 ; trueSUCCEED ←

 if (¬SUCCEED)
 fail and output 0;

 Accept and output 1;

Algorithm 2: Key-updating (node n)
 if n is a non-leaf node

Store the old key ; nn ktk ←
 Generate a new key ;)(nn khk ←
)(FindParent nm ← ;
 if n is the left child of m

Set ; 1←l
ms

 else if n is the right child of m
Set ; 1←r

ms

 if () 1== r
m

l
m ss

Reset and to 0, and record m in l
ms r

ms
Synchronization message;

 if m is not the root node
mn ← ;

 Key-updating (n);

Figure 4. Tree-based identification. Figure 5. Tree-based key-updating.

)('
jj khk = . The key-updating algorithm for the key

tree is shown in Fig. 5. To remain consistent, the
non-leaf node j uses temporary key tkj to store j’s old
key. In this way, the key-updating of a tag will not
interrupt the authentication procedures of other tags
belonging to j’s sub-tree.

Two challenging issues must be addressed when
updating keys. First, R should update the keys of the
identified tag Ti without interrupting the identifica-
tion of other tags. This is because the keys stored in
non-leaf nodes are shared by multiple tags. Those
keys should be updated in a consistent manner. Sec-
ond, each non-leaf node should automatically update
its keys when all its children have updated their keys.

To address the two issues, SPA introduces a num-
ber of state bits to each non-leaf node. The basic idea
behind this mechanism is that each non-leaf node
uses these bits to reflect the key-updating status of its
children. Once a child has updated its key, the corre-
sponding bit is set to 1. Each node updates its own
key when all its state bits become 1.

Without losing generality, we still use balanced
binary key tree S to illustrate this mechanism. Each
non-leaf node j in S is assigned with two state bits,
denoted as and , , where ()

represents the state whether the left (right) child of
node j has updated its keys. When initializing the
key tree S, for all non-leaf nodes. At any

time, if the key of node j’s left (right) child is up-
dated, SPA sets () to 1.

l
js r

js }1,0{, ∈r
j

l
j ss l

js r
js

0== r
j

l
j ss

l
js r

js

When R finishes key-updating, it sends a mes-
sage , as shown in Fig. 3, and a syn-
chronization message to T

),,(21 rrkh i
d=σ

i. The former one is used
by Ti to authenticate R. The latter one includes the
information of the levels on which the nodes have
updated their keys in the key tree. Having received
these messages, Ti first verifies whether or
not . If yes, T),,(21 rrkh i

d=σ i updates its keys accord-
ing to the synchronization message. For example, in
Fig. 2, suppose that R has updated keys k1, 1 and k1, 2
at level 1 and 2 after identifying T2. The synchroniza-
tion message is (1, 2). Accordingly, T2 updates k1,1 as
k’1, 1 = h’(k1,1) and k2,2 as k’2, 2 = h(k2, 2), respectively.
This algorithm guarantees that the key-updating is
consistent and feasible under arbitrary tag access
patterns.

The key-updating algorithm is suitable for an arbi-
trary balanced tree with δ > 2. In such a tree, there
are δ state bits maintained in each non-leaf node to
indicate the key-updating states of δ children.

3.6 System Maintenance

In practice, users might withdraw their tags. On
the other hand, some tags of new users might be
added. To deal with these maintenance issues, SPA
provides the tag enrollment and withdrawal services.

If a new tag Ti joins the system, R starts the tag
enrollment service. R first finds an empty leaf node in
the key tree S and associates Ti with this node. Ti is
accordingly assigned with the keys of nodes which
are on the path from the root to the leaf node in S. If
there is no an empty leaf node in S, R creates a new
balanced tree S’ with the branching factor δ and
depth d-1. R then initializes S’ by employing the sys-
tem initialization component, as we described in Sec-
tion 3.3. After initialization, R grafts S’ onto the root
of S and S’ becomes a sub-tree of S. Ti is then as-
signed to an empty leaf node in S’ and Ti’s keys are
distributed according to the path from root of S to the
leaf node. For example, in Fig. 6, R has 4 tags and all
leaf nodes in S are occupied. If a new tag T5 joins the
system, R creates a new sub-tree marked with a
dashed square. A leaf node in this sub-tree is associ-
ated with T5. T5’s keys are k0, k1,3 and k2,5. Indeed,
increasing branching factor δ of the root of S incurs
extra processes to the RFID system. For the example
in Fig. 6, increasing δ of the root in a binary tree by
one results in N/2 empty leaf nodes, while the added
computation overhead is only one hash operation for
node (1,3).

For any empty leaf node i in the key tree, i’s par-
ent node j will lock the corresponding state bit sj as 1
until node i is assigned to a new tag Ti. The purpose
of such constraint is to protect key-updating of other
tags from being interrupted. Otherwise, if sj is 0, it
will never change such that node j will never update
the keys.

If a tag is withdrawn, R empties the leaf node as-
sociated to this tag and sets the corresponding bit of
the parent node to 1.

4. Discussion
In this section, we first discuss the security re-

quirements for designing private authentication pro-
tocols in RFID systems. To evaluate the security of
SPA, we propose an attack model to represent exist-
ing attacking scenarios. We then demonstrate the
ability of SPA to meet those requirements and to de-
fend against attacks.

4.1 Security Requirements
A private authentication protocol should meet the

following security requirements [5].
Privacy. The private information, such as tag’s ID,

user name, and other private information should not
be leaked to any third party during authentication.

Untraceability. A tag should not be correlated to
its output authentication messages; otherwise, it may
be tracked by attackers.

Cloning resistance. Attackers should not be able
to use bogus tags to impersonate a valid tag. Also,
the replay attack should be resisted.

Forward secrecy. Attackers can compromise a tag
to obtain the keys stored in it. In this case, those keys
should not reveal the previous outputs of the captured
tag.

Compromising resistance. The privacy of uncom-
promised tags is threatened if they share some keys
with compromised tags. Thus, the number of affected
tags should be minimized after a successful compro-
mising attack.

Existing private authentication approaches are
able to defend against passive attacks (i.e., eaves-
dropping), but are vulnerable to active attacks (i.e.,
cloning and compromising attacks). Therefore, our
discussion will focus on how SPA protects tags from
active attacks. From the attacker’s perspective, two
metrics are important for evaluating the capability of
SPA in defending against active attacks: (a) past-
exposing probability, the probability of successfully
identifying the past outputs of a compromised tag –
this metric reflects the forward secrecy property of an
authentication scheme; and (b) correlated-exposing
probability, the probability of successfully tracing a
tag when some other tags in the system are compro-
mised.

4.2 Attack Model
Avoine [2] provides an attack model for RFID

systems. The model reflects the impacts of different
attacks on the authentication protocols. Our discus-
sions are mainly based on this model.

In the model, the attackers and the RFID system
are abstracted into two participants: the Adversary A
(the attackers) and the Challenger C (the RFID sys-
tem). Attacking-defending between the attackers and
the RFID system is like a game between A and C. A
first informs C that A will start to attack. C then
chooses two tags to perform SPA protocols. If A can
successfully distinguish one tag from another based
on their outputs, we claim that A successfully com-
promises the privacy of the system. For simplicity,
we let P denote the SPA authentication procedure.

2
0s

1
0s

ls 1,1
rs 1,1 ls 2,1

rs 2,1
ls 3,1

rs 4,1

3
0s

00 ,tkk

1,11,1 ,tkk
2,12,1 ,tkk

3,13,1 ,tkk

1,2k 2,2k 3,2k 4,2k
1T 2T 3T 4T

5,2k
5T

6,2k

Figure 6. A new tag T5 joins the RFID system.

We define four oracles, Query, Send, Executive,
and Reveal, to model the attacks on each tag T and
the reader R. Thus, each T or R has four such oracles
in our model. Any attack on a given R or T can be
represented as A’s calling on one of its oracles as
follows:

Query(T, m1, m3): A sends a request m1 to T. Sub-
sequently, A receives a response from T. R then sends
the message m3 to T. Note that m1 and m3 represent
the messages sent in the first and third round of SPA
authentication procedure, respectively.

Send(R, m2): A sends a message m2 to R and re-
ceives R’s response. Note that m2 represents the mes-
sage sent in the second round in a SPA authentication
procedure.

Execution(T, R): A acts as “a man in the middle”
and executes an instance of P with T and R, respec-
tively. A then modifies the received response mes-
sage from one side and relays it to the other side.

Reveal(T): After accessing this oracle of T, A
compromises T, which means A obtains T’s keys.
Note that A can distinguish any given tag T from
other tags if it can obtain T’s keys.

Based on these oracles, the detailed procedure of a
game between A and C is demonstrated by the fol-
lowing steps.

1. A tells C that the game begins. C chooses two
tags T0 and T1.

2. For two tags T0 and T1 chosen by C, A accesses
the oracles of T0 and T1. For T0 and T1, let and

denote the sets of accessed oracles, respectively.
0TO

1TO

3. C selects a bit uniformly at random,
and then provides the oracles of the corresponding
tag T

}1,0{∈b

b (if b = 0, Tb = T0; otherwise, Tb = T1) to A. For
simplicity, we denote Tb as T. A then accesses T’s
oracles. Let denote the set of accessed oracles of
T.

TO

4. Based on the results from , , and , A

outputs a bit b’. If b’=b, A successfully distinguishes
T

0TO
1TO TO

0 or T1 from each other, hereby we say A succeeds
and the protocol is broken; otherwise, A loses the
game, which means the protocol is secure under A’s
attacks. In the model, we assume that A can access
the oracles of , and in polynomial times.

Since T
0TO

1TO TO

0 and T1 are randomly chosen from uncom-
promised tags, if A can distinguish T0 from T1 (or vice
versa), it means that A can track all tags in an RFID
system.
4.3 Security Analysis

In this subsection, we show how SPA meets the
security requirements.

Privacy: The privacy is guaranteed by the security
of the hash function used in SPA. Due to the pseudo-
randomness and one-way properties of cryptographic
hash functions, it is safe to claim that the output of
the hash function can be seen as a random bit string.
Therefore, the messages sent by the reader and tags
will not reveal private information to any passive
adversary. It is difficult, if not impossible, for passive
adversaries to deduce the original messages based on
the output of hash functions, unless they can break
the hash function. It is well known that the probabil-
ity of breaking a hash function is negligible.

Untraceability: SPA provides untraceability for
tags. Since keys are dynamically updated in SPA, the
encrypted messages of each tag are also changed
accordingly. Thus, any passive adversary cannot
track a tag by identifying the encrypted messages.

Cloning resistance: In a cloning attack, an adver-
sary captures the messages from a tag and sends them
to the reader repeatedly [5]. Similar to previous pro-
tocols, SPA employs random numbers r1 and r2 to
defend against the cloning attack. Since the random
numbers r1 and r2 are generated uniformly at random
for each authentication procedure, it is extremely
difficult for attackers to pre-determine them. In addi-
tion, the length of r1 (r2) in SPA is sufficiently long
(more than 64 bits) such that the probability of suc-
cessfully guessing a random number is negligible.
Thus, SPA is not subject to the cloning attack.

Forward secrecy: If a tag is compromised, the ad-
versary might obtain the tag’s current keys. Since the
keys stored in the tag are updated after each authenti-
cation procedure, the adversary cannot recover the
past outputs of the compromised tag. Therefore, we
can consider that the past-exposing probability of
SPA approaches 0 and the forward secrecy of tags
can be guaranteed. On the contrary, tags in the static
tree protocols [5, 9, 10] never update their keys. Ad-
versaries can easily recover the past outputs of com-
promised tags by using the obtained keys. Thus, the
past-exposing probability of the static tree based pro-
tocols approaches 1.

4.4 Compromising Attack
As we discussed in Section 3.1, a compromised

tag may reveal some of the keys of other tags in static
tree based protocols. The adversary is then aware of
some paths from the root to the leaf nodes of the
compromised tag. Based on those paths, the adver-
sary partially compromises the tree infrastructure.
Knowing the “positions” of those non-leaf nodes, the
adversary can further identify a sub-tree to which Ti
might belong.

Now we use the attack model to discuss the im-
pact of a compromising attack on SPA. The follow-
ing analysis is based on Avoine’s work [3]. The
game procedure comprises six phases.

Phase 1. Adversary A has compromised a number
of tags and obtained their secret keys. Suppose the
number of compromised tags is t. A will utilize the
keys obtained from compromised tags in the attacks.

Phase 2. Challenger C chooses two tags T0 and T1.
Note that T0 and T1 have not been compromised.

Phase 3. A calls oracles in and (except
Reveal oracle), and then obtains the results (note that
A cannot compromise T

0TO
1TO

0 and T1).
Phase 4. C selects a bit uniformly at ran-

dom, and then provides oracles in (denote T
}1,0{∈b

TO b as
T) to A for accessing (except Reveal oracle).

Phase 5. A calls oracles in (except Reveal ora-
cle) and receives the results.

TO

Phase 6. A outputs a bit b’. If b’=b, A has success-
fully distinguished T0 or T1 from the other; otherwise,
A loses.

Suppose that A has compromised t tags except T0
and T1. Thus, A is aware of several paths from the
root to the leaf nodes of those tags as well as the rele-
vant keys of the non-leaf nodes in those paths. Let M
denote the set of the compromised non-leaf nodes in
the key tree. Let Mi denote the subset of M which
includes the compromised nodes at the same level i

in the tree. Clearly, . Correspondingly, let i

d

i
MM U

1=
=

iM denote the set of nodes at level i which have not
been compromised by A in the key tree.

In Phase 5, A impersonates the reader and queries

T, T0 and T1 with the keys obtained from compro-

mised tags. As a result, there are three possible sce-
narios.

1) If neither T0 nor T1 has a non-leaf in M, A com-
pletely fails.

2) If either T0 or T1 (but not both) has a non-leaf
node in M, the keys stored in this node as well as all
the keys on the path from the root to this node have
been compromised. The adversary can determine T in
Phase 6. In this case, A succeeds.

3) If both T0 and T1 have an identical non-leaf
node in M, A cannot directly distinguish T0 or T1
from the other. However, A can move down to the
next lower level from the current non-leaf node in the
key tree. We assume that the keys of T, T0 and T1 are

, , and , respectively,
where d is the depth of the tree. Suppose T

],,[0 dkk K],,[00
0 dkk K],,[11

0 dkk K

0 and T1
share an identical node ni-1, 0 at lever i – 1. At level i,
T0 has a node ni, 0 and T1 has a node ni, 1. The keys of
ni, 0 and ni, 1 are and , respectively. Let S0

ik 1
ik i-1 de-

note the sub-tree of the key tree S rooted at ni-1, 0.
Thus, ni, 0 and ni, 1 are both in Si-1. Let denote the
set of keys of the nodes in the interaction of

. Let denote the set of the nodes in the

interaction of

iK

ii MS I1− iU

ii MS I1− . For example, suppose that R
maintains a key tree with eight leaf nodes in Fig. 7. A
has compromised tags T3, T5, and T8. In this case, for
sub-tree S1, = { } and = { }. Let

t
2K

4,23,22,2 ,, kkk 2U
1,2k

i be the number of keys in , and iK δ be the branch-
ing factor of the key tree. Let a denote the number of
keys belonging to a non-leaf node (in SPA, any non-
leaf node stores two keys k and tk, therefore a = 2).
We consider the following five cases:

Case 1. If , A succeeds.))U()K((101
iiiii kkC ∈∧∈=

Case 2. If , A succeeds.))K()U((102
iiiii kkC ∈∧∈=

Case 3. If , A
succeeds.

))()K()K((10103
iiiiiii kkkkC ≠∧∈∧∈=

Case 4. If , A definitely
fails.

))U()U((104
iiiii kkC ∈∧∈=

Case 5. If ,
A fails at level i but it can move to level i + 1 to con-
tinue its attack.

))()K()K((10105
iiiiiii kkkkC =∧∈∧∈=

For , we have di ≤≤1

)1(]Pr[]Pr[21

δδ a
t

a
t

CC ii
ii −== ,

)11()(]Pr[23

i

i
i ta

t
C −=

δ
, and

i

i
i ta

t
C 1)(]Pr[25 ⋅=

δ
,

:1S :2M :2M

1T
1,3k 2,3k 4,3k3,3k 5,3k 6,3k 8,3k7,3k

2T 3T 4T 5T 6T 7T 8T

0k

1,1k 2,1k

1,2k 2,2k 3,2k 4,2k

nodesdCompromise
Figure 7. The compromising attack.

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Branching Factor δ

C
or

re
la

te
d-

ex
po

si
ng

 p
ro

ba
bi

lit
y t=20,Static tree

t=20,SPA
t=200,Static tree
t=200,SPA

0 20 40 60 80 1000

0.2

0.4

0.6

0.8

1

Branching Factor δ

C
or

re
la

te
d-

ex
po

si
ng

 p
ro

ba
bi

lit
y t=20,Static tree

t=20,SPA
t=200,Static tree
t=200,SPA

(a) a = 2 (b) a = 5

Figure 8. Defending against the compromising attack.

therefore,)12(
)(

]Pr[2
321 −−=∨∨ i

i
iii ta

a
t

CCC δ
δ

.

The correlated-exposing probability of A is given
by:

∑ ∏
=

−

=

×∨∨

+∨∨=
d

i

i

j
jiii CCCC

CCC

2

1

1

5321

3
1

2
1

1
1

)]Pr[](Pr[

]Pr[]SucceedsAttack Pr[

∑ ∏
=

−

=

×−−+−−=
d

i

i

j

i
i

i

a
tta

a
tta

a
t

2

1

1
2212

1)
)(

)12(
)(

()12(
)(

δ

δ
δ

δ
δ

(1)
In Eq. (1), ti, the number of keys known by the

adversary at level i, is given by:
))11(1(1

t

a
t

δ
δ −−= , di

a
t itf

i ≤<−−= 1),)11(1()(

δ
δ ,

where ∏
−

=

=
1

1

1)(
i

j j
i t

ttf .

Equation (1) shows that the correlated-exposing
probability is mainly determined by three key pa-
rameters: a) t, the number of compromised tags; b)δ ,
the branching factor of the key tree; and c) a, the
number of keys belonging to each non-leaf node.
Note that if a = 1, Equation (1) can also be used to
evaluate the security of static tree based approaches.
In Fig. 8, we show the theoretical evaluation on the
security of SPA in a typical RFID system.

We assume that the system contains 220 tags and
the depth of key tree is 20. In the worst case, the ad-
versary A can simultaneously compromise t tags at a
given time. Then, A immediately starts attacks fol-
lowing the game strategy with challenger C. In addi-
tion, we assume there are only T0 and T1, which are
chosen by C, performing authentication with the
reader at this moment. Thus, we can use Eq. (1) to
compute the correlated-exposing probability for A
attacking SPA and static tree based approaches.

As shown in Fig 8, SPA outperforms static tree
based approaches in defending against compromising
attacks. In SPA, although A captures a number of
keys shared by some uncompromised tags, those tags
are still secure if they update their keys. In contrast,
uncompromised tags in static tree based approaches
would be more vulnerable because the keys obtained
by A will still be in use. This would ease A’s tracking
attempts.

In both SPA and static tree based approaches, the
correlated-exposing probability is reduced when
enlarging the branching factor δ . This is because
enlarging δ leads attackers to capturing fewer keys
shared by uncompromised tags.

The static tree base approaches are extremely vul-
nerable to compromising attacks when t is suffi-
ciently large. We find the correlated-exposing prob-
ability is close to 1 when t = 200 in static tree based
approaches. In this case, enlarging δ does not help
much. On the contrary, SPA can decrease the prob-
ability by increasing a. The curves of t = 200 in Fig.
8 show that SPA is more secure under compromising
attacks and flexible enough to meet different security
concerns.

5. Prototype Implementation

We have implemented the SPA protocol on 40
Mantis™-series 303 MHz asset tags and a Mantis™
II reader manufactured by RF Code [1]. The back-
end database is implemented on a desktop PC with
the following configurations: Pentium M 3.2G dual
core CPU, 1GBytes memory, and 40G hard disk. We
use the SHA-1 algorithm as the secure hash function.

In this implementation, the system is able to main-
tain up to N = 220 tags. For each test, we randomly
distribute 40 tags into leaf nodes in the key

0 2 4 6 8 100

500

1000

1500

2000

Tag accessing Frequency

Ke
y-

U
pd

at
in

g
La

te
nc

y
(μ

s
)

Upper bound
SPA
Lower bound

Figure 9. Key-updating latency of SPA.

tree. We perform 1000 independent runs and report
the average. We employ a balanced binary tree as the
key tree. Each non-leaf node is assigned with two
keys, i.e., a = 2. The length of each key is 64-bit,
which is sufficiently long to resist brute-force at-
tacks.

A fundamental concern upon SPA is the latency
of key-updating. We use the metric Key-updating
Latency as the time required for the reader to update
a tag’s keys to evaluate the performance of SPA.

 Figure 9 plots the average key-updating latency
of SPA. With the increase of the tag accessing fre-
quency, which means how many times a tag is ac-
cessed per second, the key-updating latency in-
creases. The processing speed of SHA-1 is 1.73
MByte per second. We find that the latency of key-
updating does not exceed 1.7ms even when the tag
accessing frequency approaches 10. Since we con-
struct a tree with the depth of 20 in this experiment,
each tag is assigned with 20 keys. Thus, the curve of
key-updating is enclosed within two lines: one repre-
sents the upper bound (20 keys in a tag are updated)
and another represents the lower bound (only one key
is updated). The short key-updating latency of SPA
enables a reader to support dense access patterns.
Due to page limitation, results from other experi-
ments are not reported here.

6. Conclusions
We proposed a privacy-preserving authentication

protocol, SPA, to support secure and efficient tag-
reader transactions in RFID systems. By using a dy-
namic key-updating algorithm, SPA enhances the
security of existing RFID authentication protocols.
SPA is lightweight with high authentication effi-
ciency: a reader can identify a tag within O(logN)
tree walking steps. Compared with previous works,
SPA can effectively defend against both passive and
active attacks.

Acknowledgements
This work is supported in part by the NSFC grant

No. 60573053, the NSFC Key Project grant No.
60533110, the National Basic Research Program of
China (973 Program) grant No. 2006CB303000, the
Hong Kong RGC grants HKUST6152/06E and
HKUST6183/06E, the Hong Kong RGC CAG grant
HKBU 1/05C, and the HKUST Digital Life Research
Center Grant.

References
[1] RF Code, Inc., http://www.rfcode.com/products.

[2] G. Avoine, "Adversarial Model for Radio Frequency
Identification," Tech. Rep., 2005.

[3] G. Avoine, E. Dysli, and P. Oechslin, "Reducing
Time Complexity in RFID Systems," in Proceedings
SAC, 2005.

[4] T. Dimitriou, "A Lightweight RFID Protocol to Pro-
tect Against Traceability and Cloning Attacks," in
Proceedings SecureComm, 2005.

[5] T. Dimitriou, "A Secure and Efficient RFID Protocol
that Could make Big Brother (partially) Obsolete," in
Proceedings IEEE PerCom, 2006.

[6] M. E. Hellman, "A Cryptanalytic Time-Memory
Trade-off," IEEE Transactions on Information Theory,
1980.

[7] A. Juels, "Minimalist Cryptography for Low-Cost
RFID Tags," in Proceedings SCN, 2004.

[8] A. Juels, "RFID Security and Privacy: a Research
Survey," to appear in IEEE Journal of Selected Areas
in Communication, 2006.

[9] D. Molnar, A. Soppera, and D. Wagner, "A Scalable,
Delegatable Pseudonym Protocol Enabling Owner-
ship Transfer of RFID Tags," in Proceedings SAC,
2005.

[10] D. Molnar and D. Wagner, "Privacy and Security in
Library RFID: Issues, Practices, and Architectures,"
in Proceedings ACM CCS, 2004.

[11] L. M. Ni, Y. Liu, Y. C. Lau, and A. Patil,
"LANDMARC: Indoor Location Sensing Using Ac-
tive RFID," in Proceedings IEEE PerCom, 2003.

[12] M. Ohkubo, K. Suzuki, and S. Kinoshita, "Efficient
Hash-Chain based RFID Privacy Protection Scheme,"
in Proceedings UbiComp, Workshop Privacy, 2004.

[13] P. Robinson and M. Beigl, "Trust Context Spaces: an
Infrastructure for Pervasive Security in Context-
Aware Environments," in Proceedings SPC, 2003.

[14] S. Weis, S. Sarma, R. Rivest, and D. Engels, "Secu-
rity and Privacy Aspects of Low-Cost Radio Fre-
quency Identification Systems," in Proceedings SPC,
2003.

	1. Introduction
	2. Related Work
	3. SPA Protocol
	3.1 Challenges of Tree Based Approaches

	3.2 SPA Overview
	3.3 System Initialization
	3.4 Tag Identification
	3.5 Key-Updating
	3.6 System Maintenance

	4. Discussion
	4.1 Security Requirements
	4.2 Attack Model
	4.3 Security Analysis
	4.4 Compromising Attack

	5. Prototype Implementation
	6. Conclusions
	Acknowledgements
	References

