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Abstract 
 

The objective of private authentication for Radio 
Frequency Identification (RFID) systems is to allow 
valid readers to explicitly authenticate their dominated 
tags without leaking tags’ private information. To 
achieve this goal, RFID tags issue encrypted authenti-
cation messages to the RFID reader, and the reader 
searches the key space to locate the tags. Due to the 
lack of efficient key updating algorithms, previous 
schemes are vulnerable to many active attacks, espe-
cially the compromising attack. In this paper, we pro-
pose a Strong and lightweight RFID Private Authenti-
cation protocol, SPA. By designing a novel key updat-
ing method, we achieve the forward secrecy in SPA 
with an efficient key search algorithm. We also show 
that, compared with existing designs, SPA is able to 
effectively defend against both passive and active at-
tacks, including compromising attacks. Through proto-
type implementation, we observe that SPA is practical 
and scalable in current RFID infrastructures.  

1. Introduction 

The proliferation of RFID applications [11] raises 
an emerging requirement – protecting user privacy [13] 
in RFID authentications. In most RFID systems, tags 
automatically emit their unique serial numbers upon 
reader interrogation without alerting their users. 
Within the scanning range, a malicious reader can per-
form bogus authentication with detected tags to re-
trieve sensitive information. For example, without pri-
vacy protection, any reader can identify a consumer’s 
ID via the emitted serial number from the tag. As a 
result, a buyer can be tracked and profiled by unau-
thorized people. In addition, many companies usually 
embed tags in items. Those tags indicate the unique 
information of the items to which they attach. Thus, a 
customer carrying those tags is subject to silent track 
from unauthorized readers. Some sensitive personal 

information would thereby be exposed: the illnesses 
she may suffer from indicated by the pharmaceutical 
products; the malls where she shops; the types of items 
she prefers to buy, and so on. Therefore, a secure 
RFID system must meet two requirements. On one 
hand, a valid reader must successfully identify the 
valid tags; on the other hand, misbehaving readers 
should not be able to retrieve private information from 
these tags.  

To address the above issue, researchers employ en-
cryptions in RFID authentication. Each tag shares a 
unique key with the RFID reader and sends an en-
crypted authentication message to the reader. Instead 
of identifying the tag directly, the back-end database 
subsequently searches all keys that it holds to recover 
the authentication message and identify the tag. For 
simplicity, we will denote the reader device and back-
end database by the “reader” in what follows. Two 
challenging issues on the reader side must be ad-
dressed in the key storage infrastructure and search 
algorithm: the search efficiency and the security guar-
antee. First, searching a key should be sufficiently fast 
to support a large scale system. Second, the keys 
should be updated dynamically for security concerns.  

Many efforts have been made to achieve efficient 
private authentication. To the best of our knowledge, 
the most efficient protocols are tree-based [5, 10]. 
They provide an efficient key search scheme with 
logarithm complexity. In such approaches, each tag 
holds multiple keys instead of a single key. A virtual 
hierarchical tree structure is constructed by the reader 
to organize these keys. Every node in the tree, except 
the root, stores a unique key. Each tag is associated 
with a unique leaf node. Keys in the path from the root 
to the leaf node are then distributed to this tag. If the 
tree has a depth d and branching factor δ , each tag 
contains d keys and the entire tree can support up to 

tags. A tag encrypts the authentication mes-
sage by using each of its d keys. During authentication, 
the reader performs a depth-first search in the key tree. 
In each hierarchy, the reader can narrow the search set 

δdN =



within δ keys. Thus, the reader only needs to search 
δd keys for each tag’s authentication. Therefore, the 

key search complexity of identifying a given tag from 
N tags is logarithmic in N. 

The tree based approaches are efficient, neverthe-
less, not secure due to the lack of a key-updating 
mechanism. Most, if not all, tree-based approaches 
never update tags’ keys dynamically. Since the key 
storage infrastructure of tree-based approaches is static, 
each tag, more or less, shares some common keys with 
others. Consequently, compromising one tag might 
reveal information of other tags. To address this prob-
lem, we need to provide a dynamic key-updating 
mechanism to such approaches. The major challenge 
of dynamic key-updating in tree-based approaches is 
consistency. If a single tag updates its keys, some other 
tags have to update their keys accordingly. To our 
knowledge, consistent and dynamic key-updating 
mechanisms have scarcely been seen in the literature.  

In this paper, we propose a Strong and lightweight 
RFID Private Authentication protocol, SPA, which 
enables dynamic key-updating for tree based authenti-
cation approaches. Besides consistency, SPA also 
achieves forward secrecy without degrading key search 
efficiency. We also show that SPA outperforms exist-
ing designs in defending against both passive and ac-
tive attacks, including the compromising attack. 

The rest of this paper is organized as follows. We 
introduce related work in Section 2. We present the 
SPA design in Section 3. In Section 4, we analyze the 
security guarantee of SPA. We evaluate the perform-
ance of SPA via a prototype implementation in Section 
5. We conclude this paper in Section 6. 

2. Related Work 

Many approaches have been proposed to achieve 
private authentication in RFID systems. Weis et al. [14] 
proposed a hash function based authentication scheme, 
HashLock, to avoid tags being tracked. In this ap-
proach, each tag shares a secret key k with the reader. 
The reader sends a random number r as the authentica-
tion request. To respond to the reader, the tag gener-
ates a hash value on the inputs of r and k. The reader 
then computes h(k, r) of all stored keys until it finds a 
key to recover r, thereby identifying the tag. The 
search complexity of HashLock is linear to N, where N 
is the number of tags in the system. Most subsequent 
approaches in the literature are aimed at reducing the 
cost of key search. Juels [8] classifies these approaches 
into three types. 

Tree based approaches: tree based approaches [5, 9, 
10] improve the key search efficiency from linear  

complexity to logarithmic complexity. Molnar et al. 
proposed the first tree-based scheme, which employs a 
challenge-response scheme [3], which achieves mutual 
authentication between tags and readers. The protocol 
uses multiple rounds to identify a tag and each round 
needs three messages. Since it requires O(logN) rounds 
to identify a tag, the exchanged messages incur rela-
tively large communication overhead. In [4], the au-
thors provide a more efficient scheme which performs 
the authentication via one message from the tag to the 
reader and no further interactions. However, the tree 
based approaches are often vulnerable to the Tag Com-
promising Attack. Because tags share keys with others 
in the tree structure, compromising one tag results in 
compromising secrets in other tags. 

Synchronization approaches: synchronization ap-
proaches [12] make use of an incremental counter to 
enhance the authentication security. When successfully 
completing an authentication, the counter of a tag aug-
ments by one. The reader can compare the value of a 
tag’s counter with the record in the database. If they 
match, the tag is valid and the reader will synchronize 
the counter record of this tag. However, incomplete 
authentications lead the tag’s counter larger than the 
one held by the reader. To solve this problem, the 
reader keeps a window for each tag. Such a window 
limits the maximum value of the counter held by the 
tag. If a tag’s counter is larger than the record held by 
the reader but within the window, the reader still re-
gards this tag as valid. Such schemes are vulnerable to 
the Desynchronization Attack. In such an attack, an 
invalid reader can interrogate a tag many times so that 
the counter of this tag exceeds the window recorded in 
the valid reader. In [7], the authors proposed a protocol 
to mitigate the impact from desynchronization attacks 
by allowing tags to report the number of incomplete 
authentications since the last successful authentication 
with the reader. Dimitriou proposed a scheme in [4], in 
which a tag increases its counter only after successful 
mutual authentications.  Those protocols, however, 
degrade the anonymity of tags. An attacker is still able 
to interrogate a given tag enough times so that the tag 
will be immediately recognized when replying with 
unchanged responses.  

 Time-space tradeoff approaches: Avoine converted 
the key search problem to an attempt at breaking a 
symmetric key [3]. In [6], Hellman studied the key-
breaking problem and claimed that to recover a sym-
metric key k from a ciphertext needs to pre-compute 
and to store O(N2/3) possible keys. Accordingly, the 
key search complexity is O(N2/3) in key-breaking based 
approaches. Obviously, those approaches are not effi-
cient compared with tree based approaches.  



3. SPA Protocol 

In this section, we first introduce the challenging is-
sues of static tree based private authentication ap-
proaches. We then present the design of SPA.  

3.1 Challenges of Tree Based Approaches 
Existing tree based approaches [5] construct a bal-

anced tree to organize and store the keys for all tags. 
Each node stores a key and each tag is arranged to a 
unique leaf node. Thus, there exists a unique path from 
the root to this leaf node. Correspondingly, those keys 
on this path are assigned to the tag. For example, tag 
T1 obtains keys k0, k1,1, k2,1, and k3,1, as illustrated in 
Fig. 1. When the reader R authenticates T1, it first 
sends a nonce r to tag T1. T1 encrypts r with all its keys 
and includes the ciphertexts in a response. Upon the 
response from T1, the reader searches proper keys in 
the key tree to recover r. This is equal to marking a 
path from the root to the leaf node of T1 in the tree. At 
the end of identification, if such a path exists, R re-
gards T1 as a valid tag. Usually, the encryption is em-
ployed by using cryptographic hash functions. 

From the above procedure, we see that tags will, 
more or less, share some non-leaf nodes in the tree. For 
example, T1 and T2 share k2,1, while T1, T2, T3, and T4 
share k1,1. Of course all tags share the root k0. Such a 
static tree architecture is efficient because the com-
plexity of key search is logarithmic.  For the example 
in Fig. 1, any identification of a tag only needs log2(8) 
= 3 search steps.  
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Figure 1. A binary key tree with eight tags. 

If the adversary compromises some tags, however, 
it obtains several paths from the root to those leaf 
nodes of the compromised tags, as well as the keys on 
those paths. Since keys are never changed in the static 
tree architecture, the captured keys will still be used by 

uncompromised tags. As a result, the adversary cap-
tures the secret of uncompromised tags.  

A practical solution is to update keys for a tag after 
each authentication so that the adversary cannot make 
use of keys obtained from compromised tags to attack 
uncompromised ones. However, the static tree archi-
tecture is not capable of solving the key-updating 
problem. Suppose we update the keys of T1 in Fig. 1, 
we have to change k0, k1,1, k2,1, and k3,1 partially or to-
tally. Note that k1,1 is used by T2, T3, and T4, and k2,1 is 
used by T2. To keep the updating consistent, the keys 
of all influenced tags must be updated and re-
distributed. A challenging issue is that if the position 
of a key is close to the root, the key-updating would 
influence more tags. For example, updating k1,1 would 
influence half of all the tags in the system (T1, T2, T3, 
and T4). One intuitive solution is to periodically recall 
all tags and update the keys simultaneously. Unfortu-
nately, such a solution is not practical in large scale 
systems with millions or even hundreds of millions of 
tags. Another solution is collecting those influenced 
tags only and updating their keys. This is also difficult 
because we need to collect a lot of tags even though 
there is only one tag updating its keys.  

This problem motivates us to develop a dynamic 
key-updating algorithm for private authentication in 
RFID systems. This is where our proposed SPA enters 
the picture.  

3.2 SPA Overview 
SPA comprises four components: system initializa-

tion, tag identification, key-updating, and system main-
tenance. The first and second components are similar 
to tree based approaches such as [5] and perform the 
basic identification functions.  The key-updating is 
employed after a tag successfully performs its identifi-
cation with the reader. In this procedure, the tag and 
the reader update their shared keys. This key-updating 
procedure will not break the validation of keys used by 
other tags. SPA achieves this via two techniques: tem-
porary keys and state bits. A temporary key is used to 
store the old key for each non-leaf node in the key tree. 
For each non-leaf node, a number of state bits are used 
in order to record the key-updating status of nodes in 
the sub-trees. Based on this design, each non-leaf node 
will automatically perform key-updating when all its 
children nodes have updated their keys. Thus, SPA 
guarantees the validation and consistency of private 
authentication for all tags. SPA also eases the system 
maintenance in high dynamic systems where tags join 
or leave frequently by using the fourth component.   



R executes the basic identification procedure to 
identify Ti, as represented Step 1 in Fig. 3. From the 
root, the reader first encrypts r1 by using k0, and com-
pares the result with from T),( 10 rkh i. If they match, R 
invokes a recursive algorithm, Algorithm 1, as illus-
trated in Fig. 4 to identify Ti. For the example in Fig. 2, 
the reader starts from the root and encrypts r1 by using 
k1, 1 (or tk1, 1) and k1, 2 (or tk1, 2). Having the results, the 
reader compares them with received , If 

is equal to the result computed from k
),( 11 rkh i

),( 11 rkh i
1, 1 (or 

tk1, 1), the tag belongs to the left sub-tree; otherwise, it 
belongs to the right sub-tree.  

rs0
ls0

ls 1,1
rs 1,1 ls 2,1

rs 2,1

00 ,tkk

1,11,1 ,tkk
2,12,1 ,tkk
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Figure 2. A key tree with four tags (N = 4). 

Level by level, R extends the path of Ti originated 
from the root by invoking Algorithm 1. Suppose the 
path reaches an intermediate node j at level l 
( dl ≤≤1 ) in the tree. At this point, R computes all 
hash values and  by using the keys 
of node j’s children, then compares them with v

),( 11 rkh l+ ),( 11 rtkh l+

l. Note 
that vl is in the authentication message U received from 
Ti. If there is a match, Ti must belong to the sub-tree of 
the matched j’s child node.  Therefore, R extends the 
path to that node and continues the identification pro-
cedure until reaching a leaf node. 

3.3 System Initialization 
For the simplicity of discussion, we use a balanced 

binary tree to organize and store keys, as shown by an 
example in Fig 2. Let δ denote the branching factor of 
the key tree (e.g., if the key tree is a binary tree, 

2=δ ). We assume that there are N tags Ti, 1 ≤ i ≤ N, 
and a reader R in the RFID system. The reader R as-
signs the N tags to N leaf nodes in a balanced binary 
tree S. Each non-leaf node j in S is assigned with two 
keys, a working key kj and a temporary key tkj. The 
usage of tkj will be illustrated in subsection 3.5. Ini-
tially, each key is generated randomly and independ-
ently by the reader, and tkj = kj for all non-leaf nodes.  

In short, identifying a tag is similar to traversing 
from the root to a leaf in the key tree. The path is de-
termined by using Algorithm 1. 

When a tag Ti is introduced into the system, the 
reader distributes the ( log N⎡⎢

 
⎤⎥  + 1) keys to Ti. Those 

keys are corresponding to the path from the root to tag 
Ti (for a non-leaf node j at the path, if jj ktk ≠ , tag Ti 

is assigned with kj). For example, the keys stored in tag 
T1 are k0, k1,1 and k2,1, as illustrated in Fig. 2. From now 
on, we use d to denote the depth of the tree and 
( ) to denote the secret keys distributed to 
T

i
d

ii kkk ,,, 10 K

i.  

3.5 Key-Updating  
 

After successfully identifying Ti, R invokes the 
Key-updating algorithm in Step 2, as shown in Fig. 3.  

When generating new keys, SPA still makes use of 
the hash function h. Let kj be the old key of node j. The 
reader computes a new key  from the old key as '

jk
jk
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Tag Ti
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3.4 Tag Identification 
 

The basic authentication procedure between the 
reader and tags comprises three rounds, as illustrated 
in Fig. 3. In the first round, R starts the protocol by 
sending a “Request” and a random number r1 (a nonce) 
to tag Ti, 1 ≤ i ≤ N. In the second round, upon request, 
Ti generates a random number r2 (a nonce) and com-
putes the sequence , where  
denotes the output of a hash function h on two inputs: 
a key k and a random number r. T

)),(,),,(( 110 rkhrkh i
d

i K ),( rkh

i replies R with a 
message U = . For simplicity, 
we denote the elements in U as . Upon U, R 
begins to identify T

)),(,),,(,( 1102 rkhrkhr i
d

i K

dvvu ,,, 0 K

i.  

Figure 3. Authentication Procedure in SPA. 
After receiving U, Reader R’s operations are: 
Step 1, identifying Ti and Computes σ; Step 2, 
sending σ to Ti and key-updating. Ti also up-
dates its keys after checking σ. 
 



Algorithm 1: Identification (U, node n) 
  Fix ; Nd log←
  ; falseSUCCEED ←
  ; )(eDepthofNod nl ←
   if  )),(),(( 11 rtkhvrkhv nlnl =∨=

if ( ) dl ≠
    if  ),( 1rtkhv nl =
       Record n in Synchronization Message; 
       for i=1 to δ  
          ; ),(enFindChildr inm ←
          Identification (U, m); 
 else if l=d 
     ; trueSUCCEED ←

   if  (¬SUCCEED) 
 fail and output 0; 

   Accept and output 1; 

Algorithm 2: Key-updating (node n) 
  if n is a non-leaf node 

Store the old key ; nn ktk ←
  Generate a new key ; )( nn khk ←
  )(FindParent nm ← ; 
  if n is the left child of m 

Set ; 1←l
ms

  else if n is the right child of m 
Set ; 1←r

ms

  if ( ) 1== r
m

l
m ss

Reset and to 0, and record m in l
ms r

ms
Synchronization message; 

  if m is not the root node 
mn ← ; 

  Key-updating (n); 

Figure 4. Tree-based identification. Figure 5. Tree-based key-updating. 

)('
jj khk = . The key-updating algorithm for the key 

tree is shown in Fig. 5. To remain consistent, the 
non-leaf node j uses temporary key tkj to store j’s old 
key. In this way, the key-updating of a tag will not 
interrupt the authentication procedures of other tags 
belonging to j’s sub-tree. 

Two challenging issues must be addressed when 
updating keys. First, R should update the keys of the 
identified tag Ti without interrupting the identifica-
tion of other tags. This is because the keys stored in 
non-leaf nodes are shared by multiple tags. Those 
keys should be updated in a consistent manner. Sec-
ond, each non-leaf node should automatically update 
its keys when all its children have updated their keys.  

To address the two issues, SPA introduces a num-
ber of state bits to each non-leaf node. The basic idea 
behind this mechanism is that each non-leaf node 
uses these bits to reflect the key-updating status of its 
children. Once a child has updated its key, the corre-
sponding bit is set to 1. Each node updates its own 
key when all its state bits become 1.  

Without losing generality, we still use balanced 
binary key tree S to illustrate this mechanism. Each 
non-leaf node j in S is assigned with two state bits, 
denoted as  and , , where ( ) 

represents the state whether the left (right) child of 
node j has updated its keys.  When initializing the 
key tree S,  for all non-leaf nodes. At any 

time, if the key of node j’s left (right) child is up-
dated, SPA sets ( ) to 1.  

l
js r

js }1,0{, ∈r
j

l
j ss l

js r
js

0== r
j

l
j ss

l
js r

js

When R finishes key-updating, it sends a mes-
sage , as shown in Fig. 3, and a syn-
chronization message to T

),,( 21 rrkh i
d=σ

i. The former one is used 
by Ti to authenticate R. The latter one includes the 
information of the levels on which the nodes have 
updated their keys in the key tree. Having received 
these messages, Ti first verifies whether or 
not . If yes, T),,( 21 rrkh i

d=σ i updates its keys accord-
ing to the synchronization message. For example, in 
Fig. 2, suppose that R has updated keys k1, 1 and k1, 2 
at level 1 and 2 after identifying T2. The synchroniza-
tion message is (1, 2). Accordingly, T2 updates k1,1 as 
k’1, 1 = h’(k1,1) and k2,2 as k’2, 2 = h(k2, 2), respectively. 
This algorithm guarantees that the key-updating is 
consistent and feasible under arbitrary tag access 
patterns.  

The key-updating algorithm is suitable for an arbi-
trary balanced tree with δ > 2. In such a tree, there 
are δ state bits maintained in each non-leaf node to 
indicate the key-updating states of δ children.  
 
3.6 System Maintenance  
 

In practice, users might withdraw their tags. On 
the other hand, some tags of new users might be 
added. To deal with these maintenance issues, SPA 
provides the tag enrollment and withdrawal services.  



If a new tag Ti joins the system, R starts the tag 
enrollment service. R first finds an empty leaf node in 
the key tree S and associates Ti with this node.  Ti is 
accordingly assigned with the keys of nodes which 
are on the path from the root to the leaf node in S. If 
there is no an empty leaf node in S, R creates a new 
balanced tree S’ with the branching factor δ and 
depth d-1. R then initializes S’ by employing the sys-
tem initialization component, as we described in Sec-
tion 3.3. After initialization, R grafts S’ onto the root 
of S and S’ becomes a sub-tree of S. Ti is then as-
signed to an empty leaf node in S’ and Ti’s keys are 
distributed according to the path from root of S to the 
leaf node. For example, in Fig. 6, R has 4 tags and all 
leaf nodes in S are occupied. If a new tag T5 joins the 
system, R creates a new sub-tree marked with a 
dashed square. A leaf node in this sub-tree is associ-
ated with T5. T5’s keys are k0, k1,3 and k2,5. Indeed, 
increasing branching factor δ of the root of S incurs 
extra processes to the RFID system. For the example 
in Fig. 6, increasing δ of the root in a binary tree by 
one results in N/2 empty leaf nodes, while the added 
computation overhead is only one hash operation for 
node (1,3). 

For any empty leaf node i in the key tree, i’s par-
ent node j will lock the corresponding state bit sj as 1 
until node i is assigned to a new tag Ti. The purpose 
of such constraint is to protect key-updating of other 
tags from being interrupted. Otherwise, if sj is 0, it 
will never change such that node j will never update 
the keys.  

If a tag is withdrawn, R empties the leaf node as-
sociated to this tag and sets the corresponding bit of 
the parent node to 1.  

4. Discussion 
In this section, we first discuss the security re-

quirements for designing private authentication pro-
tocols in RFID systems. To evaluate the security of 
SPA, we propose an attack model to represent exist-
ing attacking scenarios. We then demonstrate the 
ability of SPA to meet those requirements and to de-
fend against attacks.  
 

4.1 Security Requirements 
A private authentication protocol should meet the 

following security requirements [5]. 
Privacy. The private information, such as tag’s ID, 

user name, and other private information should not 
be leaked to any third party during authentication.  

Untraceability. A tag should not be correlated to 
its output authentication messages; otherwise, it may 
be tracked by attackers.  

Cloning resistance. Attackers should not be able 
to use bogus tags to impersonate a valid tag. Also, 
the replay attack should be resisted.   

Forward secrecy. Attackers can compromise a tag 
to obtain the keys stored in it. In this case, those keys 
should not reveal the previous outputs of the captured 
tag. 

Compromising resistance. The privacy of uncom-
promised tags is threatened if they share some keys 
with compromised tags. Thus, the number of affected 
tags should be minimized after a successful compro-
mising attack.  

Existing private authentication approaches are 
able to defend against passive attacks (i.e., eaves-
dropping), but are vulnerable to active attacks (i.e., 
cloning and compromising attacks). Therefore, our 
discussion will focus on how SPA protects tags from 
active attacks. From the attacker’s perspective, two 
metrics are important for evaluating the capability of 
SPA in  defending against active attacks: (a) past-
exposing probability, the probability of successfully 
identifying the past outputs of a compromised tag – 
this metric reflects the forward secrecy property of an 
authentication scheme; and (b) correlated-exposing 
probability, the probability of successfully tracing a 
tag when some other tags in the system are compro-
mised.  

4.2 Attack Model 
Avoine [2] provides an attack model for RFID 

systems. The model reflects the impacts of different 
attacks on the authentication protocols. Our discus-
sions are mainly based on this model.  

In the model, the attackers and the RFID system 
are abstracted into two participants: the Adversary A 
(the attackers) and the Challenger C (the RFID sys-
tem). Attacking-defending between the attackers and 
the RFID system is like a game between A and C. A 
first informs C that A will start to attack. C then 
chooses two tags to perform SPA protocols. If A can 
successfully distinguish one tag from another based 
on their outputs, we claim that A successfully com-
promises the privacy of the system. For simplicity, 
we let P denote the SPA authentication procedure.  

2
0s

1
0s

ls 1,1
rs 1,1 ls 2,1

rs 2,1
ls 3,1

rs 4,1

3
0s

00 ,tkk

1,11,1 ,tkk
2,12,1 ,tkk

3,13,1 ,tkk

1,2k 2,2k 3,2k 4,2k
1T 2T 3T 4T

5,2k
5T

6,2k

 
Figure 6. A new tag T5 joins the RFID system. 



We define four oracles, Query, Send, Executive, 
and Reveal, to model the attacks on each tag T and 
the reader R. Thus, each T or R has four such oracles 
in our model. Any attack on a given R or T can be 
represented as A’s calling on one of its oracles as 
follows:  

Query(T, m1, m3): A sends a request m1 to T. Sub-
sequently, A receives a response from T. R then sends 
the message m3 to T. Note that m1 and m3 represent 
the messages sent in the first and third round of SPA 
authentication procedure, respectively. 

Send(R, m2): A sends a message m2 to R and re-
ceives R’s response. Note that m2 represents the mes-
sage sent in the second round in a SPA authentication 
procedure. 

Execution(T, R): A acts as “a man in the middle” 
and executes an instance of P with T and R, respec-
tively. A then modifies the received response mes-
sage from one side and relays it to the other side.  

Reveal(T): After accessing this oracle of T, A 
compromises T, which means A obtains T’s keys. 
Note that A can distinguish any given tag T from 
other tags if it can obtain T’s keys. 

Based on these oracles, the detailed procedure of a 
game between A and C is demonstrated by the fol-
lowing steps.  

1. A tells C that the game begins. C chooses two 
tags T0 and T1. 

2. For two tags T0 and T1 chosen by C, A accesses 
the oracles of T0 and T1. For T0 and T1, let  and 

denote the sets of accessed oracles, respectively.  
0TO

1TO

3. C selects a bit  uniformly at random, 
and then provides the oracles of the corresponding 
tag T

}1,0{∈b

b (if b = 0, Tb = T0; otherwise, Tb = T1) to A. For 
simplicity, we denote Tb as T. A then accesses T’s 
oracles. Let denote the set of accessed oracles of 
T.  

TO

4. Based on the results from , , and , A 

outputs a bit b’. If b’=b, A successfully distinguishes 
T

0TO
1TO TO

0 or T1 from each other, hereby we say A succeeds 
and the protocol is broken; otherwise, A loses the 
game, which means the protocol is secure under A’s 
attacks. In the model, we assume that A can access 
the oracles of , and  in polynomial times. 

Since T
0TO

1TO TO

0 and T1 are randomly chosen from uncom-
promised tags, if A can distinguish T0 from T1 (or vice 
versa), it means that A can track all tags in an RFID 
system.  
4.3 Security Analysis 

In this subsection, we show how SPA meets the 
security requirements.  

Privacy: The privacy is guaranteed by the security 
of the hash function used in SPA. Due to the pseudo-
randomness and one-way properties of cryptographic 
hash functions, it is safe to claim that the output of 
the hash function can be seen as a random bit string. 
Therefore, the messages sent by the reader and tags 
will not reveal private information to any passive 
adversary. It is difficult, if not impossible, for passive 
adversaries to deduce the original messages based on 
the output of hash functions, unless they can break 
the hash function. It is well known that the probabil-
ity of breaking a hash function is negligible.  

Untraceability: SPA provides untraceability for 
tags. Since keys are dynamically updated in SPA, the 
encrypted messages of each tag are also changed 
accordingly. Thus, any passive adversary cannot 
track a tag by identifying the encrypted messages.  

Cloning resistance: In a cloning attack, an adver-
sary captures the messages from a tag and sends them 
to the reader repeatedly [5]. Similar to previous pro-
tocols, SPA employs random numbers r1 and r2 to 
defend against the cloning attack. Since the random 
numbers r1 and r2 are generated uniformly at random 
for each authentication procedure, it is extremely 
difficult for attackers to pre-determine them. In addi-
tion, the length of r1 (r2) in SPA is sufficiently long 
(more than 64 bits) such that the probability of suc-
cessfully guessing a random number is negligible. 
Thus, SPA is not subject to the cloning attack. 

Forward secrecy: If a tag is compromised, the ad-
versary might obtain the tag’s current keys. Since the 
keys stored in the tag are updated after each authenti-
cation procedure, the adversary cannot recover the 
past outputs of the compromised tag. Therefore, we 
can consider that the past-exposing probability of 
SPA approaches 0 and the forward secrecy of tags 
can be guaranteed. On the contrary, tags in the static 
tree protocols [5, 9, 10] never update their keys. Ad-
versaries can easily recover the past outputs of com-
promised tags by using the obtained keys. Thus, the 
past-exposing probability of the static tree based pro-
tocols approaches 1.  

4.4 Compromising Attack 
As we discussed in Section 3.1, a compromised 

tag may reveal some of the keys of other tags in static 
tree based protocols. The adversary is then aware of 
some paths from the root to the leaf nodes of the 
compromised tag. Based on those paths, the adver-
sary partially compromises the tree infrastructure. 
Knowing the “positions” of those non-leaf nodes, the 
adversary can further identify a sub-tree to which Ti 
might belong. 



Now we use the attack model to discuss the im-
pact of a compromising attack on SPA. The follow-
ing analysis is based on Avoine’s work [3]. The 
game procedure comprises six phases. 

Phase 1. Adversary A has compromised a number 
of tags and obtained their secret keys. Suppose the 
number of compromised tags is t. A will utilize the 
keys obtained from compromised tags in the attacks.  

Phase 2. Challenger C chooses two tags T0 and T1. 
Note that T0 and T1 have not been compromised. 

Phase 3. A calls oracles in  and (except 
Reveal oracle), and then obtains the results (note that 
A cannot compromise T

0TO
1TO

0 and T1).  
Phase 4. C selects a bit uniformly at ran-

dom, and then provides oracles in (denote T
}1,0{∈b

TO b as 
T) to A for accessing (except Reveal oracle). 

Phase 5. A calls oracles in (except Reveal ora-
cle) and receives the results. 

TO

Phase 6. A outputs a bit b’. If b’=b, A has success-
fully distinguished T0 or T1 from the other; otherwise, 
A loses. 

Suppose that A has compromised t tags except T0 
and T1. Thus, A is aware of several paths from the 
root to the leaf nodes of those tags as well as the rele-
vant keys of the non-leaf nodes in those paths. Let M 
denote the set of the compromised non-leaf nodes in 
the key tree. Let Mi denote the subset of M which 
includes the compromised nodes at the same level i 

in the tree. Clearly, . Correspondingly, let i

d

i
MM U

1=
=

iM denote the set of nodes at level i which have not 
been compromised by A in the key tree.  

 
In Phase 5, A impersonates the reader and queries 

T, T0 and T1 with the keys obtained from compro-

mised tags. As a result, there are three possible sce-
narios.  

1) If neither T0 nor T1 has a non-leaf in M, A com-
pletely fails.  

2) If either T0 or T1 (but not both) has a non-leaf 
node in M, the keys stored in this node as well as all 
the keys on the path from the root to this node have 
been compromised. The adversary can determine T in 
Phase 6. In this case, A succeeds.  

3) If both T0 and T1 have an identical non-leaf 
node in M, A cannot directly distinguish T0 or T1 
from the other. However, A can move down to the 
next lower level from the current non-leaf node in the 
key tree. We assume that the keys of T, T0 and T1 are 

, , and , respectively, 
where d is the depth of the tree. Suppose T

],,[ 0 dkk K ],,[ 00
0 dkk K ],,[ 11

0 dkk K

0 and T1 
share an identical node ni-1, 0 at lever i – 1. At level i, 
T0 has a node ni, 0 and T1 has a node ni, 1. The keys of 
ni, 0 and ni, 1 are and , respectively. Let S0

ik 1
ik i-1 de-

note the sub-tree of the key tree S rooted at ni-1, 0. 
Thus, ni, 0 and ni, 1 are both in Si-1. Let denote the 
set of keys of the nodes in the interaction of 

. Let denote the set of the nodes in the 

interaction of 

iK

ii MS I1− iU

ii MS I1− . For example, suppose that R 
maintains a key tree with eight leaf nodes in Fig. 7. A 
has compromised tags T3, T5, and T8. In this case, for 
sub-tree S1, = { } and = { }. Let 

t
2K

4,23,22,2 ,, kkk 2U
1,2k

i be the number of keys in , and iK δ be the branch-
ing factor of the key tree. Let a denote the number of 
keys belonging to a non-leaf node (in SPA, any non-
leaf node stores two keys k and tk, therefore a = 2). 
We consider the following five cases: 

Case 1. If , A succeeds. ))U()K(( 101
iiiii kkC ∈∧∈=

Case 2. If , A succeeds. ))K()U(( 102
iiiii kkC ∈∧∈=

Case 3. If , A 
succeeds. 

))()K()K(( 10103
iiiiiii kkkkC ≠∧∈∧∈=

Case 4. If , A definitely 
fails. 

))U()U(( 104
iiiii kkC ∈∧∈=

Case 5. If  , 
A fails at level i but it can move to level i + 1 to con-
tinue its attack. 

))()K()K(( 10105
iiiiiii kkkkC =∧∈∧∈=
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Figure 7. The compromising attack. 
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Figure 8. Defending against the compromising attack. 
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The correlated-exposing probability of A is given 
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(1) 
In Eq. (1), ti, the number of keys known by the 

adversary at level i, is given by: 
))11(1(1

t

a
t

δ
δ −−= , di

a
t itf

i ≤<−−= 1  ),)11(1( )(

δ
δ ,  

where ∏
−

=

=
1

1

1)(
i

j j
i t

ttf . 

Equation (1) shows that the correlated-exposing 
probability is mainly determined by three key pa-
rameters: a) t, the number of compromised tags; b)δ , 
the branching factor of the key tree; and c) a, the 
number of keys belonging to each non-leaf node. 
Note that if a = 1, Equation (1) can also be used to 
evaluate the security of static tree based approaches. 
In Fig. 8, we show the theoretical evaluation on the 
security of SPA in a typical RFID system.  

We assume that the system contains 220 tags and 
the depth of key tree is 20. In the worst case, the ad-
versary A can simultaneously compromise t tags at a 
given time. Then, A immediately starts attacks fol-
lowing the game strategy with challenger C. In addi-
tion, we assume there are only T0 and T1, which are 
chosen by C, performing authentication with the 
reader at this moment. Thus, we can use Eq. (1) to 
compute the correlated-exposing probability for A 
attacking SPA and static tree based approaches.  

As shown in Fig 8, SPA outperforms static tree 
based approaches in defending against compromising 
attacks. In SPA, although A captures a number of 
keys shared by some uncompromised tags, those tags 
are still secure if they update their keys. In contrast, 
uncompromised tags in static tree based approaches 
would be more vulnerable because the keys obtained 
by A will still be in use. This would ease A’s tracking 
attempts.   

In both SPA and static tree based approaches, the 
correlated-exposing probability is reduced when 
enlarging the branching factor δ . This is because 
enlarging δ leads attackers to capturing fewer keys 
shared by uncompromised tags. 

The static tree base approaches are extremely vul-
nerable to compromising attacks when t is suffi-
ciently large. We find the correlated-exposing prob-
ability is close to 1 when t = 200 in static tree based 
approaches. In this case, enlarging δ  does not help 
much. On the contrary, SPA can decrease the prob-
ability by increasing a. The curves of t = 200 in Fig. 
8 show that SPA is more secure under compromising 
attacks and flexible enough to meet different security 
concerns.  
 
5. Prototype Implementation 
 

We have implemented the SPA protocol on 40 
Mantis™-series 303 MHz asset tags and a Mantis™ 
II reader manufactured by RF Code [1]. The back-
end database is implemented on a desktop PC with 
the following configurations: Pentium M 3.2G dual 
core CPU, 1GBytes memory, and 40G hard disk. We 
use the SHA-1 algorithm as the secure hash function. 

In this implementation, the system is able to main-
tain up to N = 220 tags. For each test, we randomly 
distribute 40 tags into leaf nodes in the key  
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Figure 9. Key-updating latency of SPA. 

tree. We perform 1000 independent runs and report 
the average. We employ a balanced binary tree as the 
key tree. Each non-leaf node is assigned with two 
keys, i.e., a = 2. The length of each key is 64-bit, 
which is sufficiently long to resist brute-force at-
tacks.  

A fundamental concern upon SPA is the latency 
of key-updating. We use the metric Key-updating 
Latency as the time required for the reader to update 
a tag’s keys to evaluate the performance of SPA.  

 Figure 9 plots the average key-updating latency 
of SPA.  With the increase of the tag accessing fre-
quency, which means how many times a tag is ac-
cessed per second, the key-updating latency in-
creases. The processing speed of SHA-1 is 1.73 
MByte per second. We find that the latency of key-
updating does not exceed 1.7ms even when the tag 
accessing frequency approaches 10. Since we con-
struct a tree with the depth of 20 in this experiment, 
each tag is assigned with 20 keys. Thus, the curve of 
key-updating is enclosed within two lines: one repre-
sents the upper bound (20 keys in a tag are updated) 
and another represents the lower bound (only one key 
is updated). The short key-updating latency of SPA 
enables a reader to support dense access patterns. 
Due to page limitation, results from other experi-
ments are not reported here. 

6. Conclusions 
We proposed a privacy-preserving authentication 

protocol, SPA, to support secure and efficient tag-
reader transactions in RFID systems. By using a dy-
namic key-updating algorithm, SPA enhances the 
security of existing RFID authentication protocols. 
SPA is lightweight with high authentication effi-
ciency: a reader can identify a tag within O(logN) 
tree walking steps. Compared with previous works, 
SPA can effectively defend against both passive and 
active attacks. 
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