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Abstract—Knowledge tracing is an important research topic
in student modeling. The aim is to model a student’s knowledge
state by mining a large number of exercise records. The dynamic
key-value memory network (DKVMN) proposed for processing
knowledge tracing tasks is considered to be superior to other
methods. However, through our research, we have noticed that
the DKVMN model ignores both the students’ behavior fea-
tures collected by the intelligent tutoring system (ITS) and their
learning abilities, which, together, can be used to help model a
student’s knowledge state. We believe that a student’s learning
ability always changes over time. Therefore, this article proposes
a new exercise record representation method, which integrates
the features of students’ behavior with those of the learning abil-
ity, thereby improving the performance of knowledge tracing.
Our experiments show that the proposed method can improve
the prediction results of DKVMN.

Index Terms—Dynamic key-value memory network (DKVMN),
knowledge tracing, student clustering.

I. INTRODUCTION

K
NOWLEDGE tracing is a very important research topic

in intelligent education [1]. By modeling student’s learn-

ing behavior through their past exercise records, knowledge

tracing can assess their mastery of knowledge skills. A stu-

dent’s current knowledge state can then be used to guide them

to spend their time on developing skills where their knowl-

edge is weak. In addition, it is more accurate to evaluate the

student’s knowledge state by using long-term exercise records

than to use the results of one or more tests [2]–[4]. Knowledge

tracing can be formalized as a supervised sequence prediction

problem, as follows: given observations of interactions x0 . . . xt

carried out by a student on a particular learning task, predict

aspects of their next interaction xt+1 [5], [6].

For students, knowledge tracing can help them to develop

a personalized learning path, so that they can quickly and

effectively enter a new field and obtain timely, effective, and
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personalized guidance [7], [8]. For teachers, the knowledge-

tracking algorithm can provide timely and accurate feedback

concerning the students’ mastery of knowledge skills, allow-

ing them to understand the learning situation of students.

Consequently, teachers have more data that can be used to

adapt lesson plans and monitor course progress. As a result,

students can be taught according to their aptitude [9], [10].

Although there are many existing knowledge tracing stud-

ies [11], most of these only model a student’s knowledge

state based on the number of exercises completed and the

results achieved; they tend to ignore the behavioral features

of the students, such as the attempt count and first action.

Nevertheless, these behavior features can help the model to

improve its predictive ability [12]. For example, when ana-

lyzing the behavioral feature “first action,” a student may

independently answer correctly or they may answer correctly

only after being given further help. While the results of the

exercise may be the same, the growth of their knowledge is

different. In addition, a student’s learning ability can change

dynamically over time. For example, with an increase in

the number of exercises and the consequent enhancement of

knowledge state, a student’s learning ability may be improved,

a factor which is also not considered in the existing knowledge

tracing models.

Therefore, in this work, we propose a multifunctional

knowledge tracing model that divides the student’s exercise

records into segments, each containing the same number of

exercises, calculates the learning ability of the students in each

segment, and clusters the students according to their learning

ability. Finally, we carry out cross-fusion of learning ability

features and learning behavior features to improve the dynamic

key-value memory network (DKVMN).

Our main contributions are summarized as follows.

1) We define a learning ability feature, which can dynam-

ically reflect the changes of students’ learning ability

throughout the learning process. This feature can also

distinguish between the learning ability of different

students.

2) We use several student behaviors features in the learning

process to capture more specific information about each

student and, hence, improve the model’s predictions. In

this way, an enhanced exercise record representation is

created, which effectively combines the student’s learn-

ing behavior features with his or her learning ability

features.

3) We improve the reading and writing process of the

DKVMN, so that it can take into account both the
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current learning ability and the learning behavior of the

student when predicting the results of the subsequent

exercises.

II. RELATED WORK

The Bayesian knowledge tracing (BKT) was first proposed

by Corbett and Anderson and applied to the intelligent tutor-

ing system (ITS) [13]. It is the most popular student learning

modeling algorithm [14]. BKT tracks the changes in mastery

of a student’s knowledge skills. By maintaining a continuous

assessment of the student’s current probability of understand-

ing each knowledge skill, and continuously updating that

estimate based on the student’s behavior, the student’s mas-

tery of the knowledge skill can be predicted [15]. Pardos and

Heffernan [16] improved the reliability of students’ predictions

by personalizing the initial knowledge control parameters.

Yudelson et al. proposed to construct multiple personalized

BKT algorithms incrementally and to add specific parame-

ters of the algorithm in batches. The final results showed that

the combination of specific algorithm parameters and multiple

models can improve the performance of the algorithm. In par-

ticular, optimizing students’ learning rate parameters is better

than optimizing prior knowledge parameters [17]. González-

Brenes et al. identified a problem with the BKT algorithm: it

assumes that students will not forget a knowledge skill after

learning it. They addressed this by incorporating forgetting as

a time-decay function in the student prediction model, thereby

improving the prediction performance [18]. Nevertheless, the

BKT model ignores the impact of the exercise order on learn-

ing, and needs to label the corresponding relationship between

each exercise and related knowledge skills in advance, which

greatly increases the task of manual labeling.

A recurrent neural network (RNN) is a time-series model,

which has a high-dimensional representation of a continuous

hidden state feature. An RNN is able to make predictions using

previous information and has a good performance on sequence

prediction problems [19], [20]. Piech et al. [21] applied RNNs

to the knowledge tracing field and achieved good results with

their deep knowledge tracing (DKT) model. DKT uses an

RNN to model the student’s knowledge state. When students

practice through homework, it will try to use the information

in the previous time step to better infer the student’s future

performance. Focusing on the problem of volatility in the

prediction result of the DKT algorithm, Yeung and Yeung [22]

proposed a method of adding three regularization terms to the

loss function of the DKT algorithm to enhance the consis-

tency of the algorithm’s prediction and to improve its accuracy.

Zhang et al. [23] improved the DKT model by incorporating

more features at the exercise level and using an auto encoder

to convert high-dimensional information into low-dimensional

features. Minn et al. [24] proposed an improved DKT model

based on student dynamic clustering, which achieves good

results in knowledge tracing. In summary, we know that adding

rich behavior features can improve the predictive performance

of knowledge tracing models. However, while DKT models

based on RNNs or LSTMs improve prediction accuracy com-

pared with the BKT model, the training time is longer, the

dimensions are increased, and the number of parameters is

greater, thus restricting the wider application of the model.

DKVMNs are a variant of memory-augmented neural

networks (MANNs), a type of model that adds storage modules

and corresponding read-write mechanisms based on traditional

neural networks [25]. DKVMN adds both a static matrix and

a dynamic matrix as external memories, thus getting rid of the

connection between the trainable parameters and the memory

ability of the model; it also makes more efficient use of the

trainable parameters; these changes make it easier to model

long distance dependencies. So far, DKVMN performs the best

in predicting student performance and is the best knowledge

tracing model [26]. However, DKVMN only uses the exercise

label and correctness label as inputs, and ignores such fac-

tors as students’ behavior features, the changes in students’

learning ability after practice, and the differences in learning

ability between students. This can cause DKVMN to model a

student’s knowledge state inaccurately, which, in turn, affects

its ability to predict the results of future exercises.

III. METHOD

Human learning is a process involving practice; we become

proficient through constant practice. However, learning is also

influenced by individual learning ability and individual learning

behavior [27]. Therefore, we propose a DKT model based on

the learning behavior features and learning ability of a student.

Our goal is to predict whether the student answered the

current exercise correctly based on their past exercise records

containing learning behavior and on their learning ability.

Hence, we can evaluate a student’s knowledge state through

the results of long-term exercise sequences. This task can be

formalized as a supervised sequence prediction problem, as

follows: let V = {x1, x2, . . . , xn, gt1, gt2, gt3} denote the input

space and P = {p0, p1} denote the label space. Our model is

to learn a function f: V → P from the training set D = {v, p},

which maps the next exercise xn+1, which has not yet been

done by the student, onto a proper label p ∈ P. p1 means

the exercise was answered correctly, while p0 means the exer-

cise was answered incorrectly. xi = {qi, bi}, where qi is the ith

exercise tag and bi denotes a student’s learning behavior when

(s)he answers the ith exercise. gt1, gt2 and gt3 are the values

of the average learning ability of three groups containing stu-

dents whose ability is good, medium, or poor, respectively.

Table I summarizes our notation.

The model architecture is shown in Fig. 1. The main

stages are Xgboost, student clustering, feature splicing, and the

DKVMN model. In the following sections, we will describe

these stages in detail.

A. Xgboost

In order to carry out exercise record segmentation and

learning ability calculation in follow-up stages, it is necessary

to predict whether the student answered an exercise correctly.

Xgboost performs this task.

Xgboost (extreme gradient boosting) was proposed by

Chen and Guestrin [28]. It is an improved gradient lifting
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TABLE I
MATHEMATICAL NOTATIONS

Fig. 1. Architecture of the proposed model.

learning algorithm, which is a method in boosting. The prin-

ciple is to use the idea of the iterative operation to convert

a large number of weak classifiers into strong classifiers in

order to achieve accurate classification results. Xgboost gen-

erates a weak learner at each step and accumulates it into the

total model. The Xgboost algorithm has the characteristics of

fast running speed, good accuracy, and generalization ability,

making it suitable for our model.

Xgboost takes the student’s exercise number, attempt num-

ber, and prompt request as input. The output is a prediction

of whether the student answered the exercise correctly. These

behavior features allow us to better analyze the student’s

learning process in order to accurately shape the student’s

knowledge state and hence further improve the accuracy of

knowledge tracing.

B. Student Clustering

In this stage, students are clustered into three groups

based on whether their ability is good, medium, or poor.

Distinguishing learning abilities can help us model each stu-

dent’s knowledge state more accurately. A student’s learning

abilities are evaluated based on their previous learning and

exercise-solving abilities. Students’ exercise records are also

segmented, each segment containing the same number of

exercises. For each student in each segment, we use their prob-

ability of answering correctly as a measure of their learning

ability. Then, k-means clustering is used to divide students into

three groups with different learning abilities. The segmenta-

tion reflects the changes in student’s learning abilities as they

do the exercises. We now describe these steps in more detail.

1) Exercise Record Segmentation: We divide each student’s

sequence of exercises into multiple segments according to a

certain length. This has two functions: first, the student’s learn-

ing ability is a dynamic process of change, so it needs to

be re-evaluated in each segment. Second, dividing the student

learning sequence into multiple segments can reduce compu-

tational burden and memory space allocation for learning in

long sequences. In our experiments, we chose a segment that

comprised five exercises.

2) Learning Ability Calculation: Because the student’s

sequence of exercises is a time series, changes in learning abil-

ity can be deduced from changes in exercise results. Therefore,

we express the learning ability by calculating the proportion of

a student’s exercises which are answered correctly—the cor-

rect rate. We define the student’s learning ability value as the

difference between the correct rate and the error rate for the

student’s exercises in the sequence, as follows:

C(x)1:k =

k
∑

t=1

pt == 1

|Nt|
(1)

I(x)1:k =

k
∑

t=1

pt == 0

|Nt|
(2)

R(x)1:k = C(x)1:k − I(x)1:k (3)

where pt is a binary value indicating whether the student has

answered the exercise correctly, C(x)1:k and I(x)1:k are the

correct rate and error rate in a partition of length k, |Nt| is the

total number of student’s exercises in this segment, and R(x)1:k

is the difference between the accuracy rate and the error rate

in this division, that is, the student’s learning ability.

3) K-Means Clustering: Through k-means clustering, stu-

dents are assigned to three groups with similar abilities based

on the learning ability values reflected in each practice seg-

ment. By defining three centroids, each one clusters a given

dataset. The algorithm flow is as follows.

1) Randomly select three points as centroids.

2) Assign each object to the group with the closest centroid.

3) After all the objects have been specified, recalculate the

positions of the three centroids.
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TABLE II
STUDENT GROUP LEARNING ABILITY

4) Repeat steps 2 and 3 until the center of mass no longer

moves.

After the clustering is completed, the average learning abil-

ity of each group can be calculated. Finally, each student in a

group is assigned the ability value calculated for that group.

Table II shows the average learning ability values for students

in different groups and for various segment sizes.

C. Feature Splicing

Crossover is a method of encoding two or more features into

one feature in order to represent the concurrent performance

of these features [29]. We propose the cross-feature vt that

combines a student’s learning ability values as follows:

vt(qt, pt, gt) = qt +
1

act ∗ pt + frt ∗ max(frt) ∗ pt

+ gti (4)

where qt is the exercise number, pt is 1 if the student correctly

answered an exercise (otherwise 0), gt is the learning ability of

the student, and gti indicates the learning ability of the student

group. frt is whether the student asks for help or not, and act

is the number of student attempts. As a new feature, vt is input

to the DKVMN to understand the similarities of exercises and

to track the knowledge that students have.

D. DKVMN Model

The DKVMN model includes three processes: 1) a weight

calculation; 2) a read mechanism; and 3) a write mechanism.

The weight calculation determines the relationship between the

input fusion feature and the knowledge skill. The read mech-

anism is used to predict the student’s exercise result, and the

write mechanism dynamically updates the student’s knowledge

status. The overall structure of the model is shown at the top

of Fig. 1, above. The lower purple part of the figure is the

weight calculation, that is, finding the relationship between

the exercises and the knowledge skills. The upper purple part

is the reading process, which predicts a student’s future results,

and the light brown is the writing process, which updates their

knowledge status according to their record.

In the figure, Mt is an N×M matrix, where N is the number

of memory locations and M is the vector size at each location.

At each timestamp, the input is the fusion feature vt, and the

output is the probability of correctly answering the exercise.

The storage matrix Mt is then updated with the tuple of the

fusion feature and the result of the exercise. vt is an embed-

ding feature that contains the student’s exercise number, the

behavior of the exercise, and the value of the student’s learn-

ing ability (see Section III-C). Add vector at to update each

memory slot. at is a row vector. The value memory is updated

TABLE III
DATASET DESCRIPTION

TABLE IV
DATASET FEATURE NAMES

at each time by it. Specifically, the correlation weight between

the input and the knowledge skill is first calculated by SoftMax

activation.

In the reading process, the student’s mastery of the exer-

cise is obtained by computing the weighted sum of all the

memory slots in the knowledge state matrix Mt. Compared

with the original DKVMN, our model not only considers the

student’s knowledge status but also takes into account the

learning ability of the student group. We apply feature splic-

ing to the degree of knowledge of a student and their learning

ability to form a composite feature (Section III-C), and then

obtain a summary vector through a fully connected layer to

indicate the degree of knowledge of the student and their learn-

ing ability. Finally, we output the probability ft of a student

answering a question correctly through a fully connected layer

with sigmoid activation

ft = Tanh
(

w1

[

rt, vt, gti

]

+ b1

)

. (5)

In the writing process, when the student answers the exer-

cise, the model updates the student’s knowledge state matrix

according to the correctness of the student’s answer. Through

the joint vector vt, which is defined in 4, the student’s knowl-

edge growth after completing this exercise is obtained, and

this is written into the knowledge state matrix. Before adding

new information, the previous content is erased by using the

erasure vector. Then, we update the student’s knowledge status

by updating the vector. This erasing and updating mechanism

simulates the student’s forgetting in the learning process.

IV. EXPERIMENTS

A. Datasets

To validate the effectiveness of our proposed method, we

used the ASSISTment2009 public dataset for the experi-

ments [17]. This dataset is a record of student’s answers to

mathematics exercises collected from the ASSISTments online

tutorial platform and is a standard dataset in the field of knowl-

edge tracing. Table III provides summary information for the

dataset and Table IV shows the main feature names.
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B. Experiment Setup

In our experiments, five-fold cross-validation is used. Each

fold involves randomly splitting the dataset into 80% training

data and 20% test data at the student level. So, both train-

ing and test subsets within a fold contain response records

from different students. In order to measure the performance

of our algorithm and compare it with existing approaches, we

adopt area under curve (AUC) which is a standard measure

in the knowledge tracing field. The input exercise data are

presented to neural networks using “one-hot” input vectors.

For the DKVMN, the learning rate and the number of itera-

tions are set to 0.05 and 50. We learn the initial value of both

the key matrix and the value matrix in the training process.

For the Xgboost and k-means modules, the parameters used

are those provided as defaults in the Python toolbox.

C. Experimental Results

We carried out four experiments. Experiment 1 compares

DKVMN-LA with the knowledge tracking algorithms in the

existing literature, including the three classic algorithms:

1) BKT; 2) DKT; and 3) DKVMN, and the improved algo-

rithms DKT-F and DKT-DSC based on the DKT algorithm;

DKT-F adds behavioral features to DKT, while DKT-DSC

dynamically groups students. In Table V, DKVMN-LA

performs significantly better than state-of-the-art models.

Compared with the standard DKVMN that has an AUC of

81.6%, our DKVMN-LA model achieves an AUC of 91.9%,

which represents a gain of 12%. In addition, our model gives

superior predictions to the latest improved DKT and DKVMN,

as we show in the next experiment.

Experiment 2 compares DKVMN-LA with the DKT-LA

algorithm, which is a knowledge tracking algorithm proposed

by combining the method of this article with the DKT algo-

rithm. The results are in Table VI. We found that in DKT-LA,

there are many improvements in the prediction performance

compared to the original DKT model. However, the model is

still not as good as the model in this article. This is because the

improved dynamic key-value neural network can better track

the student’s knowledge status.

In Experiment 3, the performance of DKVMN-LA with

different segment sizes is investigated. The results are in

Table VII. In this experiment, segments contain 5, 10, 20, and

30 exercises. DKVMN-LA performs the best when each seg-

ment contains five exercises. Generally, we found that when

the number of exercises in each segment is less, the prediction

results of the model are more accurate. This is because the

smaller the segment, the more it reflects the continuous change

of a student’s learning ability with exercises. So, we can prove

that the learning ability features obtained by segmentation

really help improve the performance of the model.

Experiment 4 tries five different combinations of features:

1) attempt count and first action; 2) attempt count, attempt

time, first action, and learning ability; 3) attempt count,

attempt time, and learning ability; 4) attempt time, first action,

and learning ability; and 5) attempt count, first action, and

learning ability. As shown in Table VIII, the algorithm’s

predictive performance is best when using only the three

TABLE V
EXPERIMENT 1: COMPARISON OF DKVMN-LA WITH EXISTING

ALGORITHMS

TABLE VI
EXPERIMENT 2: DKVMN-LA AND DKT-LA COMPARED

TABLE VII
EXPERIMENT 3: PERFORMANCE OF DKVMN-LA WITH DIFFERENT

SEGMENT

TABLE VIII
EXPERIMENT 4: PERFORMANCE OF DKVMN-LA WITH DIFFERENT

FEATURE SPLICINGS

features of combination 5), that is, attempt count, first action,

and learning ability. We think this is because there is a clear

linear relationship between the attempt time and the attempt

count. We have experimentally proved that the method of this

article only needs to collect the two behavioral characteris-

tics of the attempt count and first action to achieve the best

predictive performance, which helps us improve the efficiency

of collecting student record data. In addition, when using com-

bination 5), the prediction performance of the algorithm is

2.2% higher than combination 1). It can be seen that the learn-

ing ability feature has an important influence on the modeling

of a student’s knowledge status.

D. Visualizations

In order to visually demonstrate the learning ability and

interpretability of our approach, we conducted some visual-

ization experiments. Usually, each exercise is associated with

a single knowledge concept. We randomly choose 30 distinct

exercises from the ASSISTment2009 public dataset. These

30 exercises were drawn from five concepts: 1) congruence;
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Fig. 2. Knowledge state of different learning ability. (a) Knowledge state
of Low learning ability. (b) Knowledge state of medium learning ability.
(c) Knowledge state of excellent learning ability.

2) addition and subtraction positive decimals; 3) prime num-

ber; 4) write linear equation from graph; and 5) ordering

fractions. Three examples of students’ changing knowledge

states on these five concepts after they have answered 30

exercises are shown in Fig. 2. Fig. 2(a)–(c) shows the chang-

ing knowledge state of students whose learning ability is low,

medium, and excellent, respectively. Knowledge concepts are

on the left-hand side of the heatmap in Fig. 2. The five knowl-

edge concepts are labeled S52, S278, S84, S66, and S50.

At the bottom of the heatmap, exercise sequences are listed.

(S52, 0) means a student incorrectly answered the exercise that

is associated with knowledge concept S52; while, (S278, 1)

means the student correctly answered the exercise associated

with knowledge concept S278. Blue in the figures indicates

that the student did not master the knowledge concepts at all.

Conversely, green indicates that the student completely mas-

tered the knowledge concepts. The change from blue to green

reflects the change in a student’s mastery of the underlying

knowledge concepts. Each time the student answers an exer-

cise, the concept state of the discovered concept will increase

or decrease. Thus, every horizontal color bar in Fig. 2 shows

the student group’s changing knowledge state relative to the

underlying concepts.

Comparing the three figures, it is obvious that students with

low learning ability improve their knowledge status slowly:

green appears later as they answer questions. In contrast, the

students with excellent learning ability improve their knowl-

edge status quickly, so green appears earlier. For example,

after answering 30 exercises, the low-ability students only

mastered concept S50, while the high-ability ones mastered

all the concepts. We also found that the change of knowledge

state differs between the three student groups when answering

the same exercise. In Fig. 2(a), after low-ability students cor-

rectly answer the exercise associated with S50 five times, they

almost understand S50. In Fig. 2(c), however, high-ability stu-

dents correctly answer the S50 concept only three times before

they totally master it. We can conclude from these results that

our approach is successful at modeling student learning ability.

V. CONCLUSION

In this article, we have proposed DKVMN-LA, a

knowledge-tracking algorithm that combines learning capabili-

ties and behavioral features. DKVMN-LA solves two problems

with existing algorithms. First, they ignore the differences in

learning ability between students, and second, they assume

that students will not change their learning ability through

answering questions. The DKVMN-LA algorithm segments

students’ long-term exercise records, defines and calculates

students’ learning abilities in each segment, and dynamically

clusters students into three different groups. We also proposed

a new exercise record representation method and combined the

learning ability features to improve the DKVMN. Our exper-

iments showed that the proposed model is significantly better

than other models in predicting performance. The original

DKVMN model ignored the student behavior data collected by

the online learning platform and assumed that all students have

the same learning ability, regardless of the difference between

each student’s ability and learning rate. In contrast, our model

improves DKVMN by introducing behavior features derived

from student’s exercises and introducing student’s learning

ability values, determined by how well they learn.
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