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1 Introduction

There are about 79,000 patients waiting for a kidney transplant in the United States as of March

2009. In 2008, about only 16,500 transplants were conducted, about 10,500 from deceased donors

and 6,000 from living donors, while about 32,500 new patients joined the deceased donor waiting list

and 4,200 patients died while waiting for a kidney.1 Although there is a substantial organ shortage,

buying and selling an organ is illegal in many countries in the world, making donation the only

source for kidney transplants. Especially in the last decade, the increase in the number of kidney

transplants came from the utilization of live donors, who are typically relatives, friends, or spouses of

the patients and are willing to donate one of their kidneys. However, many living donors still cannot

be utilized, since the potential donor may not be able to donate to her loved one due to blood-type

incompatibility or tissue rejection. The medical community has proposed innovative ways to utilize

these living donors through live-donor kidney exchanges (Rapaport, 1986). In a live-donor kidney

exchange, recipients with incompatible donors swap their donors if there is cross-compatibility. Since

1991, kidney exchanges have been done mostly in an ad-hoc manner in different countries around

the world. Live-donor kidney exchanges accounted for at least 10% of all live donor transplants in

Korea and the Netherlands in, 2004 (see Park et al., 2004 and de Klerk et al., 2005). The medical

community has endorsed the practice of live-donor kidney exchanges as ethical (Abecassis et al.,

2000). Unlike Korea and Netherlands, in the United States there is no national system to oversee

kidney exchanges as of 2009. Different transplant centers around the country have recently started

kidney exchange programs. For example, New England Program for Kidney Exchange (NEPKE) is

an initiative of the transplant centers in New England together with economists (see Roth, Sönmez,

and Ünver 2005b), and Alliance for Paired Donation (APD) is an initiative of Dr. Michael Rees

at University of Toledo and the authors of the above studies. APD has already convinced a large

number of transplant centers all around the US to participate. United Network for Organ Sharing is

at the stage of launching the national kidney exchange program in the US.2

In many of these programs, a major objective has been to conduct as many transplants as possible.

However, one question has frequently arisen in the implementation stage: How often and how exactly

should the exchange be run? Roth, Sönmez, and Ünver (2004, 2005a) have recently proposed

mechanisms to organize kidney exchanges in a Pareto-efficient and dominant strategy incentive-

compatible fashion under different constraints on exchange sizes and preferences of the recipients for

a static recipient population.

1According to SRTR/OPTN national data retrieved at http://www.optn.org on 3/17/2009.
2In Europe, other than the Netherlands, paired kidney exchange programs have not yet been well organized. The

UK has only recently passed a law that makes kidney exchanges legal. France and Germany have stricter laws, and it
is illegal to have a transplant from an unrelated and emotionally distant live donor, making paired exchanges illegal.
Spain has an excellent deceased donor program. Therefore, live donation is seen as of secondary importance, although
there is overwhelming evidence that the long-run survival rates of live-donor organs are far better than deceased-donor
organs.
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The above studies address the matching aspect of the problem. However, they do not consider the

dynamic aspects of the exchange pool evolution.3 From a more general perspective, in the matching

literature in economics, although there is significant amount of work on mechanism design in static

environments, there is virtually no study on mechanism design for dynamically changing popula-

tions, two recent exceptions withstanding.4 A recent paper by Bloch and Cantala (2009) analyzes

house allocation problems in an overlapping generations framework. In their model, they analyze

assignment mechanisms that are fair, efficient, and independent. Seniority-based assignment rules

characterize these properties when agents are homogeneous. However, when the types of agents

are random, efficient and fair rules only exist with two agent types. Independence and efficiency

are incompatible in this case. Unlike our model, objects are not attached to agents in their model.

Hence, they study assignment rather than exchange. In their model, objects remain in the problem

after agents leave the problem. Thus, assignment of an object is not final. Moreover, their general

preference structure is not compatibility-based, although they characterize Markovian assignment

rules only for a dichotomous model. The second paper related to ours is by Kurino (2008). He

studies an overlapping generations model like the Bloch and Cantala paper. However, he does not

have random types in his model. Moroever, he introduces property rights. He finds extensions of

well-known static mechanisms in the dynamic setting that are individually rational, strategy-proof,

and efficient under restrictions of general preferences. Another closely related domain to ours is

dynamic allocation setting with changing populations and monetary transfers, such as auctions. For

example, Gershkov and Moldovanu (2007 and 2008) and Said (2009) introduce optimal dynamic

mechanisms when agents arrive over time under Poisson processes in different environments under

different objectives.5

We consider a general dynamic problem from the point of view of a central authority (e.g. a health

authority). Each agent (e.g. a recipient) arrives with an object to trade (e.g. a donor). Waiting in

3In the operations research literature, Zenios (2002) considers a dynamic model with only two types of patient-donor
pairs and different outside options. In this model pairs arrive continuously over time but not in a discrete process
like ours. Moreover, since there are only two types of patient-donor pairs and the outside options are different, this
model is substantially different from ours. Our model addresses the matching aspect of the dynamic kidney exchange
problem.

4There is a vast economics literature on the allocation or exchange of indivisible goods, initiated by Shapley and
Scarf (1974), Roth and Postlewaite (1977), Roth (1982), Abdulkadiroğlu and Sönmez (1999), Papai (2000), Ergin
(2000), Ehlers (2002), Ehlers, Klaus, and Papai (2002), Kesten (2004), Sönmez and Ünver (2005, 2006). None of these

works focuses on the stochastic dynamic problem, although Ergin (2000), Ehlers, Klaus and Papai (2002), Sönmez
and Ünver (2006) inspect the problem with static exchange rules under varying populations.

5A recent paper by Abdulkadiroğlu and Loertscher (2006) inspects the dynamic preference formation in house
allocation problems. In other domains, there are several recent studies on optimal mechanisms in dynamic settings.
For example, Jackson and Palfrey (1998) study optimal bargaining mechanisms in a dynamic setting, and Skreta
(2006) studies optimal dynamic mechanism design when the designer cannot commit to a mechanism in the future.
Another topic that is attracting recent attention is optimal auction design when valuation signals of agents evolve over
time (e.g., cf. Bergemann and Välimaki 2006 and Athey and Segal 2007).
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the pool for an exchange is costly. The agent has a need type and objects have object types. The

desirability of an object is determined by its type and the need type of the agent. This compatibility

relation is a partial order. That is: each agent finds an object with a type that is better than or the

same as her own type (other than her own attached object) desirable. Thus, each pair is represented

by a pair type determined by the need type of the agent and type of her paired object. Each pair

type arrives with a stochastic Poisson arrival process.

The central authority’s objective is to minimize the long-run total discounted waiting cost. We

make an assumption in the derivation of the efficient two-way matching mechanism. We assume

that in the long run, there is an arbitrarily large number of underdemanded types of pairs, whose

object types are not compatible with the needs of recipients’ need types. (Later, we show that this

assumption is consistent with real-life arrival probabilities of different pairs for the case of kidney

exchanges.) We show that an interesting characteristic of an efficient two-way matching mechanism

is that it conducts the maximum number of exchanges as soon as they become available, that is:

there is no need to sacrifice one or more currently feasible exchanges for the sake of conducting future

exchanges (Theorem 1). However, this theorem no longer holds when larger exchanges are feasible,

and we derive the efficient multi-way matching mechanism as a threshold matching mechanism under

one additional assumption (Theorems 2 and 3, also see Remark 1 in Appendix B). In the simplified

version of the model, when there are no self-demanded types participating exchange, i.e. types of

pairs with the same agent need and object type, a threshold mechanism relies on a single threshold

vector. Suppose W1 and W2 are two object types that are not comparable under the compatibility

partial order, that is: neither W1 is better than W2 nor W2 is better than W1. Then, the efficient

mechanism considers the number of W1-W2 type pairs (W1 type agents and W2 type paired-objects)

and reciprocal W2-W1 type pairs together. Depending on the frequencies of arrival of different pairs,

one of the two types of threshold mechanisms is efficient. In the first possible solution, the efficient

mechanism conducts the maximum size exchanges as soon as they become available as long as there

are no W2-W1 type pairs. However, if there are some W2-W1 type pairs already available in the

exchange pool, and their number does not exceed a threshold number, then the authority should

not use the W2-W1 type pairs other than matching W1-W2 type pairs. In this case, it should avoid

involving them in larger exchanges that do not have W1-W2 type pairs. Only when the stock of

W2-W1 type pairs exceeds the threshold number should the authority conduct the largest possible

exchanges as soon as they become available, and possibly use W2-W1 type pairs in exchanges without

W1-W2 type of pairs. The second possible solution is just the symmetric version of the first solution,

and instead treats W1-W2 type pairs as the stock variable. The mechanism takes into account all such

non-comparable W1 and W2 types. We show that decisions regarding each incomparable object type

W1 and W2 are independent from those regarding other incomparable object types (Propositions 2

and 6).

Our constraints in the general model are consistent with the medical and institurional constraints

of the kidney exchange problem.
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First, in the medical literature, Gjertson and Cecka (2000) and Delmonico (2004) pointed out

that a recipient is indifferent between two live donor kidneys as long as they are both compatible

with the recipient. We adopt this assumption in our current study and assume that the preferences

of the recipients fall into three indifference classes: being matched to a compatible kidney, being

unmatched, and being matched to an incompatible kidney.6 We also introduce time preferences of

recipients into the dynamic setting. This is consistent with our general model’s assumptions.

Second, the practice of kidney exchange has started by conducting exchanges that include only

two recipients and their incompatible donors. More complicated exchanges that include three or more

recipients (and their donors) take place less frequently, because all transplants of a single exchange

cycle should take place simultaneously. Otherwise, some donors could potentially back out after their

recipients receive transplants given the legal constraint that it is illegal to force a donor to sign a

contract that would commit him to donation. Nevertheless, Roth, Sönmez, and Ünver (2007) have

shown that larger exchanges, especially three-way exchanges including three recipient-donor pairs,

would substantially increase the gains from exchange. In the current paper, we separately derive

efficient dynamic matching mechanisms that conduct two-way exchanges and multi-way exchanges,

which is consistent with our general derivation.

Since blood-type compatibility needed for kidney donations is a special case of the above com-

patibility partial order, the efficient kidney exchange mechanism is a special instance of the general

mechanism under certain assumptions. We compute the efficient mechanism under different pair ar-

rival rates and time discount rates. Additionally, we conduct policy simulations and observe that the

gains under the efficient multi-way kidney exchange mechanism are significantly higher than those

under the efficient two-way mechanism.

2 The General Dynamic Exchange Model

2.1 Exchange Pool

We consider an exchange model in which each agent arrives at the exchange pool with an (indivisible)

object to trade through barter exchange. A pair i consists of an agent ai and her object oi. There is a

requirement type for each agent over the objects and each object belongs to one of these types. Let T
be the finite set of requirement/object types. Since each agent’s requirement and each object belongs

to one of these types, there are |T |2 permutations for each pair. We call each of these permutations
a pair type. The type of a pair is denoted as X-Y where X, Y ∈ T and X is the requirement type

of the agent and Y is the type of her object. Let P = T × T be the set of pair types. For any pair

type X-Y ∈ P, let pX-Y be the probability of a random pair being of type X-Y. We refer to pX-Y as

the arrival probability of pair type X-Y ∈ P. We have
P

X-Y ∈P pX-Y = 1. For any X-Y∈ P, we refer
to Y-X as the reciprocal pair type of X-Y.

6We have the same assumption in Roth, Sönmez, and Ünver (2005a, 2007).
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  A1    A2  Level 1  

B    Level 2    

C    Level 3  

D1    D2  Level 4  

E    Level 5  

Example (a) 

O    Level 1  

A    B  Level 2    

AB     Level 3  

Example (b) 

Figure 1: Example (a) T = {A1, A2, B,C,D1, D2, E} and A1, A2 I
B I C I D1,D2 I E; A1 /IA2;A2 /IA1;D1 /ID2; and D2 /ID1.

Example (b) T = {O,A,B,AB} and O I A,B I AB; A /IB;B /IA.

We define a universal binary relation I over T as follows: for any X,Y∈ T , XIY means that an
object of type X can be consumed by an agent of requirement type Y, and we refer to this as X is

compatible with Y.

We make some restrictions on the compatibility relation I. We assume that I is a partial order,
i.e., it is reflexive, transitive, and antisymmetric.

Though I is not a complete relation (i.e. not a linear order), for simplicity, we assume that for
any type X∈ T , there exists at most one type in Y∈ T that is not comparable with X. That is: for
any X∈ T , there exists at most one Y∈ T such that neither XIY nor YIX is true.7
Based on the compatibility relation, we can partially order types in levels. Let the level set

L = {1, 2, ..., |L|} be the partition of T such that for all K,L ∈ {1, 2, ... |L| − 1} with K < L, if

X∈ K and Y∈ L , then XIY. In this case, we say that X is at a better compatibility level than Y.
Observe that for any L ∈ L, X,Y∈ L with X 6= Y imply X/IY and Y/IX. For each compatibility
type X∈ T , let LX ∈ L be the compatibility level of X, i.e., X∈ LX. Though both notations, levels

and binary relation I, can be used interchangably, we will stick to the latter in most parts of the
paper. We will use levels to quantify the magnitude of difference between levels of different types.

See Figure 1 for two examples of feasible type sets and compatibility partial orders.

An agent cannot consume her own object. Each agent would like to consume another pair’s object

that is compatible with her. We assume that pairs arrive over time with a stochastic (discrete) Poisson

7This assumption is the minimal structure needed to generate a result as in our Theorem 2.
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arrival process in continuous time. Let λ be the arrival rate of the pairs, i.e. the expected number

of pairs that arrive per unit time. Thus, each type X-Y arrives with a Poisson arrival process with

rate pX-Yλ. The exchange pool is the set of the pairs that arrived over time whose agent has not yet

been assigned an object.

Each agent has preferences over objects and over time of waiting in the pool. Compatible objects

are preferred to being unmatched. In turn, being unmatched is preferred to being matched to

incompatible objects.8 Moreover, time spent in the exchange pool is another dimension in the

preferences of agents: waiting is costly. We will model the waiting cost through a fixed cost.

2.2 Exchange

An exchange is a list of pairs (i1, i2, . . . , ik) for some k ≥ 2 such that for any c < k, object oic
is assigned to agent aic+1, and object oik is assigned to agent ai1 . We will sometimes refer to an

exchange by the types of the participating pairs, i.e. as (A1-O1, ...,Ak-Ok) where Ac-Oc is the pair

type of ic. A matching is a set of exchanges such that each pair participates in at most one exchange.

A matching or an exchange is individually rational if it never matches an agent with an incompatible

object. From now on, when we talk about an exchange or a matching, it will be individually rational.

A matching is maximal if it matches the maximum number of pairs possible at an instance of the

pool.

A (dynamic) matching mechanism is a dynamic procedure such that at each time t ≥ 0 it selects
a (possibly empty) matching of the pairs available in the pool. Once a pair is matched at time t by

a matching mechanism, it leaves the pool and its agent receives the assigned object.

Let A(t) represent the set of pairs that arrived at the pool until time t. If a matching mechanism

φ is executed (starting time 0), φ (t, A) is the set of pairs matched by mechanism φ under the flow

A. There are |A(t)|− |φ (t, A)| pairs available at the pool at time t.

2.3 Dynamically Efficient Mechanisms

There is a central authority that oversees the exchanges. For each pair, we associate waiting in the

pool with a monetary cost and we assume that there is a constant unit time cost c > 0 of waiting

for an exchange.9

Suppose that the central authority implements a matching mechanism φ. For any time t, the

8In the context of kidney transplantation, Gjertson and Cecka (2000) point out that each compatible live donor
kidney will last approximately the same amount of time as long as the donor is not too old and in relatively in good
health.

9In the context of kidney exchanges, the alternative option of a transplant is dialysis. A patient can undergo dialysis
continuously. It is well known that receiving a transplant causes the patient to resume a better life (cf. Overbeck et
al., 2005). Also health care costs for dialysis are more than those for transplantation in the long term (cf. Schweitzer
et al., 1998). We model all the costs associated with undergoing continuous dialysis by the unit time cost c.
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current value of expected cost at time t under matching mechanism φ is given as10

Et

£
Cφ (t, A)

¤
=

Z ∞

t

cEt [|A (τ)|− |φ (τ , A)|] e−ρ(τ−t)dτ,

where ρ is the discount rate.

For any time τ , t such that τ > t, we have Et [|A(τ)|] = λ (τ − t) + |A(t)|, where the first term is
the expected number of pairs to arrive at the exchange pool in the interval [t, τ ] and the second term

is the number of pairs that arrived at the pool until time t. Therefore, we can rewrite Et

£
Cφ (t, A)

¤
as

Et

£
Cφ (t, A)

¤
=

Z ∞

t

c
¡
λ (τ − t) + |A(t)|−Et [|φ (τ , A)|] e−ρ(τ−t)

¢
dτ .

Since
R∞
t

e−ρ(τ−t)dτ = 1
ρ
and

R∞
t
(τ − t) e−ρ(τ−t)dτ = 1

ρ2
, we can rewrite Et

£
Cφ (t, A)

¤
as

Et

£
Cφ (t, A)

¤
=

cλ

ρ2
+
|A(t)|
ρ
−
Z ∞

t

cEt [|φ (τ , A)|] e−ρ(τ−t)dτ . (1)

Only the last term in Equation 1 depends on the choice of mechanism φ. The previous terms cannot

be controlled by the central authority, since they are the costs associated with the number of pairs

arriving at the pool. We refer to this last term as the exchange surplus at time t for mechanism φ

and denote it by

ESφ (t, A) =

Z ∞

t

cEt [|φ (τ ,A)|] e−ρ(τ−t)dτ.

We can rewrite it as

ESφ (t, A) =

Z ∞

t

c (Et [|φ (τ, A)|− |φ (t, A)|] + |φ (t, A)|) e−ρ(τ−t)dτ

=
c |φ (t, A)|

ρ
+

Z ∞

t

c (Et [|φ (τ ,A)|− |φ (t, A)|]) e−ρ(τ−t)dτ.

The first term above is the exchange surplus attributable to all exchanges that have been done until

time t and at time t, and the second term is the future exchange surplus attributable to the exchanges

to be done in the future. The central authority cannot control the number of past exchanges at time

t either. Let nφ (τ ,A) be the number of matched recipients at time τ by mechanism φ, and we have11

|φ (t, A)| =
ÃX

τ<t

nφ (τ ,A)

!
+ nφ (t, A) .

10Et refers to the expected value at time t.
11For each finite time t, since with probability 1 the arrival interval between each arrival is finite and bounded from

below, almost surely the total arrivals will be a finite number. However at the limit t=∞, this may not be correct.
Thus, we will use a steady-state representation to handle the limit case.
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We focus on the present and future exchange surplus, which is given as

fESφ
(t) =

cnφ (t, A)

ρ
+

Z ∞

t+
c (Et [|φ (τ ,A)|− |φ (t, A)|]) e−ρ(τ−t)dτ. (2)

A dynamic matching mechanism φ is efficient if for any t, it maximizes the present and future

exchange surplus at time t given in Equation 2. We look for solutions of the problem independent

of initial conditions and time t.12

3 Dynamically Efficient Two-way Matching Mechanisms

In this section, we derive the dynamically efficient two-way matching mechanism. A two-way ex-

change is an exchange involving only two pairs. A matching is a two-way matching if all exchanges

in the matching are two-way exchanges. It will be useful to introduce the following concepts about

two-way exchanges. We say that two pairs i and j are mutually compatible if object oi is compatible

with agent aj and object oj is compatible with agent ai.

The following observation states the important individual rationality constraints that need to be

respected in our derivation of an efficient matching mechanism:

Observation 1: A pair of type X-Y can participate in a two-way exchange only with a mutually
compatible pair, i.e. a pair of type W-Z such that YIW and ZIX.

We partition the set of pair types into four sets PO,PU , PS , and PR as follows:
We refer to the set

PO = {X-Y ∈ P : Y I X and X 6= Y}

as the set of overdemanded pair types. Since YIX, in two-way exchanges these pairs can save pairs
of other W-Z types with YIW and ZIX. These W-Z types can satisfy (a) WIZ with W 6= Z, (b)
W6IZ and Z6IW, (c) W=Z, and (d) ZIW with W 6= Z. Class (d) W-Z types are also included in

PO. We will create other sets for W-Z types in classes (a), (b), and (c) as follows:
We refer to the set

PU = {X-Y ∈ P : X I Y and X 6= Y}

as the set of underdemanded pair types X-Y, which can participate in two-way exchanges with pair

types W-Z with YIW and ZIX. Since WIZ and W 6= Z, by transitivity YIX and X 6= Y. Hence,
underdemanded types can only be matched with certain overdemanded pair types.

We refer to the set

PS = {X-X ∈ P}

as the set of self-demanded pair types. Self-demanded types X-X can only be matched with X-X

type pairs or types W-Z with ZIXIW and Z 6=W, which are certain overdemanded pairs.
12We will define a steady state formally. If such solutions exist, they depend only on the “current state of the pool”

(defined appropriately) but not on time t or the initial conditions.
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We refer to the set

PR = {X-Y ∈ P : X 6I Y and Y 6I X}
as the set of reciprocally demanded types. They can only be matched with their reciprocal types Y-X

and certain pairs W-Z with ZIX,YIW and Z 6=W, which are certain overdemanded pairs.13

Throughout this section we will maintain one assumption:

Assumption 1 (Long-Run Assumption): Under any dynamic matching mechanism, in the long
run, there is an arbitrarily large number of underdemanded pairs from each pair type in the exchange

pool.14

Since we are interested in maximizing the exchange surplus and cannot control the inflow of

the pairs, this assumption will not harm our objective, even though under cost minimization this

assumption leads to ∞ cost for any matching mechanism.

We state the following Lemma directly using the construction of sets PO,PU ,PS ,PR and their
properties stated above (we skip its proof for brevity):

Lemma 1 In a static population of pairs under Assumption 1, where nX-Y denotes the number of

pairs of any type X-Y∈ P, the maximum number of pairs matched through two-way exchanges is

given by15 X
X-Y∈PO

2nX-Y +
X

V-V∈PS
bnV-V
2
c+

X
W1-W2∈PR

min {nW1-W2
, nW2-W1

}

We are ready to state our main result of this section:

Theorem 1 Let dynamic matching mechanism ν be such that it matches only X-Y type pairs with

their reciprocal Y-X type pairs immediately when such an exchange is feasible. Then, under As-

sumption 1,

• mechanism ν is a dynamically efficient two-way matching mechanism; and

• any dynamically efficient two-way matching mechanism conducts a two-way exchange whenever
one becomes feasible.

Let dynamic two-way matching mechanism ν be defined as in the hypothesis of Theorem 1, that

is: for any arriving pair of any type X-Y ∈ P, mechanism ν matches this pair immediately with an

existing Y-X type pair if such a mutually compatible pair exists in the pool, and does not perform

any exchanges, otherwise.

We will prove Theorem 1 using the following proposition:
13We will typically use the notations X-Y, Z1-Z2, V-V, and W1-W2 to denote a generic overdemanded, underde-

manded, self-demanded, and reciprocally demanded pair type, respectively. When it is not ambiguous, we will use X-Y

and W-Z also to denote generic pair types.
14When we discuss the example of kidney exchanges, we will show that regardless of the two-way matching mechanism

used, this assumption will hold under realistic arrival probabilities for the pairs in our application for kidney exchange.
15For any real number x, bxc represents the greatest integer less than or equal to x.
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Proposition 1 Under Assumption 1, within any time interval τ , mechanism ν matches the maxi-

mum number of pairs possible under any two-way matching mechanism.

Proof of Proposition 1: Suppose that Assumption 1 holds. Suppose that mechanism ν is used for

the exchange. Consider a time interval τ > 0 in the long run. Let t0 be the start of this time interval

and t1 = t0 + τ be the end of this time interval. Since each type is matched with its reciprocal type

under mechanism ν, in the long run we have,

(1) for any type Z1-Z2 ∈ PU , by Assumption 1, there will be an arbitrarily large number of type
Z1-Z2 pairs available;

(2) for any type X-Y ∈ PO, since there is an arbitrarily large number of type Y-X pairs available (by
Statement 1 above), for any incoming X-Y type pair i there will exist at least one Y-X type pair that

is mutually compatible, and mechanism ν will immediately match these two pairs, implying that no

type X-Y pairs will remain available;

(3) for any type V-V ∈ PS , whenever x type V-V pairs are available in the exchange pool, mechanism
ν will match 2bx

2
c of these pairs with each other, implying that there will be 0 or 1 type V-V pair

available,

(4) for any W1-W2 ∈ PR, there is either no W2-W1 pair in the pool or there are finitely many. If

there is a W2-W1 type pair, this pair and the incoming pair are mutually compatible and mechanism

ν will immediately match these two pairs. In the pool, there will be either (1) no W1-W2 type pair

and no W2-W1 type pair remaining, (2) no W2-W1 type pair and some W1-W2 type pairs remaining,

or (3) no W1-W2 type pair and some W2-W1 type pairs remaining.

Clearly, the maximum number of exchanges in the interval [t0, t1] is performed by not conducting

any exchanges in interval [t0, t1) and then conducting the maximal exchange at time t1. Since time

interval τ is finite, Statement 1 above is still valid at any time t ∈ [t0, t1], regardless of which
exchanges are conducted in [t0, t1). Therefore, by Lemma 1, the maximum number of transplants

that can be conducted in interval [t0, t1] isX
X-Y∈PO

2nX-Y +
X

V-V∈PS
bnV-V
2
c+

X
W1-W2∈PR

min {nW 1-W 2
, nW 2-W 1

} (3)

where nX-Y is the number of type X-Y pairs that are available at time t1, if no exchange has been

conducted in interval [t0, t1). Moreover for any X-Y ∈ P, this number in Equation 3 can be achieved
by matching each X-Y type pair with a reciprocal type pair, as long as it is possible.

Next consider the scenario, in which mechanism ν is used in interval [t0, t1). Statements 1-4 above

are valid for any time t ∈ [t0, t1] under mechanism ν. Therefore, under mechanism ν, the number of

matched pairs in interval [t0, t1] is

•
P

X-Y∈PO 2nX-Y for the overdemanded and underdemanded pairs by Statements 1 and 2,

•
P

V-V∈PSbnV-V2 c for the self-demanded types by Statement 3, and

•
P

W1-W2∈PRmin {nW 1-W 2
, nW 2-W 1

} for the reciprocally demanded types by Statement 4,

11



and their sum is exactly equal to the expression given in Equation 3, completing the proof of Propo-

sition 1. ♦

Theorem 1 can be proven using Proposition 1.

Proof of Theorem 1: Suppose Assumption 1 holds. Fix time τ in the long run. For any mechanism
φ and any time t > τ , |φ (t, A)|− |φ (τ , A)| is the total number of recipients matched between time τ
and t under mechanism φ when the flow function is given by A, and is maximized by the mechanism

ν by Proposition 1. Since |φ (t, A)| − |φ (τ , A)| is ex-post maximized for φ = ν for any t ≥ τ ,

Eτ [|φ (t, A)|− |φ (τ , A)|] is maximized by φ = ν, as well. Moreover, mechanism ν conducts the

maximum possible number of exchanges at any given point in time as 0 or 2 (permitted by the

two-way exchange restriction). Therefore, nφ (τ ,A) is also maximized by φ = ν. These imply

ES∗φ (τ) = cnφ(τ,A)
ρ

+
R∞
τ

cEτ [|φ (t, A)|− |φ (τ ,A)|] e−ρ(t−τ)dt is maximized for φ = ν, implying that

ν is an efficient two-way matching mechanism. Moreover, it conducts the maximum number of

transplants at each time, completing the proof of Theorem 1. ♦

Note that since we can roughly define an efficient mechanism ν independent of the state of the

pool, we did not introduce an explicit state space for the pool. It turns out that under multi-way

exchanges, an efficient mechanism explicitly depends on the state.

4 Dynamically Efficient Multi-way Matching Mechanisms

In this section, we consider matching mechanisms that allow for not only two-way exchanges, but

larger exchanges as well. We maintain Assumption 1 throughout this section. Hence, there are

arbitrarily many underdemanded pairs in the exchange pool in the long run.

We state Proposition 2 as follows:

Proposition 2 (Necessary and Sufficient Conditions for Matching Underdemanded,
Self-Demanded, and Reciprocally Demanded Types in Multi-Way Exchanges) Suppose
that there exists exactly one overdemanded pair in the exchange pool, and it is of some type X-Y∈ PO.
Then:

• An underdemanded pair of type Z1-Z2 ∈ PU can be matched in a multi-way exchange if and
only if X6IZ2 and Z1 6IY and we use the overdemanded pair; if Y6IZ1 then we use an addi-
tional reciprocally demanded pair of type Y-Z1 ∈ PR; and if Z2 6IX then we use an additional
reciprocally demanded pair of type Z2-X ∈ PR.

• A self-demanded pair of type V-V∈ PS can be matched in a multi-way exchange if and only if

— we use another pair of type V-V,

or

12



— X6IV and V6IY and we use the overdemanded pair; if Y6IV then we use an additional

reciprocally demanded pair of type Y-V∈ PR; and if V6IX then we use an additional

reciprocally demanded pair of type V-X∈ PR.

• A reciprocally demanded pair of type W1-W2 ∈ PR can be matched in a multi-way exchange if
and only if

— we use a reciprocal W2-W1 type pair,

or

— YIZ1 and Z2 IX and we use the overdemanded pair of type X-Y.

The proof of the above proposition is in Appendix A. We also state and prove Proposition 6,

which is in regard to the sizes of maximal exchanges in Appendix A. These two propositions bring

several simplifications to the optimization problem.

Suppose that X-Y∈ PO is the pair type of an arriving overdemanded pair, i.e., YIX and yet

Y6=X. Instead of matching this pair and serving one underdemanded pair (as in two-way exchanges,
for example, by matching it with a pair of type Y-X), we can potentially use this pair in larger

exchanges to serve more underdemanded pairs, if multi-way exchanges are allowed.

It could also be the case that there are multiple reciprocally demanded pairs of different compat-

ibility levels existent in the exchange pool, when the X-Y type overdemanded pair arrives. Without

loss of generality, we can assume that no two of these types are at the same compatibility level. If

they were, we could have matched the pairs of these types with each other in two-way exchanges until

one of them has no more pairs left. It could also be the case that there are multiple self-demanded

pairs at different compatibility levels in the exchange pool. Without loss of generality, we can assume

that no two of these pairs have the same pair type, (since otherwise, if there are k>1 pairs of type

V-V, we could serve them in a k-way exchange as V-V,V-V,...,V-V).

We will refer to the pairs satisfying the conditions in Proposition 2 to be matched using an

overdemanded pair as matchable pairs. We state the following corollary to Proposition 6 about

matchable pairs:

Corollary 1 Under Assumption 1, when there is a single overdemanded type pair of type X-Y, under
an efficient mechanism,

• we match LX-LY underdemanded pairs; and

• decisions regarding matchable self-demanded and reciprocally demanded pairs with object and
agent types located at different compatibility levels of the partial order I are independent from
each other.

13



That is: under an efficient mechanism, not only we match the maximum number of possible un-

derdemanded pairs, but we can always enlarge an exchange by squeezing in a matchable reciprocally

demanded or self-demanded pair belonging to a different compatibility level than the ones in the

exchange, at the cost of replacing only underdemanded pairs in the exchange with different ones.

Suppose an exchange E has been fixed with a single overdemanded pair. Then we can squeeze in a

reciprocally demanded pair (if the conditions in Proposition 2 are satisfied) without affecting the rest

of the overdemanded, reciprocally demanded, and self-demanded pairs in E, and match the same

number of underdemanded pairs as E does. We can almost do the same thing using a self-demanded

pair except if there is already another self-demanded pair of a compatibility type that is incomparable

to this pair. In the latter case, a new reciprocally demanded pair belonging to this compatibility

level is also needed (see Footnote 32). The new exchange may replace at most two underdemanded

pairs of E with new ones. Since by Assumption 1 underdemanded pairs are abundant, this minimal

change will have no effect on optimization. An example of such insertions are given below using the

type sets in Figure 1(a).

An example regarding overdemanded type pairs helping out other pairs in multi-way
exchanges: Consider the types in Figure 1(a). Suppose that an E-A1 type overdemanded pair
arrives under Assumption 1. E-A1 can be used to match all underdemanded, self-, and reciprocally

demanded pairs. Figure 2 shows a number of exchanges that can be conducted through the E-A1
type pair. Exchange (a) is conducted to match the maximum number of underdemanded pairs,

which is LA1 − LE = 4. In Exchange (b), we squeeze in an A1-A2 type reciprocally demanded pair

by replacing pair 3 in Exchange (a) with pair 7. In Exchange (c), we additionally squeeze in a D2-D2
type self-demanded pair by replacing pairs 4 and 5 in Exchange (b) with pairs 8 and 10 respectively.

In Exchange (d), we squeeze in a D1-D1 type self-demanded pair. However, there is already another

pair at the same compatibility level, namely pair 9 of type D2-D2. Thus, we need an additional

D1-D2 or D2-D1 type reciprocally demanded pair to accommodate this new pair together with pair

9. In the figure, we use pair 12 of type D1-D2 as a "bridge pair" between D1-D1 and D2-D2 type

pairs. In this case, we also replace underdemanded pair 8 with pair 4. ♦

All of the above results assume that there exists at most one overdemanded pair in the pool.

However, if we do not match an overdemanded pair immediately, there can be more than one. We

state one other assumption, which will ensure that an overdemanded pair will never be kept in the

pool.

Suppose that W1-W2 and W2-W1 are two reciprocally demanded pair types at the same com-

patibility level. We show that as long as the difference between W1-W2 and W2-W1 type arrival

frequencies is not large, overdemanded type pairs will be matched immediately under the efficient

mechanism. The proof of this proposition is given in Appendix A.

Proposition 3 Suppose Assumption 1 holds. If for all W1-W2 and W2-W1 ∈ PR, pW1-W2 and

pW2−W1 are sufficiently close to each other, then under any dynamically efficient multi-way matching

14



a1  ⎯  o1 
E  ⎯ A1 

  a4  ⎯ o4 
C  ⎯ D1 

a5  ⎯ o5 
D1 ⎯ E 

a2  ⎯ o2 
A1 ⎯ B 

a3  ⎯ o3 
B ⎯ C 

a1  ⎯  o1 
E  ⎯ A1 

a7  ⎯ o7 
A2 ⎯ B 

a3  ⎯ o3 
B ⎯ C 

a4  ⎯ o4 
C  ⎯ D1 

a5  ⎯ o5 
D1 ⎯ E 

a6  ⎯ o6 
A1 ⎯ A2 

      (b) 

      (c) 

      (a) 

a1  ⎯  o1 
E  ⎯ A1 

  a3  ⎯ o3 
  B ⎯ C

  a8  ⎯ o8 
 C  ⎯ D2

 a10  ⎯o10 
 D2 ⎯ E

a6  ⎯ o6 
 A1 ⎯ A2

 a9 ⎯ o9 
 D2 ⎯ D2 

a11 ⎯ o11 
 D1 ⎯ D1 

a7  ⎯ o7 
 A2 ⎯ B

a1  ⎯  o1 
E  ⎯ A1 

  a3  ⎯ o3 
  B ⎯ C

  a4  ⎯ o4 
 C  ⎯ D1

 a10  ⎯ o10 
  D2 ⎯ E

a6  ⎯ o6 
 A1 ⎯ A2

 a9 ⎯ o9 
 D2 ⎯ D2 

a7  ⎯ o7 
 A2 ⎯ B

a12 ⎯ o12 
 D1 ⎯ D2 

      (d) 

Figure 2: Examples of multi-way exchanges that can be conducted through an E-A1 type overde-

manded pair for the pair types given in Figure 1(a).
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mechanism, overdemanded type pairs are matched as soon as they arrive at the exchange pool.

We state the hypothesis of this proposition as an assumption.

Assumption 2 (Assumption on Generic Arrival Rates of Reciprocally Demanded Types):
For all W1-W2 and W2-W1 ∈ PR, pW1-W2 and pW2−W1 are sufficiently close to each other so that all

overdemanded pairs are matched immediately under an efficient mechanism.

Under Assumptions 1 and 2, since an overdemanded pair will be matched immediately when it

arrives, we will only need to make decisions in situations in which multiple exchanges of different sizes

are feasible. Thus, using multi-way exchanges, we can benefit from not conducting the largest feasible

exchange currently available and holding onto some of the pairs, which can currently participate in

an exchange, in the expectation of saving more pairs sooner.

For example, consider a situation in which an overdemanded X-Y type pair arrives at the pool,

while a reciprocally demanded W1-W2 type pair which can be matched using the X-Y type pair is

also available.

By Corollary 1, the decisions regarding the W1-W2 type pair are independent from decisions

regarding other reciprocally demanded pair types except type W2-W1.16 Since by Assumption 1

there is an excess number of underdemanded type pairs in the long run, by Corollary 1 there are two

candidates for an optimal exchange: for some number n

• an n-way kidney exchange without the W1-W2 type pair or

• an (n+ 1)-way exchange including the W1-W2 type pair.17

Which exchange should the central authority choose?

We answer this question by converting the problem to an embedded Markov decision process

with a state space consisting of |P| dimensional integer vectors that show the number of pairs in the
pool belonging to each pair-type.18,19 There is additional structure to eliminate some of these state

variables under Assumptions 1 and 2:

16When there is a W2-W1 type pair, we can immediately match this pair with the W1-W2 type pair. Thus suppose
that there is no W2-W1 pair available in the pool.
17If there are also W1-W1 and W2-W2 type pairs existent in the pool, then the decision is between

— an n-way exchange without a W1-W2 type pair and with one of the two self-demanded pairs, and

— an n+ 2-way exchange that additionally matches a W1-W2 type pair and the other self-demanded pair.

18See Puterman (1994) for an excellent survey of continuous time and discrete time Markov decision processes.
19Since the pairs arrive according to a Poisson process, which is memory-less, solving the problem only for this

Markov decision process with |P| variables will also provide a solution of the original problem stated in Equation
2. Moreover, this solution will be independent of other characteristics such as the inflow and match history of the
exchange, time, and initial conditions.
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• For the overdemanded types: If an overdemanded pair i of type X-Y ∈ PO arrives, by Propo-
sition 3, pair i will be matched immediately in some exchange. Hence, the number of overde-

manded pairs remaining in the pool is always 0.

• For the underdemanded types: By Assumption 1, there will be an arbitrarily large number of
underdemanded pairs. Hence, the number of underdemanded pairs is always ∞.

• For the self-demanded types: Whenever a self-demanded pair i of type V-V ∈ PS is available
in the exchange pool, as an implication of Corollary 1, the decisions may be complicated

by the existence of other self-demanded and reciprocally demanded type pairs in the same

compatibility level. Selection of other pairs in an exchange may affect which self-demanded

type pairs will be used if different type pairs are simultaneously available. A self-demanded

type can never save an underdemanded or reciprocally demanded pair without the help of an

overdemanded or reciprocally demanded pair(s) by Proposition 2. On the other hand, if there

is more than 1 such type of a pair, then we can match all such pairs together in an exchange.

This and the above observations imply that under an efficient matching mechanism, for any

V-V ∈ PS , at steady-state there will be either 0 or 1 V-V type pair.

Therefore, self-demanded types’ effect to the reduced state space will be reflected by 4 additional

state variables, each getting values of either 0 or 1. We first derive the efficient dynamic

matching mechanism by ignoring the self-demanded type pairs; then we will reintroduce the self-

demanded types to the problem and comment on the dynamically efficient matching mechanism

for our leading example of kidney exchanges in Appendix B.

Assumption 3 (No Self-Demanded Types Assumption): There are no self-demanded types
available for exchange and pV-V = 0 for all V-V ∈ P.

• For the reciprocally demanded types: By the above analyses, there are no overdemanded and
self-demanded type pairs available and there are infinitely many underdemanded type pairs.

Therefore, the state of the exchange pool can simply be denoted by the number of reciprocally

demanded pairs. On the other hand any reciprocally demanded pairs of types W1-W2 and W2-

W1 ∈ PR can be matched in a two-way exchange. Moreover, by Proposition 2, a reciprocally
demanded type pair cannot save an underdemanded pair in an exchange without the help of

an overdemanded pair. Hence, the most efficient use of W1-W2 and W2-W1 type pairs is to

be matched with each other in a two-way exchange. Therefore, under the efficient matching

mechanism, a W1-W2 and W2-W1 type pair will never remain in the pool together, but will be

matched via a two-way exchange.

Let PR∗ ⊆ PR be fixed such that for all W1-W2 ∈ PR

W1-W2 ∈ PR
∗ ⇐⇒W2-W1 6∈ PR

∗
.
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That is: For each compatibility level with two object types W1 and W2, only one pair type

W1-W2 is in PR
∗
.

By the above observation, we can simply denote the state of the exchange pool by an integer

vector s = (sW1-W2)W1-W2∈PR∗ , such that for all W1-W2 ∈ PR
∗
, if sW1-W2 > 0, then sW1-W2

refers to the number of W1-W2 type pairs in the exchange pool, and if sW1-W2 < 0, then

|sW1-W2| refers to the number of W2-W1 type pairs in the exchange pool. Formally, sW1-W2 is

the difference between the number of W1-W2 type pairs and W2-W1 type pairs in the pool,

and only one of these two numbers can be non-zero. Let S = Z|PR
∗| be the state space.

In our running example explored in Figure 1(a), we can set PR∗ = {A1-A2,D1-D2} and S = Z2.

4.1 Markov Chain Representation

In this subsection, we characterize the transition from one state to another under a dynamically

efficient matching mechanism by a Markov chain when Assumptions 1, 2, and 3 hold:

Fix W1-W2 ∈ PR
∗
. By Corollary 1, the decisions regarding pairs of types W1-W2 and W2-W1

are independent from decisions regarding other reciprocal types. Therefore, we focus just on W1-W2

and W2-W1 type pairs. Hence, we consider the state (component) of the pool regarding W1-W2 and

W2-W1 types, sW1-W2. Suppose that sW1-W2 > 0, i.e. there are only W1-W2 type pairs in the pool,

but no W2-W1 type pairs. We define the following partition of the overdemanded pairs:

PO (W1-W2) =
©
X-Y ∈ PO :W2 I X and Y IW1

ª
,

PO (˜W1-W2) = PO\PO (W1-W2) .

By Proposition 2, PO (W1-W2) is the set of overdemanded pairs that are required to match W1-W2

type pairs; and PO (˜W1-W2) is the set of remaining overdemanded pairs.

Next, we will analyze decisions regarding W1-W2 type pairs:

Assume that an X-Y type pair arrives. Three cases are possible regarding X-Y:

1. X-Y∈ PO: By Assumption 2 and Proposition 3, we need to match the X-Y type pair imme-
diately. Moreover, we need to match LX-LY underdemanded type pairs in such an exchange;

otherwise such an exchange will not be efficient by Assumption 1 and Corollary 1. We isolate

ourselves from all decisions regarding any type of reciprocally demanded pairs, but W1-W2 and

W2-W1 type pairs. Suppose that E is a feasible n-way exchange for some n ≥ 2 that can match
LX-LY underdemanded pairs, the X-Y type pair i, and possibly some reciprocally demanded

pairs in an efficient way, but no W1-W2 type pairs. We have two cases regarding the decision

for W1-W2 type pairs:

• X-Y∈ PO (˜W1-W2): By Proposition 2 and the fact that there are no W2-W1 pairs in the

pool, there is no feasible exchange that can match a W1-W2 type pair. Thus, exchange E

is an efficient exchange.
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• X-Y∈ PO (W1-W2): By Corollary 1, instead of exchange E, we can conduct an (n+ 1)-

way exchange, E0, including the overdemanded and reciprocally demanded type pairs, the

same number of underdemanded type pairs, and one more reciprocally demanded pair

from the W1-W2 type. In this case, we have two possible actions: conduct exchange E

(smaller exchange) or conduct exchange E0 (larger exchange). If E0 is conducted, the state

component for W1-W2 and W2-W1 type pairs decreases to sW1-W2 − 1, since one fewer
W1-W2 type pair will remain in the exchange pool.

2. X-Y ∈ PU : By Assumption 2 and Proposition 3, there are no overdemanded pairs available in
the pool. And by Proposition 2, no exchanges are feasible.

3. X-Y ∈ PR: Three cases are possible:

• X-Y = W1-W2: Since there are no W2-W1 type pairs, and no overdemanded pairs (by

Assumption 2 and Proposition 3), by Proposition 2, there are no feasible exchanges, and

the state component for W1-W2 and W2-W1 type pairs increases to sW1-W2 + 1.

• X-Y = W2-W1: A two-way exchange can be conducted using a W1-W2 type pair in the

pool and the arriving X-Y type pair i. This is the only feasible type of exchange. Since

matching a W2-W1 type pair with a W1-W2 type pair is the most efficient use of these

types of pairs, we need to conduct such a two-way exchange. The state component for

W1-W2 and W2-W1 type pairs decreases to sW1-W2 − 1.

• X-Y 6∈ {W1-W2,W2-W1}: By Proposition 2, there is no feasible exchange regarding W1-

W2 type pairs.

Figure 3 summarizes how the state of the pool regarding W1-W2 and W2-W1 type pairs evolves

for sW1-W2 > 0.

For sW1-W2 < 0, i.e., when |sW1-W2| W2-W1 type pairs are available in the exchange pool, we

observe the symmetric version of the above evolution. For sW1-W2 = 0, i.e., when there are no W1-

W2 and W2-W1 type pairs available in the exchange pool, the evolution is somewhat simpler. Figure

4 summarizes the transitions from state component sW1-W2 = 0. The only state transition regarding

sW1-W2 occurs when a W1-W2 type pair arrives (to state component sW1-W2 =1), or when a W2-W1

type pair arrives (to state component sW1-W2 = −1).

4.2 Bellman Equations

In this subsection, we derive the Bellman Equations that will be used to find the efficient matching

mechanism. Let τ 1 be the time between two arrivals. Since the arrival process is a Poisson process

with arrival rate λ, where λ is the expected number of arrivals in unit time, then τ 1 is distributed
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with an exponential distribution with parameter λ, that is: the probability density function of τ 1 is

λe−λτ1. Then, the expected total discounting that occurs until a new pair arrives is given by

E
£
e−ρτ1

¤
=

Z ∞

0

λe−ρτ1e−λτ1dτ 1 =
λ

λ+ ρ
.

When a pair is matched in the exchange pool, the surplus related to the pair is
R∞
0

ce−ρτdτ = c
ρ
.20

Using the analyses in the previous subsection, under Assumptions 1, 2, and 3, we can state

Bellman equations for the reduced continuous time Markov process. By Proposition 2 and Corollary

1, ES (s), the total surplus at state s ∈ S under the efficient rule, can be written as the sum of

surpluses regarding each type:

ES (s) =
X

X-Y∈PO
ESX-Y +

X
V-V∈PS

ESV-V +
X

W1-W2∈PR∗
ESW1-W2 (sW1-W2 )

where

• ESX-Y for each type X-Y∈ PO is equal to λpX-Y
ρ
(LX − LY + 1)

c
ρ
where

∞X
m=1

µ
λpX-Y

λpX-Y + ρ

¶m

=
λpX-Y
ρ

is the expected total discounting related to all future incoming X-Y type pairs, LX −LY is the

number of underdemanded type pairs, and 1 is the number of the overdemanded pair that can

be matched regardless of the reciprocally demanded pairs matched. Since underdemanded types

cannot be matched without the help of overdemanded types (by Proposition 2), we incorporate

their surplus to the surplus of overdemanded types.

• ESV-V = 0 for all V-V∈ PS by Assumption 3.

• ESW1-W2 (sW1-W2) is the surplus related to reciprocally demanded types W1-W2 andW2-W1, for

each W1-W2 ∈ PR
∗
and sW1-W2 ∈ Z. It can be maximized independently from other surpluses

ESW3-W4 (sW3-W4) for all W3-W4 ∈ PR
∗\ {W1-W2} and sW3-W4 ∈ Z by Corollary 1.

From now on, we focus on the exchange surplus related to reciprocally demanded types. Fix

W1-W2 ∈ PR
∗
. For sW1-W2 > 0, exchange surplus for types W1-W2 and W2-W1 is stated as

ESW1-W2 (sW1-W2) (4)

=
λ

λ+ ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ X
X-Y∈PO(˜W1-W2)∪PU∪PR\{W1-W2,W2-W1}

pX-Y

⎞⎠ESW1-W2 (sW1-W2)

+

⎛⎝ X
X-Y∈PO(W1-W2)

pX-Y

⎞⎠maxnESW1-W2 (sW1-W2) , ESW1-W2 (sW1-W2 − 1) + c
ρ

o
+pW1-W2ESW1-W2 (sW1-W2 + 1) + pW2-W1

³
ESW1-W2 (sW1-W2 − 1) + 2c

ρ

´

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

20We will later observe that the optimal matching mechanism is independent of how this individual surplus is
calculated. Thus, it is robust to the interpretation of surplus.
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On the right-hand side of Equation 4, (1) the first row considers the case when an overdemanded

pair that cannot be used in matching a W1-W2 type pair or an underdemanded pair or a reciprocally

demanded pair of types other than W1-W2 and W2-W1 arrives; (2) the second row considers the case

when an overdemanded pair that can be used in matching a W1-W2 type pair arrives, leading to a

decision of either matching the W1-W2 type pair or not together with the efficient size exchanges

decided for other types; and (3) the third row considers the case when a W1-W2 type pair arrives,

leading to an increase in the state component, and when a W2-W1 type pair arrives, reducing the

state component by conducting a two-way exchange and matching one W2-W1 and one W1-W2 type

pairs.

We can rewrite Equation 4 by dividing both sides of the equation by c
ρ
and settingES∗W1-W2

(sW1-W2) =
ρ
c
ESW1-W2 (sW1-W2) as follows:

ES∗W1-W2
(sW1-W2) (5)

=
λ

λ+ ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ X
X-Y∈PO(˜W1-W2)∪PU∪PR\{W1-W2,W2-W1}

pX-Y

⎞⎠ES∗W1-W2
(sW1-W2)

+

⎛⎝ X
X-Y∈PO(W1-W2)

pX-Y

⎞⎠max©ES∗W1-W2
(sW1-W2) , ES

∗
W1-W2

(sW1-W2 − 1) + 1
ª

+pW2-W1ES
∗
W1-W2

(sW1-W2 + 1) + pW1-W2

¡
ES∗W1-W2

(sW1-W2 − 1) + 2
¢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Note that since by Assumption 3, pV-V = 0 for all V-V∈ PS , we have

X
X-Y∈PO(˜W1-W2)∪PU∪PR\{W1-W2,W2-W1}

pX-Y = 1−

⎛⎝ X
X-Y∈PO(W1-W2)

pX-Y

⎞⎠− pW1-W2 − pW2-W1

Similarly, we can write the Bellman Equation for state components sW1-W2 < 0 as follows:

ES∗W1-W2
(sW1-W2) (6)

=
λ

λ+ ρ

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

⎛⎝ X
X-Y∈PO(˜W2-W1)∪PU∪PR\{W1-W2,W2-W1}

pX-Y

⎞⎠ES∗W1-W2
(sW1-W2)

+

⎛⎝ X
X-Y∈PO(W2-W1)

pX-Y

⎞⎠max©ES∗W1-W2
(sW1-W2) , ES

∗
W1-W2

(sW1-W2 + 1) + 1
ª

+pW2-W1ES
∗
W1-W2

(sW1-W2 − 1) + pW1-W2

¡
ES∗W1-W2

(sW1-W2 + 1) + 2
¢

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

For state component 0, the Bellman equation is

ES∗W1-W2
(0) =

λ

λ+ ρ

⎡⎢⎢⎣
⎛⎝ X
X-Y∈PO∪PU∪PR\{W1-W2,W2-W1}

pX-Y

⎞⎠ES∗W1-W2
(0)

+pW1-W2ES
∗
W1-W2

(1) + pW2-W1

¡
ES∗W1-W2

(−1)
¢
⎤⎥⎥⎦ . (7)
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The following observations will be useful for our analysis in the next section. They follow from

the formulation of the problem.

Observation 2: If an overdemanded pair that can be used to match a W1-W2 pair arrives and yet

the smaller exchange without any W1-W2 type pair is chosen at a state component sW1-W2 > 0, then

ES∗W1-W2
(sW1-W2) ≥ ES∗W1-W2

(sW1-W2 − 1) + 1. If the larger exchange with a W1-W2 type pair is

chosen, then ES∗W1-W2
(sW1-W2) ≤ ES∗W1-W2

(sW1-W2 − 1) + 1.

Observation 3: If an overdemanded pair that can be used to match a W2-W1 pair arrives and yet

the smaller exchange without any W2-W1 type pair is chosen at a state component sW1-W2 < 0, then

ES∗W1-W2
(sW1-W2) ≥ ES∗W1-W2

(sW1-W2 + 1) + 1. If the larger exchange with a W2-W1 type pair is

chosen, then ES∗W1-W2
(sW1-W2) ≤ ES∗W1-W2

(sW1-W2 + 1) + 1.

The solution for ES∗W1-W2
(sW1-W2) in Equations 5, 6, and 7 gives the normalized efficient exchange

surplus regarding W1-W2 and W2-W1 type reciprocally demanded pairs. Does a solution exist to

these equations, and if so, is it unique? The following proposition answers this question affirmatively.

It is proven in Appendix A.

Proposition 4 For any W1-W2 ∈ PR
∗
, there exists a unique solution ES∗W1-W2

: Z → R+ to the
Bellman Equations given in Equations 5, 6, and 7.

4.3 The Efficient Matching Mechanism

A (deterministic) Markov matching mechanism φ is a matching mechanism that chooses the same

action whenever the Markov chain is in the same state. In our reduced state and action problem, a

Markov matching mechanismmakes multiple decisions at a state depending on the type of an arriving

pair and the number and the types of reciprocally demanded pairs in the pool. For each reciprocally

demanded type W1-W2 existing in the pool, when an overdemanded type pair that can be used to

match a W1-W2 type pair arrives, the two decisions are (a) conduct an exchange without a W1-W2

pair, but with the maximum possible number of underdemanded pairs (action do-not-match), or (b)

conduct an exchange with a W1-W2 pair and the maximum possible number of underdemanded pairs

(action match). The remaining choices of the Markov mechanism are straightforward: It chooses

an exchange with the maximum number of underdemanded pairs when such an exchange becomes

feasible as outlined in Figure 3 for positive states, Figure 4 for state zero, and the symmetric version

of Figure 3 for negative states. Formally, φ : S → {do-not-match,match}|PR
∗ | is a Markov matching

mechanism.

A Markov matching mechanism φs,s : S → {do-not-match,match}|PR
∗| is a threshold matching

mechanism with thresholds s, s ∈ S with s ≤ 0 and s ≥ 0, if for any W1-W2 ∈ PR
∗
,

φs,sW1-W2
(s) =

(
do-not-match if sW1-W2

≤ sW1-W2 ≤ sW1-W2

match if sW1-W2 < sW1-W2
or sW1-W2 > sW1-W2

,
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where φs,s (s) =
³
φs,sW1-W2

(s)
´
W1-W2∈PR∗

.

When an overdemanded pair arrives, a threshold matching mechanism conducts the largest ex-

change that does not use existing W1-W2 or W2-W1 type pairs (do-not-match option) as long as

the number of W1-W2 or W2-W1 type pairs is not greater than the threshold numbers, sW1-W2 and¯̄
sW1-W2

¯̄
respectively; otherwise it conducts the largest possible exchanges including the existing

W1-W2 or W2-W1 type pairs (match option).

Our main theorem of this section is as follows:

Theorem 2 Suppose Assumptions 1, 2, and 3 hold. There exist s∗W1-W2
= 0 and s∗W1-W2

≤ 0,

or s∗W1-W2
≥ 0 and s∗W1-W2

= 0 for each W1-W2 ∈ PR
∗
such that φs

∗,s∗ is a dynamically efficient

multi-way matching mechanism.

The proof of Theorem 2 is in Appendix A. Through this theorem, we show that there exists

a dynamically efficient matching mechanism, which is a special kind of a threshold mechanism. It

stocks W1-W2 or W2-W1 type pairs, and does not use them in larger exchanges as long as the stock

of the control group is less than or equal to s∗W1-W2
or
¯̄
s∗W1-W2

¯̄
, respectively. Either the number of

W1-W2 type pairs or W2-W1 type pairs is the state variable, but not both. Under the first type of

solution, the number of W2-W1 type pairs is the state variable. As long as the number of W2-W1 type

pairs in the pool is zero, regardless of the number of W1-W2 type pairs, when the next arrival of an

overdemanded pair occurs, the first type of efficient mechanism conducts the maximal size exchanges

possible. If there are W2-W1 type pairs and their number does not exceed the threshold number¯̄
s∗W1-W2

¯̄
, then these pairs are exclusively used to match incoming W1-W2 type pairs in two-way

exchanges. On the other hand, if the number of W2-W1 type pairs exceeds the threshold number¯̄
s∗W1-W2

¯̄
, they should be used in maximal exchanges which can be (1) a two-way exchange involving

a W1-W2 type pair if the incoming pair type is W1-W2, or (2) a multi-way exchange involving an

overdemanded pair in PO (W2-W1). The other types of maximal exchanges are conducted by the

efficient mechanism as soon as they become feasible. The second possible solution is the symmetric

version of the above mechanism taking the number of W1-W2 type pairs as a state variable.

Next, we specify the efficient mechanism more precisely.

Theorem 3 Suppose Assumptions 1, 2, and 3 hold. Let W1-W2 ∈ PR
∗
. Suppose that φs

∗,s∗ is an

efficient multi-way matching mechanism.

• If pW1-W2 ≥ pW2-W1, that is: the W1-W2 type arrives at least as frequently as the W2-W1 type,

and
X

X-Y∈PO(W1-W2)

pX-Y <
X

X-Y∈PO(W2-W1)

pX-Y, that is: the overdemanded types that can match

W1-W2 type pairs in larger exchanges arrive less frequently than those for the W2-W1 type,

then s∗W1-W2
≤ 0 and s∗W1-W2

= 0.

• If pW1-W2 = pW2-W1 and
X

X-Y∈PO(W1-W2)

pX-Y =
X

X-Y∈PO(W2-W1)

pX-Y, then s∗W1-W2
= 0 and s∗W1-W2

=

0, i.e., maximal size exchanges are conducted whenever they become feasible.
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• If pW1-W2 ≤ pW2-W1, and
X

X-Y∈PO(W1-W2)

pX-Y >
X

X-Y∈PO(W2-W1)

pX-Y, then s∗W1-W2
= 0 and

s∗W1-W2
≥ 0.

Proof of Theorem 3: Let Assumptions 1, 2, and 3 hold. Let W1-W2 ∈ PR
∗
.

• Let pW1-W2 ≥ pW2-W1 and
X

X-Y∈PO(W1-W2)

pX-Y <
X

X-Y∈PO(W2-W1)

pX-Y. By Theorem 2, threshold

mechanism φs
∗,s∗ is efficient. Hence, we have s∗W1-W2

= 0 and s∗W1-W2
≤ 0, or s∗W1-W2

≥ 0 and
s∗W1-W2

= 0 such that φs
∗,s∗ is a dynamically efficient multi-way matching mechanism. If we

conducted maximal number of exchanges at every state, there will be excess W1-W2 type pairs

on average remaining at the pool. Suppose s∗W1-W2
> 0. We will have even more excess W1-W2

type pairs on average, since we do not always match them in larger exchanges. Therefore, the

expected surplus under mechanism φ
s∗−(W1-W 2)

,0 , s∗−(W1-W2)
,0 is higher than under mechanism

φs
∗,s∗ , contradicting the claim that the latter one is efficient. Thus, s∗W1-W2

= 0. By Theorem

2, s∗W1-W2
≤ 0.

• Let pW1-W2 = pW2-W1 and
X

X-Y∈PO(W1-W2)

pX-Y =
X

X-Y∈PO(W2-W1)

pX-Y. Then, the Bellman Equa-

tions stated in Equation 5 for positive states and in Equation 6 for negative states are com-

pletely symmetric, implying that ES∗W1-W2
(sW1-W2) = ES∗W1-W2

(−sW1-W2) for any sW1-W2 ∈ Z.
Suppose that s∗W1-W2

< 0. Then at state component -1 regarding W1—W2 types, the do-not-

match option is executed. By Observation 3, we have ES∗W1-W2
(−1) ≥ ES∗W1-W2

(0)+1. Then,

ES∗W1-W2
(1) = ES∗W1-W2

(−1) ≥ ES∗W1-W2
(0) + 1 as well, implying together with Observation

3 that the do-not-match option is executed for W1-W2 type pairs at state component 1, and

that s∗W1-W2
> 0. However, s∗W1-W2

< 0 and s∗W1-W2
> 0 contradict Theorem 2. Therefore,

s∗W1-W2
= 0. With the symmetric argument, we show that s∗W1-W2

= 0.

• Let pW1-W2 ≤ pW2-W1 and
X

X-Y∈PO(W1-W2)

pX-Y >
X

X-Y∈PO(W2-W1)

pX-Y. The symmetric argument

of the first part of the proof holds. ♦

The intuition behind Theorem 3 can be stated as follows: W1-W2 (W2-W1) type pairs are most

efficiently used in matching W2-W1 (W1-W2) type pairs in two-way exchanges. This is true because,

by Proposition 2, these two reciprocally demanded pair types cannot be used to save any underde-

manded type pairs. Moreover, the use of overdemanded pairs exclusively to save W1-W2 and W2-W1

type pairs is costly, since they can instead be used to save underdemanded pairs which are abundant.

Consider a situation in which pW1-W2 ≥ pW2-W1 and
X

X-Y∈PO(W1-W2)

pX-Y <
X

X-Y∈PO(W2-W1)

pX-Y, that is:

the types that can be used to serve W1-W2 type pairs arrive less frequently than the types that can

be used to serve W2-W1 type pairs. Under these two conditions, W2-W1 type pairs do not arrive

as frequently as W1-W2 type pairs, and W2-W1 type pairs can be used more frequently in larger
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exchanges. Consider a positive state component of the pool regarding W1-W2 and W2-W1 types,

i.e., there are W1-W2 type pairs. Since W2-W1 type pairs arrive on average less frequently than

W1-W2 type pairs for two-way exchanges, whenever an overdemanded pair that can serve a W1-W2

type pair arrives, the W1-W2 type pairs can safely be used in larger exchanges. On the other hand,

if the state component of the pool regarding W1-W2 and W2-W1 types is negative, i.e., there are

W2-W1 type pairs, since W1-W2 type pairs arrive on average more frequently for two-way exchanges,

this means that the average arrival process is interrupted, and we end up with some excess W2-W1

type pairs. So, we have a higher option value for keeping W2-W1 type pairs than matching them

in larger exchanges. We should have a positive stock of W2-W1 type pairs in hand to match them

exclusively with future coming W1-W2 type pairs.21 On the other hand, if pW1-W2 = pW2-W1 andX
X-Y∈PO(W1-W2)

pX-Y =
X

X-Y∈PO(W2-W1)

pX-Y, on average W1-W2 and W2-W1 types arrive at the same

rate exclusively for two-way exchanges. Therefore, using existing W1-W2 or W2-W1 type pairs in

larger exchanges instead of matching with incoming reciprocal pairs has no expected future costs.

Thus, we do not need to worry about carrying a positive stock of W1-W2 or W2-W1 type pairs.

5 Dynamically Efficient Kidney Exchange

The kidney exchange problem is a special case of the general model that we considered above. In

this problem, we refer to an object-agent pair as a recipient-donor pair. The type space for kidney

needs is defined through blood- and tissue-type compatibility.

Before a donor is deemed compatible with a recipient, two tests are required: a blood-type

compatibility test and a tissue-type compatibility test (or crossmatch test). There are four blood

types, O, A, B, and AB. An O blood type recipient can only receive a transplant from an O donor,

an A blood type recipient can only receive a transplant from an O or an A donor, a B blood type

recipient can only receive a transplant from an O or a B donor, and an AB blood type recipient can

receive a transplant from all donors. A recipient and a donor are blood-type compatible if the donor

can feasibly donate a kidney to the recipient based on their blood types.

Observe that the blood-type compatibility relation forms a partial order with three levels of

compatibility. The O blood type is located at the highest level at level 1, the A and B blood types

are located at level 2, and the AB blood type is at level 3 (see Figure 5).

Yet there is another type of incompatibility for kidney recipients. Sometimes a recipient cannot

receive a kidney from a blood-type compatible donor due to tissue-type incompatibility. There are 6

proteins on human DNA that determine the tissue type of a person. Some tissue types can be rejected

by a recipient’s immunological system. A formal test is done by mixing the blood of the donor and

the recipient for testing tissue-type incompatibility prior to the transplant. If antibodies form in

21Since there is discounting and the number of W2-W1 type pairs can only be an integer, sometimes the threshold

can be 0 instead of a positive number.
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Blood‐type Compatibility Relation

O    Level 1 

A    B  Level 2         

AB    Level 3 

Figure 5: Blood-type Compatibility Relation (also see Figure 1(b))

the recipient’s blood against the donor’s tissue antigens then there is positive crossmatch between

the recipient and the donor, meaning that the donor and the recipient are tissue-type incompatible.

A donor is tissue-type compatible with a recipient if there is negative crossmatch between them. A

donor is compatible with a recipient if he is both blood- and tissue-type compatible with the recipient.

A recipient can receive a kidney only from compatible donors.

Usually, when a donor is compatible with his paired recipient, such a pair does not participate in

exchange since the donor directly donates his kidney to the recipient. Hence, a blood-type compatible

pair becomes available for exchange if and only if the pair is tissue-type incompatible. For tissue-

type incompatibility between the donors and patients of different pairs, we will make an additional

assumption. This will give us an idea on limits of kidney exchange (see Roth, Sönmez, and Ünver

2007):

Assumption 4 (Limit Assumption): No recipient is tissue-type incompatible with the donor of
another pair.

Recipients can be tissue-type incompatible with their own donors, and we assume that pc > 0 is

the probability for that to happen. This ensures that blood-type compatible pairs arrive at the pool.

On the other hand, recipients will never be tissue-type incompatible with donors of other pairs under

Assumption 4; thus, two pairs will be mutually compatible if and only if they are mutually blood-

type compatible. Note that average tissue-type incompatibility (positive crossmatch) probability is

reported as pc = 0.11 by Zenios, Woodle, and Ross (2001).

We will continue to maintain Assumptions 1,2, and 3 for kidney exchanges as well. In Section

5.2.1, we show that these assumptions are plausible for kidney exchange. We also comment on what

happens when these assumptions are relaxed in Section 5.2.1 and in Appendix B.

5.1 The Efficient Kidney Exchange Mechanism

We are ready to present the pair type space for kidney exchanges. The blood types give the com-

patibility type of each recipient and donor (under Assumption 4). Therefore, the type of a pair is

represented by the blood type of the recipient and the blood type of the donor in the pair. There
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     Future Pair 
a    ⎯   o 
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In the Future: 

In the Future: 

Figure 6: Kidney exchange options when an A-O∈ PO (B-A) type pair arrives and there are B-A
type pairs in the exchange pool. When an AB-B∈ PO (B-A) type pair arrives, option do-not-match
will involve a two-way exchange between AB-B and B-AB type pairs, and option match will involve

a three-way exchange among AB-B, B-A, and A-AB type pairs.

are 16 pair types. We state the overdemanded, underdemanded, self-demanded, and reciprocally

demanded types as follows:

PO = {A-O, B-O, AB-O, AB-A, AB-B}

PU = {O-A, O-B, O-AB, A-AB, B-AB}

PS = {O-O, A-A, B-B, AB-AB}

PR = {A-B, B-A}

Since there are only two reciprocally demanded types, we can represent the reduced Markov chain

using a single integer s representing the number of A-B type pairs if s > 0 and the number of B-A

type pairs if s < 0. Hence, the state space is the set of integers, i.e., S = Z. In Figures 6 and 7, the
exchange options and their trade-offs in the decision problem are depicted when there are B-A type

pairs in the pool and an overdemanded pair in PO (B-A) = {A-O,AB-B,AB-O} arrives. Also note
that PO (A-B) = {B-O,AB-A,AB-O}. The options regarding the case with A-B type pairs are just
the symmetric versions of the options with B-A type pairs.

By Theorem 2, under Assumptions 1, 2, 3, and 4, the efficient mechanism is given by a threshold

Markov mechanism, φs
∗,s∗ : Z→ {do-not-match, match} , with s∗ ≥ 0 and s∗ = 0 or s∗ = 0 and

s∗ ≤ 0.
The real-life arrival probabilities derived from unrelated recipient-donor matching for a pair (also

used in the simulations section below) dictate pB-A ≤ pA-B and
X

X-Y∈PO(A-B)

pX-Y <
X

X-Y∈PO(B-A)

pX-Y.

In this case, by Theorem 3, the efficient exchange mechanism is a threshold Markov mechanism
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Figure 7: Kidney exchange options when an AB-O∈ PO (B-A) type pair arrives and there are B-A
type pairs in the exchange pool. Note that another feasible exchange for option do-not-match is a

three-way exchange with AB-O, O-A, and A-AB type pairs.

that takes the B-A type pair number as the relevant state variable, i.e. mechanism φ0,s
∗
for some

threshold s∗ ≤ 0. Option do-not-match in Figures 6 and 7 is executed whenever there are |s| B-A
type pairs with s∗ ≤ s ≤ 0 and an overdemanded pair in PO (B-A) arrives. Under all other states
and arrivals the maximal exchanges are conducted. For example, when B-A types are available and

an overdemanded pair in PO (B-A) arrives, option match in Figures 6 and 7 is conducted.

5.2 Computation of the Efficient Multi-Way Kidney Exchange Mecha-
nism

In this subsection, we first formulate the underlying arrival process of incompatible pairs to the

exchange pool. For any pair type X-Y ∈ P, let qX-Y be the probability of a random pair being of type
X-Y. We refer to qX-Y as the arrival probability of pair type X-Y ∈ T . We have

P
X-Y ∈T qX-Y =

1. A compatible pair does not become available for exchange. Recall that pc, the probability of

tissue-type incompatibility, is the probability of a blood-type compatible pair being available for

exchange, and 1 is the probability of a blood-type incompatible pair being available for exchange. We

derive the exchange arrival probabilities of each type X-Y, pX-Y, as follows: For each self-demanded

and overdemanded type X-Y∈ PO ∪ PS , we have pX-Y = pcqX-Y
κ

and for each underdemanded and

reciprocally demanded type X-Y∈ PU ∪ PR, we have pX-Y = qX-Y
κ
where κ =

X
X-Y∈PO∪PS

pcqX-Y +X
X-Y∈PU∪PR

qX-Y. Thus,
X
X-Y∈P

pX-Y = 1.
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5.2.1 Plausibility of the Assumptions for Kidney Exchange

We comment on the efficient kidney exchange mechanism when Assumption 3 is relaxed in Appendix

B, i.e., the case when self-demanded types participate in kidney exchange.

Next, we comment on the plausibility of our Assumptions 1, 2, and 4 for kidney exchange:

• Assumption 1 concerns the underlying arrival probabilities of the pairs and the applied matching
mechanism. We first show that Assumption 1, i.e. having arbitrarily many underdemanded

pairs in the exchange pool in the long run, is a realistic assumption:

Proposition 5 Suppose that pc (qAB-O + qX-O) + min {pcqY-O, qX-Y} < qO-X for all {X,Y} = {A,B},
pc (qAB-O + qAB-X)+min {pcqAB-Y, qY-X} < qX-AB for all {X,Y} = {A,B} and pcqAB-O < qO-AB. Then,

Assumption 1 holds in the long run regardless of the multi-way dynamic kidney exchange mechanism

used.

Proof of Proposition 5: By Proposition 2, underdemanded type O-A can only be matched in a
two-way exchange with its reciprocal type, in an exchange using an AB-O type pair, or in an exchange

using a B-O type pair and an A-B type pair such as (B-O, O-A, A-B) (see also Roth, Sönmez, and

Ünver 2007). Since

pc (qAB-O + qA-O) + min {pcqB-O, qA-B} < qO-A,

even if all of these types, O-A, AB-O, or B-O and A-B, are used exclusively to match O-A type pairs,

there will still be arbitrarily many O-A pairs left in the pool in the long run.

Similarly, an underdemanded type B-AB pair can only be matched in a two-way exchange with

its reciprocal type pair, an AB-O type pair, or in an exchange using an AB-A type pair and an A-B

type pair such as (AB-A, A-B, B-AB) (see also Roth, Sönmez, and Ünver 2007). Since

pc (qAB-O + qAB-B) + min {pcqAB-A, qA-B} < qB-AB,

even if all of AB-O, AB-B, or AB-A together with A-B type pairs are used exclusively to match

B-AB type pairs, arbitrarily many B-AB type pairs will remain in the exchange pool in the long run.

Symmetric versions of these observations hold for O-B and AB-B.

By Proposition 2, an O-AB pair can only be matched using an AB-O pair. Since

pcqAB-O < qO-AB,

even if AB-O type pairs are used exclusively to match AB-O type pairs, arbitrarily many underde-

manded type pairs will remain in the long run.

Moreover, all these results are true regardless of the matching mechanism used. ♦
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The hypotheses of the above proposition is very mild, and will hold for sufficiently small

tissue-type incompatibility (i.e. crossmatch) probability pc. Moreover, they hold for

real-life blood frequencies. For example, assuming that the recipient and her paired-

donor are blood-unrelated, the arrival rates reported at the end of this subsection satisfy

these assumptions, when the crossmatch probability is pc = 0.11, as reported by Zenios,

Woodle, and Ross (2001).

• Assumption 2 limits the arrival rates of A-B and B-A type pairs to be close to each other.

However, it does not give a measure of closeness. There is no literature reporting these rates

except Terasaki, Gjertson, and Cecka (1998) who report that the arrival rates of A-B and B-A

type pairs as qA-B = 0.05 and qB-A = 0.03 but do not explain from which sample these are

obtained. Under independent sampling conditions, we would expect these rates to be equal to

each other.

• Assumption 4 is a limit assumption. However, it is also a somewhat realistic assumption for
certain cases. If the recipient is female and has previously borne the child of her paired-donor,

then her body is more likely to reject her paired-donor’s kidney than other random kidneys

due to tissue-type incompatibility (cf. Zenios, Woodle, and Ross 2001).

If we eliminate these assumptions, the structure of the dynamic programming problemwill change.

Even then, we can create object types and their compatibility relation as a general partial order.

Hence, we can classify the pair types as underdemanded, overdemanded, self-demanded, and recip-

rocally demanded. Using results in dynamic programming, it can be shown that an efficient deter-

ministic Markov mechanism exists.

5.2.2 Computational Approximation for the Efficient Kidney Exchange Mechanism

The threshold values of the efficient multi-way kidney exchange mechanism cannot be solved analyti-

cally. In this section, using different parameters for λ
λ+(

and using pc, {qX-Y}X-Y∈P values reported in
the medical literature, we numerically compute the efficient matching mechanism’s threshold values

under Assumptions 1, 2, 3, and 4. Then we use these threshold values to approximate the thresholds

when Assumption 3 does not hold and self-demanded types can participate in exchange (see Remark

1 in Appendix B), for subsequent policy simulations.

The algorithm used to compute the efficient threshold values uses Theorem 2 and the value

iteration formula in Theorem 4 in Appendix A (see page 259 of Puterman 1994 for a one-sided

threshold version of the algorithm). The algorithm makes a 6001 state approximation (3000 negative

and 3000 positive states, and state 0) of the infinite countable state space. The crossmatch probability

is reported as pc = 0.11 by Zenios, Woodle, and Ross (2001). We also use this number. The medical

literature is not precise about the arrival probabilities of the pairs. We have chosen the following way

to construct these probabilities: The blood type frequencies of people are widely reported for the US

31



|s∗| λ
λ+ρ

0.999995 0.99999 0.99995 0.9999 0.9995 0.999 0.995 0.99 0.95
qB-A = qA-B = 0.044 2 2 2 2 1 1 0 0 0

qB-A = 0.039 and qA-B = 0.049 292 161 46 28 9 6 2 1 0

qB-A = 0.034 and qA-B = 0.054 2773 1387 278 147 30 15 3 2 0

Table 1: The threshold number of B-A type pairs for conducting smaller exchanges in the optimal

rule.

population as follows: For O blood type qO = 0.45, for A blood type qA = 0.40, for B blood type qB =

0.11, and for AB blood type qAB = 0.04.22 We assume that the pairs are blood type unrelated (such

as spouses), and hence the donor and recipient blood types are independently distributed. That is,

for any X-Y∈ P, we have qX-Y = qXqY.

We also compute the mechanism when qA-B and qB-A are not equal to each other. Terasaki,

Gjertson, and Cecka (1998) report that in the US, A-B and B-A blood type pairs do not arrive at

the same frequency. They report that qA-B = 0.05 and qB-A = 0.03. In our computation, additionally,

we use two different probability pairs: (1) qA-B = 0.049 and qB-A = 0.039 and (2) qA-B = 0.054 and

qB-A = 0.034.

Since we assume in our initial efficient mechanism derivation that self-demanded types are not

included, we find the conditional probabilities using the above formula such that arriving pairs are

not self-demanded.

Since we do not have a clear prediction of the values of ρ and λ, we use different values in the

computation. In particular, we choose different values for λ
λ+ρ

and derive the efficient mechanism.

The set of the values we use for λ
λ+ρ

is given as23

{0.999995,0.99999, 0.99995, 0.9999, 0.9995, 0, 999, 0.995, 0.99, 0.95} .

First note that in all cases s∗ ≤ 0 and s∗ = 0. We report the threshold value for the stock of B-A
type pairs to conduct the smaller exchanges, |s∗| in Table 1. For the number of B-A type pairs in
the pool larger than |s∗|, the efficient mechanism requires the largest exchanges.

We observe that, under the most plausible λ
λ+ρ

values,

{0.999995,0.99999, 0.99999, 0.99995, 0.9999, 0.9995, 0, 999} ,

the efficient mechanism requires a positive stock of B-A blood type pairs before conducting the largest

possible exchanges. Only an unrealistic value such as λ
λ+ρ

=0.995 and lower (requiring only 10 pairs

22For example, see the web-page of the Association of American Blood Banks, http://www.aabb.org , retrieved on
2/27/2007.
23For example, λ

λ+ρ = 0.999995 can be generated by λ = 10000 and ρ = 0.05, which corresponds to 10000 pairs
arriving per year and an annual discount rate of 5%. On the other hand, λ

λ+ρ = 0.9999 can be generated by λ = 10000
and ρ = 0.10. We can roughly assume that the discount rate is 5%-10%. Expectations for λ nationwide is around
10000, given that the annual number of conducted live kidney donations is in the 6000-7000 range in the last few
years. The lower values for λ

λ+ρ can also be expected in regional smaller programs. For example,
λ

λ+ρ = 0.999 can be
generated through λ = 50 and ρ = 0.05.
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1 year exchange surplus λ = 10000 and ρ = 0.05

taking two-way regime numéraire qB-A = 0.034 and qA-B = 0.054
Regime 1: Multi-way 106.59 (0.0004694)

Regime 2: Two-way 100 (0.0004325)

Table 2: Policy simulations for 1 year normalized exchange surplus taking two-way regime numaraire

starting from the null state under the two regimes, Regime 1: the one threshold approximation of

the optimal rule, Regime 2: The optimal two-way matching rule.

arriving per year at 5% discounting for ρ) may require conducting the largest possible exchanges

all the time. We also observe that the threshold value increases with increasing (qA-B − qB-A) and

increasing λ
λ+ρ

. For example, when λ
λ+ρ

= 0.999995 (with an average of 10000 compatible and

incompatible pairs arriving per year and an annual discount rate ρ = 5%), qB-A = 0.034 and qA-B =

0.054, the largest exchanges involving B-A type pairs will be conducted if and only if there are more

than 2773 B-A type pairs in the pool.

5.2.3 Simulations on Expected Exchange Surplus

In this subsection, we relax Assumption 3 again, and assume that self-demanded types can participate

in exchange. We compute the expected one-year exchange surplus (normalized by the two-way

exchange regime) at null state (having no A-B or B-A type pairs, and no self-demanded type pairs)

for two different matching mechanisms. We use

• Regime 1: The single-state variable, one threshold approximation of the dynamically efficient
multi-way matching mechanism, φ̂

s∗,s∗

(cf. Appendix B).

• Regime 2: Dynamically efficient two-way matching mechanism ν.

We used the following technique in our simulation. We roughly calibrated our parameters using

the US data. We chose λ =10000 (given that 6570 live donor transplants are conducted per year,

we assumed that 10000 pairs arrive per year) and ρ = 0.05 (that is: the discount rate is 5%) with
λ

λ+ρ
=0.999995. We set qB-A = 0.034 and qA-B = 0.054, as reported by Terasaki, Gjertson, and Cecka

(1998). We assumed that there were arbitrarily many underdemanded pairs (Assumption 1) and that

there was no tissue-type incompatibility between two different pairs (Assumption 4). We simulated

the pool for the next arriving 10000 pairs (approximately for 1 year) and calculated the normalized

surplus raised taking the two-way exchange as numéraire. We ran this simulation 5000 times. The

averages and standard errors of the averages for the 1 year normalized exchange surplus were taken

over these 5000 markets (see Table 2). We observed that the efficient multi-way exchange raises

about 6.6% more expected surplus than the efficient two-way exchange. This difference is significant

at the 1% level using a z-test.
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Number of pairs λ = 10000 and ρ = 0.05

matched in 1 year qB-A = 0.034 and qA-B = 0.054
Regime 1: Multi-way 1791.51 (0.79)

Regime 2:Two-way 1680.77 (0.73)

Static: Multi-way 1794.39 (0.80)

Static: Two-Way 1680.77 (0.73)

Table 3: Policy simulations for number of pairs matched in exchanges starting from the null state

under the two regimes. With λ = 10000, on average 4267 pairs enter the exchange. On average, 6733

pairs are compatible and their recipients receive a transplant immediately from their own donors.

We report the number of pairs matched in one year under the two different regimes. We also

report the number of pairs that could have been matched if all exchanges were run at the end of the

year in a static population. Under the efficient multi-way mechanism, about 6.7% more pairs are

matched than the efficient two-way mechanism. This difference is significant at the 1% level using a

z-test. Even though the efficient exchange is conducted dynamically, the numbers of pairs matched

are close to the maximal possible number (see Table 3). This is an expected result. By Proposition

1, we know that the efficient two-way matching mechanism matches the maximum number of pairs

possible, and this table shows that. On the other hand, under the efficient multi-way mechanism,

this observation may not be true, since some B-A or A-B type pairs may remain in the pool at the

end of the year, and those could have been matched in a static exchange run at the end of the year.24

We also report the number of exchanges of different sizes under Regime 1: Efficient Unrestricted

Exchange in Table 4 (in approximately 1 year). These are the average numbers found in the above

simulation. We observe that the majority of the exchanges are 2-way exchanges, though we observe a

substantial number of 3-way and 4-way exchanges. The numbers of larger exchanges are substantially

less (less than 2% of all exchanges). We observe that 67% of all exchanges conducted are two-way, 25%

are three-way, and only 7% are four-way exchanges. Therefore, the efficient multi-way mechanism

does not create a large burden in terms of large exchanges.

6 Conclusions

Having a partial order compatibility structure (which is not a linear order) is the necessary require-

ment for multi-way dynamically efficient mechanisms having state-dependent features and being

different from statically efficient mechanisms. We use a minimal partial order structure to derive

dynamically efficient exchange mechanisms in a general exchange model.

We observe three important properties of dynamically efficient mechanisms. They (for both two-

24Note that this is only an artifact of our simulation environment, which is terminated after one year. Since the

time horizon in reality is infinite, surely these remaining pairs will be matched in the next year.
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Number of exchanges λ = 10000 and ρ = 0.05

in Regime 1: Unrestricted qB-A = 0.034 and qA-B = 0.054
2-way 492.62 (0.32)

3-way 180.51 (0.17)

4-way 49.04 (0.096)

5-way 11.36 (0.047)

6-way 1.83 (0.019)

7-way 0.11 (0.0047)

8-way 0.0016 (0.00056)

Table 4: Average number of exchanges of different sizes in Regime 1.

way and multi-way matching) are not affected by the magnitude of the unit waiting cost c. They

conduct at most one exchange at a time. Moreover, whenever an exchange becomes feasible, they

conduct it immediately.

In a static setting, Roth, Sönmez, and Ünver (2007) showed that n-way exchanges usually suffice

to obtain all benefits from an exchange domain with n object types under a partial order compatibility

relation and mild assumptions. In our study, for kidney exchanges, when self-demanded type pairs

participate in exchange, the largest possible exchange size is 8 instead of 4 as predicted by the above

result, since in a dynamic setting some of the assumptions of the above study do not hold. In the

simulations conducted, we showed that exchanges larger than 4-way are extremely rare in a dynamic

setting.

The policy simulations show that the threshold values of the efficient kidney exchange mechanism

are quite sensitive to the changes in arrival probabilities of A-B and B-A type pairs. Therefore, for

our mechanism to have a realistic application, the health authority should measure these arrival

rates, precisely.

A final note about incentive properties of dynamically efficient mechanisms will be useful. We can

refine the definition of efficient mechanisms as follows: If an X-Y type pair is going to be matched in

an exchange and there are multiple X-Y type pairs available in the pool, then the mechanism selects

the earliest arriving pair. Suppose that a pair of type X-Y∈ P can manipulate its type and announce
it as W-Z∈ P with WIX and YIZ.25 It is easy to show that announcing X-Y is the weakly dominant
strategy for the pair, i.e. the mechanisms are strategy-proof.26 Entry timing can be another strategic

tool. Suppose that each pair, after becoming available, can delay its entry to the pool as a strategic

variable. In this case, the above dynamically efficient two-way and multi-way matching mechanisms

25Observe that announcing Y6IZ or W6IX may result with individually irrational exchanges. Hence, we assume that
such manipulations are not possible.
26In the context of kidney exchange, since blood types exclusively determine the compatibility between a recipient

and a donor of another pair, and since manipulating blood types is extremely difficult, it is almost impossible for a
pair to use “compatibility” as a strategic tool to manipulate the dynamic system.
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are delay-proof, i.e. no pair will benefit by delaying its entry to the pool.

A Appendix: Proofs of Results

Proof of Proposition 2: Suppose that pair i of type X-Y∈ PO is the only overdemanded pair
in the pool, j 6= i is a type Z1-Z2 ∈ P pair in the pool, and E = (j, j1, ..., jk) is an exchange that

matches pair j. Let Ac-Oc be the type of each pair jc in E. We have Z2 IA1, Oc IAc+1 for all

c ∈ {1, ..., k − 1}, and Ak IZ1. Two cases are possible:

• Type of j ∈ PU : Since Z1 IZ2 and Z2 6=Z1, by acyclicity of I, there exists one pair jc with
Oc IAc and Oc 6=Ac, i.e., there exists an overdemanded pair jc ∈ E. Since i is the single

overdemanded pair in the pool, jc = i. By transitivity of I and by the fact that there are at
most two object types at a compatibility level of I, we have (1a) Z2 IX or (1b) Z2 6IX and
X6IZ2, and yet there exists some jm ∈ E with m < c such that jm is of type Z2-X (so that E is

individually rational). Similarly, we have (2a) YIZ1 or (2b) Z1 6IY and Y6IZ1, and yet there
exists some jm ∈ E with m > c such that jm is of type Y-Z1.27 This proves necessity.

— If (1a) and (2a) are satisfied, we can always choose E (in terms of types of pairs) as

(Z1-Z2, X-Y) .

— If (1b) and (2a) are satisfied, we can choose E as (Z1-Z2, Z2-X, X-Y) .

— If (1a) and (2b) are satisfied, we can choose E as (Z1-Z2, X-Y, Y-Z1) .

— If (1b) and (2b) are satisfied, we can choose E as (Z1-Z2, Z2-X, X-Y, Y-Z1) .

These prove sufficiency.

• Type of j ∈ PS : Since Z2 =Z1, when there is another pair h of type Z1-Z1, a two-way exchange
consisting of types (Z1-Z1, Z1-Z1) is an individually rational exchange, and E could be chosen

using these types. Suppose that there is no other pair of type Z1-Z1 in the pool. Then by

acyclicity of I, there exists some pair jc with Oc IAc with Oc 6=Ac, i.e., there exists an

overdemanded pair jc ∈ E. Since i is the single overdemanded pair in the pool, jc = i. By

transitivity of I and by the fact that there are at most two object types at a compatibility

level of I, we have (1a) Z1 IX or (1b) Z1 6IX and X6IZ1, and yet there exists some jm ∈ E

with m < c such that jm is of type Z1-X (so that E is individually rational). Similarly, we have

(2a) YIZ1 or (2b) Z1 6IY and Y6IZ1, and yet there exists some jm ∈ E with m > c such that

jm is of type Y-Z1. These prove necessity.

27Equivalently, we could have written Condition (1) as "X6IZ2 and if Z2 6IX then there exists some jm ∈ E with
m < c such that jm is of type Z2-X " as in the hypothesis of the proposition. A similar equivalence is also valid for
Condition (2). Thus, these are equivalent to the conditions given in the hypothesis of the proposition.
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— If (1a) and (2a) are satisfied, we can always choose E (in terms of types of pairs) as

(Z1-Z1, X-Y) .

— If (1b) and (2a) are satisfied, we can choose E as (Z1-Z1, Z1-X, X-Y) .

— If (1a) and (2b) are satisfied, we can choose E as (Z1-Z1, X-Y, Y-Z1) .

— If (1b) and (2b) are satisfied, we can choose E as (Z1-Z1, Z1-X, X-Y, Y-Z1) .

These prove sufficiency.

• Type of j ∈ PR: We have Z2 6IZ1 and Z1 6IZ2. Suppose there is a pair h of type Z2-Z1. Then a
two-way exchange consisting of types (Z1-Z2, Z2-Z1) is an individually rational exchange, and

E could be chosen using these types. Suppose that there is no pair of type Z2-Z1 in the pool.

Then by acyclicity of I, there exists some pair jc with Oc IAc with Oc 6=Ac, i.e., there exists an

overdemanded pair jc ∈ E. Since i is the single overdemanded pair in the pool, jc = i. By the

fact that there are only two types in the compatibility levels of Z1 and Z2, there are no possible

reciprocal types other than Z1-Z2 and Z2-Z1. Since Z2-Z1 type pair does not exist, there is no

other pair of the same compatibility level with in Z1-Z2 in the exchange E,and by acyclicity we

have Z2 IX and YIZ1 i.e., Z-Y and Z1-Z2 are mutually compatible types, proving necessity.

The types of pairs in E can be chosen as (Z1-Z2, X-Y) whenever Z2 IX and YIZ1, proving
sufficiency.

♦

Proposition 6 (Maximal Exchange Composition Using Overdemanded Types) Under As-
sumption 1, suppose that X-Y∈ PO is the type of an overdemanded pair that arrives at the exchange
pool. Then, we can conduct an (n+ k + c+ 1)-way exchange serving

• the overdemanded pair of type X-Y;

• a maximum of n = LX − LY underdemanded pairs;

• one pair from each of the distinct reciprocally demanded types W1-W2,W3-W4,...,W2k−1-W2k ∈
PR such that W1,W2 IW3,W4 I ...IW2k−1,W2k (i.e., these pair types are not reciprocal of

another and are ordered according to their compatibility levels), YIW1 and W2k IX.

• one pair from each of the distinct self-demanded types V1-V1,...,Vc-Vc ∈ PS such that (1)

V1 6JV2 6J ... 6JVc, (2) YIV1 or W1-W2=Y-V1, (3) Vc IX or W2k−1-W2k =Vc-X, and (4)

if there exists some d ∈ {1, ..., c− 1} such that Vd and Vd+1 are at the same level then there

exists some index cd ∈ {1, ..., k} such that W2cd−1-W2cd =Vd-Vd+1;

whenever such reciprocally demanded and self-demanded pairs exist in the pool.
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Proof of Proposition 6: Suppose the hypothesis of the proposition holds. For notational purposes,
let Z-1 =X, Z0 =Y, Z2n+1 =X, and Z2n+2 =Y. Under Assumption 1, there exists n underdemanded

pairs belonging to pair types

Z1-Z2, Z3-Z4, ...,Z2n−1-Z2n ∈ PU

such that

• for each m ∈ {1, 2..., n}, there are m levels between Z2m and Y, that is LZ2m = LY +m,

• for each c ∈ {1, 2..., k} , there exists an index mc ∈ {1, 2..., n} such that Z2mc =W2c−1 and

Z2mc+1 =W2c,

• for each d ∈ {1, 2..., c} with Vd−1 IVd (whenever Vd−1 exists) and Vd IVd+1 (whenever Vd+1

exists), there exists an index m0
d ∈ {1, 2..., k} such that Z2m0

d
=Vd, and

• for each m ∈ {1, 2..., n− 1} \ {m1, ...,mk}, Z2m =Z2m+1.

Thus, the exchange E0 consisting of pairs belonging to pair types⎛⎝X-Y, Z1|{z}
=Y

-Z2, Z3|{z}
=Z2

-Z4, ...,Z2mc−1- Z2mc|{z}
=W2c−1

, W2c−1-W2c, Z2mc+1| {z }
=W2c

-Z2mc+2, ..., Z2n−1| {z }
=Z2n−2

- Z2n|{z}
=X

⎞⎠
for all c = 1, 2, ..., k.

is a feasible (k + n+ 1)-way exchange.

We can enlarge exchange E0 by inserting the given self-demanded type pairs in order to obtain

exchange E00 as follows:

• Recall that for each d ∈ {1, ..., c− 1} with same level Vd+1 and Vd, there exists some index

cd ∈ {1, ..., k} such that W2cd−1-W2cd =Vd-Vd+1. In the exchange E0 above, we can insert

— the Vd-Vd type pair between the Z2mcd
−1- Z2mcd| {z }

=W2cd−1

type pair, and W2cd−1-W2cd type recip-

rocally demanded pair and

— the Vd+1-Vd+1 type pair between the W2cd−1-W2cd type reciprocally demanded pair and

the Z2mcd
+1| {z }

=W2cd

-Z2mcd
+2 type pair.

• For each d ∈ {1, ..., c} with Vd−1 IVd (whenever Vd−1 exists) and Vd IVd+1 (whenever Vd+1

exists), since the object type Z2m0
d
is chosen as Z2m0

d
=Vd, we can insert the Vd-Vd type self-

demanded pair, in exchange E0, between the pairs Z2m0
d−1-Z2m0

d
and Z2m0

d+1| {z }
=Z2m0

d

-Z2m0
d+2

.

Thus, the newly formed exchange E00 serves all of the n + k + c + 1 pairs including the ones

given in the hypothesis of the proposition. ♦

38



Proof of Proposition 3: Suppose Assumption 1 holds. Let an overdemanded pair i of type X-Y
∈ PO arrive at the exchange pool. We will show that the opportunity cost of holding onto the X-Y
type pair and underdemanded pairs, which could be matched immediately, with the expectation of

creating a larger exchange in the future is larger than any alternative decision.

First note that pair i will not be used in matching an underdemanded pair that will arrive in the

future. Since all underdemanded pairs exist abundantly by Assumption 1, by Corollary 1 we can

use it to match LX − LY underdemanded pairs in an exchange E immediately. Moreover suppose

that we can match in total n pairs in this exchange (possibly including some reciprocally demanded

and self-demanded pairs). In the future, LX − LY is the most underdemanded pairs we can match

through pair i, thus we do not hold onto i to match future underdemanded pairs.

We will show that pair i will not be used in matching a self-demanded type pair that will arrive in

the future, either. Suppose that V-V is a self-demanded type and a pair of this type can be inserted

in exchange E (see Proposition 6 and its proof). Hence, if pair i is used to wait for a V-V type pair

to arrive, n pairs in exchange E will wait until the V-V type pair arrives, instead of being matched

immediately. A V-V type pair can be matched in several ways: It can be matched with another V-V

type pair in a two-way exchange. Or it can be inserted in other exchanges between two pairs such

that the object of the first pair is compatible with V and the requirement of the agent of the second

pair is also compatible with V. Consider the case in which we match it exclusively with a future

V-V type pair j. For the same expected duration that pairs in exchange E wait for pair j to arrive,

pair j will wait until the next V-V type pair arrives. Thus, the cost of this exchange is making a

future V-V type pair j wait for the same expected duration for a new V-V type pair. This second

alternative is less costly than making n (which is larger than 1) pairs of the exchange E wait for the

same expected duration; therefore an X-Y type pair i will not be used to match an expected V-V

type pair in the future.

Next, we show that pair i will not be used in matching a reciprocally demanded type pair that

will arrive in the future. Suppose that instead of exchange E, we use the type X-Y pair to match one

reciprocally demanded pair k of type W1-W2 that will arrive in the future. Moreover, by Proposition

2, pairs in E (other than pair i) cannot be matched without i. Thus, suppose that we would like to

use pair i to serve also this first pair k which will arrive in the future. This causes the exchange E

not to be conducted immediately and forces n pairs to wait. By Corollary 1, we can match n + 1

pairs (including k) immediately when k arrives, if we do not conduct exchange E now.

We will find an upper-bound for exchange surplus regarding these n pairs and all W1-W2 and

W2-W1 type pairs that will arrive in the future. Then, we will find a lower-bound for exchange

surplus when n pairs are instantly matched within exchange E and the overdemanded type pair i

is not held on to. Then, we will show that when pW1−W2 and pW2−W1 are sufficiently close to each

other, the second surplus is greater than the the first one.

Observe that the expected time difference between arrival of W1-W2 type pairs, τ 1, follows an

exponential distribution with density function λpW1-W2e
−λpW 1-W 2

τ1 , and the expected discounting

39



between those two arrivals is E [e−ρτ1 ] =
R∞
0

e−ρτ1λpW1-W2e
−λpW 1-W 2

τ1dτ 1 =
λpW1-W2

λpW1-W2
+ρ
. Similarly,

the expected discounting until a W2-W1 type arriving is
λpW 2-W1

λpW 2-W1
+ρ
, and a W1-W2 or W2-W1 type

arriving is
λ(pW 1-W 2

+pW 2-W 1)
λ(pW 1-W 2

+pW 2-W 1)+ρ
(since the arrival of a W1-W2 or W2-W1 type pair is a Poisson with

rate λpW1-W2 + λpW2-W1). For simplicity of notation, until the end of the proof, we use

λ1 ≡ λpW1-W2 and λ2 ≡ λpW2-W1.

Also observe that the upper-bound of total expected surplus assuming that all W1-W2 type pairs

are matched as soon as they arrive is given as:µ
λ1

λ1 + ρ

¶
c

ρ
+

µ
λ1

λ1 + ρ

¶2
c

ρ
+ ...+

µ
λ1

λ1 + ρ

¶m
c

ρ
+ ... =

λ1
ρ

c

ρ

Similarly, the upper-bound of total expected surplus assuming that all W2-W1 type pairs are matched

as soon as they arrive is given as λ2
ρ

c
ρ
.

• First, we find an upper-bound of surplus (regarding pairs in E and all future W1-W2 and

W2-W1 type pairs) from waiting and not conducting exchange E immediately:

ρ

c
ES

1
=

λ1 + λ2
λ1 + λ2 + ρ

∙
λ1

λ1 + λ2

½
(n+ 1) +

λ1
ρ
+

λ2
ρ

¾
+

λ2
λ1 + λ2

½
n+ 1 +

λ2
ρ
+

λ1
ρ

¾¸
=

λ1 + λ2
λ1 + λ2 + ρ

∙
(n+ 1) +

λ1
ρ
+

λ2
ρ

¸
where in the first line λ1+λ2

λ1+λ2+ρ
is the discounting that occurs until either a W1-W2 or W2-W1

pair arrives and

— probability λ1
λ1+λ2

refers to the pair arriving being of type W1-W2 and normalized (by
ρ
c
)

surplus n+1 refers to the fact that we conduct the (n+ 1)-way exchange using the W1-W2

type pair and the waiting n pairs, normalized surplus λ1
ρ
+ λ2

ρ
is an upper-bound of all

future matches regarding W1-W2 and W2-W1 type pairs;

— probability λ2
λ1+λ2

refers to the pair arriving being of type W2-W1 and normalized surplus

n refers to the fact that we conduct exchange E at that instance, and 1 + λ1
ρ
+ λ2

ρ
is the

surplus of matching the W2-W1 pair immediately (an upper-bound assumption) and all

other future W1-W2 and W2-W1 type pairs as soon as they arrive (another upper-bound

assumption).28

• Second, we find a lower-bound for the efficient surplus (regarding pairs in E and all future

W1-W2 and W2-W1 type pairs) whne we conduct exchange E immediately:

ρ

c
ES

2
= n+ 2

min {λ1, λ2}
ρ

28This is not a tight upper-bound and smaller upper-bounds can be found.
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where n refers to the normalized immediate exchange surplus regarding n pairs in conducted

exchange E and 2min{λ1,λ2}
ρ

refers to the lower-bound of surplus found by matching W1-W2 type

pairs exclusively with W2-W1 type pairs in the future.29

We observe that when λ1 is sufficiently close to λ2,
ρ
c
ES

2
> ρ

c
ES

1
. Thus, overdemanded pair i

will be immediately matched in n-way exhange E for efficient matching.30 ♦

Before we start our proof of Proposition 4, we state the following existence and uniqueness theorem

(part of Theorems 6.2.3, 6.2.5, and 6.2.10 in Puterman, 1994):

Theorem 4 (The Existence and Uniqueness Theorem): Let Z be a countable state set. Let

F be a finite action set. Let V be the set of bounded functions defined from Z to R. Let 0 ≤ δ < 1.

For any z ∈ Z, let

v (z) = δmax
f∈F

½
r (z, f) +

P
σ∈Z

p (σ |z, f ) v (σ)
¾
,

where (i) for all σ ∈ Z and all f ∈ F , p (σ |z, f ) ≥ 0, and for all f ∈ F ,
P

σ∈C p (σ |z, f ) = 1, and
(ii) for all f ∈ F , r (z, f) ∈ R is bounded. Then:

1. Function v ∈ V exists and is uniquely defined as the limit of the sequence {vm} ⊆ V (under the
sup norm),31 where v0 is arbitrary, and for any m > 0,

vm (z) = δmax
f∈F

½
r (z, f) +

P
σ∈Z

p (σ |z, f ) vm−1 (σ)
¾
.

2. There exists a (deterministic) Markovian mechanism φ : Z → F such that for all z ∈ Z,

v (z) = δ

½
r (z, φ (z)) +

P
σ∈Z

p (σ |z, φ (z)) v (σ)
¾
.

We will use the above theorem in our proof of Proposition 4.

Proof of Proposition 4: Let W1-W2 ∈ PR
∗
. Let F = {do-not-match, match} and f1 =do-

not-match, f2 =match. Consider the Bellman equations given in Equations 5, 6, and 7. Let the

normalized surplus for choosing the smaller exchanges (action f1) regarding W1-W2 be given by

r (sW1-W2, f1) =

⎧⎪⎨⎪⎩
2pW2-W1 if sW1-W2 > 0

0 if sW1-W2 = 0

2pW1-W2 if sW1-W2 < 0

, (8)

29This is not a tight lower-bound, and bigger lower-bounds can be found.
30The situations in which pair i can be used in matching mnultiple reciprocal type pairs in different levels is very

similar to this case and skipped for brevity.
31For all v ∈ V , kvk = sups∈S |v (s)| is the sup norm of v.
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and the normalized surplus for choosing larger exchanges (action f2) be given by

r (sW1-W2, f2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
2pW2-W1 +

X
X-Y∈PO(W1-W2)

pX-Y if sW1-W2 > 0

0 if sW1-W2 = 0

2pW1-W2 +
X

X-Y∈PO(W2-W1)

pX-Y if sW1-W2 < 0

. (9)

When smaller exchanges (action f1) are chosen, the transition probabilities are given by

p (sW1-W2 − 1 | sW1-W2 , f1) = pW2-W1 ,

p (sW1-W2 | sW1-W2 , f1) = 1− pW1-W2 − pW2-W1 , (10)

p (sW1-W2 + 1 | sW1-W2 , f1) = pW1-W2 .

When larger exchanges (action f2) are chosen, the transition probabilities are given by

p (sW1-W2 − 1 | sW1-W2 , f2) =

⎧⎪⎨⎪⎩
pW2-W1 +

X
X-Y∈PO(W1-W2)

pX-Y if sW1-W2 > 0

pW2-W1 if sW1-W2 ≤ 0
,

p (sW1-W2 | sW1-W2 , f2) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
1− pW1-W2 − pW2-W1 −

X
X-Y∈PO(W1-W2)

pX-Y if sW1-W2 > 0

1− pW1-W2 − pW2-W1 if sW1-W2 = 0

1− pW1-W2 − pW2-W1 −
X

X-Y∈PO(W2-W1)

pX-Y if sW1-W2 < 0

, (11)

p (sW1-W2 + 1 | sW1-W2 , f2) =

⎧⎪⎨⎪⎩
pW1-W2 if sW1-W2 ≥ 0

pW1-W2 +
X

X-Y∈PO(W2-W1)

pX-Y if sW1-W2 < 0 .

Let V = {v : Z→ R+ such that v is bounded} be the set of Markov surplus functions for W1-W2

types. Let v0 ∈ V. For all m ∈ {1, 2, 3, ...} (≡ Z++), let vm ∈ V be defined through the following
recursive system,

vm (sW1-W2) = max
f∈{f1,f2}

wm (sW1-W2, f) (12)

with wm : Z× {f1, f2}→ R+ defined for all f ∈ {f1, f2} as follows:

wm (sW1-W2 , f) =
λ

λ+ ρ
[r (sW1-W2 , f) +

sW 1-W2
+1P

σ=sW 1-W 2
−1

¡
p (σ |sW1-W2, f ) v

m−1 (σ)
¢
]. (13)

The state component space for W1-W2 and W2-W1 types, Z, is countable. Action space F =

{f1, f2} is finite. Since λ > 0 and ρ > 0, we have 0 < λ
λ+ρ

< 1. Observe that by Equations 10 and 11,

for any sW1-W2 ∈ Z and f ∈ F , p (σ|sW1-W2 , f) ≥ 0 for all σ ∈ Z, and,
PsW1-W2

σ=sW1-W 2
−1 p (σ|sW1-W2 , f) =

1. By Equations 8 and 9, for any sW1-W2 ∈ Z and f ∈ F , r (sW1-W2 , f) is bounded. Since Equations
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8- 13 are directly obtained from the Bellman Equations 5, 6, and 7, by the Existence and Uniqueness

Theorem, there is a unique ES∗W1-W2
∈ V such that under the sup norm, for all s ∈ S,

ES∗W1-W2
(sW1-W2) = lim

m→∞
vm (sW1-W2) .

♦

The following Lemmata prove Theorem 2:

Lemma 2 There exist s∗ ≥ 0 and s∗ ≤ 0 for some s∗, s∗ ∈ S such that φs
∗,s∗ is a dynamically

efficient multi-way matching mechanism.

Proof of Lemma 2: Fix W1-W2 ∈ PR
∗
. Let F = {do-not-match, match} and f1 =do-not-match,

f2 =match. Let

h∗ ≡ ES∗W1-W2

and

z ≡ sW1-W2

for notational convenience. The state component space regarding W1-W2 and W2-W1 types is given

by Z. We rewrite the Bellman Equations 5, 6, and 7 as follows: For any z ∈ Z,

h∗ (z) = max
f∈{f1,f2}

w (z, f) , (14)

where

w (z, f) =
λ

λ+ ρ
[r (z, f) +

z+1P
σ=z−1

p (σ |z, f )h∗ (σ)], (15)

and r (z, f) is defined by Equations 8 and 9, and p (σ |z, f ) is defined by Equations 10 and 11. For
all z ∈ Z,

f z = arg max
f∈{f1,f2}

w (z, f) (16)

such that

if w (z, f1) = w (z, f2) , then f2 = arg max
f∈{f1,f2}

w (z, f) . (17)

For all z ∈ Z, let
4h∗ (z) = h∗ (z)− h∗ (z − 1) . (18)

We prove Lemma 2 using the following four claims:

Claim 1: Suppose that z > 0 is such that f z = f2, and f z+1 = f1. Then there is no k ≥ 1 such that
f z+k+1 = f2.

Proof of Claim 1: Let z > 0 be such that f z = f2, and f z+1 = f1. We prove the claim by

contradiction. Suppose there exists some k ≥ 1 such that

f z+2 = f1, ..., f
z+k = f1, f

z+k+1 = f2.
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Therefore, by Observation 2 and definitions in Equations 16, 17, and 18,

4h∗ (z) ≤ 1,4h∗ (z + 1) > 1, . . . ,4h∗ (z + k) > 1, and 4 h∗ (z + k + 1) ≤ 1. (19)

By definitions in Equations 14, 15, 16, and 18; for r (z, f) in Equations 8 and 9; and for p (σ |z, f )
in Equations 10 and 11, we obtain

4 h∗ (z + 1)

= h∗ (z + 1)− h∗ (z) = w(z + 1, f1)− w(z, f2)

=
λ

λ+ ρ

⎡⎢⎣
X

X-Y∈PO(W1-W2)

pX-Y (4h∗ (z)− 1) + pW2-W1 4 h∗ (z)

+ (1− pW1-W2 − pW2-W1)4 h∗ (z + 1) + pW1-W2 4 h∗ (z + 2)

⎤⎥⎦
≤ λ

λ+ ρ
[pW2-W1 + (1− pW1-W2 − pW2-W1)4 h∗ (z + 1) + pW1-W2 4 h∗ (z + 2)]

since, by f z = f2, we have 4 h∗ (z) ≤ 1 (in Inequality System 19)

< [pW2-W1 + (1− pW1-W2 − pW2-W1)4 h∗ (z + 1) + pW1-W2 4 h∗ (z + 2)] . (20)

since
λ

λ+ ρ
< 1

We rearrange terms in Inequality 20 to obtain

4h∗ (z + 1) <
pW2-W1

pW1-W2 + pW2-W1

+
pW1-W2 4 h∗ (z + 2)

pW1-W2 + pW2-W1

. (21)

For all c such that k ≥ c > 1, by definitions in Equations 14, 15, 16, and 18; for r (z, f) in Equations

8 and 9; and for p (σ |z, f ) in Equations 10 and 11, we obtain

4 h∗ (z + c)

= h∗ (z + c)− h∗ (z + c− 1) = w(z + c, f1)− w(z + c+ 1, f1) (22)

=
λ

λ+ ρ
[pW2-W1 4 h∗ (z + c− 1) + (1− pW1-W2 − pW2-W1)4 h∗ (z + c) + pW1-W2 4 h∗ (z + c+ 1)]

< pW2-W1 4 h∗ (z + c− 1) + (1− pW1-W2 − pW2-W1)4 h∗ (z + c) + pW1-W2 4 h∗ (z + c+ 1) (23)

since
λ

λ+ ρ
< 1 .

We rearrange terms in Inequality 23 to obtain

4h∗ (z + c) <
pW2-W1 4 h∗ (z + c− 1)

pW1-W2 + pW2-W1

+
pW1-W2 4 h∗ (z + c+ 1)

pW1-W2 + pW2-W1

. (24)

Using Inequality 24 for c = k, and the fact that 4h∗ (z + k + 1) ≤ 1 (in Equation 19), we have

(pW1-W2 + pW2-W1)4 h∗ (z + k)

< pW2-W1 4 h∗ (z + k − 1) + (1− pW1-W2 − pW2-W1)4 h∗ (z + k) + pW1-W2 4 h∗ (z + k + 1)

≤ pW2-W1 4 h∗ (z + k − 1) + (1− pW1-W2 − pW2-W1)4 h∗ (z + k) + pW1-W2 . (25)
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We rearrange terms in Inequality 25 to obtain

4h∗ (z + k) <
pW2-W1 4 h∗ (z + k − 1)

pW1-W2 + pW2-W1

+
pW1-W2

pW1-W2 + pW2-W1

. (26)

We claim that for any c ∈ {1, 2, ..., k − 1} , we have

4h∗ (z + c) <
pW1-W2g (c− 1)4 h∗ (z + c+ 1)

g (c)
+

pcW2-W1

g (c)
, (27)

where

g (c) =
cX

i=0

piW1-W2
pc−iW2-W1

. (28)

We will prove that Inequality 27 holds using Inequalities 21 and 24 by induction.

• Let c = 1. Observe that g (0) = 1 and g (1) = pW1-W2 + pW2-W1 using the definition of g (in

Equation 28). Therefore, by Inequality 21,

4h∗ (z + 1) <
pW1-W2g (0)4 h∗ (z + 2)

g (1)
+

pW2-W1

g (1)
.

• Let c ∈ {2, ..., k − 1}. In the inductive step, assume that4h∗ (z + c− 1) < pW1-W 2
g(c−2)4h∗(z+c)

g(c−1) +
pc−1W 2-W1

g(c−1) .We substitute the right-hand side of this inequality for 4h∗ (z + c− 1) in Inequality 24
to obtain

4h∗ (z + c) <
pW2-W1

pW1-W2 + pW2-W1

Ã
pW1-W2g (c− 2)4 h∗ (z + c)

g (c− 1) +
pc−1W2-W1

g (c− 1)

!
+
pW1-W2 4 h∗ (z + c+ 1)

pW1-W2 + pW2-W1

.

(29)

We rearrange terms in Inequality 29 to obtain

4h∗ (z + c) <
pW1-W2g (c− 1)4 h∗ (z + c+ 1) + pcW2-W1

[(pW1-W2 + pW2-W1) g (c− 1)− pW2-W1pW1-W2g (c− 2)]
. (30)

Using the definition of g in Equation 28, we observe that

(pW1-W2 + pW2-W1) g (c− 1)− pW2-W1pW1-W2g (c− 2) = g (c) . (31)

Substituting g (c) for the left-hand side of Equation 31 in Inequality 30, we obtain

4h∗ (z + c) <
pW1-W2g (c− 1)4 h∗ (z + c+ 1)

g (c)
+

pcW2-W1

g (c)
,

completing the induction.
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We have4h∗ (z + k − 1) < pW 1-W 2
g(k−2)4h∗(z+k)

g(k−1) +
pk−1W 2-W 1

g(k−1) by Inequality 27. We substitute the right-

hand side of this inequality for 4h∗ (z + k − 1) in Inequality 26 to obtain the following inequality:

4h∗ (z + k) <
pW2-W1

pW1-W2 + pW2-W1

Ã
pW1-W2g (k − 2)4 h∗ (z + k)

g (k − 1) +
pk−1W2-W1

g (k − 1)

!
+

pW1-W2

pW1-W2 + pW2-W1

.

(32)

Rearranging terms in Inequality 32, we obtain

4h∗ (z + k) <
pkW2-W1

+ pW1-W2g (k − 1)
(pW1-W2 + pW2-W1) g (k − 1)− pW2-W1pW1-W2g (k − 2)

. (33)

Using the definition of g (in Equation 28), we observe that

pkW2-W1
+ pW1-W2g (k − 1) = g (k) and (34)

(pW1-W2 + pW2-W1) g (k − 1)− pW2-W1pW1-W2g (k − 2) = g (k) . (35)

Substituting g (k) for the left-hand side terms of Equations 34 and 35, Inequality 33 can be rewritten

as

4h∗ (z + k) < 1. (36)

However, Inequality 36 through Observation 2 contradict the claim that f z+k = f1 and4h∗ (z + k) >

1 (stated in Inequality System 19). We showed that for any z > 0 whenever f z = f2 and f z+1 = f1,

there is no k ≥ 1 such that f z+k+1 = f2, completing the proof of Claim 1. ¤

Claim 2: There exists z0 ≥ 0 such that for all z > z0 we have f z = f2.

Proof of Claim 2: Consider a scenario in which there are infinitely many W1-W2 type pairs available

at the exchange pool. That is, the state component is z = ∞. Every incoming overdemanded pair
of one of the types in PO (W1-W2) can be used in an exchange that matches a W1-W2 type pair.

After such an exchange, there will still be infinitely many W1-W2 type pairs, implying that incoming

W2-W1 type pairs are not affected by the previous decision of choosing largest possible exchanges.

Therefore, at state component z = ∞, the efficient action is f2 (option match, conducting largest
possible exchanges). Therefore, every incoming W2-W1 type pair will be matched in a two-way

exchange with a W1-W2 type pair, and every incoming pair of one of the types in PO (W1-W2) will

be matched efficiently serving a W1-W2 type pair. Since we are discussing the next incoming pairs,

this surplus should be discounted with E [e−ρτ1] = λ
λ+ρ

The exchange surplus for the first matched

W1-W2 or W2-W1 type pair in this scenario is

h
1
=

λ

λ+ ρ

⎡⎣ X
X-Y∈PO(W1-W2)

pX-Y

µ
c

ρ

¶
+ pW2-W1

µ
2
c

ρ

¶⎤⎦ .
Similarly, the current value of the exchange surplus for the second matched W1-W2 or W2-W1 type

pair is h
2
= λ

λ+ρ
h
1
, ..., and the current value of the exchange surplus for the kth matched W1-W2 or
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W2-W1 type pair is h
k
=
³

λ
λ+ρ

´k−1
h
1
. Therefore, the total exchange surplus of state component ∞

is

h (∞) =
∞X
k=1

h
k
=

∞X
k=1

µ
λ

λ+ ρ

¶k−1
h
1
=

1

1−
³

λ
λ+ρ

´h1
=

λc

ρ2

⎛⎝ X
X-Y∈PO(W1-W2)

pX-Y + 2pW2-W1

⎞⎠ .

By normalizing h (∞) by c
ρ
, we obtain

h∗ (∞) = λ

ρ

⎛⎝ X
X-Y∈PO(W1-W2)

pX-Y + 2pW2-W1

⎞⎠ .

Clearly, the normalized exchange surplus at state component∞ is an upper-bound for the normalized

efficient exchange surplus for z →∞. Suppose that there is no z0 > 0 such that for all z > z0, f z = f2.

By Claim 1, there exists some z0 > 0 such that for all z > z0, f z = f1 and h∗ (z) ≥ h∗ (z − 1) + 1 (by
Observation 2). Therefore, for any z > z0,

h∗ (z) ≥ (z − z0) + h∗ (z0) .

Then as z → ∞, h∗ (z) → ∞, contradicting the fact that h∗ (∞) is bounded. This and Claim 1

imply that there exists some z0 > 0 such that for all z > z0, f z = f2. ¤

We state the following two claims, whose proofs are symmetric versions of the proofs of Claims 1

and 2:

Claim 3: Suppose that z < 0 is such that f z = f2, and f z−1 = f1. Then there is no k ≥ 1 such that
f z−k−1 = f2.

Claim 4: There exists z00 ≤ 0 such that for all z < z00 we have f z = f2.

By Claims 1 and 2, there exists s∗W1-W2
≥ 0 such that f z = f2 for all z > s∗W1-W2

and f z = f1 for

all 0 ≤ z < s∗W1-W2
. By Claims 3 and 4 there exists s∗W1-W2

≤ 0 such that f z = f2 for all z < s∗W1-W2

and f z = f1 for all 0 ≥ z ≥ s∗W1-W2
. Since W1-W2 ∈ PR

∗
is arbitrary, the threshold mechanism φs

∗,s∗

is an efficient matching mechanism. ♦

Lemma 3 For each W1-W2 ∈ PR
∗
,

ES∗W1-W2
(0) <

λ

ρ
(pW1-W2 + pW2-W1)
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Proof of Lemma 3: Fix W1-W2 ∈ PR
∗
. Consider the state component z = 0. If W1-W2 and W2-

W1 type pairs could be matched as soon as they arrived at the exchange pool, the decision problem of

the health authority would be trivial and it would match the overdemanded type pairs in the largest

possible exchanges. That is, since no W1-W2 or W2-W1 type pairs remain in the pool unmatched,

whenever an X-Y ∈ PO (W1-W2) ∪ PO (W2-W1) type overdemanded pair arrives at the exchange

pool, it will be matched in an exchange without a W1-W2 or W2-W1 type pair that matches the

maximum number of underdemanded pairs possible and possibly some other reciprocally demanded

pairs. Let the associated exchange surplus with this process be ESW1-W2(0). Since in reality W1-W2

and W2-W1 type pairs are not matched as soon as they arrive, ESW1-W2(0) > ESW1-W2 (0). The

exchange surplus related to a pair is c
ρ
. Since we are discussing the next incoming pair, this surplus

should be discounted with E [e−ρτ1] = λ
λ+ρ
, implying that the associated exchange surplus is

ESW1-W2

1
=

λ

λ+ ρ

∙
(pW1-W2 + pW2-W1)

c

ρ

¸
.

Similarly, the exchange surplus associated with the second incoming pair isESW1-W2

2
= λ

λ+ρ
ESW1-W2

1
,

..., and the exchange surplus associated with the kth incoming pair isESW1-W2

k
=
³

λ
λ+ρ

´k−1
ESW1-W2

1
.

Therefore,

ESW1-W2 (0) =
∞X
k=1

ESW1-W2

k
=

∞X
k=1

µ
λ

λ+ ρ

¶k−1
ESW1-W2

1
=

1

1−
³

λ
λ+ρ

´ESW1-W2

1

=
λc

ρ2
(pW1-W2 + pW2-W1) .

Recall that ES∗W1-W2
(0) = ρ

c
ESW1-W2 (0). Hence,

ES∗W1-W2
(0) =

ρ

c
ESW1-W2 (0) <

ρ

c
ESW1-W2 (0) =

λ

ρ
(pW1-W2 + pW2-W1) .

♦

Lemma 4 For each W1-W2 ∈ PR
∗
, we have s∗W1-W2

≥ 0 and s∗W1-W2
= 0, or s∗W1-W2

= 0 and

s∗W1-W2
≤ 0.

Proof of Lemma 4: Fix W1-W2 ∈ PR
∗
.We prove the lemma by contradiction. Suppose that there

exist some s∗W1-W2
> 0 and s∗W1-W2

< 0 such that φs
∗,s∗ is efficient. Since s∗W1-W2

> 0, action f1 (do-

not-match W1-W2 type pair and choose the smaller exchange option) is chosen at state component

1, whenever an action needs to be taken. By the Bellman Equation 5, the normalized exchange

surplus related to action f1 is ES∗W1-W2
(1), the normalized exchange surplus related to action f2

(match W1-W2 type pair and choose the larger exchange option) is ES∗W1-W2
(0) + 1, and we have

ES∗W1-W2
(1) ≥ ES∗W1-W2

(0)+1 (by Observation 2 and since in case of equality f2 is chosen). Similarly,
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since s∗W1-W2
< 0, action f1, that is: the smaller exchange, is chosen at state component -1, whenever

an action needs to be taken. By the Bellman Equation 6, the normalized exchange surplus related to

action f1 is ES∗W1-W2
(−1), the normalized exchange surplus related to action f2 (the larger exchange)

is ES∗W1-W2
(0)+1, and we have ES∗W1-W2

(−1) ≥ ES∗W1-W2
(0)+ 1 (by Observation 3). We recall the

Bellman Equation for state component 0 as follows (Equation 7):

ES∗W1-W2
(0) =

λ

λ+ ρ

⎡⎢⎢⎣
⎛⎝ X
X-Y∈PO(W1-W2)∪PU∪PR\{W1-W2,W2-W1}

pX-Y

⎞⎠ES∗W1-W2
(0)

+pW1-W2ES
∗
W1-W2

(1) + pW2-W1

¡
ES∗W1-W2

(−1)
¢

⎤⎥⎥⎦ .
We replaceES∗ (1) by the smaller numberES∗ (0)+1 andES∗ (−1) by the smaller numberES∗ (0)+1
in the above expression to obtain the following inequality:

ES∗W1-W2
(0) ≥ λ

λ+ ρ

⎡⎢⎢⎣
⎛⎝ X
X-Y∈PO(W1-W2)∪PU∪PR\{W1-W2,W2-W1}

pX-Y

⎞⎠ES∗W1-W2
(0)

+pW1-W2 (ES
∗ (0) + 1) + pW2-W1 (ES

∗ (0) + 1)

⎤⎥⎥⎦ .
Arranging the terms in the above inequality, we obtain

ES∗W1-W2
(0) ≥ λ

ρ
(pW1-W2 + pW2-W1) ,

contradicting Lemma 3. Therefore, we have s∗W1-W2
≥ 0 and s∗W1-W2

= 0, or s∗W1-W2
= 0 and

s∗W1-W2
≤ 0. ♦

Proof of Theorem 2: The proof follows directly from Lemmata 2, 3, and 4. ♦

B Appendix: On the Efficient Kidney ExchangeMechanism

When Self-Demanded Types Participate in Exchange

In this appendix, we retain Assumptions 1, 2, and 4, and relax Assumption 3, that is: we assume

that self-demanded type pairs also participate in exchange. When there are self-demanded types

in the exchange pool, under Assumptions 1, 2, and 4, the full state of the matching mechanism

should be denoted not only by the difference between the number of A-B and B-A type pairs but

also by four other variables that denote the number of O-O, A-A, B-B, and AB-AB type pairs.

Next, we outline the intuition behind the derivation of the structure of the efficient mechanism under

Assumptions 1, 2, and 4. A formal derivation using Bellman Equations is complicated because of

the high dimensionality of the state space. However, we can make use of the underlying structure of

the problem and our results in the previous subsection in explaining the intuition:

Let φs
∗,s∗ be the efficient matching mechanism under Assumptions 1, 2, and 4. Without loss of

generality, let s∗ ≥ 0 and s∗ = 0. Suppose Assumptions 1, 2, and 4 still apply, while self-demanded

types can participate in exchange. Two cases can arise in the pool:
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• When a self-demanded type pair arrives: Suppose this pair is of type X-X. If there is an-
other type X-X pair available in the exchange pool, then we obtain a two-way exchange by

matching these two pairs together immediately. Observe that this exchange is efficient, since

self-demanded pairs cannot save any underdemanded pairs by Proposition 2. Therefore, under

the efficient mechanism, there will be 0 or 1 self-demanded type pairs in the pool.

• When a non-self-demanded type pair arrives: Let E = (i1, .., ik) be a feasible exchange without
any self-demanded types (let ik+1 ≡ i1). If there exists a self-demanded X-X type pair i available

in the exchange pool such that there are pairs ic and ic+1 with X blood-type donor and X

blood-type recipient, respectively, then we can insert pair i between pairs ic and ic+1 and obtain

a feasible exchange E0. This exchange is better than E, since (1) self-demanded types cannot

save any underdemanded types, (2) overdemanded types are most efficiently used in saving

underdemanded types, and finally, (3) self-demanded types can otherwise be matched with

only same-type pairs if they are not inserted in larger exchanges. So, we need to enlarge the

exchanges as much as possible by inserting all possible existing self-demanded type pairs.

By the above argument, and given the fact that efficient mechanism under Assumptions 1, 2,

3, and 4 is a threshold mechanism, the efficient mechanism under Assumptions 1, 2, and 3

is a generalized threshold mechanism, with a threshold number of A-B (or B-A type pairs) to

conduct smaller exchanges (the largest exchanges without the A-B or B-A type pairs), where

the threshold number depends on the existence or absence of self-demanded type pairs at each

state.

Let ES be the possible smaller exchange and EL be the possible larger exchange without any

self-demanded type pairs. We have the following possibilities for the pair types in ES and EL:

state s pair types in ES pair types in EL
s < 0 (A-O, O-A) (A-O, O-B, B-A)

When |s| B-A type (AB-B, B-AB) (AB-B, B-A, A-AB)

pairs exist (AB-O, O-A, A-AB), (AB-O, O-B, B-AB) (AB-O, O-B, B-A, A-AB)

s > 0 (B-O, O-B) (B-O, O-A, A-B)

When s A-B type (AB-A, A-AB) (AB-A, A-B, B-AB)

pairs exist (AB-O, O-A, A-AB), (AB-O, O-B, B-AB) (AB-O, O-A, A-B, B-AB)

Three cases are possible:

— X-X ∈ {O-O, AB-AB}: Observe that type X-X pair can be inserted in ES if and only if

it can be inserted in EL in each case. Therefore, the existence of 1 X-X type pair or the

absence of X-X type pairs has no effect on the thresholds, since in either case the marginal

gain of the larger exchange is only 1 pair. Therefore, whenever such an X-X type pair

exists, inserting the X-X type pair in ES or EL, whichever is chosen under the thresholds

s∗ and s∗, is the efficient action.
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— X-X = A-A: Consider the case when there is 1 A-A type pair. If s∗ < 0 let the pair types
of ES be (AB-B, B-AB) and the pair types of EL be (AB-B, B-A, A-AB), and if s∗ > 0, let

the pair types of ES be (B-O, O-B) and the pair types of EL be (B-O, O-A, A-B). In each

case, the A-A pair cannot be inserted in the smaller exchange, but it can be inserted in

the larger exchange. Therefore, the marginal gain of the larger exchange is 2 pairs (with

A-A type pair). Recall that when no A-A pair exists, the marginal gain of the larger

exchange is only 1 pair. Therefore, the threshold for smaller exchanges with an A-A type

pair cannot exceed the threshold without an A-A type pair in absolute value, |s∗| or s∗,
whichever applies. For all other possibilities for ES and EL pair types, the A-A type pair

can be inserted in ES if and only if it can be inserted in EL; hence the threshold |s∗| or
s∗ is still valid for smaller exchanges.

— X-X = B-B: the symmetric argument for the case X-X = A-A applies by interchanging

the roles of A and B blood types.

Based on this intuition, we state the following remark:

Remark 1 Suppose Assumptions 1, 2, and 4 hold, i.e., self-demanded type pairs can also participate
in exchange. Let φs

∗,s∗ be the dynamically efficient kidney exchange mechanism under Assumptions

1, 2, 3, and 4. Consider the case s∗ > 0 and s∗ = 0. Then, there exist thresholds 0 ≤ s∗A-A ≤ s∗

and 0 ≤ s∗B-B ≤ s∗ such that under an efficient mechanism whenever a decision is required between

two exchanges — the largest exchange with an A-B type pair (option match) or the largest exchange

without an A-B type pair (option do-not-match) — the smaller exchange is chosen if and only if the

number of A-B type pairs, s, satisfies

• s∗A-A ≥ s ≥ 0, if an A-A type pair exists and a B-O type pair arrives,

• s∗B-B ≥ s ≥ 0, if a B-B type pair exists and an AB-A type pair arrives,

• s∗ ≥ s ≥ 0, otherwise.

If these conditions are not satisfied, the largest exchanges are conducted as soon as they become

feasible. The efficient mechanism is symmetrically defined for the case s∗ = 0 and s∗ < 0 with

thresholds s∗, 0 ≥ s∗A-A ≥ s∗, and 0 ≥ s∗B-B ≥ s∗.32

32There could be only one ambiguity in the definition: Suppose that an AB-O type pair becomes available for
exchange and a smaller exchange is chosen. Moreover, suppose the number of A-B type pairs is s (such that 0 < s < s∗).
In this case, smaller exchanges are chosen, but we can form two types of exchanges with the AB-O pair.

• We can have a three-way exchange with AB-O, O-A, and A-AB type pairs, or

• We can have a three-way exchange with AB-O, O-B, and B-AB type pairs.

As explained before, by Assumption 1, choosing either exchange is fine when there are no self-demanded types.
Consider the case in which there is one A-A and one B-B type pair in the exchange pool. Depending on which
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We can state a single state variable approximation of the efficient mechanism as follows under

Assumptions 1, 2, and 4 with s∗A-A = s∗B-B = s∗ and s∗A-A = s∗B-B = s∗:

• When a self-demanded type pair arrives: Suppose this pair is of type X-X. If there is another
type X-X pair available in the exchange pool, then we obtain a two-way exchange by matching

these two pairs together immediately.

• When a non-self-demanded type pair arrives: Let E = (i1, .., ik) be the efficient exchange

according to the efficient mechanism φs
∗,s∗ without taking the existence of self-demanded types

into consideration (let ik+1 ≡ i1). If there exists a self-demanded X-X type pair i available in

the exchange pool such that there are pairs ic and ic+1 with an X blood-type donor and an

X blood-type recipient, respectively, then we can insert pair i between pairs ic and ic+1 and

obtain a feasible exchange E0. We repeat the process with E0 until no feasible self-demanded

type pair remains to be inserted. We conduct the final exchange obtained.

Let this mechanism be called φ̂
s∗,s∗

. We conduct policy simulations using this mechanism.
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