Dynamic Kinetic Asymmetric [3+2] Annulation Reactions of Aminocyclopropanes.

Florian de Nanteuil, ${ }^{\ddagger}$ Eloisa Serrano, ${ }^{\ddagger}$ Daniele Perrotta and Jerome Waser.

Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland.

Supporting Information Placeholder

Abstract

In this communication, we report the first example of dynamic kinetic asymmetric [3+2] annulation reaction of aminocyclopropanes with both enol ethers and aldehydes. Using a copper catalyst and a commercially available bisoxazoline ligand, cyclopentyl- and tetrahydrofurylamines were obtained in 69-97\% yield and up to a 98:2 enantiomeric ratio using the same reaction conditions. The method gives access to important enantioenriched nitrogen building blocks for the synthesis of bioactive compounds.

The combination of nitrogen functionalities and cyclic structures is omnipresent in bioactive compounds. From the ten most sold pharmaceutical products based on small molecules in 2009, nine contain nitrogen atoms embedded in ring systems. Among the multitude of reported nitrogen-rich cyclic scaffolds, tetrahydrofurylamines and cyclopentylamines occupy a privileged position (Figure 1). Tetrahydrofurylamines are especially important in the form of aminosugars, such as aminodeoxyriboses $\mathbf{1}$, which are at the core of DNA and many bioactive synthetic nucleoside analogues. Cyclopentylamines are well-represented in bioactive compounds, such as the bicyclic drug Ramipril (2) used to treat hypertension and heart diseases. ${ }^{1}$ They are also at the core of numerous bioactive natural products, such as the antibiotic Pactamycin (3). ${ }^{2}$ A stereoselective synthetic access to tetrahydrofu-ryl- and cyclopentylamines would be consequently highly valuable in order to discover new bioactive compounds.

Figure 1: Biomolecules and bioactive compounds containing an amino- tetrahydrofuran or cyclopentane ring.

Since 2010, our group has examined the use of donor-acceptor substituted aminocyclopropanes and aminocyclobutanes for the synthesis of nitrogen-rich molecules (Scheme $1, \mathbf{A}){ }^{3}$ This approach is particularly attractive as the nitrogen atom plays a dual role: it is not only an essential structural element of the product, but also a steering group to control regioselective ring opening
upon release of ring strain. Despite important progress in the use of donor-acceptor substituted cyclopropanes, ${ }^{4}$ only few examples on the use of aminocyclopropanes had been reported prior to our own work. ${ }^{5}$ In our hands, the ring-opening of aminocyclopropanes was highly successful for the inter- and intramolecular addition of nucleophiles ${ }^{3 \mathrm{acc}}$ and the development of new annulation reactions, in particular for the synthesis of cyclopentyl- and tetrahydrofurylamines ((1) in Scheme 1, B). ${ }^{3 \mathrm{~d}-\mathrm{g}}$ The reaction of enol ethers and ketones using a tin catalyst was enantiospecific, whereas the ironcatalyzed annulation of aldehydes gave racemic products.
Scheme 1: General strategy (A), previous work (B) and current work (C) to access nitrogen-rich building blocks.

An approach allowing the complete conversion of easily accessible racemic aminocyclopropanes into enantiopure cyclopentylamines -a dynamic kinetic asymmetric transformation (DYKAT) $-{ }^{6}$ would be much more straightforward. Such reactions have been realized for other classes of donor-acceptor cyclopro-
panes in the past, ${ }^{7}$ but have never been reported in the case of aminocyclopropanes ((2) in Scheme 1, B). Furthermore, each class of substrates asked for the development of a unique catalytic system. The synthesis of cyclopentanes has been especially challenging. Success has been limited to the use of cyclic silyl enol ethers ${ }^{\mathrm{h}}$ and indoles ${ }^{7 \mathrm{~m}}$ as substrates by Tang and co-workers using a copper catalyst with specifically designed bisoxazoline ligands.

Herein, we would like to report the first successful dynamic kinetic asymmetric annulation of aminocyclopropanes with enol ethers and aldehydes (Scheme 1, C). Enantiomeric ratios up to 98:2 could be achieved with complete conversion of the aminocyclopropane starting materials using a simple commercially available bisoxazoline catalyst. In contrast to the only previously reported method for silyl enol ethers, ${ }^{\text {7h }}$ the transformation was especially successful for non-cyclic alkyl enol ethers. The same catalytic system could then be extended to the reaction of aminocyclopropanes with aldehydes to give tetrahydrofurylamines with up to a 96:4 enantiomeric ratio. To the best of our knowledge, this is the first report of an enantioselective catalytic system working for the synthesis of both cyclopentanes and tetrahydrofurans. The obtained enantiopure chiral building blocks will be highly useful for the synthesis of new nitrogen-rich bioactive compounds.

We started our investigations by studying the annulation reaction between phthalimido-substituted dimethyl ester cyclopropane $\mathbf{4 a}$ and silyl enol ether 5a, as this transformation had already been studied in our previous work involving enantiospecific reactions (Scheme 2). ${ }^{3 \mathrm{~d}, 8}$ The catalytic system used in this work $\left(\mathrm{SnCl}_{4}\right.$ at $78^{\circ} \mathrm{C}$) was not well suited for the development of a dynamic kinetic asymmetric transformation, as it was highly enantiospecific at low temperature and led to decomposition at higher temperature. Consequently, a broad range of other catalysts and chiral ligands were examined. From these studies, copper bisoxazoline complex 7a emerged as the most promising catalyst, leading to complete conversion of cyclopropane $4 \mathbf{a}$ and formation of the cyclopentylamine 6a in a 76:24 er and a very good diastereoselectivity (Scheme 2, A). Nevertheless, the enantioselectivity observed was still not satisfactory and the yield of the isolated product remained low and variable ($0-50 \%$) due to the formation of ring-opening side products resulting from a retro-aldol reaction.

To address these shortcomings, extensive optimization of the reaction conditions, cyclopropane and enol ethers substituents, as well as the catalyst structure was performed (Scheme 2, B and C). ${ }^{9}$ No significant improvement could be obtained by changing solvent, temperature, concentration or catalyst loading. In contrast to what has been observed by Tang and co-workers, ${ }^{\text {7h }}$ modification of the diester substituents was also not successful. Finally, four parameters were found to be crucial to increase the selectivity and the efficiency of the reaction:

1) Replacing the silyl group on the enol ether by an alkyl group (benzyl) allowed for a significant increase in yield and reproducibility. The higher stability of the carbon-oxygen bond was probably essential to prevent ring-opening side reactions.
2) The structure of the substituents on the nitrogen was essential to achieve high enantioinduction. The enantiomeric ratio was lower with an electron-donating methoxy substituent on the phthalimide ($74: 26$, cyclopropane $4 c$), but increased significantly to $92: 8$ with a nitro substituent (cyclopropane $\mathbf{4 d}$). However, this increase of enantioselectivity came at the cost of a lower diastereoselectivity (4:1). On the other hand, replacing the phthalimide group by a succinimide led to the highest enantiomeric ratio (95:5) without compromising the diastereoselectivity.
3) Steric hindrance of the substituent on the ligand was another important factor. Best results were obtained with the commercially available bisoxazoline ligand bearing a bulky tert-butyl group.
4) Finally, a strong counteranion effect was observed. The highest enantioinduction was obtained with perchlorate, whereas hexafluoroantimonate led to the highest diastereoselectivity. To obtain high enantioselectivity, it was important to exclude moisture, as the blue copper aqua complex gave lower enantioinduction than the anhydrous green catalyst.

Under the optimized conditions, the desired cyclopentylamine $\mathbf{6 b}$ could finally be obtained in 94% yield and a $95: 5$ er with good diastereoselectivity (10:1), setting the stage for the investigation of the scope of the reaction (Scheme 1, B).
Scheme 2: Lead result (A), optimized reaction conditions (B) and key parameters influencing yield and selectivity of the reaction.

On preparative scale, cyclopentylamine $\mathbf{6 b}$ could be obtained in quantitative yield with a $96: 4$ er and a 7:1 dr (Table 1, entry 1). Variation of the oxygen substituent was examined first: A methyl enol ether (entry 2) and a more electron-withdrawing trifluoroethyl group (entry 3) both worked in the annulation reaction, but for the latter the diastereoselectivity of the reaction was lost. Variation of the aromatic substituent on the olefin gave comparable enantioinduction for both a meta methyl-substituted phenyl ring (entry 4) and a thiophene heterocycle (entry 5). The annulation reaction was not limited to the synthesis of tertiary ethers: unsubstituted benzyl ethers 5g-i also gave the desired products with useful selectivity (entries 6-8). On a 1 mmol scale, product $\mathbf{6 g}$ was obtained in 80% yield and a 95.5:4.5 er (entry 6).

Achieving high selectivity in DYKAT processes is challenging and the catalytic system often has to be optimized for each class of substrates. Nevertheless, when benzaldehyde (8a) was used in the $[3+2]$ annulation process with aminocyclopropane $\mathbf{4 b}$, the DYKAT process was successful and gave the desired tetrahydrofurylamine 9a with a $92: 8$ er and a 13:1 dr (Table 2, entry 1). The annulation reaction was successful for both electron-rich (entries

2 and 3) and electron-poor (entry 4) aromatic aldehydes, as well as for thiophene carboxaldehyde (8e) (entry 5). The best enantiomeric ratio (96:4) was observed for the para-methoxy substituted benzene ring (entry 2). The reaction was not limited to aromatic aldehydes: both cinnamaldehyde ($\mathbf{8 f}$) (entry 6) and aliphatic aldehyde $\mathbf{8 g}$ (entry 7) could be used.
Table 1. Scope of the annulation reaction with enol ethers. ${ }^{\text {a }}$
Entry
${ }^{\text {a }}$ Reaction conditions: 0.20 mmol cyclopropane $\mathbf{4 b}, 0.40 \mathrm{mmol}$ enol ether $\mathbf{5}, 0.02 \mathrm{mmol}$ catalyst $\mathbf{7 b}, 3 \AA \mathrm{MS}$ in dichloromethane at room temperature, under argon. ${ }^{\text {b }}$ Yield after purification by column chromatography. ${ }^{\text {c }}$ Determined by chiral phase HPLC. ${ }^{\text {d De- }}$ termined by analysis of crude ${ }^{1} \mathrm{H}$ NMR. ${ }^{\text {e }}$ Value for major anti diastereoisomer, syn diastereoisomer: er $=96.5: 3.5$. ${ }^{\mathrm{f}}$ Values in brackets correspond to the results on 1 mmol scale.

The absolute configuration of $\mathbf{6 g}$ was determined by X-ray crystallography (S at the center next to the nitrogen atom, Figure 2). Interestingly, the absolute configuration is opposite to the one obtained by Tang and co-workers. ${ }^{7 \mathrm{~h}, 7 \mathrm{~m}}$ Although further experiments will be required to establish the origin of asymmetric induction, we propose a tentative stereochemical model based on the strong distortion from the square planar geometry in tert-butyl-substituted bisoxazoline complexes, which is also apparent in the bis-aqua complex of $\mathbf{7 b}$ (Scheme 3). ${ }^{10}$ In complex \mathbf{I}, formed from the R enantiomer of cyclopropane $\mathbf{4 b}$, the distortion moves
the cyclopropane to the upper right quadrant, opening a free path for fast attack of the nucleophile and affording the product with the observed absolute configuration. In complex II formed from the S enantiomer, the attack of the nucleophile is blocked by the tert-butyl substituents of the ligand, and is therefore slower.
Table 2. Scope of the annulation reaction with aldehydes. ${ }^{\text {a }}$
Entry
${ }^{\text {a }}$ Reaction conditions: 0.20 mmol cyclopropane $\mathbf{4 b}, 0.40 \mathrm{mmol}$ aldehyde $\mathbf{8}, 0.02 \mathrm{mmol}$ catalyst $\mathbf{7 b}, 3 \AA \mathrm{MS}$ in dichloromethane at room temperature, under argon. ${ }^{\text {b }}$ Yield after purification by column chromatography. ${ }^{\text {c }}$ Determined by chiral phase HPLC. ${ }^{\text {d }}$ Determined by analysis of crude ${ }^{1} \mathrm{H}$ NMR.

Figure 2: X-ray structure of compound $\mathbf{6 g}$. ${ }^{11}$

In summary, we have reported the first example of dynamic kinetic asymmetric $[3+2]$ annulation reaction of aminocyclopropanes. The reaction proceeded with high enantioselectivity and diastereoselectivity with a broad range of acyclic alkyl enol ethers and aldehydes using a copper catalyst with a commercially available bisoxazoline ligand. Importantly, the developed catalytic system could be used for both types of substrates without reoptimization. The method is expected to be highly useful for the asymmetric synthesis of nitrogen-rich small organic molecules.
Scheme 3: Stereochemical model for the reaction and X ray structure of complex $\mathbf{7 b} \cdot\left(\mathrm{H}_{2} \mathrm{O}\right)_{2}$. ${ }^{12}$

ASSOCIATED CONTENT

Supporting Information

Experimental procedures and analytical data for all new compounds. This material is available free of charge via the Internet at http://pubs.acs.org.

AUTHOR INFORMATION

Corresponding Author
jerome.waser@epfl.ch

Author Contributions

\ddagger These authors contributed equally.

Notes

The authors declare no competing financial interests.

ACKNOWLEDGMENT

We thank F. Hoffmann-La Roche Ltd for an unrestricted research grant and the Swiss National Science Foundation (SNSF, grant number 200021_129874 and 200020_149494) for financial support. We thank Mr. Kurt Schenk of the Institute of the Physics of Biological Systems at EPFL for the X-ray studies.

REFERENCES

(1) Yusuf, S.; Teo, K. K.; Pogue, J.; Dyal, L.; Copland, I.; Schumacher, H.; Ingelheim, B.; Dagenais, G.; Sleight, P.; Anderson, C. N. Engl. J. Med. 2008, 358, 1547.
(2) (a) Brodersen, D. E.; Clemons, W. M.; Carter, A. P.; MorganWarren, R. J.; Wimberly, B. T.; Ramakrishnan, V. Cell 2000, 103, 1143. (b) Malinowski, J. T.; Sharpe, R. J.; Johnson, J. S. Science 2013, 340, 180.
(3) Additions: (a) De Simone, F.; Gertsch, J.; Waser, J. Angew. Chem., Int. Ed. 2010, 49, 5767. (b) de Nanteuil, F.; Loup, J.; Waser, J. Org. Lett. 2013, 15, 3738. (c) Frei, R.; Staedler, D.; Raja, A.; Franke, R.; Sasse, F.; Gerber-Lemaire, S.; Waser, J. Angew. Chem., Int. Ed. 2013, 52, 13373. Annulations: (d) de Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2011,

50, 12075. (e) Benfatti, F.; de Nanteuil, F.; Waser, J. Chem. Eur. J. 2012, 18, 4844. (f) Benfatti, F.; de Nanteuil, F.; Waser, J. Org. Lett. 2012, 14, 386. (g) de Nanteuil, F.; Waser, J. Angew. Chem., Int. Ed. 2013, 52, 9009.
(4) (a) Reissig, H. U.; Zimmer, R. Chem. Rev 2003, 103, 1151. (b) Yu, M.; Pagenkopf, B. L. Tetrahedron 2005, 61, 321. (c) Carson, C. A.; Kerr, M. A. Chem. Soc. Rev. 2009, 38, 3051. (d) De Simone, F.; Waser, J. Synthesis 2009, 3353. (e) Lebold, T. P.; Kerr, M. A. Pure Appl. Chem. 2010, 82, 1797. (f) Mel'nikov, M. Y.; Budynina, E. M.; Ivanova, O. A.; Trushkov, I. V. Mendeleev Commun. 2011, 21, 293. (g) Schneider, T. F.; Werz, D. B. Org. Lett. 2011, 13, 1848. (h) Tang, P.; Qin, Y. Synthesis 2012, 44, 2969.
(5) For selected examples, see: (a) Wenkert, E.; Hudlicky, T.; Showalter, H. D. H. J. Am. Chem. Soc. 1978, 100, 4893. (b) Ha, J. D.; Lee, J. W.; Blackstock, S. C.; Cha, J. K. J. Org. Chem. 1998, 63, 8510. (c) Williams, C. M.; de Meijere, A. J. Chem. Soc., Perkin Trans. 1 1998, 3699. (d) Larquetoux, L.; Ouhamou, N.; Chiaroni, A.; Six, Y. Eur. J. Org. Chem. 2005, 4654. (e) Madelaine, C.; Six, Y.; Buriez, O. Angew. Chem., Int. Ed. 2007, 46, 8046. (f) Yang, J.; Wu, H. X.; Shen, L. Q.; Qin, Y. J. Am. Chem. Soc. 2007, 129, 13794. (g) Zhang, D.; Song, H.; Qin, Y. Acc. Chem. Res. 2011, 44, 447. For recent examples reported after publication of our work, see: (h) Gharpure, S. J.; Vijayasree, U.; Reddy, S. R. B. Org. Biomol. Chem. 2012, 10, 1735. (i) Maity, S.; Zhu, M. Z.; Shinabery, R. S.; Zheng, N. Angew. Chem., Int. Ed. 2012, 51, 222. (j) Rivero, A. R.; Fernandez, I.; Sierra, M. A. Org. Lett. 2013, 15, 4928. (k) Tejero, R.; Ponce, A.; Adrio, J.; Carretero, J. C. Chem. Comm. 2013, 49, 10406.
(6) Steinreiber, J.; Faber, K.; Griengl, H. Chem. Eur. J. 2008, 14, 8060.
(7) DYKAT: (a) Parsons, A. T.; Johnson, J. S. J. Am. Chem. Soc. 2009, 131, 3122. (b) Parsons, A. T.; Smith, A. G.; Neel, A. J.; Johnson, J. S. J. Am. Chem. Soc. 2010, 132, 9688. (c) Wales, S. M.; Walker, M. M.; Johnson, J. S. Org. Lett. 2013, 15, 2558. (d) Trost, B. M.; Morris, P. J. Angew. Chem., Int. Ed. 2011, 50, 6167. (e) Trost, B. M.; Morris, P. J.; Sprague, S. J. J. Am. Chem. Soc. 2012, 134, 17823. (f) Mei, L. Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2012, 31, 7591. (g) Mei, L. Y.; Wei, Y.; Xu, Q.; Shi, M. Organometallics 2013, 32, 3544. (h) Xu, H.; Qu, J. P.; Liao, S. H.; Xiong, H.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 4004. Only the examples based on cyclopropanes as limiting substrates are listed. Kinetic resolutions and other asymmetric transformations: (i) Sibi, M. P.; Ma, Z. H.; Jasperse, C. P. J. Am. Chem. Soc. 2005, 127, 5764. (j) Kang, Y. B.; Sun, X. L.; Tang, Y. Angew. Chem., Int. Ed. 2007, 46, 3918. (k) Zhou, Y. Y.; Wang, L. J.; Li, J.; Sun, X. L.; Tang, Y. J. Am. Chem. Soc. 2012, 134, 9066. (1) Zhou, Y. Y.; Li, J.; Ling, L.; Liao, S. H.; Sun, X. L.; Li, Y. X.; Wang, L. J.; Tang, Y. Angew. Chem., Int. Ed. 2013, 52, 1452. (m) Xiong, H.; Xu, H.; Liao, S. H.; Xie, Z. W.; Tang, Y. J. Am. Chem. Soc. 2013, 135, 7851. (n) Moran, J.; Smith, A. G.; Carris, R. M.; Johnson, J. S.; Krische, M. J. J. Am. Chem. Soc. 2011, 133, 18618.
(8) The enol ethers and cyclopropanes used in this study were synthesized using modified reported procedures: Enol ethers: (a) Bosch, M.; Schlaf, M. J. Org. Chem. 2003, 68, 5225. Cyclopropanes: (b) Bayer, E.; Geckeler, K. Angew. Chem., Int. Ed. 1979, 18, 533. (c) Baret, N.; Dulcere, J. P.; Rodriguez, J.; Pons, J. M.; Faure, R. Eur. J. Org. Chem. 2000, 1507. (d) Kacprzak, K. Synth. Commun. 2003, 33, 1499. (e) Wyatt, P.; Hudson, A.; Charmant, J.; Orpen, A. G.; Phetmung, H. Org. Biomol. Chem. 2006, 4, 2218. (f) Gonzalez-Bobes, F.; Fenster, M. D. B.; Kiau, S.; Kolla, L.; Kolotuchin, S.; Soumeillant, M. Adv. Synth. Catal. 2008, 350, 813. See Supporting Information for detailed procedures.
(9) For easier comparison, the values given in Scheme 2, \mathbf{C} have been limited to those obtained when changing a single parameter from the optimized conditions given in Scheme 2, B. For the optimization studies, the yields and diastereoselectivities were calculated by NMR and the er by chiral HPLC, see Supporting Information for further details.
(10) (a) Evans, D. A.; Rovis, T.; Kozlowski, M. C.; Tedrow, J. S. J. Am. Chem. Soc. 1999, 121, 1994. (b) Desimoni, G.; Faita, G.; Jørgensen, K. A. Chem. Rev 2011, 111, PR284. See also Figure S1 in Supporting Information for a simplified stereochemical model with different complex geometries.
(11) The different atom locations in the benzene region result from the presence of two conformations in the crystal structure.
(12) The hydrogen atoms are omitted for clarity.

Supporting Information for

Dynamic Kinetic Asymmetric [3+2] Annulation Reactions of Aminocyclopropanes.

Florian de Nanteuil, ${ }^{\dagger}$ Eloisa Serrano, ${ }^{\ddagger}$ Daniele Perrotta and Jerome Waser.

Laboratory of Catalysis and Organic Synthesis, Ecole Polytechnique Fédérale de
Lausanne, EPFL SB ISIC LCSO, BCH 4306, 1015 Lausanne, Switzerland jerome.waser@epfl.ch

95 pages

Table of Contents

Figure S1: 5
Figure S2: 6
General Methods 7
Synthesis of Dimethyl-2-diazomalonate (12) 8
Synthesis of N -vinyl-imides 8
5-Methoxyisobenzofuran-1,3-dione (14) 8
5-Methoxyisoindoline-1,3-dione (16) 9
5-Methoxy-2-vinylisoindoline-1,3-dione (18) 9
1-Vinylpyrrolidine-2,5-dione (20) 10
5-Nitro-2-vinylisoindoline-1,3-dione (22) 10
Synthesis of Aminocyclopropanes 12
General Procedure for the of Synthesis of Aminocyclopropanes 12
Dimethyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4a) 12
Dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (4b) 12
Dicarboxylate dimethyl 2-(5-methoxy-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4c) 13
Dimethyl 2-(5-nitro-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4d) 14
Synthesis of Esters 15
2,2,2-Trifluoroethyl benzoate (24) 15
General Procedure for the Synthesis of Benzyl Esters 15
Benzyl 3-methylbenzoate (26) 15
Benzyl thiophene-2-carboxylate (27) 16
Synthesis of Enol ethers 17
Triisopropyl((1-phenylvinyl)oxy)silane (5a) 17
General procedure for the Synthesis of disubstituted Enol Ethers. 17
(1-(Benzyloxy)vinyl)benzene (5b) 17
1-(1-Methoxyvinyl)-4-methylbenzene (5c) 18
(1-(2,2,2-Trifluoroethoxy)vinyl)benzene (5d) 18
2-(1-(Benzyloxy)vinyl)thiophene (5f) 19
General Procedure for the Synthesis of Monosubstituted Enol Ethers 20
((Vinyloxy)methyl)benzene (5g) 20
1-Bromo-4-((vinyloxy)methyl)benzene (5h) 21
1-Nitro-4-((vinyloxy)methyl)benzene (5i) 21
Synthesis of cyclopentylamines and tetrahydrofurylamines: 22
Synthesis of $[\mathrm{Cu}(\mathrm{BOX})](\mathrm{X})_{2} 7$ 22
General Procedure for the racemic [3+2] Annulation Reaction: 22
General Procedure for the Screening of Conditions for the Catalytic Asymmetric [3+2] Annulation
Reaction: 23
Dimethyl-(2S,4S)-4-(1,3-dioxoisoindolin-2-yl)-2-phenyl-2-((triisopropylsilyl)oxy) cyclopentane- 1,1-dicarboxylate (6a) 23
Dimethyl-(2S,4S)-2-(benzyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-phenylcyclopentane-1,1- dicarboxylate (30) 23
Dimethyl-(2S,4S)-2-(benzyloxy)-4-(5-methoxy-1,3-dioxoisoindolin-2-yl)-2-phenylcyclopentane- 1,1-dicarboxylate (31) 24
Dimethyl-(2S,4S)-2-(benzyloxy)-4-(5-nitro-1,3-dioxoisoindolin-2-yl)-2-phenylcyclopentane-1,1- dicarboxylate (32) 24
General Procedure for the Catalytic Asymmetric [3+2] Annulation Reaction 25
Racemization experiment of cyclopropane $4 \mathbf{b}$ 25
Dimethyl-(2S,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-phenylcyclopentane-1,1- dicarboxylate (6b) 26
Dimethyl-(2S,4S)-4-(2,5-dioxopyrrolidin-1-yl)-2-methoxy-2-(p-tolyl)cyclopentane-1,1- dicarboxylate (6c) 26
Dimethyl-(2S,4S)-4-(2,5-dioxopyrrolidin-1-yl)-2-phenyl-2-(2,2,2-trifluoroethoxy)cyclopentane- 1,1-dicarboxylate (6d) 27
Dimethyl-(2S,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-(m-tolyl)cyclopentane-1,1- dicarboxylate (6e) 28
Dimethyl-(2R,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-(thiophen-2-yl)cyclopentane- 1,1-dicarboxylate (6f) 29
Dimethyl-(2R,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1-dicarboxylate (6g) 29
Dimethyl-(2R,4S)-2-((4-bromobenzyl)oxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1- dicarboxylate (6h) 30
Dimethyl-(2R,4S)-4-(2,5-dioxopyrrolidin-1-yl)-2-((4-nitrobenzyl)oxy)cyclopentane-1,1- dicarboxylate (6i) 31
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-phenyldihydrofuran-3,3(2H)-dicarboxylate (9a)32
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-(4-methoxyphenyl)dihydrofuran-3,3(2H)- dicarboxylate (9b) 32
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-(3-methoxyphenyl)dihydrofuran-3,3(2H)- dicarboxylate (9c) 33
Dimethyl-(2R,5R)-2-(4-chlorophenyl)-5-(2,5-dioxopyrrolidin-1-yl)dihydrofuran-3,3(2H)- dicarboxylate (9d) 34
Dimethyl-(2S,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-(thiophen-2-yl)dihydrofuran-3,3(2H)- dicarboxylate (9e) 34
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-((E)-styryl)dihydrofuran-3,3(2H)-dicarboxylate (9f) 35
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-phenethyldihydrofuran-3,3(2H)-dicarboxylate (9g) 35
Spectra 36

Figure S1:

X-ray structure of compound $\mathbf{6 g}$. The different atom locations in the benzene region result from the presence of two conformations in the crystal structure. As the region containing the stereocenters is well-defined, the assignment of the configuration is not disturbed.

Figure S2:

Simplified stereochemical model for nucleophilic attack on aminocyclopropanes in dependence of the complex geometry. Only the $\mathrm{CH}_{2}-\mathrm{CHN}$ bond of the cyclopropane is drawn. The grey quadrants are blocked by the two tert-butyl groups of the ligand.
distorted square planar

Favored

square planar

tetrahedral

General Methods

All reactions were carried out in oven-dried glassware under nitrogen or argon atmosphere with magnetic stirring, unless stated otherwise. THF, $\mathrm{Et}_{2} \mathrm{O}, \mathrm{CH}_{3} \mathrm{CN}$, toluene, hexane and dichloromethane were dried by passage over activated alumina under nitrogen atmosphere (water content < 30 ppm , Karl-Fischer titration) on an Innovative Technology Solvent Delivery System. All chemicals were purchased from Strem, Acros, Aldrich, Fluka, VWR, Aplichem or Merck and used as such unless stated otherwise. Chromatographic purification was performed as flash chromatography using Macherey-Nagel silica 40-63, $60 \AA$ or using aluminium oxide, basic, Brockmann I purchased from Acros, using the solvents indicated as eluent with 0.1-0.5 bar pressure. For flash chromatography, previously distilled technical grade solvents were used. TLC was performed on Merck silica gel 60 F254 TLC glass plates or aluminium plates and visualized with UV light, and by permanganate stain, CAN stain or p -anisaldehyde stain followed by heating. Melting points were measured on a calibrated Büchi B-540 melting point apparatus using open glass capillaries. ${ }^{1} \mathrm{H}$ - NMR spectra were recorded on a Brucker DPX-400 400 MHz spectrometer in CDCl_{3}, DMSO- $\mathrm{d}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 7.26 ppm , the internal DMSO signal at 2.50 ppm , the internal $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ signal at 5.31 ppm , or the internal MeOD signal at 3.30 ppm as standard. The data are reported as follows: $(\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quadruplet, $\mathrm{qi}=$ quintet, $\mathrm{m}=$ multiplet or unresolved, $\mathrm{br}=\mathrm{broad}$ signal, coupling constant(s) in Hz , integration, interpretation). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra were recorded with ${ }^{1} \mathrm{H}$-decoupling on a Brucker DPX- 400100 MHz spectrometer in CDCl_{3}, DMSO- $\mathrm{d}_{6}, \mathrm{CD}_{2} \mathrm{Cl}_{2}$ or $\mathrm{CD}_{3} \mathrm{OD}$, all signals are reported in ppm with the internal chloroform signal at 77.0 ppm , the internal DMSO signal at 39.5 ppm , the internal $\mathrm{CD}_{2} \mathrm{Cl}_{2}$ signal at 53.5 ppm or the internal MeOD signal at 49.0 ppm as standard. Infrared spectra were recorded on a JASCO FT-IR B4100 spectrophotometer with an ATR PRO410-S and a ZnSe prisma and are reported as $\mathrm{cm}-1(\mathrm{w}=$ weak, $\mathrm{m}=$ medium, $\mathrm{s}=$ strong, $\mathrm{sh}=$ shoulder $)$. High resolution mass spectrometry measurements were performed by the mass spectrometry service of ISIC at the EPFL on a MICROMASS (ESI) Q-TOF Ultima API. HPLC measurements were done on a JASCO HPLC system with an AS2055 Autosampler, a PU 2089 Pump, a UV 2075 detector using a CHIRALPAK IC, IB, IF or IA column from DAICEL Chemical. Optical rotations were measured on a polarimeter using a 10 cm cell with a Na 589 nm filter. The specific solvents and concentrations (in $\mathrm{g} / 100 \mathrm{~mL}$) are indicated.

Synthesis of Dimethyl-2-diazomalonate (12)

Following a modified procedure, ${ }^{1}$ dimethylmalonate (10) ($7.93 \mathrm{~mL}, 69.7 \mathrm{mmol}, 1.00 \mathrm{eq}$), triethylamine ($10.6 \mathrm{~mL}, 76.6 \mathrm{mmol}, 1.10 \mathrm{eq}$) and tosyl azide (11) ($15.1 \mathrm{~g}, 76.6 \mathrm{mmol}, 1.10 \mathrm{eq}$) were dissolved in acetonitrile (100 mL). The solution was stirred at room temperature for 24 hours. The solution was concentrated under reduced pressure and partitioned between dichloromethane (30 mL) and water (30 mL), the layers were separated and the aqueous layer was extracted with dichloromethane ($1 \times 20 \mathrm{~mL}$). The organic layers were combined and dried over MgSO_{4}. The crude was first filtered over a plug of silica gel (Hexane/Et $\mathrm{H}_{2} \mathrm{O}$ 1:1) to remove most of the tosylamide formed during the reaction. Purification by column chromatography (Hexane/Et $2 \mathrm{O} 90: 10$ to 80:20) afforded dimethyl-2-diazomalonate (12) as yellow oil which solidified under storage at $4{ }^{\circ} \mathrm{C}(10.4 \mathrm{~g}, 65.5 \mathrm{mmol}, 94 \%$ yield $)$.
$\mathrm{R}_{\mathrm{f}} 0.32$ (1:1 PET/Et2O).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 3.87\left(\mathrm{~s}, 1 \mathrm{H}, \mathrm{OCH}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta: 161.2,52.4^{2}$
The characterization data for $\mathbf{1 2}$ correspond to the reported values. ${ }^{1}$

Synthesis of N-vinyl-imides

5-Methoxyisobenzofuran-1,3-dione (14)

Following a modified procedure, ${ }^{3}$ a solution of 4-hydroxyphthalic acid (13) ($2.00 \mathrm{~g}, 11.0$ $\mathrm{mmol}, 1.00 \mathrm{eq})$, catalytic sulfuric acid ($0.10 \mathrm{~mL}, 1.9 \mathrm{mmol}, 0.17 \mathrm{eq}$) and $\mathrm{MeOH}(20.0 \mathrm{~mL})$, was stirred at reflux for 7 hours. under air. The solvent was removed under reduced pressure to afford crude dimethyl 4-hydroxyphthalate. The crude diester was dissolved in acetone (70 mL) and reacted with potassium carbonate ($7.40 \mathrm{~g}, 53.5 \mathrm{mmol}, 5.00 \mathrm{eq}$) at $50^{\circ} \mathrm{C}$ for 20 min . Iodomethane ($1.47 \mathrm{~mL}, 23.6 \mathrm{mmol}, 2.20 \mathrm{eq}$) was added, and the mixture was stirred at reflux overnight. $\mathrm{K}_{2} \mathrm{CO}_{3}$ was removed by filtration and the solvent was removed under reduced pressure to afford a colorless oil.

The crude was dissolved in acetone (16.0 mL) and a 11 M solution of sodium hydroxide, ($6.00 \mathrm{~mL}, 66.0 \mathrm{mmol}, 6.20 \mathrm{eq}$) was added, and the solution was stirred for 6 hours. under air at rt . The solution was then acidified with 2 M HCl to pH 3 , and concentrated under reduced

[^0]pressure. Then, the crude 4-methoxyphthalic acid was dissolved into acetone (50 mL) and dried over MgSO_{4}, filtered through a plug of cotton wool, and the solvent was removed in vacuo. The crude diacid was partitioned between $2 \mathrm{M} \mathrm{NaOH}(50 \mathrm{~mL})$ and $\mathrm{DCM}(50 \mathrm{~mL})$. The organic layer was extracted with $\mathrm{NaOH} 2 \mathrm{M}(50 \mathrm{~mL})$. The combined aqueous phase was cooled down to $0{ }^{\circ} \mathrm{C}$ and acidified with $37 \% \mathrm{HCl} \%$ to pH 3 . The aqueous layer was then extracted five times with $\mathrm{AcOEt}(50 \mathrm{~mL})$. The combined organic layers were dried over MgSO_{4} and concentrated under reduced pressure to afford the crude diacid as a light brown solid (1.82 g).

A solution of crude 4-methoxyphthalic acid ($1.82 \mathrm{~g}, 9.28 \mathrm{mmol}, 1.00 \mathrm{eq}$) in acetic anhydride ($25.0 \mathrm{~mL}, 266 \mathrm{mmol}, 28.7 \mathrm{eq}$) was stirred at reflux for 21 hours. Volatiles were removed in vacuo to afford a dark brown solid. The crude was dissolved in DCM (50 mL) and filtered through fritted glass to remove solid impurities. The solution was concentrated under reduced pressure and dried in vacuo to afford the anhydride $\mathbf{1 4}$ as a light brown solid ($1.62 \mathrm{~g}, 9.08$ $\mathrm{mmol}, 83 \%$ yield over 4 steps)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90(\mathrm{dd}, 1 \mathrm{H}, J=8.5,0.4 \mathrm{~Hz}, A r), 7.41(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}$, $A r), 7.35(\mathrm{dd}, 1 \mathrm{H}, J=8.5,2.3 \mathrm{~Hz}, A r), 3.98$ (s, $3 \mathrm{H}, O M e$).
HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{O}_{4}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 179.0339$; found 179.0349.
The ${ }^{1} \mathrm{H}$ NMR data for $\mathbf{1 4}$ corresponded to the reported values. ${ }^{4}$

5-Methoxyisoindoline-1,3-dione (16)

Following a modified procedure, ${ }^{5}$ 5-methoxyisobenzofuran-1,3-dione (14) (1.58 g, 8.84 $\mathrm{mmol}, 1.00 \mathrm{eq})$ and formamide (15) ($35.0 \mathrm{~mL}, 880 \mathrm{mmol}, 100 \mathrm{eq}$) were divided between four 20 mL microwave vials sealed with a microwave cap. The mixture was stirred at rt until the product was completely dissolved, then heated 2 times at $200^{\circ} \mathrm{C}$ for 30 sec with 10 sec prestirring, using Biotage Initiator 2.0 microwave reactor. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ to induce crystallization and cold water $(10 \mathrm{~mL})$ was added into each vial. The obtained solid was filtrated over filter paper, washed with water (15 mL) and hexanes (20 mL) and dried under reduced pressure to afford 5-methoxyisoindoline-1,3-dione (16) as a beige solid (982 $\mathrm{mg}, 5.54 \mathrm{mmol}, 63 \%$ yield) which was used without further purification.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.77$ (dd, $\left.1 \mathrm{H}, J=8.3,0.4 \mathrm{~Hz}, \mathrm{Ar}\right), 7.59(\mathrm{br} \mathrm{s}, 1 \mathrm{H}, N H), 7.33$ (d, $1 \mathrm{H}, J=2.2 \mathrm{~Hz}, A r), 7.20(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.3 \mathrm{~Hz}, A r), 3.94(\mathrm{~s}, 3 \mathrm{H}, O M e)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 167.8,167.7,165.0,135.2,125.4,124.5,120.4,108.1,56.2$.
HRMS (ESI) calcd for $\mathrm{C}_{9} \mathrm{H}_{8} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$178.0499; found 178.0497.

5-Methoxy-2-vinylisoindoline-1,3-dione (18)

[^1]

Following a modified procedure, ${ }^{6}$ 5-methoxyisoindoline-1,3-dione (16) ($980 \mathrm{mg}, 5.53 \mathrm{mmol}$, 1.00 eq), $\mathrm{PdCl}_{2}(98.0 \mathrm{mg}, ~ 0.553 \mathrm{mmol}, 0.100 \mathrm{eq}), \mathrm{LiCl}(235 \mathrm{mg}, 5.53 \mathrm{mmol}, 1.00 \mathrm{eq}$, weighted in a glovebox) and vinyl acetate (17) ($13.7 \mathrm{~mL}, 148 \mathrm{mmol}, 26.8 \mathrm{eq}$) were heated under reflux for 24 hours. The mixture was cooled down to room temperature and diluted with $\mathrm{DCM} / \mathrm{MeOH} 4: 1(20 \mathrm{~mL})$. Activated charcoal was added and the resulting suspension was filtered through a pad of Celite (DCM/MeOH 4:1 100 mL) and concentrated under reduced pressure. Purification by silica gel chromatography (pentane/AcOEt 90:10 to 75:25) afforded 5-methoxy-2-vinylisoindoline-1,3-dione (18) as a colorless solid ($828 \mathrm{mg}, 4.08$ mmol, 74% yield).
$\mathrm{R}_{f} 0.56$ (6:4 Hexane/AcOEt).
M.p. 102.2-105.1 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}, \mathrm{Ar}), 7.32(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}, \mathrm{Ar})$, $7.17(\mathrm{dd}, 1 \mathrm{H}, J=8.3,2.2 \mathrm{~Hz}, \mathrm{Ar}), 6.83(\mathrm{dd}, 1 \mathrm{H}, J=16.4,9.9 \mathrm{~Hz},=\mathrm{CH}), 6.03(\mathrm{~d}, 1 \mathrm{H}, J=$ $16.4 \mathrm{~Hz},=\mathrm{CH}), 4.99(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz},=\mathrm{CH}), 3.93(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,166.3,165.1,134.4,125.5,124.0,123.5,120.6,108.2$, 104.0, 56.3.

IR 1779 (w), 1720 (s), 1639 (w), 1619 (w), 1493 (w), 1386 (s), 1307 (w), 1295 (w), 1021 (w). HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{10} \mathrm{NO}_{3}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$204.0655; found 204.0662.

1-Vinylpyrrolidine-2,5-dione (20)

Following a modified procedure, ${ }^{6}$ succinimide (19) ($\left.1.00 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.00 \mathrm{eq}\right)$, vinyl acetate (17) ($25.0 \mathrm{~mL}, 270 \mathrm{mmol}, 26.8 \mathrm{eq}$) and $\mathrm{Na}_{2} \mathrm{PdCl}_{4}(59.0 \mathrm{mg}, 0.202 \mathrm{mmol}, 2.00 \mathrm{~mol} \%$) were heated under reflux for 72 hours. After solvent evaporation, the crude was purified by Biotage (SNAP Cartridge KP-Sil $50 \mathrm{~g}, ~ 7: 3$ Hexane/AcOEt) to obtain (20) as a yellow solid (1.22 g , $9.78 \mathrm{mmol}, 97 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.17$ (8:2 Hexane/AcOEt). m.p. $47.6-48.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{dd}, 1 \mathrm{H}, J=16.4,9.9 \mathrm{~Hz},=C H), 6.08(\mathrm{~d}, 1 \mathrm{H}, J=16.4$ $\mathrm{Hz},=C H), 5.06(\mathrm{~d}, 1 \mathrm{H}, J=9.9 \mathrm{~Hz},=C H), 2.72\left(\mathrm{~s}, 4 \mathrm{H}, C H_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 175.4,124.3,106.6,27.8$.
IR 2946 (w), 1707 (s), 1382 (s), 1307 (m), 1222 (s), 1113 (s), 974 (m), 906 (m), 821 (w).
HRMS (ESI) calcd for $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{NO}_{2}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$126.0550; found 126.0621.

5-Nitro-2-vinylisoindoline-1,3-dione (22)

[^2]

Following a modified procedure, ${ }^{6}$ 5-nitrosoindoline-1,3-dione (21) ($1.00 \mathrm{~g}, 5.20 \mathrm{mmol}, 1.00$ eq), $\mathrm{PdCl}_{2}(92.0 \mathrm{mg}, 0.520 \mathrm{mmol}, 0.100 \mathrm{eq}), \mathrm{LiCl}(0.221 \mathrm{mg}, 5.20 \mathrm{mmol}, 1.00 \mathrm{eq}$, weighted in a glovebox) and vinyl acetate ($\mathbf{1 7) ~ (~} 12.9 \mathrm{~mL}, 139 \mathrm{mmol}, 26.8 \mathrm{eq}$) were heated under reflux for 20 hours. The mixture was cooled down to room temperature and the solvent was evaporated under reduced pressure. The crude was purified by column chromatography using silica gel (Hexane/AcOEt 8:2 to 5:5) to afford 5-nitro-2-vinylisoindoline-1,3-dione (22) as a bright yellow solid ($1.14 \mathrm{~g}, 5.23 \mathrm{mmol}$, quantitative yield).
$\mathrm{R}_{f} 0.32$ (9:1 Pentane/AcOEt).
M.p. 144.3-148.6 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.68(\mathrm{dd}, 1 \mathrm{H}, J=2.0,0.5 \mathrm{~Hz}, A r), 8.63(\mathrm{dd}, 1 \mathrm{H}, J=8.1,2.0$
$\mathrm{Hz}, A r), 8.08$ (m, $1 \mathrm{H}, A r$), 6.88 (dd, $1 \mathrm{H}, J=16.4,9.8 \mathrm{~Hz}, C H-N), 6.14$ (dd, $1 \mathrm{H}, J=16.4,0.5$ $\left.\mathrm{Hz},=C H_{2}\right), 5.16\left(\mathrm{dd}, 1 \mathrm{H}, J=9.8,0.4 \mathrm{~Hz},=\mathrm{CH}_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 164.5,164.2,152.1,136.1,133.1,129.8,125.0,123.6,119.2$, 106.3.

IR 3101 (w), 3074 (w), 2924 (w), 1709 (s), 1533 (s), 1383 (s), 1341 (s), 1307 (s), 1062 (m), 1024 (s), 915 (s). HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{6} \mathrm{~N}_{2} \mathrm{O}_{4}\left[\mathrm{M}^{+}\right] 218.0328$; found 218.0355.

Synthesis of Aminocyclopropanes

General Procedure for the of Synthesis of Aminocyclopropanes

Following a modified procedure, ${ }^{7}$ the corresponding N -vinyl-imide (1.00 eq) was dissolved in dry dichloromethane (10.0 mL) and the solution was cooled down to $0^{\circ} \mathrm{C}$ with an ice/water bath. Then, bis[rhodium ($\alpha, \alpha, \alpha^{\prime}$, α^{\prime}-tetramethyl-1,3-benzenedipropionic acid)] ($0.1 \mathrm{~mol} \%$) was added in one portion. A solution in dichloromethane (2.0 mL) of dimethyldiazomalonate (12) (1.20 eq) was added dropwise over 5 min . After the addition, the mixture was allowed to warm to room temperature and stirred overnight. The solvent is then removed under reduced pressure and the crude is directly purified by column chromatography.

Dimethyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4a)

Following the general procedure, $\mathbf{4 a}$ was synthesized starting from N -vinyl-phthalimide (2.50 $\mathrm{g}, 14.4 \mathrm{mmol}, 1.00 \mathrm{eq}$), dimethyl-diazomalonate (12) ($2.74 \mathrm{~g}, 17.3 \mathrm{mmol}, 1.20 \mathrm{eq}$) and bis[rhodium $(\alpha, \alpha, \alpha$ ', α '-tetramethyl-1,3-benzenedipropionic acid)] ($14.0 \mathrm{mg}, 0.0144 \mathrm{mmol}$, $0.100 \mathrm{~mol} \%$). After solvent evaporation, the residue was purified by column chromatography using silica gel (from 8:2 to 6:4 Hexane/AcOEt), to obtain dimethyl 2-(1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate ($\mathbf{4 a}$) as a colorless solid ($4.03 \mathrm{~g}, 13.3 \mathrm{mmol}, 92 \%$ yield).
$\mathrm{R}_{\mathrm{f}} 0.34$ (6:4 Hexane/AcOEt).
M.p. $131.8-133.9^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.86$ (m, 2 H , Phth), 7.75 (m, 2 H, Phth), 3.85 (s, 3 H, OMe),
3.72 (dd, $1 \mathrm{H}, J=8.5,6.6 \mathrm{~Hz}, N-C H), 3.64(\mathrm{~s}, 3 \mathrm{H}, O M e), 2.73(\mathrm{dd}, 1 \mathrm{H}, J=6.5,6.5 \mathrm{~Hz}$, CH_{2}), 2.06 (dd, $1 \mathrm{H}, \mathrm{J}=8.5,6.4 \mathrm{~Hz}, \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.5,167.8,166.9,134.3,131.4,123.5,53.1,53.0,34.9$, 33.1, 19.6.

IR 2956 (w), 1783 (w), 1727 (s), 1468 (w), 1439 (w), 1399 (m), 1329 (m), 1294 (m), 1222 (m), 1134 (w), 909 (w), 876 (w), $720(\mathrm{~m})$.

HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{NO}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 304.0816$; found 304.0811.
The ${ }^{1} \mathrm{H}$ NMR data for $\mathbf{4 a}$ corresponded to the reported values. ${ }^{8}$

Dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (4b)

[^3]

Following the general procedure, compound $\mathbf{4 b}$ was synthesized starting from N -vinylsuccinimide (20) ($500 \mathrm{mg}, 4.00 \mathrm{mmol}, 1.00 \mathrm{eq}$), dimethyldiazomalonate (12) ($300 \mathrm{mg}, 4.80$ mmol, 1.20 eq) and bis[rhodium ($\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl-1,3-benzenedipropionic acid)] (3.0 mg , $4.0 \mu \mathrm{~mol}, 0.10 \mathrm{~mol} \%$). After solvent evaporation, the residue was purified by Biotage (SNAP Cartridge KP-Sil 50 g , 5:5 Hexane/AcOEt), to obtain dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (4b) as a yellow solid ($801 \mathrm{mg}, 3.14 \mathrm{mmol}, 79 \%$ yield).

Protocol for the synthesis of enantioenriched 4b:

Following the general procedure, dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1dicarboxylate (4b) was synthesized starting from N -vinylsuccinimide ($100 \mathrm{mg}, 0.800 \mathrm{mmol}$, 1.00 eq), dimethyldiazomalonate ($152 \mathrm{mg}, 0.960 \mathrm{mmol}, 1.20 \mathrm{eq}$) using tetrakis[(S)-(-)-N-(pdodecylphenylsulfonyl)prolinato]dirhodium(II) $(0.8 \mathrm{mg}, 8 \mu \mathrm{~mol}, 1 \mathrm{~mol} \%)$. After solvent evaporation, the residue was purified by flash column chromatography on silica gel (1:1 to 3:7 Pentane/AcOEt) to obtain a yellow solid, which was washed two times with MeOH to afford dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate as a white solid (20 mg , $0.078 \mathrm{mmol}, 10 \%$ yield).
$e r=58: 42$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=23.2 \mathrm{~min} ; \operatorname{tr} 2=$ 25.8 min .
$\mathrm{R}_{\mathrm{f}} 0.39$ (5:5 Hexane/AcOEt).
M.p. $81.9-85.3^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 3.78$ (s, $3 \mathrm{H}, O M e$), 3.68 (s, $3 \mathrm{H}, O M e$), 3.45 (dd, $1 \mathrm{H}, J=8.5$, $6.5 \mathrm{~Hz}, N-\mathrm{CH}), 2.73-2.58\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{O}=\mathrm{C}-C H_{2}\right), 2.45\left(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, C H_{2}\right), 1.93(\mathrm{dd}, 1 \mathrm{H}, J$ $\left.=8.5,6.5 \mathrm{~Hz}, C H_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,168.4,167.2,53.2,53.1,35.1,32.7,28.1,19.7$.
IR 2955 (w), 1717 (s), 1439 (w), 1406 (m), 1332 (m), 1296 (m), 1216 (s), 1132 (m), 1079 (w), 910 (s).

HRMS (ESI) calcd for $\mathrm{C}_{11} \mathrm{H}_{14} \mathrm{NO}_{6}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$256.0816; found 256.0822.
Dicarboxylate dimethyl 2-(5-methoxy-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1dicarboxylate (4c)

Following the general procedure, compound $\mathbf{4 c}$ was synthesized starting from 5-methoxy-2-vinylisoindoline-1,3-dione (18) ($0.130 \mathrm{~g}, 0.640 \mathrm{mmol}, 1.00 \mathrm{eq}$), dimethyldiazomalonate (12) $(0.121 \mathrm{~g}, 0.768 \mathrm{mmol}, 1.20 \mathrm{eq})$ and bis[rhodium ($\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetramethyl-1,3-benzenedipropionic acid)] ($0.5 \mathrm{mg}, 0.6 \mu \mathrm{~mol}, 0.1 \mathrm{~mol} \%$). After solvent evaporation, the crude was purified by

Biotage (SNAP Cartridge KP-Sil 10 g , 6:4 Hexane/AcOEt), to obtain dicarboxylate dimethyl 2-(5-methoxy-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4c) as a colorless solid ($176 \mathrm{mg}, 0.528 \mathrm{mmol}, 83 \%$ yield).
$\mathrm{R}_{f} 0.15$ (8:2 Pentane/AcOEt).
M.p. $113.5-117.8^{\circ} \mathrm{C}$.
${ }^{1}{ }^{\text {H N NMR }}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.71(\mathrm{~d}, 1 \mathrm{H}, J=8.3 \mathrm{~Hz}$, Phth $), 7.27(\mathrm{~d}, 1 \mathrm{H}, J=2.2 \mathrm{~Hz}$, Phth), 7.14 (dd, $1 \mathrm{H}, J=8.3,2.3 \mathrm{~Hz}$, Phth), 3.90 (s, $3 \mathrm{H}, O M e$), 3.80 ($\mathrm{s}, 3 \mathrm{H}, O M e-C=O$), 3.66 (dd, 1 $\mathrm{H}, J=8.5,6.6 \mathrm{~Hz}, N-C H), 3.59(\mathrm{~s}, 3 \mathrm{H}, O M e-C=O), 2.68\left(\mathrm{t}, 1 \mathrm{H}, J=6.5 \mathrm{~Hz}, C H_{2}\right), 1.99(\mathrm{dd}$, $1 \mathrm{H}, J=8.5,6.4 \mathrm{~Hz}, \mathrm{CH}_{2}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 168.7,167.8,167.6,167.0,165.0,134.1,125.3,123.4,120.4$, 108.1, 56.2, 53.2, 53.0, 35.0, 33.2, 19.7.

IR 2955 (w), 1720 (s), 1492 (m), 1437 (m), 1397 (s), 1288 (s), 1133 (m), 1018 (w).
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{NO}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 334.0921$; found 334.0915.

Dimethyl 2-(5-nitro-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4d)

Following the general procedure, compound $\mathbf{4 d}$ was synthesized starting from 5-nitro-2-vinylisoindoline-1,3-dione ($\mathbf{2 2}$) $(0.500 \mathrm{~g}, 2.29 \mathrm{mmol}, 1.00 \mathrm{eq})$, dimethyl diazomalonate (12) $(0.544 \mathrm{~g}, 2.75 \mathrm{mmol}, 1.20 \mathrm{eq})$ and $\operatorname{bis}\left[\right.$ rhodium $\left(\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}\right.$-tetramethyl-1,3-benzenedipropionic acid)] ($1.7 \mathrm{mg}, 2.3 \mu \mathrm{~mol}, 0.10 \mathrm{~mol} \%$). After solvent evaporation, the crude was purified by Biotage (SNAP Cartridge KP-Sil 50 g , 7:3 Hexane/AcOEt), to obtain Dimethyl 2-(5-nitro-1,3-dioxoisoindolin-2-yl)cyclopropane-1,1-dicarboxylate (4d) as a colorless solid (712 mg , $2.04 \mathrm{mmol}, 89 \%$ yield).
$\mathrm{R}_{f} 0.19$ (8:2 Pentane/AcOEt).
M.p. $113.0-115.8^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}^{\mathrm{NMR}}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.61(\mathrm{~m}, 2 \mathrm{H}, A r), 8.03(\mathrm{~d}, 1 \mathrm{H}, J=8.1 \mathrm{~Hz}, A r), 3.83(\mathrm{~s}, 3 \mathrm{H}$, OMe), $3.70(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}-\mathrm{N}), 3.62(\mathrm{~s}, 3 \mathrm{H}, O M e), 2.63\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.07\left(\mathrm{~m}, 1 \mathrm{H}, C H_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 168.2,167.1,165.9,165.6,152.0,135.9,132.9,129.6,124.9$, 119.0, 53.3, 53.2, 35.0, 33.1, 19.7.

IR 3110 (w), 2956 (w), 2926 (w), 2853 (w), 1726 (s), 1541 (m), 1400 (m), 1344 (s), 1222 (s), 1130 (m).
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{O}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 349.0666$; found 349.0664 .

Synthesis of Esters

2,2,2-Trifluoroethyl benzoate (24)

In a 250 mL round bottom flask equipped with a stirring bar, 2,2,2-trifluoroethanol (2.33 mL , $32.3 \mathrm{mmol}, 1.00 \mathrm{eq})$, DMAP ($39.5 \mathrm{mg}, 0.323 \mathrm{mmol}, 0.01 \mathrm{eq}$) and pyridine ($3.14 \mathrm{~mL}, 38.8$ $\mathrm{mmol}, 1.20 \mathrm{eq})$ were dissolved in diethyl ether (150 mL) while stirring. A solution of benzoyl chloride (23) ($5.00 \mathrm{~g}, 35.6 \mathrm{mmol}, 1.10 \mathrm{eq}$) in diethyl ether (10 mL) was added dropwise to the reaction mixture and the reaction was stirred at room temperature for 12 hours. A saturated NaHCO_{3} solution (100 mL) was added to the crude mixture. The two layers were separated and the organic layer washed with water ($50 \mathrm{~mL} \times 3$), dried over MgSO_{4} and the solvent removed under reduced pressure. 2,2,2-trifluoroethyl benzoate (24) was purified by flash column chromatography on silica gel ($9: 1$ to $8: 2 \mathrm{Pentane/AcOEt)}$) to obtain a colourless oil ($3.50 \mathrm{~g}, 17.1 \mathrm{mmol}, 53 \%$ yield).
$\mathrm{R}_{f} 0.8$ (9:1 Pentane/Et $\mathrm{E}_{2} \mathrm{O}$).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.09-8.07(\mathrm{~m}, 2 \mathrm{H}, ~ A r), 7.64-7.60(\mathrm{~m}, 1 \mathrm{H}, ~ A r), 7.50-7.46$ ($\mathrm{m}, 2 \mathrm{H}, A r$), $4.71\left(\mathrm{q}, 2 \mathrm{H}, J_{F-H}=8.4 \mathrm{~Hz}, \mathrm{CH}_{2}-\mathrm{CF}_{3}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.1,134.0,130.2,128.8,128.5,123.3$ (q, $J_{F-C}=277 \mathrm{~Hz}$), $60.9\left(\mathrm{q}, J_{F-C}=37 \mathrm{~Hz}\right)$.
The characterization data for $\mathbf{2 4}$ correspond to the reported values ${ }^{9}$

General Procedure for the Synthesis of Benzyl Esters

In a 250 mL round bottom flask equipped with a stirring bar and a condenser, benzyl alcohol (25) (1.00 eq), DMAP (0.01 eq) and triethylamine (1.10 eq) were dissolved in diethyl ether $(90 \mathrm{~mL})$ while stirring. A solution of the corresponding acyl chloride (1.20 eq) in diethyl ether $(10 \mathrm{~mL})$ was added dropwise to the reaction mixture and the reaction was stirred at reflux for 12 hours. A saturated NaHCO_{3} solution (100 mL) was added to the crude mixture and stirred for 15 min at room temperature. The two layers were separated and the organic layer was washed with water ($50 \mathrm{~mL} \times 3$), dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and the solvent removed under reduced pressure. The esters were purified by flash column chromatography on silica gel (9:1 to 8:2 Pentane/AcOEt).

Benzyl 3-methylbenzoate (26)

[^4]

Following the general procedure, compound $\mathbf{2 6}$ was synthesized starting from benzyl alcohol (25) ($1.17 \mathrm{~g}, 10.8 \mathrm{mmol}, 1.00 \mathrm{eq}$), DMAP ($13.0 \mathrm{mg}, 0.108 \mathrm{mmol}, 0.01 \mathrm{eq}$), triethylamine $(1.66 \mathrm{~mL}, 11.9 \mathrm{mmol}, 1.10 \mathrm{eq})$ and 3-methylbenzoyl chloride ($2.01 \mathrm{~g}, 13.0 \mathrm{mmol}, 1.20 \mathrm{eq}$). Compound 26 was obtained as a colorless oil ($2.37 \mathrm{~g}, 10.5 \mathrm{mmol}, 97 \%$ yield $)$.
$\mathrm{R}_{f} 0.55$ (9:1 Hexane/AcOEt).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.90-7.88(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.47-7.45(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ph}), 7.42-7.31$ (m, $5 \mathrm{H}, \mathrm{Ph}$), 5.37 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}$), 2.40 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$).
${ }^{13} \mathrm{C}$ NMR (101 MHz, CDCl_{3}) $\delta 166.7,138.3,136.3,133.9,130.3,130.2,128.7,128.4,128.3$, 128.3, 127.0, 66.8, 21.4.

The characterization data for $\mathbf{2 6}$ correspond to the reported values. ${ }^{10}$

Benzyl thiophene-2-carboxylate (27)

Following the general procedure, compound 27 was synthesized starting from benzyl alcohol (25) ($1.08 \mathrm{~g}, 10.0 \mathrm{mmol}, 1.00 \mathrm{eq}$), DMAP ($12.2 \mathrm{mg}, 0.100 \mathrm{mmol}, 0.01 \mathrm{eq}$), triethylamine $(1.54 \mathrm{~mL}, 11.0 \mathrm{mmol}, 1.10 \mathrm{eq})$ and thiophene-2-carbonyl chloride ($1.76 \mathrm{~g}, 12.0 \mathrm{mmol}, 1.20$ eq), compound 27 was obtained as a colorless oil ($2.09 \mathrm{~g}, 9.58 \mathrm{mmol}, 96 \%$ yield).
$\mathrm{R}_{f} 0.48$ (9:1 Hexane/AcOEt).
${ }^{1} \mathrm{H}^{2} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.85-7.84(\mathrm{~m}, 1 \mathrm{H}$, Thiophene), $7.56(\mathrm{dd}, 1 \mathrm{H}, J=5.0,1.2 \mathrm{~Hz}$, Thiophene), 7.46-7.44 (m, 2 H, Ph), 7.42-7.33 (m, 3 H, Ph), 7.10 (dd, $1 \mathrm{H}, J=4.9,3.8 \mathrm{~Hz}$, Thiophene), 5.36 ($\mathrm{s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}$).
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 162.1,135.9,133.7,133.7,132.6,128.7,128.4,128.3,127.9$, 66.8 .

The characterization data for 27 correspond to the reported values. ${ }^{11}$

[^5]
Synthesis of Enol ethers

Triisopropyl((1-phenylvinyl)oxy)silane (5a)

In an oven-dried flask sealed with a septum and under N_{2} atmosphere, acetophenone (28) $(2.06 \mathrm{~g}, 17.1 \mathrm{mmol}, 1.00 \mathrm{eq})$ in anhydrous THF (20 mL) is cooled down to $-78{ }^{\circ} \mathrm{C}$ and a 1.9 M solution of NaHMDS ($10.8 \mathrm{~mL}, 20.5 \mathrm{mmol}, 1.20 \mathrm{eq}$) is added dropwise. The cold bath is removed and the pale yellow solution is stirred for 1 hour at room temperature. The reaction is cooled again to $0{ }^{\circ} \mathrm{C}$ and triisopropylsilyl chloride ($3.96 \mathrm{~g}, 20.5 \mathrm{mmol}, 1.20 \mathrm{eq}$) is added dropwise. The reaction is stirred at room temperature for 5 hours and the solvent is directly removed under reduced pressure. The resulting orange oil is purified by plug or by column chromatography on triethylamine-deactivated silica (99% Hexane, $1 \% \mathrm{Et}_{3} \mathrm{~N}$) to obtain Triisopropyl((1-phenylvinyl)oxy)silane $\mathbf{5 a}$ as a colorless oil ($4.7 \mathrm{~g}, 17 \mathrm{mmol}, 99 \%$ yield)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.69-7.65(\mathrm{~m}, 2 \mathrm{H}, A r), 7.38-7.29(\mathrm{~m}, 3 \mathrm{H}, A r), 4.85(\mathrm{~d}, 1 \mathrm{H}, J$ $\left.=1.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.41\left(\mathrm{~d}, 1 \mathrm{H}, J=1.8 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}_{2}\right), 1.39-1.27\left(\mathrm{~m}, 3 \mathrm{H}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$, 1.19$1.13\left(\mathrm{~m}, 18 \mathrm{H}, \mathrm{SiCH}\left(\mathrm{CH}_{3}\right)_{2}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.2,138.0,128.2,128.1,125.4,90.0,18.2,12.9$.
The characterization data for $\mathbf{5 a}$ corresponded to the reported values. ${ }^{12}$

General procedure for the Synthesis of disubstituted Enol Ethers.

Following a slightly modified procedure, ${ }^{13}$ a round-bottom flask equipped with a magnetic stirrer was charged with a solution (10 to 15% in toluene) of di(cyclopenta-1,3-dien-1yl)dimethyltitanium (2.20 eq) in toluene, ${ }^{14}$ di(cyclopenta-1,3-dien-1-yl)titanium(IV) chloride (0.060 eq) and the corresponding ester (1.00 eq) under inert atmosphere. The red/orange mixture was heated in the dark to $80^{\circ} \mathrm{C}$ for 16 hours, and then cooled to room temperature. Pentane (50 mL) was added to the mixture and the precipitated solids were removed by filtration through a basic alumina plug (Pentane/diethyl ether 9:1, $3 \% \mathrm{Et}_{3} \mathrm{~N}$) to afford a yellow oil. The benzyl enol ethers were purified right before use by flash column chromatography using basic alumina (Pentane, $3 \% \mathrm{Et}_{3} \mathrm{~N}$).

(1-(Benzyloxy)vinyl)benzene (5b)

[^6]

Following the general procedure, compound $\mathbf{5 b}$ was synthesized starting from di(cyclopenta-1,3-dien-1-yl)dimethyltitanium (19.1 g of a 10.8% solution in toluene, $9.90 \mathrm{mmol}, 2.20 \mathrm{eq}$), di(cyclopenta-1,3-dien-1-yl)titanium(IV) chloride ($67.2 \mathrm{mg}, 0.270 \mathrm{mmol}, 0.060 \mathrm{eq}$) and benzyl benzoate ($0.955 \mathrm{~g}, 4.50 \mathrm{mmol}, 1.00 \mathrm{eq}$) to obtain (1-(benzyloxy)vinyl)benzene ($\mathbf{5 b}$) as a colorless oil ($545 \mathrm{mg}, 2.59 \mathrm{mmol}, 58 \%$ yield).
$\mathbf{R}_{f} 0.8$ (9:1 Hexane/Et ${ }_{2} \mathrm{O}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz CDCl 3) $\delta 7.72$ (ddd, $J=7.5,3.3,1.7 \mathrm{~Hz}, 2 \mathrm{H}, A r$), $7.59-7.29(\mathrm{~m}, 8 \mathrm{H}$, $A r), 5.00\left(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{O}-\mathrm{CH}_{2}-\mathrm{Ar}\right), 4.79(\mathrm{t}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}), 4.36(\mathrm{t}, J=2.5 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.8,137.3,136.5,128.6,128.6,128.3,127.9,127.5,125.6$, 83.3, 69.9.

IR 2432 (w), 2407 (w), 1361 (m), 1336 (s), 1161 (m), 1064 (s), 994 (s), 862 (s), 782 (m).
HRMS (ESI) calcd for $\mathrm{C}_{15} \mathrm{H}_{14} \mathrm{AgO}^{+}[\mathrm{M}+\mathrm{Ag}]^{+} 317.0090$; found 317.0102

1-(1-Methoxyvinyl)-4-methylbenzene (5c)

Following the general procedure, compound $\mathbf{5 c}$ was synthesized starting from di(cyclopenta-1,3-dien-1-yl)dimethyltitanium (24.2 g of a 12.6% solution in toluene, $14.7 \mathrm{mmol}, 2.20 \mathrm{eq}$), di(cyclopenta-1,3-dien-1-yl)titanium(IV) chloride ($99.0 \mathrm{mg}, 0.400 \mathrm{mmol}, 0.060 \mathrm{eq}$) and 2,2,2trifluoroethyl benzoate ($1.00 \mathrm{~g}, 6.66 \mathrm{mmol}, 1.00 \mathrm{eq}$) to obtain 1-(1-methoxyvinyl)-4methylbenzene ($\mathbf{5 c}$) as a colorless oil ($537 \mathrm{mg}, 3.63 \mathrm{mmol}, 54 \%$ yield).
$\mathrm{R}_{f} 0.9$ (9:1 Hexane/Et $\mathrm{I}_{2} \mathrm{O}$).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.45(\mathrm{~m}, 2 \mathrm{H}, ~ A r), 7.17(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}), 4.64$ (dd, $\left.J=2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.20\left(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}_{2}\right), 3.76$ (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.38 (s, $3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{Ar}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 161.0,138.3,133.7,128.9,128.8,128.8,125.3,125.3,125.3$, 125.3, 81.0, 55.2, 21.2.

IR 2953 (w), 1743 (w), 1706 (w), 1644 (w), 1514 (m), 1303 (s) 1127 (s), 1047 (s), 903 (m), 796 (s).
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{H}_{12} \mathrm{AgO}^{+}[\mathrm{M}+\mathrm{Ag}]^{+}$254.9934; found 254.9898 .

(1-(2,2,2-Trifluoroethoxy)vinyl)benzene (5d)

Following the general procedure, compound 5d was synthesized starting from di(cyclopenta-1,3-dien-1-yl)dimethyltitanium (18.2 g of a 12.6% solution in toluene, $11.0 \mathrm{mmol}, 2.20 \mathrm{eq}$), di(cyclopenta-1,3-dien-1-yl)titanium(IV) chloride ($75.0 \mathrm{mg}, 0.300 \mathrm{mmol}, 0.060 \mathrm{eq}$) and 2,2,2trifluoroethyl benzoate $(1.02 \mathrm{~g}, \quad 5.00 \mathrm{mmol}, \quad 1.00 \mathrm{eq})$ to obtain (1-(2,2,2trifluoroethoxy)vinyl)benzene (5d) as a colorless oil ($621 \mathrm{mg}, 3.07 \mathrm{mmol}, 61 \%$ yield).
$\mathbf{R}_{f} 0.9$ (9:1 Hexane/Et ${ }_{2} \mathrm{O}$).
${ }^{1}{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz} \mathrm{CDCl} 3) ~ \delta 7.65-7.61(\mathrm{~m}, 2 \mathrm{H}, A r), 7.39-7.36(\mathrm{~m}, 3 \mathrm{H}, A r), 4.82(\mathrm{~d}, J=$ $3.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}=\mathrm{C}$), $4.31-4.19$ (m, $3 \mathrm{H}, \mathrm{CH}=\mathrm{C}, \mathrm{CH}_{2}-\mathrm{CF}_{3}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 159.1,135.0,129.2,128.4,125.6,123.6(\mathrm{q}, J=277 \mathrm{~Hz}) .84 .3$, $65.5(\mathrm{q}, J=35.8 \mathrm{~Hz})$.
IR 2374 (w), 1331 (w), 1176 (w), 1047 (s), 966 (s), 818 (m), 801 (m), 656 (s).
HRMS (ESI) calcd for $\mathrm{C}_{10} \mathrm{~F}_{3} \mathrm{H}_{10} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$203.0678; found 203.0678.
The NMR data for (XX) corresponded to the reported values. ${ }^{15}$

1-(1-(Benzyloxy)vinyl)-3-methylbenzene (5e)

Following the general procedure, compound $\mathbf{5 e}$ was synthesized starting from di(cyclopenta-1,3-dien-1-yl)dimethyltitanium (17.1 g of a 10.7% solution in toluene, $8.80 \mathrm{mmol}, 2.20 \mathrm{eq}$), di(cyclopenta-1,3-dien-1-yl)titanium(IV) chloride ($60.0 \mathrm{mg}, 0.240 \mathrm{mmol}, 0.060 \mathrm{eq}$) and benzyl 3-methylbenzoate ($0.905 \mathrm{~g}, 4.00 \mathrm{mmol}, 1.00 \mathrm{eq}$) to obtain 1-(1-(benzyloxy)vinyl)-3methylbenzene ($\mathbf{5 e}$) as a colorless oil ($450 \mathrm{mg}, 2.01 \mathrm{mmol}, 45 \%$ yield).
$\mathbf{R}_{f} 0.9$ (9:1 Hexane/Et ${ }_{2} \mathrm{O}$).
${ }^{1} \mathbf{H}$ NMR (400 MHz CDCl 3) $\delta 7.44-7.35(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ph}), 7.31(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{ArMe}), 7.28$ -7.21 (m, $1 \mathrm{H}, P h$), 7.15 (ddd, $J=8.3,6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}, A r \mathrm{Me}), 7.05(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$, $A r \mathrm{Me}), 4.88\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{Ph}\right), 4.64\left(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{C}\right), 4.22(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}$, $\mathrm{CH}_{2}=\mathrm{C}$), 2.28 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{Me}$).
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 160.1,137.8,137.3,136.5,129.4,128.6,128.2,127.9,127.6$, 126.3, 122.8, 83.2, 69.9, 21.7.

HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{O}^{+}[\mathrm{M}+\mathrm{H}]^{+}$225.1274; found 225.1282.

2-(1-(Benzyloxy)vinyl)thiophene (5f)

[^7]

Following the general procedure, compound $\mathbf{5 f}$ was synthesized starting from di(cyclopenta-1,3-dien-1-yl)dimethyltitanium (17.1 g of a 10.7% solution in toluene, $8.80 \mathrm{mmol}, 2.20 \mathrm{eq}$), di(cyclopenta-1,3-dien-1-yl)titanium(IV) chloride ($60.0 \mathrm{mg}, 0.240 \mathrm{mmol}, 0.060 \mathrm{eq}$) and benzyl thiophene-2-carboxylate $(0.873 \mathrm{~g}, \quad 4.00 \mathrm{mmol}, \quad 1.00 \mathrm{eq})$ to obtain 2-(1(benzyloxy)vinyl)thiophene (5f) $(0.500 \mathrm{~g}, 4.00 \mathrm{mmol}, 58 \%)$ as a colorless oil.
Impurities are present in the NMR sample due to degradation of the product during analysis.
$\mathbf{R}_{f} 0.8$ (9:1 Hexane/Et ${ }_{2} \mathrm{O}$).
${ }^{\mathbf{1}} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.58-7.35(\mathrm{~m}, 6 \mathrm{H}, ~ A r), 7.30(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}, A r), 7.07$
(dd, $J=5.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}, A r), 5.05$ (s, 2 H, Benzyl), 4.81 (d, $J=2.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{CH}$), 4.35 (d, $J=3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C}=\mathrm{C} H)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 155.0,140.4,136.9,128.6,127.9,127.3,127.3,125.2,124.0$, 82.7, 69.8.

HRMS (ESI) calcd for $\mathrm{C}_{13} \mathrm{H}_{13} \mathrm{OS}^{+}[\mathrm{M}+\mathrm{H}]^{+} 217.0682$; found 217.0688.

General Procedure for the Synthesis of Monosubstituted Enol Ethers

Following a slightly modified procedure, ${ }^{16}$ palladium(II) trifluoroacetate ($0.500 \mathrm{~mol} \%$) and 4,7-diphenyl-1,10-phenanthroline ($0.500 \mathrm{~mol} \%$) were dissolved in 1-(vinyloxy)butane (29) (20.0 eq) in an oven-dried 20 mL vial equipped with a stirring bar to obtain a yellow solution. The corresponding alcohol (1.00 eq) and triethylamine (0.0750 eq) were then added to the solution. The flask was sealed with a microwave cap and stirred at $75^{\circ} \mathrm{C}$ for 24 hours. The reaction was cooled to room temperature and filtrated through a plug of activated charcoal and eluted with hexane. The solvent was evaporated under reduced pressure to obtain the crude oils that were purified by a short column chromatography using deactivated silica gel (3 $\% \mathrm{Et}_{3} \mathrm{~N}$) or basic alumina and hexane as eluent.

((Vinyloxy)methyl)benzene (5g)

Following the general procedure, compound $\mathbf{5 g}$ was synthesized starting from 1(vinyloxy)butane (29) ($12.0 \mathrm{~mL}, 92.0 \mathrm{mmol}, 20.0 \mathrm{eq}$) and phenylmethanol ($500 \mathrm{mg}, 4.62$ $\mathrm{mmol}, 1.00 \mathrm{eq}$) with palladium(II) trifluoroacetate ($7.70 \mathrm{mg}, 23.0 \mu \mathrm{~mol}, 0.500 \mathrm{~mol} \%$), $4,7-$ diphenyl-1,10-phenanthroline ($7.70 \mathrm{mg}, 23.0 \mu \mathrm{~mol}, 0.500 \mathrm{~mol} \%$), and triethylamine (35.0 mg , $0.350 \mathrm{mmol}, 0.0750 \mathrm{eq})$. The crude product was purified by a short column chromatography

[^8]using deactivated silica gel (3 \% $\mathrm{Et}_{3} \mathrm{~N}$) and hexane as eluent to obtain ((vinyloxy)methyl)benzene (5g) as a colorless oil ($421 \mathrm{mg}, 3.14 \mathrm{mmol}, 63 \%$ yield).
$\mathrm{R}_{f} 0.9$ (100 Hexane).
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40-7.30(\mathrm{~m}, 5 \mathrm{H}, P h), 6.57(\mathrm{dd}, 1 \mathrm{H}, J=14.3,6.8 \mathrm{~Hz}$, $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}$), $4.77\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH} \mathrm{H}_{2} \mathrm{Ph}\right), 4.31\left(\mathrm{dd}, 1 \mathrm{H}, J=14.3,1.7 \mathrm{~Hz}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}\right), 4.09(\mathrm{~m}, 1$ $\left.\mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}\right)$.
${ }^{13} \mathrm{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.7,136.9,128.5,128.0,127.6,87.4,70.1$.
The characterization data for $\mathbf{5 g}$ corresponded to the reported values. ${ }^{17}$

1-Bromo-4-((vinyloxy)methyl)benzene (5h)

Following the procedure described above, compound $\mathbf{5 h}$ was synthesized starting from 1(vinyloxy)butane (29) ($14.0 \mathrm{~mL}, 107 \mathrm{mmol}, 20.0 \mathrm{eq}$) and (4-bromophenyl)methanol (1.00 g , $5.35 \mathrm{mmol}, 1.00 \mathrm{eq}$) with palladium(II) trifluoroacetate ($8.9 \mathrm{mg}, 27.0 \mu \mathrm{~mol}, 0.500 \mathrm{~mol} \%$), 4,7-diphenyl-1,10-phenanthroline ($8.9 \mathrm{mg}, 27.0 \mu \mathrm{~mol}, 0.500 \mathrm{~mol} \%$), and triethylamine (56.0 $\mu \mathrm{mL}, 0.401 \mathrm{mmol}, 0.075 \mathrm{eq})$. The crude product was purified by a short column chromatography using basic alumina and hexane as eluent to obtain 1-bromo-4((vinyloxy)methyl)benzene ($\mathbf{5 h}$) as a colorless oil ($915 \mathrm{mg}, 4.29 \mathrm{mmol}, 80 \%$ yield).
$\mathbf{R}_{f} 0.9$ (9:1 Hexane/Et ${ }_{2} \mathrm{O}$).
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.49(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}, A r), 7.23(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, A r)$, $6.54\left(\mathrm{dd}, J=14.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}\right), 4.71\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ar}\right), 4.29(\mathrm{dd}, J=14.3,2.3 \mathrm{~Hz}$, $\left.1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}\right), 4.10\left(\mathrm{dd}, J=6.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}=\mathrm{CH}-\mathrm{O}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.5,136.1,131.8,129.2,122.0,87.8,69.4$.
IR 2359 (w), 2316 (w), 1325 (m), 1225 (m), 1091 (m), 993 (s), 895 (m), 847 (m), 684 (s).

1-Nitro-4-((vinyloxy)methyl)benzene (5i)

Following the procedure described above, compound $\mathbf{5 i}$ was synthesized starting from 1(vinyloxy)butane (29) ($17.0 \mathrm{~mL}, 131 \mathrm{mmol}, 20.0 \mathrm{eq}$) and (4-nitrophenyl)methanol (1.00 g , $6.53 \mathrm{mmol}, 1.00 \mathrm{eq}$) with palladium(II) trifluoroacetate ($10.9 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 0.500 \mathrm{~mol} \%$) and 4,7-diphenyl-1,10-phenanthroline ($10.9 \mathrm{mg}, 33.0 \mu \mathrm{~mol}, 0.500 \mathrm{~mol} \%$), and triethylamine ($68.0 \mu \mathrm{~mL}, 0.490 \mathrm{mmol}, 0.075 \mathrm{eq}$). The crude product was purified by a short column chromatography using basic alumina and hexane as eluent to obtain 1-nitro-4((vinyloxy)methyl)benzene ($\mathbf{5 i}$) as a colorless oil ($973 \mathrm{mg}, 5.43 \mathrm{mmol}, 83 \%$ yield).
$\mathrm{R}_{f} 0.9$ (9:1 Hexane/Et $\mathrm{E}_{2} \mathrm{O}$).
${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23(\mathrm{~m}, 2 \mathrm{H}, A r), 7.53(\mathrm{~m}, 2 \mathrm{H}, ~ A r), 6.57(\mathrm{dd}, 1 \mathrm{H}, J=14.3$, $6.8 \mathrm{~Hz}, \mathrm{CH}=\mathrm{C}), 4.87\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{Ar}\right), 4.30\left(\mathrm{dd}, 1 \mathrm{H}, J=14.3,2.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{CH}_{2}\right), 4.16(\mathrm{dd}, 1$ $\left.\mathrm{H}, J=6.8,2.5 \mathrm{~Hz}, \mathrm{C}=\mathrm{C} \mathrm{H}_{2}\right)$.

[^9]${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.1,147.5,144.4,127.6,123.7,88.2,68.5$.
The ${ }^{1} \mathrm{H}$ NMR data for $\mathbf{5 i}$ corresponded to the reported values. ${ }^{18}$

Synthesis of cyclopentylamines and tetrahydrofurylamines:

Synthesis of $[\mathrm{Cu}(\mathrm{BOX})](\mathbf{X})_{2} 7$

Following a modified procedure, ${ }^{19}$ an oven-dried Schlenk tube containing a magnetic stirrer was charged with $\mathrm{CuCl}_{2}(1.1 \mathrm{mg}, 8.0 \mu \mathrm{~mol}, 1.0 \mathrm{eq})$, silver salt ($15 \mu \mathrm{~mol}, 1.9 \mathrm{eq}$) and previously activated $3 \AA$ MS in an inert atmosphere $\left(\mathrm{N}_{2}\right)$. The flask was sealed with a septum, covered with aluminium foil and removed from the glovebox. Under argon atmosphere, ${ }^{20} 0.40$ mL of a solution of the corresponding BOX ligand ($9.6 \mu \mathrm{~mol}, 1.2 \mathrm{eq}$) in dry dichloromethane were added via syringe. The mixture was stirred for 3 hours at room temperature and filtrated under Ar into a sealed oven-dried vial using a syringe filter (regenerated cellulose, $0.2 \mu \mathrm{~m}$), to obtain a bright green solution that was used for the catalysis. ${ }^{21}$

General Procedure for the racemic [3+2] Annulation Reaction:

A. Racemic cyclopentylamines or tetrahydrofurylamines were synthesized using 1 equivalent of cyclopropane with 2 equivalents of enol ether or aldehyde in presence of $20 \mathrm{~mol} \%$ of scandium triflate in dry DCM at $0^{\circ} \mathrm{C}$. Conversion was followed by TLC and when full conversion was reached, the reaction mixture was filtered on a small silica plug. Purification by Preparative TLC afforded material that was submitted to HPLC.

[^10]B. Racemic cyclopentylamines were synthesized using 1 equivalent of cyclopropane with 2 equivalents of enol ether in presence of $20 \mathrm{~mol} \%$ of tin tetrachloride in dry DCM at $-40^{\circ} \mathrm{C}$. Conversion was followed by TLC and when full conversion was reached, the reaction mixture was filtered on a small silica plug. Purification by Preparative TLC afforded material that was submitted to HPLC.

General Procedure for the Screening of Conditions for the Catalytic Asymmetric [3+2] Annulation Reaction:

The corresponding N-protected-aminocyclopropane ${ }^{22}(40.0 \mu \mathrm{~mol}, 1.00 \mathrm{eq})$ and freshly purified enol ether ($50.0 \mu \mathrm{~mol}, 1.20 \mathrm{eq}$) were dissolved in 0.4 mL of dry dichloromethane. The solution was added into a sealed oven-dried vial containing a magnetic stirrer, pre-activated 3 $\AA \mathrm{MS}$ and 0.4 mL of the solution of the desired complex ($0.01 \mathrm{M}, 4.00 \mu \mathrm{~mol}, 0.1 \mathrm{eq}$). Dry dichloromethane was used to complete a final volume of 1.0 mL . The mixture was stirred at rt until full conversion was obtained as verified by TLC. The reaction was quenched by addition of 0.3 mL of $\mathrm{Et}_{3} \mathrm{~N}$ and filtrated through a silica gel plug eluting with 5 mL of a mixture $1: 1$ Hexane/AcOEt to obtain a yellowish solution. The solvent was evaporated under reduced pressure and the crude analyzed by ${ }^{1} \mathrm{H}$ NMR and chiral HPLC. The yields indicated in Scheme 2B was obtained using trimethoxybenzene as internal standard.

Dimethyl-(2S,4S)-4-(1,3-dioxoisoindolin-2-yl)-2-phenyl-2-((triisopropylsilyl)oxy) cyclopentane-1,1-dicarboxylate (6a)

Chiralcel IA Hexane $/ \mathrm{iPrOH} 95: 5,0.5 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=19.8 \mathrm{~min} ; \operatorname{tr} 2=21.2 \mathrm{~min}$.
The crude of the reaction using Isopropyl-BOX/Cu($\left.\mathrm{SbF}_{6}\right)_{2}$ complex was analyzed: er $=76: 24$. ${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.87(\mathrm{~m}, 2 \mathrm{H}$, Phth $), 7.80-7.72(\mathrm{~m}, 4 \mathrm{H}$, Phth + Ar $), 7.34-7.25$ ($\mathrm{m}, 3 \mathrm{H}, A r$), 5.29 (m, $1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H), 3.86(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.81\left(\mathrm{t}, 1 \mathrm{H}, J=12.2 \mathrm{~Hz}, \mathrm{CH} \mathrm{H}_{2}\right.$), 3.47$3.39\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.42\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$), 2.91 (dd, $1 \mathrm{H}, J=13.7,8.7 \mathrm{~Hz}, \mathrm{CH}_{2}$), 2.46 (dd, $1 \mathrm{H}, J$ $\left.=12.4,6.2 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 1.01-0.92(\mathrm{~m}, 21 \mathrm{H}$, TIPS $)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.0,168.7,168.4,141.8,134.1,132.0,128.4,128.0,127.1$, $123.2,87.6,70.1,52.4,52.1,47.8,41.7,36.2,18.2,18.2,13.7 .{ }^{23}$
The characterization data for $\mathbf{6 a}$ corresponded to the reported values. ${ }^{24}$
Dimethyl-(2S,4S)-2-(benzyloxy)-4-(1,3-dioxoisoindolin-2-yl)-2-phenylcyclopentane-1,1dicarboxylate (30)

[^11]

Chiralcel IA Hexane/iPrOH 95:5, $1 \mathrm{~mL} / \mathrm{min}, \lambda=254 \mathrm{~nm}, \operatorname{tr} 1=18.3 \mathrm{~min} ; \mathrm{tr} 2=21.1 \mathrm{~min}$.
The crude of the reaction using tert-butyl- $\mathrm{BOX} / \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ complex was analyzed: er $=78: 22$.
$\mathbf{R}_{f} 0.7$ (5:5 Pentane/AcOEt).
M.p. $187.0-188.8^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.85(\mathrm{dd}, J=5.4,3.0 \mathrm{~Hz}, 2 \mathrm{H}$, Phth), $7.73(\mathrm{dd}, J=5.5,3.0 \mathrm{~Hz}$, 2 H, Phth), $7.66-7.58$ (m, 2 H, Ar), $7.42-7.27$ (m, 8 H, Ar), 5.06 (dddd, $J=11.6,10.0,7.5$, $6.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H), 4.39$ (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} \mathrm{C}_{2}$ Benzyl), 4.08 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), 3.82-3.73 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.65-3.49\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}$, OMe), 2.88 (dd, $J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.57\left(\mathrm{dd}, J=13.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$).
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,168.5,168.3,138.2,136.5,134.1,131.9,129.2,128.3$, 128.1, 127.3, 127.2, 126.5, 123.3, 89.8, 68.2, 63.5, 52.4, 52.2, 46.4, 36.1, 35.6.

IR 1737 (s), 1712 (s), 1435 (w), 1379 (m), 1259 (w), 1127 (m).
HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{27} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 536.1680$; found 536.1667.

Dimethyl-(2S,4S)-2-(benzyloxy)-4-(5-methoxy-1,3-dioxoisoindolin-2-yl)-2-phenylcyclopentane-1,1-dicarboxylate (31)

Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=15.4 \mathrm{~min} ; \operatorname{tr} 2=56.1 \mathrm{~min}$.
The crude of the reaction using tert-butyl- $\mathrm{BOX} / \mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2}$ complex was analyzed: er $=74: 26$. $\mathbf{R}_{f} 0.8$ (5:5 Pentane/AcOEt).
M.p. $128.3-130.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}, A r), 7.67-7.58(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.41$ 7.27 (m, $9 \mathrm{H}, A r$), 7.16 (dd, $J=8.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}, A r), 5.10-4.94(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H), 4.38(\mathrm{~d}, J$ $=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{C} H_{2}$ benzyl), $4.06\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzyl), $3.93(\mathrm{~m}, 3 \mathrm{H}, \mathrm{OMe})$, 3.83-3.71 (m, $1 \mathrm{H}, \mathrm{CH}$), 3.75 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.59 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.57-3.47\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), 2.86 (dd, $J=14.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.55\left(\mathrm{dd}, J=13.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$).
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 170.3,168.5,168.1,168.1,164.8,138.2,136.6,134.5,129.2$, $128.3,128.1,127.3,127.1,126.5,125.0,123.9,119.8,108.0,89.7,68.2,63.4,56.1,52.3$, 52.2, 46.4, 36.1, 35.6.

IR 1360 (m), 1336 (s), 1263 (w), 1161 (w), 1127 (w), 1116 (w), 1115 (w), 1065 (s), 995 (m), 967 (m), 956 (m), 863 (m), 690 (m), $689(\mathrm{~m})$.
HRMS (ESI) calcd for $\mathrm{C}_{31} \mathrm{H}_{29} \mathrm{NNaO}_{8}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 566.1785$; found 566.1788.

Dimethyl-(2S,4S)-2-(benzyloxy)-4-(5-nitro-1,3-dioxoisoindolin-2-yl)-2-phenylcyclopentane-1,1-dicarboxylate (32)

Chiralcel IA Hexane $/ \mathrm{iPrOH} 85: 15,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=33.4 \mathrm{~min} ; \operatorname{tr} 2=36.6 \mathrm{~min}$.
The crude of the reaction using tert-butyl-BOX/Cu(ClO$\left.)_{2}\right)_{2}$ complex was analyzed: er =92:8).
$\mathbf{R}_{f} 0.8$ (5:5 Pentane/AcOEt).
M.p. $95.5-98.3^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.82-8.50(\mathrm{~m}, 2 \mathrm{H}, A r), 8.05(\mathrm{dd}, J=8.1,0.7 \mathrm{~Hz}, 1 \mathrm{H}, A r)$, $7.80-7.57(\mathrm{~m}, 2 \mathrm{H}, A r), 7.48-7.13$ (m, $8 \mathrm{H}, A r), 5.06$ (tdd, $J=7.7,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-$ H), 4.36 (d, $J=11.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$ benzyl), $4.10\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzyl), $3.84-$ 3.67 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), 3.76 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.67-3.44\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.60(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.86 (dd, $\left.J=14.0,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.60\left(\mathrm{dd}, J=13.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.2,168.3,166.1,165.8,151.8,138.0,136.3,136.2,133.3$, 129.4, 129.1, 128.4, 128.3, 127.4, 127.3, 126.5, 124.5, 118.7, 89.8, 68.2, 63.6, 52.4, 52.3, 47.2, 36.0, 35.6.

IR 1393 (w), 1345 (s), 1201 (m), 1126 (w), 1115 (w), 1069 (m), 1043 (s), 972 (w), 868 (m), 691 (m).
HRMS (ESI) calcd for $\mathrm{C}_{30} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 581.1531$; found 581.1540.

General Procedure for the Catalytic Asymmetric [3+2] Annulation Reaction

Dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (4b) ($51.0 \mathrm{mg}, 0.200$ $\mathrm{mmol}, 1.00 \mathrm{eq}$) and freshly purified enol ether or aldehyde ($0.400 \mathrm{mmol}, 2.00 \mathrm{eq}$) were dissolved in 2.0 mL of dry dichloromethane. The solution was added into a sealed oven-dried vial containing a magnetic stirrer, pre-activated $3 \AA \mathrm{MS}$ and 2.0 mL of the solution of the copper complex $(0.01 \mathrm{M}, 0.020 \mathrm{mmol}, 0.10 \mathrm{eq})$. Dry dichloromethane was used to complete a final volume of 5.0 mL . The mixture was stirred at rt until full conversion was observed by TLC. The reaction was quenched by addition of 0.5 mL of $\mathrm{Et}_{3} \mathrm{~N}$ and filtrated through a silica gel plug eluting with 10 mL of a mixture of 3:7 Hexane/AcOEt. The solvent was evaporated under reduced pressure and the crude analyzed by ${ }^{1} \mathrm{H}$ NMR. Purification by column chromatography using pentane/AcOEt (6:4 to $3: 7$) afforded the product as a mixture of diastereoisomers. In the case of the reaction with enol ether, it was possible to purify the major diastereomer by preparative TLC for characterization and HPLC analysis. For aldehydes, characterization was done directly on the obtained mixture of diastereoisomers.

Racemization experiment of cyclopropane 4b

Dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (4b) ($10 \mathrm{mg}, 0.039$ $\mathrm{mmol}, 1.00 \mathrm{eq}$) was dissolved in 0.5 mL of dry dichloromethane. The solution was added into a sealed oven-dried vial containing a magnetic stirrer, pre-activated $3 \AA \mathrm{MS}$ and 2.0 mL of the solution of the copper complex ($0.0020 \mathrm{M}, 0.0039 \mathrm{mmol}, 0.10 \mathrm{eq}$). Two aliquots (1 mL each) were taken at 30 min and 3 h after the reaction was set up. The aliquots were filtered over a pad of alumina, eluting with AcOEt , and were submitted to chiral HPLC analysis.
er $30_{\text {min }}=50: 50$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=23.9 \mathrm{~min} ; \operatorname{tr} 2$ $=26.8 \mathrm{~min}$.
ersh $=50: 50$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=23.7 \mathrm{~min} ; \operatorname{tr} 2=$ 26.4 min.

Dimethyl-(2S,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-phenylcyclopentane-1,1dicarboxylate (6b)

Following the general procedure, using (1-(benzyloxy)vinyl)benzene (5b) ($84.0 \mathrm{mg}, 0.400$ mmol, 2.00 eq), dimethyl 2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-phenylcyclopentane-1,1-dicarboxylate ($\mathbf{6 b}$) $(90.3 \mathrm{mg}, 0.194 \mathrm{mmol}, 97 \%)$ was obtained as a colorless solid.

Crude analysis: $d r=7: 1$ between peaks at 5.01 (minor) and 4.67 (major).
$e r_{\text {major }}=96: 4$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=18.2 \mathrm{~min} ; \operatorname{tr} 2=$ 24.0 min .
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 5 . 0}}-21.0\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R f}_{\mathbf{f}} 0.30$ (5:5 Hexane/AcOEt).
M.p. $90.1-91.7^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.57-7.41(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.32-7.13(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}), 5.01-4.67$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H$), 4.33 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), $4.03\left(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzyl), 3.66 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.56 (dd, $J=13.1,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.49 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.37 (ddd, $\left.J=14.0,10.3,0.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.71\left(\mathrm{dd}, J=13.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.63(\mathrm{~s}, 4 \mathrm{H}$, CH_{2} succinimide), 2.38 (dd, $J=13.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.0,170.1,168.3,138.0,136.3,129.1,128.2,128.0,127.1$, 127.0, 126.3, 89.6, 68.0, 63.2, 52.2, 52.1, 46.9, 34.9, 34.5, 28.0.

IR 2255 (w), 1738 (w), 1704 (m), 1382 (w), 1260 (w), 1178 (w), 906 (s).
HRMS (ESI) calcd for $\mathrm{C}_{26} \mathrm{H}_{27} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 488.1680$; found 488.1687.

Dimethyl-(2S,4S)-4-(2,5-dioxopyrrolidin-1-yl)-2-methoxy-2-(p-tolyl)cyclopentane-1,1dicarboxylate (6 c)

Following the general procedure, using 1-(1-methoxyvinyl)-4-methylbenzene (5c) (59.3 mg, 0.400 mmol, 2.00 eq), dimethyl 4-(2,5-dioxopyrrolidin-1-yl)-2-methoxy-2-(p-tolyl)cyclopentane-1,1-dicarboxylate ($\mathbf{6 c}$) ($77.0 \mathrm{mg}, 0.191 \mathrm{mmol}, 95 \%$) was obtained as a colorless solid.

Crude analysis: $d r=20: 1$ between peaks at 5.17 (minor) and 4.84 (major).
$e r_{\text {major }}=94.5: 5.5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \mathrm{tr} 1=17.9 \mathrm{~min} ; \mathrm{tr} 2$ $=22.5 \mathrm{~min}$.
$[\boldsymbol{\alpha}] \mathbf{D}^{25.0} 15.7\left(\mathrm{c}=0.81, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.3$ (3:7 Pentane/AcOEt).
M.p. 97.5-99.0 ${ }^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, A r), 7.13(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}, A r)$, $4.83(\mathrm{tt}, J=11.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 3.74(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.58(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.54-3.42(\mathrm{~m}$, $1 \mathrm{H}, \mathrm{CH} H_{2}$), $3.36(\mathrm{dd}, J=14.0,10.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})_{2}$, $2.97(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 2.80-2.60(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), 2.72 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), $2.40-2.22\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.36(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me})$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,170.2,168.5,137.6,133.0,129.3,127.8,89.5,67.7$, 52.2, 52.1, 49.5, 46.5, 34.9, 33.8, 28.0, 21.1.

IR 1740 (s), 1703 (s), 1436 (w), 1399 (w), 1382 (m), 1382 (m), 1294 (w), 1276 (w), 1276 (w), 1261 (w), 1178 (m).

HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{25} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 426.1523$; found 426.1516.

Dimethyl-(2S,4S)-4-(2,5-dioxopyrrolidin-1-yl)-2-phenyl-2-(2,2,2-

 trifluoroethoxy)cyclopentane-1,1-dicarboxylate (6d)

Following the general procedure, using (1-(2,2,2-trifluoroethoxy)vinyl)benzene (5d) (81.0 $\mathrm{mg}, \quad 0.400 \mathrm{mmol}, \quad 2.00 \mathrm{eq}$), dimethyl 4-(2,5-dioxopyrrolidin-1-yl)-2-phenyl-2-(2,2,2-trifluoroethoxy)cyclopentane-1,1-dicarboxylate ($\mathbf{6 d}$) $(80.4 \mathrm{mg}, 0.176 \mathrm{mmol}, 88 \%)$ was obtained as a colorless oil.

Crude analysis: $d r=1.5: 1$ between peaks at 5.06 (minor) and 4.75 (major).
anti
er $=$ 95.5:4.5, Chiralcel IB Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=14.6 \mathrm{~min} ; \operatorname{tr} 2=$ 17.4 min.
$[\boldsymbol{\alpha}] \mathrm{D}^{25.0} 18.9\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.2$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.59-7.43(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.43-7.28(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 4.97-4.75$ (m, 1 H, N-CH), 3.80 (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.60\left(\mathrm{dd}, J=13.4,11.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$), $3.56-3.44$ (m, 1 $\mathrm{H}, \mathrm{CH}_{2}-\mathrm{CF}_{3}$), 3.53 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.43-3.30\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}_{2}-\mathrm{CF}_{3}\right), 2.84-2.75(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), $2.71\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ succinimide), $2.24\left(\mathrm{dd}, J=13.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}, C \mathrm{H}_{2}\right)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.0,169.8,167.7,135.0,129.0,128.7,127.6,123.6(\mathrm{q}, J=$ $278 \mathrm{~Hz}), 90.4,67.7,60.50(\mathrm{q}, J=35 \mathrm{~Hz}), 52.4,52.3,46.6,34.8$, 34.6, 28.0.
IR 1808 (m), 1771 (s), 1521 (w), 1520 (w), 1459 (w), 1355 (m), 1256 (s).
HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 480.1241$; found 480.1243 .
syn
er $=96.5: 3.5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 90: 10,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=28.6 \mathrm{~min} ; \operatorname{tr} 2=$ 31.1 min .
$[\boldsymbol{\alpha}] \mathrm{D}^{\mathbf{2 5 . 0}}-2.3\left(\mathrm{c}=0.39, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.3$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64-7.52(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.41-7.29(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.20-5.06$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}$), $4.06\left(\mathrm{dq}, J=10.2,8.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}-\mathrm{CF}_{3}\right.$), 3.75 (s, $3 \mathrm{H}, O M e$), $3.61-3.40$
(m, $1 \mathrm{H}, \mathrm{CH}_{2}+\mathrm{CH}_{2}-\mathrm{CF}_{3}$), $3.50\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}\right.$), 3.01 (dd, $J=15.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $2.84-$ $2.67\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{CH}_{2}\right.$ succinimide $+\mathrm{CH}_{2}$), $2.34\left(\mathrm{dd}, J=12.9,7.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.1,169.3,167.6,135.2,129.1,128.4,127.6,124.1$ (q, $J=$ 278 Hz), $90.7,70.0,60.4(\mathrm{q}, J=35 \mathrm{~Hz}), 52.5,52.1,47.4,36.5,33.7,28.0$.
IR 1737 (m), 1705 (s), 1447 (w), 1382 (w), 1279 (m), 1256 (w), 1170 (s).
HRMS (ESI) calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 480.1241$; found 480.1237.

ROESY

ROESY

Dimethyl-(2S,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-(m-tolyl)cyclopentane-1,1-
dicarboxylate (6e)

Following the general procedure, using 1-(1-(benzyloxy)vinyl)-3-methylbenzene (5e) (90.0 $\mathrm{mg}, \quad 0.400 \mathrm{mmol}, 2.00 \mathrm{eq}$), dimethyl 2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-(m-tolyl)cyclopentane-1,1-dicarboxylate ($6 \mathbf{6}$) $(96.0 \mathrm{mg}, 0.199 \mathrm{mmol}, 99 \%$) was obtained as a colorless oil.

Crude analysis: $d r>20: 1$.
er $=95: 5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=16.2 \mathrm{~min} ; \operatorname{tr} 2=$ 22.1 min.
$[\boldsymbol{\alpha}] \mathrm{D}^{\mathbf{2 5 . 0}}-16.5\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.25$ (4:6 Pentane/AcOEt).
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.29(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}), 7.28-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 7.20(\mathrm{t}, J=$ $7.7 \mathrm{~Hz}, 1 \mathrm{H}, A r), 7.11(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}, A r), 4.97-4.81(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}), 4.31(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), 4.03 (d, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), 3.73 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.65-3.55$ ($\mathrm{m}, 1 \mathrm{H}, \mathrm{CH}_{2}$), $3.57(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.44\left(\mathrm{dd}, J=13.9,10.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 2.78(\mathrm{dd}, J=13.9$, $7.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH})_{2}$), $2.70\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ succinimide), 2.45 (dd, $J=13.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.34 (s, $3 \mathrm{H}, \mathrm{Me}$).
${ }^{13}$ C NMR (101 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 177.1,170.2,168.3,138.2,136.5,136.3,130.0,128.8,128.3$, $127.1^{25}, 126.4,126.2,89.7,68.1,63.3,52.2,52.1,46.9,35.0,34.6,28.0,21.7$.
IR 2924 (w), 1739 (m), 1703 (s), 1435 (w), 1383 (m), 1295 (w), 1259 (w), 1181 (m), 738 (w).
HRMS (ESI) calcd for $\mathrm{C}_{27} \mathrm{H}_{29} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 502.1836$; found 502.1845.

[^12]
Dimethyl-(2R,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-(thiophen-2-yl)cyclopentane-1,1-dicarboxylate ($\mathbf{6 f}$)

Following the general procedure, using 2-(1-(benzyloxy)vinyl)thiophene (5f) ($87.0 \mathrm{mg}, 0.400$ $\mathrm{mmol}, \quad 2.00$ eq), dimethyl 2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)-2-(thiophen-2-yl)cyclopentane-1,1-dicarboxylate ($\mathbf{6 f}$) $(89.1 \mathrm{mg}, 0.189 \mathrm{mmol}, 94 \%)$ was obtained as a colorless oil.

Crude analysis: $d r=8: 1$ between peaks at 5.11 (minor) and 4.86 (major).
$e r_{\text {major }}=94: 6$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=27.0 \mathrm{~min} ; \operatorname{tr} 2=$ 40.2 min.
$[\boldsymbol{\alpha}] \mathrm{D}^{\mathbf{2 5 . 0}}-11.8\left(\mathrm{c}=0.44, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.2$ (4:6 Pentane/AcOEt).
${ }^{1}$ H NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.42-7.14(\mathrm{~m}, 7 \mathrm{H}, \mathrm{Ar}), 6.97(\mathrm{dd}, J=5.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, Thiophene), 4.86 (dddd, $J=11.9,10.0,7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}$), 4.33 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2} benzyl), 4.14 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), $3.63-3.52(\mathrm{~m}, 1 \mathrm{H}$, CH_{2}), 3.60 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.38 (dd, $J=13.9,10.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.79 (dd, $J=13.9,7.9 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}_{2}$), 2.70 (s, $4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), 2.59 (dd, $J=12.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 177.2,170.2,168.5,141.4,138.0,128.9,128.3,127.4,126.9$, 126.6, 126.0, 87.7, 68.2, 63.9, 52.5, 52.4, 47.1, 36.8, 34.7, 28.2.

IR 1740 (s), 1704 (s), 1435 (w), 1384 (w), 1270 (w), 1175 (m).
HRMS (ESI) calcd for $\mathrm{C}_{24} \mathrm{H}_{25} \mathrm{NNaO}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{Na}]^{+}$494.1244; found 494.1241.

ROESY

Dimethyl-(2R,4S)-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1dicarboxylate (6 g)

Following the general procedure, using ((vinyloxy)methyl)benzene (5g) (53.7 mg, 0.400 mmol, 2.00 eq), dimethyl 2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1-
dicarboxylate ($\mathbf{6 g}$) ($74.8 \mathrm{mg}, 0.192 \mathrm{mmol}, ~ 96 \%$) was obtained as a colorless solid. Recrystallized from isopropanol. ${ }^{26}$

Crude analysis: $d r=4: 1$ between peaks at 3.79 (major) and 3.75 (minor).
$e r_{\text {major }}=96.5: 3.5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=27.4 \mathrm{~min}$; $\operatorname{tr} 2=37.8 \mathrm{~min}$.
$[\boldsymbol{\alpha}] \mathrm{D}^{\mathbf{2 5 . 0}}-32.7\left(\mathrm{c}=0.43, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.3$ (5:5 Pentane/AcOEt).
M.p. $106.8-109.5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.24(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}), 5.03-4.82(\mathrm{~m}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-\mathrm{H}), 4.75$ (dd, $J=4.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{C}-H), 4.59$ (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl) 4.49 (d, $J=11.9 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), 3.79 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.68 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.03 (dd, $J=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), 2.64 ($\mathrm{s}, 4 \mathrm{H}$, succinimide), $2.50-2.29\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.15(\mathrm{ddd}, J=13.4,8.3,2.7 \mathrm{~Hz}, 1$ $\mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.9,171.0,169.0,138.0,128.3,127.6,127.4,83.0,71.7$, 65.1, 52.9, 52.7, 48.0, 34.0, 33.3, 28.0.

IR 1737 (m), 1702 (s), 1398 (w), 1397 (w), 1384 (w), 1283 (w), 1262 (w), 1175 (m), 1100 (w).

HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NO}_{7}^{+}[\mathrm{M}+\mathrm{H}]^{+}$390.1547; found 390.1554.

Procedure for the Catalytic Asymmetric [3+2] Annulation Reaction on 1 mmol scale:

Dimethyl 2-(2,5-dioxopyrrolidin-1-yl)cyclopropane-1,1-dicarboxylate (4b) ($255 \mathrm{mg}, 1.00$ mmol, 1.00 eq) and freshly purified enol ether $5 \mathrm{~g}(268 \mathrm{mg}, 2.00 \mathrm{mmol}, 2.00 \mathrm{eq})$ were dissolved in 10.0 mL of dry dichloromethane. The solution was added into a sealed oven-dried vial containing a magnetic stirrer, pre-activated $3 \AA \mathrm{MS}$ and 10.0 mL of the solution of the copper complex ($0.01 \mathrm{M}, 0.100 \mathrm{mmol}, 0.10 \mathrm{eq}$). Dry dichloromethane was used to complete a final volume of 25.0 mL . The mixture was stirred at rt for 2 hours and full conversion was observed by TLC. The reaction was quenched by addition of 1 mL of $\mathrm{Et}_{3} \mathrm{~N}$ and filtrated through a silica gel plug eluting with 50 mL of a mixture of 3:7 Hexane/AcOEt. The solvent was evaporated under reduced pressure and the crude analyzed by ${ }^{1} \mathrm{H}$ NMR. Purification by column chromatography using pentane/AcOEt ($6: 4$ to $3: 7$) afforded dimethyl-2-(benzyloxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1-dicarboxylate ($\mathbf{6 g}$) ($311 \mathrm{mg}, 0.800 \mathrm{mmol}, 80 \%$) as a colorless solid.
Crude analysis: $d r=4: 1$ between peaks at 3.03 (major) and 3.37 (minor).
$e r_{\text {major }}=95.5: 4.5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}$.

Dimethyl-(2R,4S)-2-((4-bromobenzyl)oxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1dicarboxylate (6h)

[^13]

Following the general procedure, using 1-bromo-4-((vinyloxy)methyl)benzene (5h) (85.0 mg, $0.400 \mathrm{mmol}, 2.00 \mathrm{eq})$, dimethyl 2-((4-bromobenzyl)oxy)-4-(2,5-dioxopyrrolidin-1-yl)cyclopentane-1,1-dicarboxylate ($\mathbf{6 h}$) $(68.2 \mathrm{mg}, 0.146 \mathrm{mmol}, 72.8 \%)$ was obtained as a colorless oil.

Crude analysis: $d r=5: 1$ between peaks at 3.36 (minor) and 3.00 (major).
$e r_{\text {major }}>94.5: 5.5^{27}$, Chiralcel IB Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=26.0 \mathrm{~min}$; $\operatorname{tr} 2=29.6 \mathrm{~min}$.
$[\boldsymbol{\alpha}] \mathbf{D}^{\mathbf{2 5 . 0}}-28.9\left(\mathrm{c}=0.46, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R f}_{\mathbf{f}} 0.20$ (4:6 Hexane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, A r), 7.13(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}, A r)$, 4.93 (dtd, $J=10.6,8.7,6.4 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H), 4.75(\mathrm{dd}, J=4.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{C}-H), 4.55(\mathrm{~d}$, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), $4.44\left(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzyl), $3.79(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe})$, 3.68 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.00 (dd, $J=14.4,10.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.65 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), $2.50-2.24\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}\right.$), 2.13 (ddd, $\left.J=13.5,8.4,3.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13} \mathbf{C}$ NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8,171.0,169.0,137.0,131.4,129.0,121.4,83.0,71.0$, 65.0, 52.9, 52.7, 47.8, 34.1, 33.4, 28.0.

IR 1739 (m), 1703 (s), 1397 (w), 1383 (w), 1283 (w), 1262 (w), 1261 (w), 1176 (w).
HRMS (ESI) calcd for $\mathrm{C}_{20}{ }^{79} \mathrm{BrH}_{23} \mathrm{NO}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 468.0652$; found 468.0661.

ROESY

Dimethyl-(2R,4S)-4-(2,5-dioxopyrrolidin-1-yl)-2-((4-nitrobenzyl)oxy)cyclopentane-1,1dicarboxylate (6i)

Following the general procedure, using 1-nitro-4-((vinyloxy)methyl)benzene (5i) (71.7 mg, $0.400 \mathrm{mmol} 2.00 \mathrm{eq})$, dimethyl 4-(2,5-dioxopyrrolidin-1-yl)-2-((4-

[^14]nitrobenzyl)oxy)cyclopentane-1,1-dicarboxylate (6i) ($71.0 \mathrm{mg}, 0.163 \mathrm{mmol}, 82 \%$) was obtained as a colorless solid.

Crude analysis: $d r=5: 1$ between peaks at 4.44 (minor) and 4.95 (major).
$e r_{\text {major }}=98: 2$, Chiralcel IF Hexane $/ \mathrm{PrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=230 \mathrm{~nm}, \operatorname{tr} 1=49.9 \mathrm{~min} ; \mathrm{tr} 2=$ 67.0 min .
$[\alpha] D^{25.0}-27.1\left(c=0.43, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R f}_{\boldsymbol{f}} 0.39$ (5:5 Hexane/AcOEt).
M.p. $67.9-70.5^{\circ} \mathrm{C}$.
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.23-8.11(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.46-7.39(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 4.95$ (dtd, J $=10.5,8.6,6.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{CH}$), $4.86-4.80(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CHO}), 4.72\left(\mathrm{~d}, J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ benzyl), 4.62 (d, $J=13.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$ benzyl), $3.80(\mathrm{~s}, 3 \mathrm{H}, \mathrm{Me}), 3.70$ (s, $3 \mathrm{H}, \mathrm{Me}$), 3.00 (dd, $J=14.4,10.5 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}$), $2.66\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ succinimide), $2.45-2.34\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.19$ (ddd, $J=13.6,8.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.8,170.8,168.9,147.3,145.5,127.3,123.5,83.4,70.5$, 64.9, 52.9, 52.7, 47.6, 34.0, 33.5, 27.9.

IR 1737 (m), 1703 (s), 1523 (w), 1348 (m), 1284 (w), 1177 (w).
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{~N}_{2} \mathrm{NaO}_{9}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+}$457.1218; found 457.1232.

Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-phenyldihydrofuran-3,3(2H)dicarboxylate (9a)

Following the general procedure, using benzaldehyde (8a) ($42.4 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00 \mathrm{eq}$), dimethyl 5-(2,5-dioxopyrrolidin-1-yl)-2-phenyldihydrofuran-3,3(2H)-dicarboxylate (9a) (59.2 $\mathrm{mg}, 0.164 \mathrm{mmol}, 82 \%$) was obtained as a colorless oil.

Crude analysis: $d r=13: 1$ between peaks at 5.35 (minor) and 5.78 (major).
$e r_{\text {major }}=92: 8$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \mathrm{tr} 1=18.9 \mathrm{~min} ; \mathrm{tr} 2=$ 24.3 min .
$e r_{\text {minor }}=92: 8$, Chiralcel IA Hexane/iPrOH 70:30, $1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=11.1 \mathrm{~min} ; \operatorname{tr} 2=$ 13.0 min .
$[\boldsymbol{\alpha}] \mathbf{D}^{25.0} 50.9\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.4$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}, ~ A r), 7.35-7.23(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}), 5.78$ (m, 2 H, N-C-H + Ph-C-H), $4.24-4.05(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}$) , 3.83 (s, $3 \mathrm{H}, \mathrm{OMe}$), $3.10(\mathrm{~d}, J=1.7$
$\mathrm{Hz}, 3 \mathrm{H}, \mathrm{OMe}), 2.75$ (d, $J=1.7 \mathrm{~Hz}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), $2.45-2.28\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right)$.
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,170.9,167.8,137.5,128.5,128.0,127.6,82.5,79.6$, 65.0, 53.4, 52.3, 33.1, 28.0.

IR 1737 (s), 1715 (s), 1436 (w), 1384 (w), 1275 (m), 1233 (w), 1169 (w).
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{NO}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$362.1234; found 362.1235.

Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-(4-methoxyphenyl)dihydrofuran-3,3(2H)-dicarboxylate (9b)

Following the general procedure, using 4-methoxybenzaldehyde (8b) ($54.5 \mathrm{mg}, 0.400 \mathrm{mmol}$, 2.00 eq), dimethyl 5-(2,5-dioxopyrrolidin-1-yl)-2-(4-methoxyphenyl)dihydrofuran-3,3(2H)dicarboxylate (9b) ($54.1 \mathrm{mg}, 0.138 \mathrm{mmol}, 69 \%$) was obtained as a colorless oil.

Crude analysis: $d r>20: 1$.
$e r=96: 4$, Chiralcel IC Hexane $/ \mathrm{iPrOH} 80: 20,1 \mathrm{~mL} / \mathrm{min}, \lambda=220 \mathrm{~nm}, \operatorname{tr} 1=34.9 \mathrm{~min} ; \operatorname{tr} 2=$ 38.5 min .
$[\boldsymbol{\alpha}] \mathrm{D}^{25.0} 17.8\left(\mathrm{c}=0.50, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.30$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51-7.38(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 6.94-6.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.87-5.66$ ($\mathrm{m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{C}-H+\mathrm{Ph}-\mathrm{C}-H$), 4.14 (dd, $J=13.1,11.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.83 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.78 (s, $3 \mathrm{H}, \mathrm{OMe}$), 3.17 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.75 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), 2.35 (dd, $J=13.1,5.1 \mathrm{~Hz}$, $1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,170.9,167.8,159.7,129.7,128.9,113.3,82.3,79.5$, 64.9, 55.2, 53.4, 52.4, 33.0, 28.0.

IR 1732 (s), 1708 (s), 1614 (w), 1516 (w), 1365 (m), 1274 (m), 1250 (s), 1174 (s).
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NO}_{8}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+}$392.1340; found 392.1346.
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-(3-methoxyphenyl)dihydrofuran-3,3(2H)-dicarboxylate (9c)

Following the general procedure, using 3-methoxybenzaldehyde (8c) $(54.5 \mathrm{mg}, 0.400 \mathrm{mmol}$, 2.00 eq), dimethyl 5-(2,5-dioxopyrrolidin-1-yl)-2-(3-methoxyphenyl)dihydrofuran-3,3(2H)dicarboxylate ($9 \mathbf{c}$) ($65.9 \mathrm{mg}, 0.168 \mathrm{mmol}, 84 \%$) was obtained as a colorless oil.

Crude analysis: $d r=10: 1$ between peaks at 6.05 (minor) and 5.82 (major).
er $=93: 7$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=23.8 \mathrm{~min} ; \mathrm{tr} 2=$ 27.2 min.
$[\boldsymbol{\alpha}] \mathbf{D}^{25.0} 57.8\left(\mathrm{c}=0.47, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.4$ (4:6 Pentane/AcOEt).
${ }^{1}$ H NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.24-7.15(\mathrm{~m}, 2 \mathrm{H}, A r), 7.02(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}, A r), 6.88-$ 6.73 (m, 1 H, Ar), $5.87-5.68$ (m, 2 H, N-C-H + Ph-C-H), 4.15 (dd, $J=13.2,11.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}), $3.87-3.85\left(\mathrm{~m}, 6 \mathrm{H}, \mathrm{OMe}+\mathrm{OMe}\right.$), 3.16 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.75 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), 2.36 (dd, $J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR (101 MHz, CDCl_{3}) $\delta 176.2,170.8,167.7,159.5,139.2,128.8,120.1,115.2,112.1$, 82.5, 79.6, 65.1, 55.4, 53.5, 52.4, 33.0, 28.0.

IR 1736 (s), 1715 (s), 1382 (w), 1276 (m), 1233 (w), 1169 (m), 1048 (w).
HRMS (ESI) calcd for $\mathrm{C}_{19} \mathrm{H}_{21} \mathrm{NNaO}_{8}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 414.1159$; found 414.1181.

Dimethyl-(2R,5R)-2-(4-chlorophenyl)-5-(2,5-dioxopyrrolidin-1-yl)dihydrofuran-3,3(2H)dicarboxylate (9d)

Following the general procedure, using 4-chlorobenzaldehyde (8d) $(56.2 \mathrm{mg}, 0.400 \mathrm{mmol}$, 2.00 eq), dimethyl 2-(4-chlorophenyl)-5-(2,5-dioxopyrrolidin-1-yl)dihydrofuran-3,3(2H)dicarboxylate ($\mathbf{9 d}$) ($71.0 \mathrm{mg}, 0.179 \mathrm{mmol}, 90 \%$) was obtained as a colorless oil.

Crude analysis: $d r=14: 1$ between peaks at 6.36 (minor) and 5.80 (major).
$e r=91: 9$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=19.5 \mathrm{~min} ; \operatorname{tr} 2=$ 47.2 min .
$[\boldsymbol{\alpha}] \mathbf{D}^{25.0} 41.8\left(\mathrm{c}=0.53, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.3$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.47(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}, A r), 7.34-7.27(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 5.84-$ $5.70(\mathrm{~m}, 2 \mathrm{H}, \mathrm{N}-\mathrm{C}-H+\mathrm{Ph}-\mathrm{C}-H), 4.10\left(\mathrm{dd}, J=13.2,10.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3$ $\mathrm{H}, \mathrm{OMe}), 3.18\left(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{OMe}\right.$), $2.76\left(\mathrm{~s}, 4 \mathrm{H}, \mathrm{CH}_{2}\right.$ succinimide), $2.38(\mathrm{dd}, J=13.2$, $5.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,170.7,167.5,136.1,134.3,129.0,128.1,81.8,79.6$, 64.9, 53.5, 52.5, 33.0, 28.0.

IR 1737 (s), 1718 (s), 1659 (w), 1382 (w), 1278 (m), 1231 (m), 1212 (w), 1168 (m).
HRMS (ESI) calcd for $\mathrm{C}_{18} \mathrm{ClH}_{19} \mathrm{NO}_{7}^{+}[\mathrm{M}+\mathrm{H}]^{+}$396.0845; found 396.0844.
Dimethyl-(2S,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-(thiophen-2-yl)dihydrofuran-3,3(2H)dicarboxylate (9e)

Following the general procedure, using thiophene-2-carbaldehyde ($8 \mathbf{e}$) ($44.9 \mathrm{mg}, 0.400 \mathrm{mmol}$, 2.00 eq), dimethyl 5-(2,5-dioxopyrrolidin-1-yl)-2-(thiophen-2-yl)dihydrofuran-3,3(2H)dicarboxylate ($\mathbf{9 e}$) ($71.6 \mathrm{mg}, 0.195 \mathrm{mmol}, 97 \%$) was obtained as a colorless oil.

Crude analysis: $d r>20: 1$.
er $=95: 5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=24.4 \mathrm{~min} ; \operatorname{tr} 2=$ 31.9 min .
$[\boldsymbol{\alpha}] \mathbf{D}^{25.0} 75.3\left(\mathrm{c}=0.54, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.4$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.26(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 2 \mathrm{H}, A r), 6.96(\mathrm{dd}, J=5.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}$, Ar), 6.03 (s, 1 H, Ar-C-H), 5.74 (dd, $J=11.1,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H$), 4.22 (dd, $J=13.2,11.1$ $\mathrm{Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 3.85 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 3.33 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{OMe}$), 2.74 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), 2.39 (dd, $J=13.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,170.4,167.4,140.1,127.0,126.7,125.9,79.4,78.4$, 65.2, 53.6, 52.7, 32.2, 28.0.

IR 1736 (s), 1716 (s), 1376 (w), 1279 (w), 1169 (w).
HRMS (ESI) calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NO}_{7} \mathrm{~S}^{+}[\mathrm{M}+\mathrm{H}]^{+}$368.0799; found 368.0819.

Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-((E)-styryl)dihydrofuran-3,3(2H)dicarboxylate (9f)

Following the general procedure, using cinnamaldehyde ($\mathbf{8 f}$) ($52.9 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00 \mathrm{eq}$), dimethyl 5-(2,5-dioxopyrrolidin-1-yl)-2-((E)-styryl)dihydrofuran-3,3(2H)-dicarboxylate (9f) ($74.0 \mathrm{mg}, 0.191 \mathrm{mmol}, 96 \%$) was obtained as a colorless oil.

Crude analysis: $d r=14: 1$ between peaks at 5.58 (minor) and 5.83 (major).
er $=94: 6$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=30.2 \mathrm{~min} ; \operatorname{tr} 2=$ 56.1 min .
$[\boldsymbol{\alpha}]_{\mathrm{D}}{ }^{25.0} 14.8\left(\mathrm{c}=0.49, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.4$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.43-7.36(\mathrm{~m}, 2 \mathrm{H}, \mathrm{Ar}), 7.30(\mathrm{dd}, J=8.4,6.5 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar})$, 7.24 (m, $3 \mathrm{H}, A r$), $6.76-6.51$ (m, $2 \mathrm{H}, \mathrm{CH}$ olefin), 5.83 (dd, $J=10.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-H$), $5.25(\mathrm{dd}, J=5.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{C}-H), 3.95\left(\mathrm{dd}, J=13.3,10.2 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}\right), 3.85(\mathrm{~s}, 3 \mathrm{H}$, OMe), 3.61 (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.72 ($\mathrm{s}, 4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), 2.49 (dd, $J=13.3,6.0 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2}).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.3,170.0,167.2,136.2,134.5,128.6,128.1,126.9,125.2$, 83.0, 80.0, 64.8, 53.5, 53.0, 32.0, 28.0.

IR 1739 (s), 1717 (s), 1435 (w), 1276 (m), 1231 (m), 1219 (w), 1169 (m).
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{NO}_{7}{ }^{+}[\mathrm{M}+\mathrm{H}]^{+} 388.1391$; found 388.1388.

ROESY
Dimethyl-(2R,5R)-5-(2,5-dioxopyrrolidin-1-yl)-2-phenethyldihydrofuran-3,3(2H)dicarboxylate (9 g)

Following the general procedure, using 3-phenylpropanal ($\mathbf{8 g}$) ($53.7 \mathrm{mg}, 0.400 \mathrm{mmol}, 2.00$ eq), dimethyl 5-(2,5-dioxopyrrolidin-1-yl)-2-phenethyldihydrofuran-3,3(2H)-dicarboxylate $(9 \mathrm{~g})(65.9 \mathrm{mg}, 0.169 \mathrm{mmol}, 85 \%)$ was obtained as a colorless oil.

Crude analysis: $d r=13: 1$ between peaks at 6.15 (minor) and 5.79 (major).
$e r=91.5: 8.5$, Chiralcel IA Hexane $/ \mathrm{iPrOH} 70: 30,1 \mathrm{~mL} / \mathrm{min}, \lambda=210 \mathrm{~nm}, \operatorname{tr} 1=10.3 \mathrm{~min} ; \mathrm{tr} 2=$ 18.5 min .
$[\boldsymbol{\alpha}] \mathrm{D}^{25.0} 21.6\left(\mathrm{c}=0.42, \mathrm{CHCl}_{3}\right)$.
$\mathbf{R}_{f} 0.4$ (4:6 Pentane/AcOEt).
${ }^{1} \mathbf{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.40-7.07(\mathrm{~m}, 5 \mathrm{H}, A r), 5.79(\mathrm{dd}, J=10.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{N}-\mathrm{C}-$ H), $4.65(\mathrm{dd}, J=11.4,2.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{O}-\mathrm{C}-H), 3.83(\mathrm{~s}, 3 \mathrm{H}, \mathrm{OMe}), 3.79-3.73\left(\mathrm{~m}, 1 \mathrm{H}, \mathrm{CH}_{2}\right.$ THF), 3.76 (s, $3 \mathrm{H}, \mathrm{OMe}$), 2.85 (ddd, $J=14.7,10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH} 2$), 2.76 (s, $4 \mathrm{H}, \mathrm{CH}_{2}$ succinimide), 2.57 (ddd, $J=13.6,10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{CH}_{2}$), 2.48 (dd, $J=13.2,6.1 \mathrm{~Hz}, 1 \mathrm{H}$, CH_{2} THF), 2.37 - 2.24 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$), 1.79 - 1.53 (m, $1 \mathrm{H}, \mathrm{CH}_{2}$).
${ }^{13}$ C NMR ($101 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.2,170.3,167.9,141.8,128.6,128.3,125.8,80.8,79.5$, 63.6, 53.4, 53.0, 33.4, 32.3, 32.2, 28.0.

IR 1736 (s), 1712 (s), 1436 (w), 1371 (w), 1274 (m), 1168 (m), 1041 (w).
HRMS (ESI) calcd for $\mathrm{C}_{20} \mathrm{H}_{23} \mathrm{NNaO}_{7}{ }^{+}[\mathrm{M}+\mathrm{Na}]^{+} 412.1367$; found 412.1349.

Spectra

solvent: < CDCI3 $>$
Frequency. 400.08 MHz

Frequency. 100.600196 MHz

Frequency. 100.600196 MHz

solvent: <CDCI3 >
Frequency. 400.08 MHz

\# Peak Name tR Area Height Area\% Height\% Peak Start Peak End Base Start Base End Peak Mark

1 Unknown	23.557	2726543	59555	49.885	55.051	23.107	25.500	23.107	25.500

2 Unknown	26.180	2739107	48626	50.115	44.949	25.680	28.680	25.680
28.680	Manual							

\# Peak Name tR Area Height Area\% Height\% Peak Start Peak End Base Start Base End Peak Mark $\begin{array}{lllllllllllll}1 & \text { Unknown } & 23.293 & 1414043 & 31904 & 41.218 & 46.759 & 22.570 & 25.037 & 22.570 & 25.037 & \text { Manual }\end{array}$
solvent: <CDCI3 >
Frequency. 400.08 MHz

solvent: $\langle\mathrm{CDCI} 3>$
Frequency. 400.08 MHz

| \# | Peak Name | CH | tR | Area | Height | Area\% | Height\% | Quantity | NTP | Resolution | Symmetry Factor | Warning |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 1 | Unknown | 3 | 19.817 | 3260458 | 128165 | 49.594 | 50.903 | N/A | 14839 | 2.057 | 1.221 | |
| 2 | Unknown | 3 | 21.183 | 3313874 | 123618 | 50.406 | 49.097 | N/A | 15465 | N/A | | 1.132 |

\# Peak Name CH tR Area Height Area\% Height\% Quantity NTP Resolution Symmetry Factor Warning

1	Unknown	1	18.300	302146	9986	51.599
54.155	N/A					

\# Peak Name CH tR Area Height Area\% Height\% Quantity NTP Resolution Symmetry Factor Warning

1	Unknown	3	14.353	4826606	189777	49.349	78.563	$\mathrm{~N} / \mathrm{A}$
7862	26.889							

2	Unknown	3	56.103	4953865	51785	50.651	21.437	$\mathrm{~N} / \mathrm{A}$

1.125

$\begin{array}{|l|l|l|l|l|l|l|l|l|l|l|l|}\hline \text { \# } & \text { Peak Name } & \text { CH } & \text { tR } & \text { Area } & \text { Height } & \text { Area\% } & \text { Height\% } & \text { Quantity } & \text { NTP } & \text { Resolution } & \text { Symmetry Factor }\end{array}$ Warning $) \mid$

$\left.\begin{array}{l|r|r|r|r|r|r|r|r|r|}\hline 1 & \text { Unknown } & 1 & 18.223 & 36342909 & 1010847 & 96.169 & 96.779 & \mathrm{~N} / \mathrm{A} & 6246 \\ \hline\end{array} \mathbf{6 . 1 3 6}\right)$

\# Peak Name CH tR Area Height Area\% Height\% Quantity NTP Resolution Symmetry Factor Warning

1	Unknown	2	16.193	18944684	537147	95.057	95.842	N/A	5291

2	Unknown	2	22.140	985224	23301	4.943	4.158 N/A
6558	N/A						

[^15]| 1 | Unknown | 1 | 26.997 | 14213770 | 255962 | 93.933 | $\$ 5.569$ | NA | 6098 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

2	Unknown	1	40.163	918106	11868	6.067	4.431 NA	6869 NA

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[m A U^{\star} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \% \end{gathered}$
1	26.012		1.2226	5649.59229	77.01463	94.5114
2	29.600	FM	1.4142	328.08899	3.86652	5.4886

\#	Peak Name	CH	tR	Area	Height	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor
Warning											
1	Unknown	3	49.943	16773	165	1.925	2.631	N/A	5073	5.391	1.139
2	Unknown	3	67.027	854577	6112	98.075	97.369	N/A	5705	N/A	

\#	Peak Name	CH	tR	Area	Height	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning
1	Unknown	1	11.063	422957	18100	10.645	19.213	N/A	5701	3.276	1.390	
2	Unknown	1	13.007	35254	1537	0.887	1.632	N/A	7430	7.438	1.192	
3	Unknown	1	18.937	293798	7281	7.394	7.729	N/A	5794	4.873	1.111	
4	Unknown	1	24.293	3221193	67290	81.073	71.427	N/A	6460	N/A	1.722	

\#	Peak Name	CH	tR	Area	Height	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor
1	Unknown	2	34.850	205375	2118	3.991	5.011	N/A	2836	1.339	1.611
2	Unknown	2	38.533	4940943	40143	96.009	94.989	N/A	2828	N/A	

[^16]

\# Peak Name CH tR Area Height Area\% Height\% Quantity NTP Resolution Symmetry Factor Warning

| 1 | Unknown | 1 | 19.487 | 199549 | 4809 | 8.771 | 16.309 | N/A | 5746 | 17.365 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | Un

\# Peak Name CH tR Area Height Area\% Height\% Quantity NTP Resolution Symmetry Factor Warning

2 Unknown | 1 | 56.130 | 6406274 | 57012 | 94.068 | 90.436 | N/A | 6050 N/A |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

\#	Peak Name	CH	Area	Height	Area\%	Height\%	Quantity	NTP	Resolution	Symmetry Factor	Warning	
1	Unknown	1	10.310	359218	16311	7.653	13.558	$\mathrm{~N} / \mathrm{A}$	5437	1.968	1.393	
2	Unknown	1	11.550	105285	4051	2.243	3.367	$\mathrm{~N} / \mathrm{A}$	4305	7.927	1.353	
3	Unknown	1	18.493	3728090	88990	79.421	73.966	$\mathrm{~N} / \mathrm{A}$	4941	5.563	2.523	
4	Unknown	1	24.717	501513	10960	10.684	9.110	$\mathrm{~N} / \mathrm{A}$	6891	$\mathrm{~N} / \mathrm{A}$		1.163

[^0]: ${ }^{1}$ P. Wyatt, A. Hudson, J. Charmant, A. G. Orpen, H. Phetmung, Org. Biomol. Chem. 2006, 4, 2218-2232.
 ${ }^{2}$ The diazo carbon could not be detected.
 ${ }^{3}$ P. H. Mazzocchi, P. Wilson, F. Khachik, L. Klingler, S. Minamikawa, J. Org. Chem. 1983, 48, 2981.

[^1]: ${ }^{4}$ N. J. Hinde, C. D. Hall, J. Chem. Soc., Perkin Trans. 2. 1998, 1249.
 ${ }^{5}$ K. Kacprzak, Synth. Commun. 2003, 33, 1499.

[^2]: ${ }^{6}$ E. Bayer, K. Geckeler, Angew. Chem. Int. Ed. Engl. 1979, 18, 533.

[^3]: ${ }^{7}$ F. Gonzalez-Bobes, M. D. B. Fenster, S. Kiau, L. Kolla, S. Kolotuchin, M. Soumeillant, Adv. Synth. Catal. 2008, 350, 813.
 ${ }^{8}$ F. de Nanteuil, J. Loup, J. Waser, Org. Lett. 2013, 15, 3738.

[^4]: ${ }^{9}$ V. Nummert, M. Piirsalu, V. Mäemets, S. Vahur, I. A. Koppel, J. Phys. Org. Chem. 2009, 22, 1155.

[^5]: ${ }^{10}$ H. Liu, G. Shi , Shulei Pan , Y. Jiang ,Y. Zhang, Org. Let. 2013, 15, 4098.
 ${ }^{11}$ M. Ji, X. Wang, Y. N. Lim, Y.-W. Kang, H.-Y. Jang Eur. J. Org. Chem. 2013, 35, 7881

[^6]: ${ }^{12}$ J-F. Zhao, B-H. Tan, T-P. Loh, Chem. Sci. 2011, 2, 349.
 ${ }^{13}$ J. F. Payack, D. L. Hughes, D. Cai, I. F. Cottrell, T. R. Verhoeven, Org. Synth. 2002, 79, 19.
 ${ }^{14}$ The Petasis reagent was synthesised according to J. F. Payack, D. L. Hughes, D. Cai, I. F. Cottrell, T. R. Verhoeven, Org. Synth. 2002, 79, 19.

[^7]: ${ }^{15}$ D. Vuluga, J. Legros, B. Crousse, D. Bonnet-Delpon, Eur. J. Org. Chem. 2009, 2009, 3513.

[^8]: ${ }^{16}$ M. Bosch, M. Schalf, J. Org. Chem. 2003, 68, 5225.

[^9]: ${ }^{17}$ N-A. Harada, T. Nishikata, H. Nagashima, Tetrahedron. 2012, 68, 3243.

[^10]: ${ }^{18}$ S. Matysiak, H.-P. Fitznar, R. Schnell, W. Pfleiderer, Helv. Chim. Acta 1998, 81, 1545.
 ${ }^{19}$ D. A. Evans, G. S. Peterson, J. S. Johnson, D. M. Barnes, K. R. Campos, K. A. Woerpel, J. Org. Chem. 1998, 63, 4541.
 ${ }^{20}$ Argon from gas cyclinder was used as using central nitrogen supply with Drierite filter gave blue complexes.
 ${ }^{21}$ Blue complex gave lower er and poorly reproducible results.

[^11]: ${ }^{22}$ Dried by dissolving in benzene then removing the solvent under reduced pressure and drying in high vacuo.
 ${ }^{23}$ The CH_{3} carbons of TIPS are splitting.
 ${ }^{24}$ F. de Nanteuil, J. Waser, Angew. Chem. Int. Ed. 2011, 50, 12075.

[^12]: ${ }^{25} 2$ carbon signal overlapping.

[^13]: ${ }^{26}$ Structure is registered in CCDC under the number CCDC 988525

[^14]: ${ }^{27}$ Due to shoulder in the peaks, separation was not complete (cf HPLC spectra).

[^15]: I Peak Nane CH IR Area Height Avea\% Height\% Quanty NTP Resoluton Symmetry Factor Waming

[^16]: \# Peak Name CH tR Area Height Area\% Height\% Quantity NTP Resolution Symmetry Factor Warning

 | 1 | Unknown | 1 | 23.817 | 801970 | 15066 | 6.893 | 7.123 | N/A | 5145 |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

 2 Unknown 1 | 1 | 27.220 | 10831934 | 196451 | 93.107 | 92.877 | N/A |
 | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

