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Abstract—Since knowledge in expert system is vague and
modified frequently, expert systems are fuzzy and dynamic
systems. It is very important to design a dynamic knowledge
inference framework which is adjustable according to knowledge
variation as human cognition and thinking. Aiming at this object,
a generalized fuzzy Petri net model is proposed in this paper, it is
called adaptive fuzzy Petri net (AFPN). AFPN not only takes the
descriptive advantages of fuzzy Petri net, but also has learning
ability like neural network. Just as other fuzzy Petri net (FPN)
models, AFPN can be used for knowledge representation and
reasoning, but AFPN has one important advantage: it is suitable
for dynamic knowledge, i.e., the weights of AFPN are ajustable.
Based on AFPN transition firing rule, a modified back propaga-
tion learning algorithm is developed to assure the convergence of
the weights.

Index Terms—Expert system, fuzzy reasoning, knowledge
learning, neural network, Petri net.

I. INTRODUCTION

PETRI NETS (PNs) have ability to represent and analyze in
an easy way concurrency and synchronization phenomena,

like concurrent evolutions, where various processes that evolve
simultaneously are partially independent. Furthermore, PN ap-
proach can be easily combined with other techniques and theo-
ries such as object-oriented programming, fuzzy theory, neural
networks, etc. These modified PNs are widely used in computer,
manufacturing, robotic, knowledge based systems, process con-
trol, as well as other kinds of engineering applications.

PNs have an inherent quality in representing logic in intuitive
and visual way, and FPNs take all the advantages of PNs. So,
the reasoning path of expert systems can be reduced to simple
sprouting trees if FPN-based reasoning algorithms are applied
as an inference engine. FPN are also used for fuzzy knowledge
representation and reasoning, many results prove that FPN is
suitable to represent and reason misty logic implication relations
[2], [3], [1], [12], [4], [8].

Knowledge in expert systems is updated or modified fre-
quently, expert systems may be regarded as dynamic systems.
Suitable models for them should be adaptable. In other words,
the models must have ability to adjust themselves according
to the systems’ changes. However, the lack of adjustment
(learning) mechanism in FPNs can not cope with potential
changes of actual systems [5].
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Recently, some adjustable FPNs were proposed. [3] gave an
algorithm to adjust thresholds of FPN, but weights’ adjustments
were realized by test. [6] proposed a generalized FPN model
(GFPN) which can be transformed into neural networks with
OR/AND logic neurons [5], thus, parameters of the corre-
sponding neural networks can be learned (trained). In fact, the
knowledge learning in [6] was under the framework of neural
networks. Adaptive Fuzzy Petri Net (AFPN) [13] has also the
learning ability of a neural network, but it does not need to
be transformed into neural networks. However the learning
algorithm in [13] is based on a special transition firing rule,
it is necessary to know certainty factors of each consequence
proposition in the system. Obviously, this restriction is too
strict for an expert system.

In this paper, we propose a more generalized reasoning rule
for AFPN. Back propagation algorithm is developed for the
knowledge learning under generalized conditions. The structure
of the paper is organized as follows: after the introduction of the
FPN and AFPN models, the reasoning algorithm and the weight
learning algorithm are developed, examples are included as an
illustration.

II. K NOWLEDGEREPRESENTATION ANDFUZZY PETRI NET

In this section, we will review weighted fuzzy production
rules and FPN.

A. Weighted Fuzzy Production Rules

In many situations, it may be difficult to capture data in a
precise form. In order to properly represent real world knowl-
edge, fuzzy production rules have been used for knowledge rep-
resentation [2]. A fuzzy production rule (FPR) is a rule which
describes the fuzzy relation between two propositions. If the an-
tecedent portion of a fuzzy production rule contains “AND” or
“OR” connectors, then it is called a composite fuzzy production
rule. If the relative degree of importance of each proposition
in the antecedent contributing to the consequent is considered,
Weighted Fuzzy Production Rule (WFPR) has to be introduced
[7].

Let be a set of weighted fuzzy production rules
. The general formulation of the

th weighted fuzzy production rule is as follows:

IF THEN CF Th

where
antecedent portion which comprises
of one or more propositions connected
by either “AND” or “OR”;
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consequent proposition;
certainty factor of the rule;
threshold;
weight.

In general, WFPRs are categorized into three types which are
defined as follows.

Type 1: A Simple Fuzzy Production Rule

IF THEN CF

For this type of rule, since there is only one proposition
in the antecedent, the weightis meaningless.
Type 2: A Composite Conjunctive Rule

IF AND AND AND THEN CF

Type 3: A Composite Disjunctive Rule

IF OR OR OR THEN CF

For Type 2 and Type 3, is the th antecedent proposition of
rule , and the consequent one. Each propositioncan have
the format “ is ”, where is an element of a set of fuzzy
sets . are the threshold and certainty factor of a simple or
composite rule; are the threshold and weight of theth an-
tecedent of a composite conjuctive or disjunctive rule. In above
definition, thresholds are assigned to antecedent propositions.
For composite conjuctive rules, thresholds are assigned to the
weighted sum of all antecedent propositions.

In this paper, in order to cope with Adaptive Fuzzy Petri Net
(AFPN), we define WFPRs as following new forms:

Type 1: A Simple Fuzzy Production Rule

IF THEN CF

Type 2: A Composite Conjunctive Rule

IF AND AND AND THEN CF

Type 3: A Composite Disjunctive Rule

IF OR OR OR THEN CF

B. Definition of Fuzzy Petri Net

FPN is a promising modeling methodology for expert system
[2], [6], [12]. A GFPN structure is defined as a 8-tuple [2]

(1)

where
set of places;
set of transitions;
set of propositions;
input (output) function which de-
fines a mapping from transitions to
bags of places;

Fig. 1. FPN of Type 1 WFPR in [7].

Fig. 2. FPN of Type 2 WFPR in [7].

association function which assigns a
certainty value to each transition;
association function which assigns
a real value between zero to one to
each place;
bijective mapping between the
proposition and place label for each
node.

.
In order to capture more information of the WFPRs, the FPN

model has been enhanced to include a set of threshold values
and weights, it consists of a 13-tuple [7]

Th (2)

where
Th set of threshold values;

set of fuzzy sets;
set of weights of WFPRs;
association function which assigns a
fuzzy set to each place;
association function which defines
a mapping from places to threshold
values.

The definitions of and are the same as above.
Each proposition in the antecedent is assigned a threshold value,
and is an association function which assigns a
weight to each place.

C. Mapping WFPRs into FPN

The mapping of the three types of weighted fuzzy production
rules into the FPNs in [7] are shown in Figs. 1, 2, and 3, respec-
tively. For example, a rule of Type 2 may be represented as

IF AND AND AND THEN CF

(to-
kens representing fuzzy sets of given facts).
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Fig. 3. FPN of Type 3 WFPR in [7].

III. A DAPTIVE FUZZY PETRI NET

FPN [7] can represent WFPRs perfectly. But it can not adjust
itself according to the knowledge updating. In another word, it
has not learning ability. In this paper, we introduce the concep-
tion “adaptive” into FPN, the proposed model is called AFPN.

A. Definition of AFPN

Definition 1: An AFPN is a 9-tuple

Th

where are defined the same as [2].Th
is the function which assigns a threshold valuefrom

zero to one to transition.Th .
. and , are sets of input

weights and output weights which assign weights to all the arcs
of a net.

B. Mapping WFPR into AFPN

The mappings of the three types of WFPR into the AFPNs
are shown as Figs. 4, Section III-B, and 5 respectively. The three
types of WFPR may be represented as follows.

Type 1: A Simple Fuzzy Production Rule

IF THEN Th

Type 2: A Composite Conjunctive Rule

IF AND AND AND THEN

Th

Type 3: A Composite Disjunctive Rule

IF OR OR OR THEN

Th

The mapping between AFPN and WFPR may be understood
as each transition corresponds to a simple rule, composite con-
junctive rule or a disjunctive branch of a composite disjunctive
rule; each place corresponds to a proposition (antecedent or con-
sequent).

Fig. 4. AFPN of Type 1 WFPR.

Fig. 5. AFPN of Type 3 WFPR.

C. Fuzzy Reasoning Using AFPN

Firstly, we give some basic definitions which are useful to
explain the transition firing rule of AFPN.

Definition 2 (Source Places, Sink Places):A place is called
a source place if it has no input transitions. It is called a sink
place if it has no output transitions.

A source place corresponds to a precondition proposition in
WFPR, and a sink place corresponds to a consequent. For ex-
ample, in Fig. 6, are source places, is a sink place.

Definition 3 (Route): Given a place , a transition string
is called a route to if can get a token through

firing this transition string in sequence from a group of source
places. If a transition string fire in sequence, we call the
corresponding routeactive.

For a place , it is possible that there are more than one route
to it. For example, in Fig. 6, is a route to is another
route to it. Let
the corresponding input weights to these places,
thresholds. Let , and

the corresponding output weights to
these places.

We divide the set of places into three parts
, where is the set of places of AFPN;

is called a user input place;
and is called an interior place;

is called an output place. In this paper,
is an empty set.
Definition 4: The marking of a place is defined as the

certainty factor of the token in it.
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Fig. 6. AFPN of Example 1.

Definition 5: is enabled if
.

Definition 6: When is enabled, it produces a new certainty
factorCF

CF

Th

Th

We may use a continuous functionCF to approximate
CF

CF

where

where is a sigmoid function which approximates the
threshold of

where is an instant. If is big enough, when
Th , then , and when

Th , then .
Definition 7: If Th , transition fires, at the same

time, token transmission takes place.

1) If a place only has one input transition, a new token
with certainty factor CF is put into each output
place , and all tokens in

are removed.
2) If a place has more than one input transitions (as

Fig. 5), and more than one of them fire, i.e. more than
one routes are active at the same time, then the new cer-
tainty factor of is decided by the center of gravity of
the fired transitions

CF

where fires, .
According to above definitions, a transitionis enabled if all

its input places have tokens, if the certainty factor produced by

it is greater than its threshold, thenfires, so an AFPN can be
implemented. Thus, through firing transitions, certainty factors
can be reasoned from a set of known antecedent propositions to
a set of consequent propositions step by step.

Let and
is called an initially enabled transition.

Let
andCF Th is called a current

enabled transition.
Fuzzy Reasoning Algorithm
INPUT: the certainty factors of a set of antecedent proposi-

tions (correspond to in AFPN)
OUTPUT: the certainty factors of a set of consequence propo-

sitions (correspond to in AFPN)

Step 1) Build the set of user input places .
Step 2) Build the set of initially enabled transitions .
Step 3) Find current enabled transitions according

to Definition 5.
Step 4) Calculate new certainty factors produced by fired

transitions according toDefinition 6.
Step 5) Make token transmission according toDefinition 7.
Step 6) Let .
Step 7) Go toStep 3and repeat, until .

IV. K NOWLEDGE LEARNING AND AFPN TRAINING

In [13], we developed a weights learning algorithm under fol-
lowing conditions.

1) It is necessary to know the certainty factors of all output
places (i.e. the right hand of all rules).

2) Only one layer of weights can be learned.
3) For rules of Type 3, if there are more than one transition

fire, we must know which input transition is the token
contributor to the output place.

4) In case 2 of the Definition 7, error distribution.
These conditions are very strict, because these information in

real expert systems may be not available. In this paper we will
relax these conditions to more general cases. The main idea is
that all layer weights can be updated through the back-propaga-
tion algorithm if certainty factors of all sink places are given.

Back propagation algorithm
We assume that

• AFPN model of an expert system has been developed;
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Fig. 7. Sigmiod functions in Example 1.

• in AFPN model,Th and are known;
• set of certainty factor values of and is given.

Here we take Type 2 as an illustration to show knowledge
learning procedure using AFPN. Type 2 can be translated into an
AFPN like Section III-B, this AFPN structure can be translated
further into a neural networks-like structure (see Section IV),
where is

(3)

where
sig-

moid function;

constant which adjust the steepness of ;

weight vector ;

output vector of previous layer,
.

This continuous function may approximate a logic factor if
and are selected suitable values. For example, no. 1 in Fig. 7
has the values as and .

For a place , there are some learning routes which are from
a set of source places to it. The weights in these routes can be
trained according the back propagation algorithm developed in
this section. Along the selected route, the feedforward prop-
agation process (one hidden layer) is that given any input data

and the fixed weights , the output can be expressed

TABLE I
RESULTS OFAFPN

where is the active function of the th layer,
is the weight of the th layer. If the real data

is , the output error vector is

Since we do not process the tokens in the output layer, the output
layer may be selected as the rule of the center of gravity (see
Definition 7), i.e.,

(4)

The learning algorithm is the same as the backpropagation of
multilayer neural networks:

• The weights in output layer is updated as

where
input of the th layer;
adaptive gain;
weight at the time of .

(5)

the weights are updated as

...

(6)

where is the derivative of the nonlinear function.

(7)
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The justification of backpropagation can be found in [11]. Fi-
nally, we summarize the learning algorithm of AFPN as

Step 1) Select a set of initial weight values.
Step 2) For each set of input data, find all active routes, and

mark them .
Step 3) Following each active route, according to the

reasoning algorithm, calculate the corresponding
output.

Step 4) Set the difference between the idea output and the
calculated output as the error, select use (6) to
adjust the weights on these routes.

V. SIMULATION

In this section, two typical examples are selected to show the
results in the prior sections.

Example 1: and are related propo-
sitions of an expert system . Between them there exist the
following weighted fuzzy production rules

: IF THEN
: IF AND THEN
: IF OR THEN
This example includes all the three types of rules, in which
is a simple WFPR, is a composite conjunctive one, and
is a composite disjunctive one. We want to show the fuzzy

reasoning and the weights learning algorithm.
First, based on the translation principle, we mapinto an

AFPN as follows (shown as Fig. 6)

Th

where
Th

.
We have three input propositions ( and ) and three

consequence propositions ( and ). The data are given
as

We use four sigmoid functions as

to approximate the four thresholds , the steepness
are selected as 200 (see Fig. 7). Especially, for the transition
, the argument of function is

Using fuzzy reasoning algorithm, a set of output data (cer-
tainty factors of consequence propositions) can be calculated
according to the input data (certainty factors of antecedent
propositions). Table I gives the results of AFPN.

One can see that some data are 0. This means that the corre-
sponding thresholds were not passed. For example, in Group 1,

Fig. 8. The neural network translation of the learning part in Example 1.

Fig. 9. Single layer learning results of Example 1.

, the threshold is 0.50. Since ,
transition cannot fire, so the output certainty factor is
is . The use a sigmoid function to approximate a threshold
means that exact zero is impossible to get (for example, 0.0001).
But if the steepness coefficient is small enough, the sigmoid
function can approximate the threshold with good accuracy.

If the weights are unknown, neural networks technique may
be used to estimate the weights. The learning part of the AFPN
(see the part in the dashed box in Fig. 6) may be formed as a
standard single layer neural networks (see Fig. 8). Assume the
ideal weights are

The sigmoid function is

(8)

If the inputs and are given random data from
1 to 0, we can get the real output according to the ex-
pert system . Given any initial condition for and , put
the same inputs to the neural network. The error between the
output of neural network and that of the expert system

can be used to modified the weights, we may use the
following learning law

(9)

where is learning rate, a small may assure the
learning process is stable. Here, we select .



448 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART C: APPLICATIONS AND REVIEWS, VOL. 30, NO. 4, NOVEMBER 2000

Fig. 10. AFPN of Example 2.

Fig. 11. The neural networks translation of the AFPN in Fig. 12.

,
and

After a training process , the weights convergence
to real values. Fig. 9 shows simulation results.

In this example there is only one learning layer. Example 2
will show a more complicated case where two learning layers
(multilayer perceptrons) is used.

Example 2:
and are related propositions of an

expert system . There exist the following weighted fuzzy
production rules

: IF AND AND THEN

: IF AND THEN
: IF AND THEN
: IF OR THEN
: IF OR THEN
Based on the translation principle, we mapinto an AFPN

(see Fig. 10).

Th
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Fig. 12. MLP learning results of Example 2.

where

Th

So AFPN model for this expert system may be repressed as
in Fig. 10, the two dashed-boxes are the learning parts. This
AFPN model may be transferred into a normal neural networks
as Fig. 11.

Since the weights of and are known, we may
simplify this complex neural networks as two sub neural net-
works: NN1 and NN2. Here sub-networks NN1 is single layer
and sub-networks NN2 is multilayer. The neural networks cor-
responding to are fixed.

We can train the two networks independently. The original
learning error is . Because the output function is select as (4)

• In case 1 of Definition 7, if only fires, then:

if only fires, then:

• In case 2 of Definition 7, when and fire at the same
time, according to error backpropagation rule (5)

The learning algorithms for single layer neural network NN1
is the same as that in Example 1. The adaptive law for multilayer
perceptrons NN2 is as in (6). We assume the ideal weights are

a set of data about the learning part of the AFPN

Give a set of initial value of the weights

and the learning rate . The on-line MLP learning results
are shown in Fig. 12.

From these two examples, we can see that the fuzzy reasoning
algorithm and the back propagation algorithm are very effec-
tively if we do not know the weights of AFPN. After a training
process, we can get an excellent input–output mapping of the
knowledge system.

VI. CONCLUSION

This paper introduce a new modified fuzzy Petri net: Adap-
tive Fuzzy Petri Net (AFPN). It has learning ability as neural
networks. So fuzzy knowledge in expert systems can be learned
through an AFPN model. The idea proposed in this paper is a
new formal way to solve the knowledge learning problem in ex-
pert systems. Our ongoing research is to predict expert systems
behavior using AFPN framework.
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Abstract

Support vector machine (SVM) is a powerful technique for data classification. Despite of its good theoretic foundations and high

classification accuracy, normal SVM is not suitable for classification of large data sets, because the training complexity of SVM is highly

dependent on the size of data set. This paper presents a novel SVM classification approach for large data sets by using minimum

enclosing ball clustering. After the training data are partitioned by the proposed clustering method, the centers of the clusters are used for

the first time SVM classification. Then we use the clusters whose centers are support vectors or those clusters which have different classes

to perform the second time SVM classification. In this stage most data are removed. Several experimental results show that the approach

proposed in this paper has good classification accuracy compared with classic SVM while the training is significantly faster than several

other SVM classifiers.

r 2007 Elsevier B.V. All rights reserved.

Keywords: Support vector machine; Classification; Large data sets
1. Introduction

There are a number of standard classification techniques
in literature, such as simple rule based and nearest
neighbor classifiers, Bayesian classifiers, artificial neural
networks, decision tree, support vector machine (SVM),
ensemble methods, etc. Among these techniques, SVM is
one of the best-known techniques for its optimization
solution [10,20,29]. Recently, many new SVM classifiers
have been reported. A geometric approach to SVM
classification was given by [21]. Fuzzy neural network
SVM classifier was studied by [19]. Despite of its good
theoretic foundations and generalization performance,
SVM is not suitable for classification of large data sets
since SVM needs to solve the quadratic programming
problem (QP) in order to find a separation hyperplane,
which causes an intensive computational complexity.

Many researchers have tried to find possible methods to
apply SVM classification for large data sets. Generally,
e front matter r 2007 Elsevier B.V. All rights reserved.
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these methods can be divided into two types: (1) modify
SVM algorithm so that it could be applied to large data
sets, and (2) select representative training data from a large
data set so that a normal SVM could handle.
For the first type, a standard projected conjugate

gradient (PCG) chunking algorithm can scale somewhere
between linear and cubic in the training set size [9,16].
Sequential minimal optimization (SMO) is a fast method to
train SVM [24,8]. Training SVM requires the solution of
QP optimization problem. SMO breaks this large QP
problem into a series of smallest possible QP problems, and
it is faster than PCG chunking. Dang et al. [11] introduced
a parallel optimization step where block diagonal matrices
are used to approximate the original kernel matrix so that
SVM classification can be split into hundreds of subpro-
blems. A recursive and computational superior mechanism
referred as adaptive recursive partitioning was proposed in
[17], where the data are recursively subdivided into smaller
subsets. Genetic programming is able to deal with large
data sets that do not fit in main memory [12]. Neural
networks technique can also be applied for SVM to
simplify the training process [15].
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For the second type, clustering has been proved to be an
effective method to collaborate with SVM on classifying
large data sets. For examples, hierarchical clustering [31,1],
k-means cluster [5] and parallel clustering [8]. Clustering-
based methods can reduce the computations burden of
SVM, however, the clustering algorithms themselves are
still complicated for large data set. Rocchio bundling is a
statistics-based data reduction method [26]. The Bayesian
committee machine is also reported to be used to train
SVM on large data sets, where the large data set is divided
into m subsets of the same size, and m models are derived
from the individual sets [27]. But, it has higher error rate
than normal SVM and the sparse property does not hold.

In this paper, a new approach for reducing the training
data set is proposed by using minimum enclosing ball
(MEB) clustering. MEB computes the smallest ball which
contains all the points in a given set. It uses the core-sets
idea [18,3] to partition input data set into several balls,
named k-balls clustering. For normal clustering, the
number of clusters may be predefined, since determining
the optimal number of clusters may involve more
computational cost than clustering itself. The method of
this paper does not need the optimal number of clusters, we
only need to partition the training data set and to extract
support vectors with SMO. Then we remove the balls
which are not support vectors. For the remaining balls, we
apply de-clustering technique, and classify it with SMO
again, then we obtain the final support vectors. The
experimental results show that the accuracy obtained by
our approach is very close to the classic SVM methods,
while the training time is significantly shorter. The
proposed approach can therefore classify huge data sets
with high accuracy.

2. MEB clustering algorithm

MEB clustering proposed in this paper uses the concept
of core-sets. It is defined as follows.

Definition 1. The ball with center c and radius r is denoted
as Bðc; rÞ.

Definition 2. Given a set of points S ¼ fx1; . . . ;xmg with
xi 2 R

d , the MEB of S is the smallest ball that contains all
balls and also all points in S; it is denoted as MEBðSÞ.

Because it is very difficult to find the optimal ball
MEBðSÞ, we use an approximation method which is
defined as follows.

Definition 3. ð1þ �Þ-approximation of MEBðSÞ is denoted
as a ball Bðc; ð1þ �ÞrÞ, �40 with rXrMEBðSÞ and
S � Bðc; ð1þ �ÞrÞ.

Definition 4. A set of points Q is a core-set of S if
MEBðQÞ ¼ Bðc; rÞ and S � Bðc; ð1þ �ÞrÞ.

For clustering problem, there should be many balls in
the data set S: So the definition of ð1þ �Þ�approximation
of MEBðSÞ is modified as:
Definition 5. In clustering, ð1þ �Þ�approximation of
MEB(S) is denoted as a set of k balls Bi ði ¼ 1 � � � kÞ
containing S, i.e., S � B1 [ B2 [ � � � [ Bk.

In other words, given �40; a subset Q; is said to be a
ð1þ �Þ�approximation of S for clustering if MEBðQÞ ¼

[k
i¼1Biðci; ð1þ �ÞriÞ and S � [k

i¼1Biðci; ð1þ �ÞriÞ; i.e., Q is a
ð1þ �Þ�approximation with an expansion factor ð1þ �Þ.
Now we consider a finite set of elements X ¼ fx1;x 2;

. . . ;xng with p� dimensional Euclidian space xi ¼ ðxi1;

. . . ;xipÞ
T
2 Rp. First we randomly select the ball centers in

the data set such that they can cover all range of the data.
The radius of the ball r is the most important parameter in
MEB clustering. How to choose the user-defined parameter
is a trade-off. If r is too small, there will be many groups at
the end, their centers will be applied for the first stage
SVM. The data reduction is not good. Conversely, if r is
too large, many objects that are not very similar may end
up in the same cluster, some information will be lost. In
this paper, we use the following equation:

rk;j ¼ ðk � 1þ randÞ
xmax;j � xmin;j

l
,

k ¼ 1 � � � l; j ¼ 1 � � � p, ð1Þ

where l is the number of the balls, rand is a random number
in ð0; 1Þ, xmax;j ¼ maxiðxijÞ, i ¼ 1 � � � n; n is the number of
the data, xmin;j ¼ miniðxijÞ. In order to simplify the
algorithm, we use the same r for all balls

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
j¼1ðxj;max � xj;minÞ

2
q

2l
. (2)

If one data is included in more than one ball, it can be in
any ball. This does not affect the algorithm, because we
only care about the center of the balls.
In most cases, there is no obvious way to select the

optimal number of clusters, l: An estimate of l can be
obtained from the data using the method of cross-
validation, for example, v-fold cross-validation algorithm
[4] can automatically determine the number of clusters in
the data. For our algorithm, we can first guess the support
vector number as sv; then l � 2

3
sv.

We use Fig. 1 to explain the MEB clustering, l ¼ 3:
We check if the three balls have already included all
data, and if not, we enlarge the radius into ð1þ eÞr: From
Fig. 1 we see that A1, B1 and C1 are included in the new
balls (dash lines). But A2, B2 and C2 are still outside of the
ball, now we enlarge e until every data in X is inside the
balls, i.e.

X � [
l

i¼1
Bðci; ð1þ �ÞriÞ.

The MEB clustering algorithm of sectioning l balls is as

follows:
Step 1: Use the random sampling method (1) to generate l

ball centers C ¼ fc1; . . . ; clg and select the ball radius r

as in (2).
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Step 2: For each point xi; we calculate the distance

jkðxiÞ ¼ kxi � ckk
2

calculate the maximum distance jðxiÞ ¼ maxk½jkðxiÞ�,
k ¼ 1 . . . l, i ¼ 1 . . . n. such that jðqÞ be inside of radius

Bðck; ð1þ eÞrkÞ of each center, where

Step 3: Complete the clustering, the clusters are

Bkðck; ð1þ �ÞrÞ
Step 4: If there exists jðxiÞ4ð1þ eÞr, i ¼ 1 . . . n then

increasing e as

� ¼ �þ
r

D
,

where D is increasing step, we can use D ¼ 10; and goto step

2. Otherwise all data points are included in the balls, goto

step 3.
3. SVM classification via MEB clustering

Let ðX ;Y Þ be the training patterns set,

X ¼ fx1; . . . ; xng; Y ¼ fy1; . . . ; yng; yi ¼ �1,

xi ¼ ðxi1; . . . ;xipÞ
T
2 Rp. ð3Þ

The training task of SVM classification is to find the
optimal hyperplane from the input X and the output Y,
which maximizes the margin between the classes. By the
sparse property of SVM, the data which are not support
vectors will not contribute to the optimal hyperplane. The
input data sets which are far away from the decision
hyperplane should be eliminated, meanwhile the data sets
which are possibly support vectors should be used.

Our SVM classification can be summarized in four steps
which is shown in Fig. 2: (1) data selection via MEB
clustering, (2) the first stage SVM classification, (3) de-
clustering, and (4) the second stage SVM classification. The
following subsections will give a detailed explanation on
each step.
3.1. Data selection via MEB clustering

In order to use SVM, we need to select data from a large
data set as the input of SVM firstly. In our approach, we
use MEB clustering as data selection method. After MEB
clustering, there are l balls with initial radium r and
ð1þ �Þ�approximation of MEBðSÞ.
The process of MEB clustering is to find l partitions (or

clusters) Oi from X, i ¼ 1; . . . ; l; lon; Oia+, [l
i¼1Oi ¼ X .

The obtained clusters can be classified into three types:
(1) clusters with only positive labeled data, denoted by

Oþ, i.e., Oþ ¼ f[Oi j y ¼ þ1g;
(2) clusters with only negative labeled data, denoted by

O�, i.e., O� ¼ f[Oi j y ¼ �1g;
(3) clusters with both positive and negative labeled data

(or mix-labeled), denoted by Om, i.e., Om ¼ f[Oi j y ¼ �1g:
Fig. 3(a) illustrates the clusters after MEB, where

the clusters with only red points are positive labeled
(Oþ), the clusters with green points are negative
labeled (O�) , and clusters A and B are mix-labeled (Om).
We select not only the centers of the clusters but also
all the data of mix-labeled clusters as training data in
the first SVM classification stage. If we denote the set
of the centers of the clusters in Oþ and O� by Cþ and C�,
respectively, i.e.,

Cþ ¼ f[Ci j y ¼ þ1g positive labeled centers,

C� ¼ f[Ci j y ¼ �1g negative labeled centers.

Then the selected data which will be used in the first
stage SVM classification is the union of Cþ, C� and Om,
i.e., Cþ [ C� [ Om. In Fig. 3(b), the red points belongs to
Cþ, and the green points belong to C�. It is clear that the
data in Fig. 3(b) are all cluster centers except the data in
mix-labeled clusters A and B.
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3.2. The first stage SVM classification

We consider binary classification. Let ðX ;Y Þ be the
training patterns set,

X ¼ fx1; . . . ; xng; Y ¼ fy1; . . . ; yng,

yi ¼ �1; xi ¼ ðxi1; . . . ;xipÞ
T
2 Rp. (4)

The training task of SVM classification is to find the
optimal hyperplane from the input X and the output Y,
which maximizes the margin between the classes, i.e.,
training SVM yields to find an optimal hyperplane or to
solve the following QP (primal problem),

minw;b JðwÞ ¼
1

2
wTwþ u

Pn
k¼1

xk

subject : yk½w
TjðxkÞ þ b�X1� xk;

(5)

where xk is slack variables to tolerate mis-classifications
xk40; k ¼ 1 . . . n; c40, wk is the distance from xk to the
hyperplane ½wTjðxkÞ þ b� ¼ 0, jðxkÞ is a nonlinear func-
tion. The kernel which satisfies the Mercer condition [10] is
Kðxk; xiÞ ¼ jðxkÞ

TjðxiÞ. Eq. (5) is equivalent to the
following QP which is a dual problem with the Lagrangian
multipliers akX0;

maxa JðaÞ ¼ � 1
2

Pn
k;j¼1

ykyjKðxk;xjÞakaj þ
Pn
k¼1

ak

subject :
Pn
k¼1

akyk ¼ 0; 0pakpc:
(6)
Many solutions of (6) are zero, i.e., ak ¼ 0, so the solution
vector is sparse, the sum is taken only over the non-zero ak:
The xi which corresponds to non-zero ai is called a support
vector (SV). Let V be the index set of SV, then the optimal
hyperplane isX
k2V

akykKðxk; xjÞ þ b ¼ 0. (7)

The resulting classifier is

yðxÞ ¼ sign
X
k2V

akykKðxk;xÞ þ b

" #
,

where b is determined by Kuhn–Tucker conditions.
SMO breaks the large QP problem into a series of

smallest possible QP problems [24]. These small QP
problems can be solved analytically, which avoids using a
time-consuming numerical QP optimization as an inner
loop. The memory required by SMO is linear in the
training set size, which allows SMO to handle very large
training sets [16]. A requirement in (6) is

Pl
i¼1aiyi ¼ 0; it is

enforced throughout the iterations and implies that the
smallest number of multipliers can be optimized at each
step is 2. At each step SMO chooses two elements ai and aj

to jointly optimize, it finds the optimal values for these
two parameters while all others are fixed. The choice
of the two points is determined by a heuristic algorithm,
the optimization of the two multipliers is performed
analytically. Experimentally the performance of SMO is
very good, despite needing more iterations to converge.
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Each iteration uses few operations such that the algorithm
exhibits an overall speedup. Besides convergence time,
SMO has other important features, such as, it does not
need to store the kernel matrix in memory, and it is fairly
easy to implement [24].

In the first stage SVM classification we use SVM
classification with SMO algorithm to get the decision
hyperplane. Here, the training data set is Cþ [ C� [ Om

which has been obtained in the last subsection. Fig. 3(b)
shows the results of the first stage SVM classification.

3.3. De-clustering

We propose to recover the data into the training data set
by including the data in the clusters whose centers are
support vectors of the first stage SVM, we call this process
de-clustering. Then, more original data near the hyperplane
can be found through the de-clustering. The de-clustering
results of the support vectors are shown in Fig. 3 (c). The
de-clustering process not only overcomes the drawback
that only small part of the original data near the support
vectors are trained, but also enlarges the training data set
size of the second stage SVM which is good for improving
the accuracy.

3.4. Classification of the reduced data: the second stage

classification

Taking the recovered data as new training data set, we
use again SVM classification with SMO algorithm to get
the final decision hyperplaneX
k2V2

yka
�
2;kKðxk;xÞ þ b�2 ¼ 0, (8)

where V2 is the index set of the support vectors in the
second stage. Generally, the hyperplane (7) is close to the
hyperplane (8).

In the second stage SVM, we use the following two types
of data as training data:

(1) The data of the clusters whose centers are support
vectors, i.e., [Ci2V fOig, where V is a support vectors set of
the first stage SVM;

(2) The data of mix-labeled clusters, i.e, Om.
Therefore, the training data set is [Ci2V fOig [ Om.
Fig. 3(d) illustrates the second stage SVM classification

results. One can observe that the two hyperplanes in Fig. 3
(b) and (c) are different but similar.

4. Performance analysis

4.1. Memory space

In the first step clustering the total input data set

X ¼ fx1; . . . ;xng; Y ¼ fy1; . . . ; yng,

yi ¼ �1; xi ¼ ðxi1; . . . ;xipÞ
T
2 Rp
is loaded into the memory. The data type is float, so the
data size is 4 bytes. If we use normal SVM classification,
the memory size for the input data should be 4ðn	 pÞ2

because of the kernel matrix while the size for the clustering
data is 4ðn	 pÞ. In the first stage SVM classification, the
training data size is 4ðl þmÞ2 	 p2; where l is the number
of the clusters, m is the number of the elements in the
mixed clusters: In the second stage SVM classification,
the training data size is 4ð

Pl
i¼1ni þmÞ2 	 p2; where ni

is the number of the elements in the clusters whose
centers are support vectors. The total storage space of
MEB clustering is

4ðn	 pÞ þ 4p2
Xl

i¼1

ni þm

 !2

þ ðl þmÞ2

2
4

3
5. (9)

When n is large (large data sets), ni; m and l 
 n; the
memory space by (9) of our approach is much smaller than
4p2n2 which is needed by a normal SVM classification.

4.2. Algorithm complexity

It is clear that without a decomposition algorithm, it is
almost impossible for normal SVM to obtain the optimal
hyperplane when the training data size n is huge. It is
difficult to analyze the complexity of SVM algorithm
precisely. This operation involves multiplication of ma-
trices of size n, which has complexity Oðn3Þ.
The complexity of our algorithm can be calculated

as follows. The complexity of the MEB is OðnÞ. The
approximate complexity of the two SVM training is
O½ðl þmÞ3� þO½ð

Pl
i¼1ni þmÞ3�. The total complexity of

MEB is

OðnÞ þO½ðl þmÞ3� þO
Xl

i¼1

ni þm

 !3
2
4

3
5, (10)

where l is the total number of cluster, ni is the number of
the elements in the ith clusters whose centers are support
vectors, m is the number of the elements in the mixed
labeled clusters. Obviously (10) is much smaller than the
complexity of a normal SVM Oðn3Þ.
Above complexity grows linearly with respect to the

training data size n. The choice of l is very important in
order to obtain fast convergence. When n is large, the cost
for each iteration will be high, and a smaller l needs more
iterations, hence, and will converge more slowly.

4.3. Training time

The training time of the approach proposed in this paper
includes two parts: clustering algorithm and two SVMs.
The training time of MEB is

Tf ¼ p	 l 	 n	 cf ,
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where p is the times of ð1þ �Þ-approximation, l is number
of clusters, ce is the cost of evaluating the Euclidian
distance.

The training time of SVM can be calculated simply as
follows. We assume that the major computational cost
comes from multiplication operators (SMO) without
considering the cost of the other operators such as memory
access. The growing rate of the probability of support
vectors is assumed to be constant.

Let nmðtÞ be the number of non-support vectors at time t.
The probability of the number of support vectors at time t

is F ðtÞ which satisfies

F ðtÞ ¼
l þm� nmðtÞ

l þm
; nmðtÞ ¼ ðl þmÞ½1� F ðtÞ�,

where l is the number of the clusters centers and m is
the number of the elements in the mixed labeled
clusters. The growing rate of the number of support
vectors (or decreasing rate of the number of non-support
vectors) is

hðtÞ ¼ �
d½nmðtÞ�

dt

1

nmðtÞ
¼

F
�

ðtÞ

ðl þmÞ½1� F ðtÞ�
.

Since the growing rate is constant hðtÞ ¼ l; the solution of
the following ODE:

F
�

ðtÞ ¼ �lðl þmÞF ðtÞ þ lðl þmÞ

with F ð0Þ ¼ 0 is

F ðtÞ ¼ 1� e�lðlþmÞt.

The support vector number of the first stage SVM at time t

is nsv1ðtÞ; it satisfies

nsv1ðtÞ ¼ ðl þmÞF ðtÞ ¼ ðl þmÞð1� e�lðlþmÞtÞ; l40 (11)

and is monotonically increasing. The model (11) can be
regarded as a growing model by the reliability theory [14].

The support vector number of the second stage SVM at
time t is nsv2ðtÞ; it satisfies

nsv2ðtÞ ¼ ðl1 þmÞð1� e�lðl1þmÞtÞ; l40,

where

l1 ¼
Xl

i¼1

ni þm.

We define the final support vector number in each cluster
at the first stage SVM as hi; i ¼ 1 � � � l: From (11) we know
hi ¼ ðl þmÞð1� e�lðlþmÞtÞ; so

ti ¼
1

lðl þmÞ
ln

l þm

l þm� hi

� �
; i ¼ 1 . . . l.

We define c1 as the cost of each multiplication operation
for SMO. For each interactive step, the main cost is
4ðl þmÞc1: The cost of the optimization at the first stage is

T ð1Þop ¼
Xl

i¼1

4ðl þmÞc1
1

lðl þmÞ
ln

l þm

l þm� hi

� �

¼
Xl

i¼1

4

l
c1 ln 1þ

hi

l þm� hi

� �

p
Xl

i¼1

4c1

l
hi

l þm� hi

.

In the second stage,

T ð2Þop ¼
Xl

i¼1

4ðl1 þmÞc1
1

lðl1 þmÞ
ln

l1 þm

l1 þm� hi

� �

p
Xl

i¼1

4c1

l
hi

l1 þm� hi

.

Another cost of computing is the calculation of kernels.
We define c2 be the cost of evaluating each element of K : In
the first stage is

T
ð1Þ
ker ¼ ðl þmÞc2; T

ð2Þ
ker ¼ ðl1 þmÞc2.

The total time for the three approaches are

T2pp	 l 	 n	 cf þ
4

l
c1
Xl

i¼1

hi

l þm� hi

þ
hi

l1 þm� hi

� �
.

5. Experimental results

In this section we use four examples to compare our
algorithms with some other SVM classification methods. In
order to clarify the basic idea of our approach, let us first
consider a very simple case of classification and clustering.

Example 1. We generate a set of data randomly in the
range of ð0; 40Þ. The data set has two dimensions X i ¼

xi;1; xi;2

� �
. The output (label) is decided as follows:

yi ¼
þ1 if WX i þ b4th;

�1 otherwise

	
(12)

where W ¼ ½1:2; 2:3�T, b ¼ 10; th ¼ 95. In this way, the
data set is linearly separable.

Example 2. In this example, we use the benchmark data
which was proposed in IJCNN 2001. It is a neural network
competition data set, and available in [25,7]. The data set
has 49,990 training data points and 91,701 testing data
points, each record has 22 attributes.

Example 3. Recently SVM has been developed to detect
RNA sequences [28]. However, long training time is
needed. The training data is at ‘‘http://www.ghastlyfop.-
com/blog/tag_index_svm.html/’’. To train the SVM classi-
fier, a training set contains every possible sequence pairing.
This resulted in 475; 865 rRNA and 114; 481 tRNA
sequence pairs. The input data were computed for every

http://www.ghastlyfop.com/blog/tag_index_svm.html/
http://www.ghastlyfop.com/blog/tag_index_svm.html/
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sequence pair in the resulting training set of 486; 201 data
points. Each record has eight attributes with continuous
values between 0 and 1.

Example 4. Another data set of RNA sequence is the
training data is available in [22]. The data set contains 2000
data points, each record has 84 attributes with continuous
values between 0 and 1.

We will compare our two stages SVM via MEB
clustering (named ‘‘SMOþMEB’’), with LIBSVM [7]
(named ‘‘SMO’’) and simple SVM [10] (named ‘‘Simple
SVM’’).

For Example 1, we generate 500; 000 data randomly
whose range and radius are the same as in [31]. The RBF
kernel is chosen the same as FCM clustering.

Fig. 4(a) shows ‘‘running time’’ vs ‘‘training data size’’,
Fig. 4 (b) shows ‘‘testing accuracy’’ vs ‘‘training data size’’.
We can see that for small data set, LIBSVM has less
training time and higher accuracy. Our algorithm does not
have any advantage. But for large data set, the training
time is dramatically shortened in comparison with other
SVM implementations. Although the classification accu-
racy cannot be improved significantly, the testing accuracy
is still acceptable.

For Example 2, we use sets 1000, 5000, 12; 500, 25; 000,
37; 500 and 49; 990 training data sets. For the RBF kernel
Fig. 4. The running time vs training data size (a) a

Fig. 5. Comparison with S
f ðx; zÞ ¼ exp �
ðx� zÞTðx� zÞ

2r2ck

� �
(13)

we choose rck
¼ r=5, r is the average of the radius of the

clusters, r ¼ 1=l
Pl

iri. The comparison results are shown in
Fig. 5, where the running time vs training data size is (a),
and testing accuracies vs training data size is (b). We see
that simple SVM has better classification accuracy than our
approach. However, the training time is quite long since it
works on the entire data set (close to 20,000 s) comparing
with our results (less than 400 s).
For Example 3, the comparison results are shown in

Table 1.
For Example 4, the comparison results are shown in

Table 2.
We can see that for the two ENA sequences, the

accuracies are almost the same, but our training time is
significantly shorter than that of LIBSVM.
6. Conclusion and discussion

In this paper, we proposed a new classification method
for large data sets which takes the advantages of the
minimum enclosing ball and the support vector machine
(SVM). Our two stages SVM classification has the
nd testing accuracies vs training data size (b).

MO and simple SVM.
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Table 1

Comparison with the other SVM classification

RNA sequence 1

MEB two stages LIBSVM SMO Simple SVM

# t Acc K # t Acc # t Acc # t Acc

500 45.04 79.6 300 500 0.23 84.88 500 26.125 85.6 500 2.563 85.38

1000 103.6 82.5 300 1000 0.69 85.71 1000 267.19 87.5 1000 9.40 87.21

5000 163.2 85.7 300 5000 10.28 86.40 5000 539.88 88.65

23,605 236.9 88.5 300 23,605 276.9 87.57

Table 2

Comparison with the other SVM classification

RNA sequence 2

MEB two stages LIBSVM SMO Simple SVM

# t Acc K # t Acc # t Acc # t Acc

2000 17.18 75.9 400 2000 8.71 73.15 2000 29.42 78.7 2000 27.35 59.15

2000 7.81 71.7 100
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following advantages compared with the other SVM
classifiers:
1.
 It can be as fast as possible depending on the accuracy
requirement.
2.
 The training data size is smaller than that of some other
SVM approaches, although we need twice classifica-
tions.
3.
 The classification accuracy does not decrease because
the second stage SVM training data are all effective.
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