
Dynamic Language Model Adaptation usin

Yik-Cheung Tam and Tanja

Interactive Systems Labor
Carnegie Mellon Univer

Pittsburgh, PA 1521
{yct,tanja}@cs.cmu.e

Abstract
We propose an unsupervised dynamic language model (LM)
adaptation framework using long-distance latent topic mixtures.
The framework employs the Latent Dirichlet Allocation model
(LDA) which models the latent topics of a document collection
in an unsupervised and Bayesian fashion. In the LDA model,
each word is modeled as a mixture of latent topics. Varying
topics within a context can be modeled by re-sampling the mix-
ture weights of the latent topics from a prior Dirichlet distribu-
tion. The model can be trained using the variational Bayes Ex-
pectation Maximization algorithm. During decoding, mixture
weights of the latent topics are adapted dynamically using the
hypotheses of previously decoded utterances. In our work, the
LDA model is combined with the trigram language model using
linear interpolation. We evaluated the approach on the CCTV
episode of the RT04 Mandarin Broadcast News test set. Results
show that the proposed approach reduces the perplexity by up
to 15.4% relative and the character error rate by 4.9% relative
depending on the size and setup of the training set.

1. Introduction
Statistical N-gram language models (LM) are widely used in
automatic speech recognition. Despite its popularity, N-gram
LM (typically N=3) can only capture local context reliably due
to data limitations. Intuitively, word history beyond the N-gram
unit should be useful for better word prediction because it some-
how tells what the current context or topic is about. We propose
a LM adaptation approach which utilizes the observed word
context to adapt to the current latent (hidden) topics. Each word
is modeled as a mixture of latent topic unigrams. The topic
mixture weights are adapted dynamically using the word con-
text which can be arbitrarily long. The adapted model is then
interpolated with the standard trigram LM.

Using distant word history for LM adaptation has been in-
vestigated in earlier work: Cache-based LM [1, 2] adapts the
current context by keeping track of the recently occurred words
in an exponentially decaying N-gram cache. The cache LM
is shown to be effective especially in dictation tasks where re-
cently occurred words such as name entities tend to occur again
in the nearby context. One difference between our approach and
the cache-based LM is that we model the word probabilities via
the latent topics, whereas the cache-based LM models the word
probabilities directly using the word surface form. Another dif-
ference is that our approach adapts the mixture weights of the
latent topic unigrams whereas cache-based LM adapts the word
probabilities directly. Since the number of latent topics is usu-
ally much smaller than the vocabulary size, adapting the topic
mixture weights would be reliable and can be performed with
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amount of adaptation data.
M adaptation using latent topic mixtures has been ex-
previously. [3] uses “hard” clustering schemes to cluster
ents into topic clusters and each document is assumed
g from a single topic, whereas we employ variational
Expectation-Maximization (VB-EM) algorithm for im-

document clustering. Each document can be associated
ultiple topics in our model. Another difference is that [3]

ys sentence-level topic mixtures which assumes that the
mixture weights are fixed within a sentence, whereas the
re weights in our model can vary within a sentence.
ur work shares similarity with the latent semantic in-
g (LSI) approach for LM adaptation. [4] employed LSI
cover latent topics via the Singular-Value Decomposi-
VD) algorithm on the word-document co-occurrence ma-
trictly speaking, LSI is a non-probabilistic model. It re-
heuristics to compute the probability of an unseen test
ent, whereas we employ the Latent Dirichlet Allocation

) [5] which provides solid probability foundation to com-
he probability of an unseen document. Another approach

as the probabilistic LSI (pLSI) has been applied for lan-
modeling [6, 7]. But due to the nature of the model, pLSI
ffer from overfitting problem [5], whereas LDA can be

reted as a regularized version of pLSI.
he paper is organized as follows: In Section 2, the Latent
let Allocation model is introduced for document model-
n Section 3, we describe our approach of employing the
model for LM adaptation. LM adaptation experiments
scribed in Section 4, followed by conclusions and future
in Section 5.

2. Latent Dirichlet Allocation
latent semantic analysis, one question is how to extract
ent topics from a text corpus which contains a set of doc-

ts. In broadcast news, a document usually refers to a piece
s story within which the latent topics are consistent. Doc-

ts are usually assumed to be independent. One popular
in the information retrieval (IR) community is to apply

based LSI, or pLSI using the EM algorithm. Recently,
t Dirichlet Allocation [5] has been proposed which has

to outperform LSI/pLSI in various IR tasks. One view of
A model is a Bayesian extension of a mixture of unigram

ls where the topic mixture weight θ is drawn from a prior
let distribution:

f(θ; α) ∝
KY

k=1

θ
αk−1
k (1)
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Figure 1: Graphical representation of Latent Dirichlet Alloca-
tion.

where α = {α1, ..., αK} represents the prior observation count
of the K latent topics and αk > 0. LDA makes an assump-
tion in which the words in a document wn

1 = w1w2...wn

are conditionally independent given the latent topic sequence
zn
1 = z1z2...zn:

f(wn
1 |θ) =

nY
i=1

KX
k=1

f(wi|zi = k) · f(zi = k|θ) (2)

=
nY

i=1

KX
k=1

βwik · θk (3)

where the model parameters Λ = {{αk}, {βvk}} are the
Dirichlet prior {αk} and the unigram probabilities of each la-
tent topic {βvk} in which v denotes the vocabulary index. The
model parameters are determined by maximizing the likelihood
of a document:

f(wn
1 ) =

Z
θ

f(wn
1 |θ) · f(θ; α)dθ (4)

In other words, a document is generated by firstly sampling a
mixture weight θ from its prior distribution. Then repeatedly
sample a topic k from θ, and a word from the k-th latent unigram
until all words in the document are generated. Figure 1 shows
the document generation process using the graphical model rep-
resentation. The above generative procedure is repeated to gen-
erate a set of documents of a text corpus. Optimizing the ex-
act likelihood is computationally intractable. One alternative is
to optimize the lower-bound of the log likelihood which can
be derived using the Jensen’s inequality: log

P
i qi · fi

qi
≥P

i qi · log fi
qi

= Eq[log
f(.)
q(.)

] where
P

i qi = 1. Therefore,
the lower bound of the log likelihood has the following form:

Q(Λ, Γ) = Eq[log
f(θ, wn

1 , zn
1 ; Λ)

q(θ, zn
1 ; Γ)

] (5)

where q(θ, zn
1 ) is constrained to be a fully factorized distribu-

tion over the latent variables parameterized by Γ:

q(θ, zn
1 ; Γ) = q(θ) ·

nY
i=1

q(zi) (6)

where q(θ) is a Dirichlet distribution and {q(zi)} are multi-
nomial distributions. The method is known as the Variational
Bayes approach [8] and q(.) is known as the variational distri-
bution. The central problem in Bayesian inference is to perform
the integration over the continuous variable like in Eqn 4 which
can be interpreted as an infinite mixture model over all possi-
ble assignments of the topic mixture weight θ. The key of the
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ional approach is that by choosing the tractable variational
ution (e.g. distributions from the exponential family), the
ation can be done in a tractable manner. We can interpret
s an approximation to the posterior distribution over the
variables f(θ, zn

1 |wn
1 ). Optimizing the auxiliary function

performed using the VB-EM algorithm. The E-step de-
es the hyper-parameters Γ of q(.) and the M-step uses
riational posteriors q(.) to weight the observations for
parameter estimation. Notice that the hyper-parameters

cument-dependent which means that the procedure needs
applied for each document. We only show the results
parameter estimations for a single document. Complete
tions can be found in [5].
-Step:

γk = αk +

nX
i=1

q(zi = k) (7)

q(zi = k) ∝ βwik · eEq[log θk ] (8)

Eq[log θk] = digamma(γk) − digamma(
PK

k=1 γk).
and Eqn 8 are applied iteratively until convergence.
-Step:

βvk ∝
nX

i=1

q(zi = k)δ(wi, v) (9)

δ(.) is the Kronecker Delta function. Parameters of
irichlet prior {αk} can be determined using the Newton-
on algorithm or gradient ascent procedure.

Language Model Adaptation Approach
hypotheses h from a speech decoder, the adaptation pro-
can be performed in two steps. In the first step, we ap-

B-EM procedure on h to obtain the variational Dirichlet
). In the second step, q(θ|h) is treated as the new Dirichlet
and perform another VB-EM procedure on every vocabu-
to obtain the lower-bound of log f(w|h). Then we could
te f(w|h) by normalizing the exponential of the lower-
s. However, computing the normalization factor can be
sive since it requires to perform VB-EM procedure on ev-
rd in the vocabulary. To reduce computation, we compute

aximum A-Posterior (MAP) likelihood instead as follows:

(w|h) ≈
Z

θ

KX
k=1

f(w|z = k)f(z = k|θ)q(θ|h) (10)

≈
KX

k=1

βwk · θ̂k (11)

nd θ̂k =
γkPK

k=1 γk

(k = 1...K) (12)

θ̂ is the mode of the variational posterior q(θ|h) and
) ≈ 1. We implemented both approaches and found no
cant performance difference between them despite the
cant reduction of computational time for the MAP-based
ach. This might be due to the fact that the variational like-

is only a lower-bound of the exact likelihood. Therefore,
ployed the MAP approach throughout all reported exper-

s. The adapted LDA model attempts to capture the long-
ependencies of words through the latent topics which are

ted by the variational Dirichlet posterior q(θ|h) provid-
e knowledge of what the likely latent topics will be given



Latent topics Top words (translated from Chinese)
“economy” development, economy, country, society, world, globe

“sport” competition, candidate, rank, sport, result, champion
“health” disease, therapy, AIDS, hospital, health, patient, people

“technology” company, information, network, system, technology
“education” hong kong, education, mainland, student, expert

Table 1: Examples of latent topics found in the LDA model.

the observed context. Another interpretation of the adaptation
procedure is to dynamically boost the mixture weights of the
likely topics given the observed context. As a result, unob-
served words which are related to the likely topics have chances
to be boosted while words which are out of the current con-
text are de-emphasized. This is an important distinction from
the cache-based approach [2] which boosts only the probabili-
ties of the observed words. Since the LDA model ignores the
word ordering information, it is necessary to combine it with
the trigram LM. We interpolate the adapted LDA model with
the trigram LM. In summary, the LM adaptation procedure be-
gins by decoding the incoming speech utterance, and then stores
the word hypotheses in a buffer. After the buffer contains more
than M words,

1. perform the E-Step of VB-EM (Eqn 7, 8).

2. update the unigram probability (Eqn 11, 12).

3. update the Dirichlet prior as follows:

αk ← λ · αk +
MX

i=1

ci · q(zi = k) (13)

where λ ∈ [0, 1] is a scaling factor of the history, and ci

denotes the confidence score of the i-th word.

4. clear the buffer.

Intuitively, the Dirichlet prior can be viewed as a dynamic cache
table which caches the fractional counts of the latent topics.
Discounting the prior counts with λ in Eqn 13 is necessary since
document topics can change over time and information from
past utterances can be irrelevant to the current topics. λ and
M can be tuned using the heldout data. In our implementation,
LM adaptation happens only after the speech decoder finishes
decoding an input utterance. LM adaptation could be applied
immediately during the Viterbi search of an input utterance but
at the expense of more computation.

4. Experimental Setup
We evaluated the LM adaptation approach on the ISL-RT04
Mandarin Broadcast News evaluation system [9] using the
JANUS speech recognition toolkit. The system employs two
sets of context-dependent acoustic models: one using a syllable-
based initial-final model, the other the phone-based model. The
acoustic models were trained using 27 hours of the Mandarin
HUB4 1997 training set and 69 hours of the TDT4 Mandarin
data. 42-dimension features after Linear Discriminant Analy-
sis were used for the front-end processing. The system em-
ploys a multi-pass decoding strategy in which cross adaptation
among the syllable-based and the phone-based decoders were
performed. The vocabulary size is 63K word.

We used subsets of the Mandarin Gigaword corpora to train
the LDA model. We first organized the corpora into documents
where each document is simply a piece of news story provided
by the corpora. Then we applied the VB-EM procedure de-
scribed in section 2. Motivated by [5], we set the number of
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2: Perplexities over corpus type for different LM training
rios.

AM 2M 18M 22.5M 600M
adapt (2002) (1991) (2002)

(static) no 1.3% 0.0% 3.0% 0.0%
(adapt) no 2.5% 3.0% 3.5% 4.9%
e-based no 0.8% 1.7% 2.0% 4.3%
(static) yes -0.5% 2.1% 2.6% -0.7%
(adapt) yes 4.3% 4.2% 3.3% 3.5%
e-based yes 0.0% -2.1% -2.0% -1.4%

2: Relative CER reduction compared with the trigram
ne over corpus type before/after acoustic adaptation.

topics in the LDA model to K=50. Table 1 shows exam-
f latent topics found in the LDA model. Unless speci-
the following experiments, the word trigram LM and the

model were trained using the common training subsets.
igram LM was estimated using the modified Kneser-Ney
hing scheme. We used the official RT04 development set
e the LM interpolation weight, the history scaling factor
the size of the buffer M for LM adaptation. The trigram
terpolation weights are between 0.7-0.9. λ = 0.4 and
words appear to be optimal in our settings which are kept

in all the reported experiments. Performance metrics are
ord trigram perplexity and the character error rate (CER)
ted on the CCTV episode of the RT04 test set. We report
st CER by rescoring with different values of the word in-
n penalty and the language model weight so that we could
early the net effect from the LM adaptation. We are in-
d to see the impact of unsupervised acoustic adaptations
LM adaptation performance because it is not uncommon

M gains may disappear after the state-of-the-art acoustic
tions (Vocal Tract Length Normalization (VTLN), Fea-
pace Adaptation (FSA), and Maximum Likelihood Lin-
gression (MLLR) [9]) are applied. Therefore, we report

s before and after acoustic adaptation. We compare the
based and the cache-based LM adaptation under different
g scenarios. The cache-based LM is a unigram model
dynamically adapts to the past decoded hypotheses us-

e decaying word counts, and is then interpolated with the
LM. We also evaluate the static interpolation of the tri-

LM with the static LDA model (no adaptation) to compare
he adaptive one. Results are reported on the test set only.

M training with large corpora

ilized a large multiple corpora comprising 600M charac-
train the trigram LM. We trained the LDA model us-

ly one-year text (2002) containing 22.5M characters (48k
ents) for fast turnaround time for evaluation experiments.

DA training on the 22.5M corpora took 4 hours on a Pen-
machine with the whole corpora loaded into memory.



10

12

14

16

18

20

22

24

2M(2002) 18M(1991) 22.5M(2002) 600M 600M
(best)

C
ha

ra
ct

er
 E

rr
or

 R
at

es
 (

%
)

# of training characters

3gram
LDA(static)
LDA(adapt)

cache-based

Figure 3: Character Error Rates over corpus type for different
LM training scenarios before (upper line group) and after (lower
line group) acoustic adaptation.

Figure 2 and Table 2 show the perplexity and the character
error rate respectively. LDA-based LM adaptation helps reduce
both the perplexity and CER after optimal tuning on the word
insertion penalty, LM weight and standard acoustic adaptation.
We observed similar results on the perplexity of the develop-
ment set which implies that the development set is suitable for
parameter tuning. When cross-adaptation passes [9] are applied
among our syllable-based and the phone-based decoders, our
final best CER with LDA-based LM adaptation is 12% which
corresponds to 4% relative reduction compared with the coun-
terpart of the trigram baseline shown in Figure 3. Table 2 also
shows that static interpolation of the trigram LM and the LDA
model does not help, implying the importance of dynamic LM
adaptation using the current word context. It is intuitively sat-
isfying to dynamically adjust the mixture weights of the latent
topics because topics of the current word context can change
over time. On the other hand, although the cache-based ap-
proach outperforms the LDA approach on the perplexity, im-
provement cannot be translated successfully to a lower CER af-
ter acoustic adaptation shown in Table 2. [10] also reported that
cache-based LM adaptation could lead to poor performance de-
spite substantial reduction on the perplexity.

4.2. LM training with small corpora

Although it is not difficult to obtain vast amount of training text
for broadcast news, it is usually not the case for conversational
tasks such as meetings or lectures. We further investigate the
LM adaptation approaches where only (relatively) limited text
data are available. We chose the 1991, 2002, and a 1-month
2002 subset to train the trigram LM and the LDA model. The
1991 training set contains 42k documents with 18M Chinese
characters. The 1-month 2002 subset contains 3.9k documents
with 2M characters. Using the 2M training set is to simulate
the scenario of having very limited amount of data, whereas
using the 1991 training set is to simulate a stronger mismatch
compared to the 2002 training set. Since the test set is extracted
from 2004, presumably the mismatch would be stronger for the
1991 training set. The degree of mismatch can be reflected from
the perplexities shown in Figure 2.

Figure 2 and 3 show the perplexities and the CER over
varying sizes of the training sets (from 2M to 600M charac-
ters). Table 2 shows the relative CER reduction compared with
the corresponding trigram baseline. Similarly, LDA-based LM
adaptation helps across different sizes of the training sets, and
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[9]

[10]
ves performance gain after acoustic adaptation. Choos-
matching training set (2002) closer to the test condition is
l. The 1-month training subset (2M characters) from 2002
e 1-year training set (18M characters) from 1991 lead to

arable results. We repeated Experiment 4.1 but using the
model trained with the 1991 training set. We observed
relative CER reduction before acoustic adaptation, but ob-

no gain after acoustic adaptation which further supports
portance of choosing a matching training set.

5. Conclusions and Future Works
oposed an unsupervised dynamic language model adap-
framework using latent topics under the Latent Dirich-

location method. Model parameters can be estimated us-
riational Bayes EM algorithm. Only the mixture weights
latent topics are adapted dynamically which can be per-

d using only a small amount of data. Empirically, the
tion procedure is fast. We evaluated our approach on dif-
training scenarios. Results show that the proposed ap-

h reduces both the perplexity and the character error rates
CCTV episode of the RT04 Mandarin Broadcast News.

hieve relative reduction on perplexity and the character
rate up to 15.4% and 4.9% respectively depending on the
of the training sets. Future directions include vocabulary
ion and LM adaptation across different task domains, in-
ion of human-motivated information, and relaxation of the
tional independence assumption in the LDA model.
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