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ABSTRACT 

The design of efficient and reliable distributed appli- 
cations that operate in large networks, over links with 
varying capacities and loads, demands new program- 
ming abstractions and mechanisms. The conventional 
static design-time determination of local-remote rela- 
tionships between components implies that (dynamic) 
environmental changes are hard if not impossible to ad- 
dress without reengineering. This paper presents a novel 
programming model that is centered around the con- 
cept of “dynamic application layout”, which permits the 
manipulation of component location at runtime. This 
leads to a clean separation between the programming of 
the application’s logic and the programming of the lay- 
out, which can also be performed externally at runtime. 
The main abstraction vehicle for layout programming is 
a reflective inter-component reference, which embodies 
CO- and re-location semantics. We describe an extensi- 
ble set of reference types that drive and constrain the 
mapping of components to hosts, and show how this 
model elevates application’s performance and reliability 
yet requires minimal changes in programming the ap- 
plication’s logic. The model was realized in the FarGo 
system, whose design and implementation in Java are 
presented, along with an event-based scripting language 
and corresponding event-monitoring service for manag- 
ing the layout of FarGo applications. 
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1 INTRODUCTION AND MOTIVATION 
The growing adoption of large-scale networking infras- 
tructures is vastly changing the architecture of software 
systems and applications. Many conventional stan- 
dalone applications such as office automation and elec- 
tronic publishing are becoming “network-enabled”. Dis- 

Penriission to make digital or hard cop I‘ all or part of this work f b r  

pcrsonal or classroom use is graiited without fee providcd that copics 
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ~ ~ t  inade or distributed for profit or cclnlnlercial advantage and that 
copies bear this notice and the ful l  citation 011 the first page. To copy 

otherwise, 10 republish, to post on servcrs or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto irdisuibutc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 lists. 
rcqtiires prior spccific permission and/or a tic. 
ICSE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA99 Los Angclcs CA 
Copyright ACM 1999 1-581 13-074-0/99/05 ... $5.00 

tributed client-server applications that were designed to 
run on a LAN must also be adapted in order to operate 
correctly and efficiently in a W A N  scope. 

Wide-area computing introduces new challenges to ar- 
chitects of scalable distributed applications. The large 
deployment space - i.e., the large number of available 
hosts that are connected by networks with varying ca- 
pacities and loads - implies that the designer is un- 
likely to know a priori how to structure the application 
in a way that best leverages the available infrastructure. 
Furthermore, the constantly changing nature of global 
environments, such as varying network bandwidth, ma- 
chine loads, and availability, implies that any assump- 
tions that are made early at design time regarding the 
underlying physical system are unlikely to hold during 
deployment time, let alone throughout the application’s 
lifetime. 

Thus, any static and fixed determination of the local- 
remote partitioning and the overall mapping of the dis- 
tributed application (logic) onto a set of (physical) pro- 
cesses/hosts, which we generically term the layout of the 
application, is undesirable and likely to impact its scala- 
bility. Moreover, design-time layout implies that layout 
changes require application reengineering. 

At first glance it might look appealing, then, to pro- 
vide a dynamic application layout capability and defer 
all layout decisions to runtime. However, ignoring alto- 
gether distribution layout considerations at design time 
is very problematic too. As pointed out in [24], this 
implicit approach neglects the fundamental differences 
between local and distributed computing. If ignored, 
programmers are likely to encode unreliable applica- 
tions since high latency and partial failure cannot be 
treated robustly when the physical local-remote split is 
unknown. Performance is also likely to be affected, since 
co-location related optimizations cannot be made. In 
this sense, global scope even reinforces these arguments. 
Finally, the lack of shared memory in remote invoca- 
tions implies that it is highly undesirable to fully mask 
distribution at design time, since parameters cannot be 
passed by-reference across address spaces. Providing 
such transparency (via distributed shared memory, or 
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by making all language objects “remote” and passing 
always remote references) is not scalable to wide-are de- 
ployment. Thus, overlooking the difference between lo- 
cal and remote invocation semantics, while tempting, is 
misleading and is likely to cause many programming er- 
rors. Indeed, most recent distributed frameworks (e.g., 
CORBA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[16] and RMI [21]) follow the (static) explicit 
approach, requiring different interfaces for local and re- 
mote invocations, and even require different syntax that 
forces programmers to be aware of the local-remote split 
in their applications. For example, remote objects in 
CORBA must be defined in a special Interface Defini- 
tion Language, and in RMI they must inherit a manda- 
tory interface and throwlcatch remote exceptions. 

The implicit approach does have one clear advantage, 
however. By masking the location of objects, program- 
mers can use the same programming model for local and 
remote objects. This eases the construction of large dis- 
tributed applications since programmers can focus on 
the logic of the application without being concerned 
with the distributed aspects. In other words, the im- 
plicit approach improves programming scalability. 

A major challenge is then to design a distributed pro- 
gramming model that provides a dynamic layout capa- 
bility without compromising on explicit programmabil- 
ity of the layout (thereby improving system scalability) 
and yet retains as much as possible the local program- 
ming language model (thereby improving programming 
scalability). FarGo attempts to reconcile these seem- 
ingly conflicting goals. 

FarGo is an extension of Java. At the basic sys- 
tem level it provides extensive dynamic layout capa- 

bility, including arbitrary component mobility, attach- 
ment of remote components into the same address space 
and detachment of co-located components into differ- 
ent address spaces. During these activities, all ref- 
erences between components remain valid. Such dy- 
namic mapping enables to adapt applications to ex- 
ternal changes in the environment, including changes 
in network bandwidth, machine loads, and partial net- 
work or node failure (or addition of new nodes). On 
top of the system level, FarGo provides a program- 
ming model layer that supports the specification of vari- 
ous co-location relationships between components, as in 
the explicit approach, except: (1) the relative physical 
structure between components (in terms of co-locality) 
may be automatically retained despite possible reloca- 
tion of (parts of) the application, and (2) both the 
structure and re-location patterns may evolve at run- 

cation) or after deployment using an external script- 
ing facility. In order to enable layout programmers to 
base their re- and co-location decisions on runtime in- 
formation, FarGo provides a monitoring service that en- 
ables applications to register for, and get notified about, 
system events. Finally, we retainr as much zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas possible 
the local programming model of Java for encoding the 
logic of the application, as in the “implicit” approach. 
This is only possible because of the clear separation be- 
tween the programming of the application’s logic and 
the programming of the layout. It is this principle 
that permits to change the layout on-the-fly without 
changing the code of the application. FarGo is imple- 
mented and available for download and experimentation 
inhttp://www.dsg.technion.ac.il/fargo. 

The rest of the paper is organized as follows: Section 2 
presents the programming model and its main entities: 
complets, the relocatable application building blocks, 
and complet references, FarGo’s main abstraction for 
dynamic layout programming. Sections 3 overviews the 
monitoring service along with an event-based scripting 
language for external programming of the layout. Sec- 
tion 4 discusses some implementation issues. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5 
compares our work to other systems, and Section 6 sum- 
marizes our contributions and points to future work. 

2 THE PROGRAMMING MODEL 
In general, a FarGo application is comprised of a set of 
complets. Complets are the basic building blocks of the 
application, somewhat analogous to modules in a con- 
ventional programming language, except that they also 
define the minimal unit of relocation. That is, a com- 
plet instance relocates in its entirety.l Complets are 
interconnected via inter-complet references, henceforth 

termed complet references. Unlike remote references in 
conventional distributed frameworks (e.g., RMI [Zl]), 
the same complet reference may be at times local and 
at times remote, depending on the (dynamic) reloca- 
tion of its source or target complets during the lifetime 
of the application. Unlike virtual references in other 
mobile frameworks which mostly provide (re)location 
transparency (e.g., Voyager [17]), complet references can 
be associated with rich semantics that describe various 
CO- and re-location relationships between complets, as 
described below. Furthermore, these relationships are 
reified by the reference, and thus can be interrogated 
and evolve over time, e.g., to adhere to changes in the 
environment that demand changes in the relationships. 
Thus, complet references are a major abstraction mech- 
anism for layout programming in FarGo. 

time to address the dynamic variability in the environ- 
ment. Thus, co-location relationships drive and con- 

Relocation support is facilitated by a light runtime 
infrastructure, consisting of a set of distributed Core zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- 

strain the mapping process. Relocation, co-location re- 
lationships, and evolution, may be either programmed 
early at design time (as a separate part of the appli- 

objects, also termed site objects (we will use these 

lUnless otherwise specified, we will refer to complet instances 

as complets, for brevity. 
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terms interchangeably throughout the paper). Cores are 
uniquely-identifiable objects that provide various sys- 
tem support for mobilizing and interconnecting com- 
plets across machines. However, except for special ser- 
vices that require direct interaction with the Core (e.g., 
reflection), most Core services are transparent to the ap- 
plication programmer since they are abstracted via com- 
plet references and a high-level monitoring API. Each 
complet is associated with exactly one Core at any given 
time, but a complet may relocate to a different Core dur- 
ing its execution while preserving its state, including its 
external outgoing and incoming (complet) references. 
We now turn to discuss complets and their references in 
detail. Core internals are mostly beyond the scope of 
this paper, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Complets 

A fundamental issue in dynamic layout support is the 
granularity of the minimal relocatable entity. The fine- 
grained approach supports relocation for every pro- 
gramming language object. Since mobility affects all 
objects, this approach is typically implemented by in- 
troducing a special programming language, such as Dis- 
tributed Oz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6]. Although flexible, this approach has 
several major drawbacks. Firstly, well engineered ap- 
plications are typically partitioned into modular units, 
each containing several closely related and highly co- 
hesive objects. But the fine-grained approach requires 
mobility support to be built into each and every object, 
thereby introducing unneeded overhead. Secondly, En- 
forcing all programming language objects to adhere to 
a remote-call semantics that assumes the lack of shared 
memory, adds unnecessary complexity to programming. 
Finally, requiring programmers to use a new program- 
ming language is also problematic. 

The coarse-grained approach, in contrast, divides the 
application into a set of processes, each of which is as- 
signed its own distinct address space, and can move 
between hosts during its execution. Examples of this 
approach include Telescript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and AgentTCL [7]. An 
application designer must partition the application into 
a number of processes, and populate each process with 
a (possibly large) number of objects. While this ap- 
proach clearly separates local and remote invocations, 
its drawback is that if two or more processes happen to 
be co-located, they cannot take advantage of the avail- 
able shared memory. For example, they cannot pass 
arguments by reference. This is particularly important 
in cases where processes are intentionally relocated at 
runtime to a shared host for the purpose of improving 
their interaction. Thus, placing rigid process boundaries 
on the unit of relocation seriously restricts the power of 
dynamic relocation. 

We take a mid-grained approach, in which the unit of 
relocation - the complet - is a collection of local ob- 

jects,' i.e., they share an address space and all refer- 
ences among these objects are regular (local) references. 
Each complet may be either co-located with, or remote 
to, other complets, and as a complet moves, it dynam- 
ically changes its locality relationship with other com- 
plets. Each complet has a single object, termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanchor, 
whose interface is the interface of the complet. 

Given the anchor a of a complet a, the set of objects 
that comprise the complet, denoted as cZosure(a), is 
defined recursively as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 a E closure(a) 
If b E cZosure(a) then 'dc such that b references c 
(denoted as b + c) ,  if c # anchor(@, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p  # a) ,  then 
c E closure(cr) 

That is, a complet closure is defined by the reachability 
graph of objects and references, starting from the an- 
chor, except for references that point to other anchor 
objects, which are termed complet references. 

Figure 1: Complet Structure 

Figure 1 shows two complets, a and p, whose anchors 
are a and b respectively. All objects inside the left cir- 
cle comprise closure(a) while all those inside the right 
circle comprise closure(p). The bold arrowhead line is 
a complet reference from one of the objects of a to the 
anchor of p, denoted as a + ,B. Relationships between 
complets are defined by the set of complet-references, 
as shown in the bottom of the figure. 

The use of anchors provides a clean interface to com- 
plets, but it also facilitates syntactic transparency be- 
tween regular and complet references. Both are encoded 
similarly, but complet references are treated differently 
at runtime. Syntactic transparency helps to preserve 
the conceptual separation between programming the 
logic of the application and programming of its layout. 

Semantically, intra- and inter-complet references must 
differ at least because of relocatability and cross 

21n principle these could be objects of any object-oriented lan- 
guage but we use Java syntax throughout the paper since FarGo 
supports Java. 
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address-space operation. One basic difference is in pass- 
ing arguments in method invocations along references. 
Inside a complet all objects are passed by (local) refer- 
ence. Across complets (i.e., along complet references) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA, 
the following rules apply: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 regular (non-anchor) objects are passed by value. 
0 anchor object are passed by (complet) reference. 

The first rule allows the caller and the callee to operate 
across address spaces (since arguments are copied over), 
and it also ensures that non-anchor objects cannot be 
referenced from a different complet, consistent with the 
definition of complet closure. The second rule prevents 
from automatically copying recursively all other (possi- 
bly remote) complets that happen to be pointed to by 
an object that is passed by value. 

Notice that the programmer must be aware of the dis- 
tinction between intra- and inter-complet interaction, 
consistent with our general approach to distributed pro- 
gramming. At the same time, it is important to note 
that when the source and target objects of a complet 
reference happen to be co-located, arguments are still 
passed by value for consistency with the model, but 
the complet reference is turned into a local reference, 
thereby improving performance and reliability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Complet References 
In addition to the default semantics provided by a com- 
plet reference - a pointer that remains valid despite its 
source or target migration - FarGo provides means to 
control the layout of the application by associating CO- 

and re-location-related semantics with such references. 

Relocation semantics are provided by an extensible hi- 
erarchy of reference types, which collectively define the 
basic layout programming interface. Since references 
can evolve dynamically, each reference type has addi- 
tional semantics that describe relocation activity that 
occurs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a result of a change in type. Finally, we define 
a set of space and time modifiers that apply to all types, 
allowing to generalize the notion of spatial and temporal 
co-locality. Thus, in the general case co-locality is a rel- 
ative term: it may mean the same host, same LAN, etc. 
But we begin the discussion with an abstract notion of 
co-locality and make it concrete later on. 

Specifically, we provide five basic types of complet ref- 
erences. This list is by no means exhaustive, however, 
and we expect to enlarge the repository of basic types 
as practical situations arise. For each type we define: 
(1) the basic semantics, consisting of co-location rela- 
tionship and how it is affected by relocation; (2) the 
semantics when a type is dynamically changed; and (3) 

in what situations the type is useful. We conclude the 
section with an example application that exhibits the 
various types. 
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1. Link(a,P) (denoted as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ‘3k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) - This is the 
default basic complet reference from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ to p, with no 
constraints (and thus no special) co/re location seman- 
tics: 

0 CO-location: a and p may or may not be co-located. 
0 Re-location: relocation of a does not affect the lo- 

cation of p, and vice-versa. 

a Link reference may be used when the source and the 
target complets need not have any special relationship 
with respect to relocation. It does provide, however, 
location transparency, allowing to move both source and 
target complets while keeping the validity of references. 
This reference is used when no layout programming has 
been performed. 

2. Pull(a,p) (denoted as a ’$ p) - This reference 
is used to ensure co-location between complets; when 
the source complet relocates, it “pulls” its target along. 
More precisely: 

0 CO-location: a and /3 are co-located. 
0 Re-location: if a relocates, p moves along to the 

locality of cy. 

This definition implies several additional constraints. 
First, 0 cannot be relocated on its own (i.e., not as 
a result of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’s relocation), since this would violate the 
first condition. Second, p can be referenced by at most 

one Pull reference. Otherwise, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ’$’ p is also allowed, 
then upon movement of cy one of the two above condi- 
tions is not fulfilled: if p moves with a it is not co-local 
with y, and if it does not move it is not co-local with 
cy. Notice however, that a can still be a target of a Pull 

reference, i.e., 6 ’3‘ cy is possible. Pull is transitive, and 
relocation of 6 will relocate a, and hence p. 
Both automation and enforcement of these semantics 
are performed by the runtime infrastructure (this is true 
for all reference types). That is, the target complet im- 
plicitly moves along with the source, and upon an at- 
tempt to create a second Pull reference to a complet, 
or upon an attempt to move a complet which is a tar- 
get of a Pull reference, an exception is raised and the 
operation is canceled. Finally, we have to discuss what 
happens when an existing (non Pull) reference is evolved 
into a Pull reference. In order to fulfill the first condi- 
tion, such a change leads to automatic movement of /3 
to the locality of a, if it is not already local. 

A Pull reference is useful when CY and p need to interact 
frequently and/or require heavy data-transfer on each 
interaction, yet they cannot be programmed inside a 
single complet (e.g., because /3 needs to be referenced 
by other complets, or because their coupling is needed 
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temporarily). In these cases, arbitrary physical disper- 
sion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp might lead to poor performance and 
reduced reliability, or even to halt the application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Duplicate(a,P) (denoted as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%’ p) - This refer- 
ence is similar to Pull, except it is sufficient to ensure 
CO- and re-location with a copy of p, instead of with p 
itself, where a copy of a complet is naturally defined as 
a copy of its closure (including the anchor). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 CO-location: a and a copy of /3 are co-located. 
0 Re-location: if a relocates, a copy of moves along 

to the locality of a. 

Unlike Pull references, there can be multiple Duplicate 
references to the same complet. This is possible since 

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 3 p exists and a moves, it takes along a copy.of 
p, and y continues to be co-local with 0. Also, (a copy 
of) the target complet can be relocated, since it leaves 
behind the original copy, thus all references still point to 
it. Thus, a complet may be simultaneously the target 
of a (single) Pull reference and the target of multiple 
Duplicate references. This is a desirable property, since 
it does not over-restricts Pull references by constraining 
their compatibility with non-Pull references. When a 
non-Duplicate reference is evolved into a Duplicate ref- 
erence, then again, a copy of the target complet (not the 
target complet itself) is created and sent to the source 
complet. This ensures that semantics of other references 
to the original target (e.g., Pull) are preserved. 

Duplicate references are useful when the target complet 
represents a read-only entity that can be easily repli- 
cated without violating the logical semantics of the ap- 
plication. In this case, the replication may speed-up 
performance and improve reliability by decreasing the 
amount of network messages, with no extra effort by the 
programmer. All s/he has to do is set the reference as 
Duplicate, and the rest is provided by the runtime. 

4. Stamp(a,p) (denoted as a + p)  - This ref- 
erence is similar to Duplicate, but instead of creating 
a copy at p’s locality and passing it along with a, a 
locates a local instance of P’s type and connects to it: 

0 Co-location: a and some instance of P’s type are 
co-located. 

0 Re-location: if a relocates, an instance of p’s type 
is located in a ’ s  new locality and gets attached to 
it. 

stamp 

The implications on the target complet with respect to 
relocation and compatibility with other references, are 
similar to those of Duplicate references. An instance 
of p’s type is free to move regardless of cy (which re- 
mains connected to the original p), and multiple Stamp 
and Duplicate references can co-exist along with a single 
Pull. ., 

By “a local instance of p’s type” we refer to type equiva- 
lence, i.e., a local complet instance that implements the 
interface (type) of p, although not necessarily an in- 
stance of p’s implementation (class). In addition to  ex- 
plicit type equivalence test, FarGo allows to define name 
equivalence (each complet can bind itself to a name at a 
given core, and the equivalent target can be defined as 
bound to the same name as the original), or any user- 
defined equivalence procedure. Finally, upon evolution 
of a reference into a Stamp type, an instance of p’s type 
is located in cy’s locality and gets reconnected to a. 

A useful application of a Stamp reference is for facili- 
tating a constant connection from a mobile complet to  
a non-mobile complet. For example, if the target com- 
plet encapsulates a hardware device (e.g., a printer), a 
Stamp reference could be used to reconnect the source 
complet to  a local printer after it arrives to a new loca- 
tion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 .  Bi-directional Pull(a,P) (denoted as a b%66 p) - 
This is the most powerful (but most expensive) reloca- 
tion reference. It is similar to Pull, with the additional 
rule that the target can Pull the source too. 

0 Co-location: cy and ,8 are co-located. 
0 Re-location: if a relocates, p moves along to the 

locality of cy, and vice versa. 

This implies a restriction similar to that of the Pull ref- 
erence - p cannot be referenced by any Pull reference. 
By definition, this reference enables the target to move 
not only as a result of source relocation, so it is less 
restrictive than the (uni-directional) Pull. This in turn 
allows to remove the singleness constraint of Pull too, 
i.e., a complet can be the target of multiple BPull refer- 
ences. But the most interesting property of BPull is that 
it effectively defines “group re-location’’ semantics. The 
group is defined as the sub-graph of all nodes that are 
connected via BPull references, and relocation of any 
member of the group leads to relocation of all members 
of the group. In case of evolution into a BPull reference, 
we arbitrarily determine that the target relocates to  the 
locality of the source. 

One issue with BPull references is that they ignore the 
natural direction of the reference, from the source to  
the target. Also, realization of this reference requires 
a (hidden) back-reference from the target to each of its 
sources, in order to track relocation of the source com- 
plets. In certain applications, this overhead may be in- 
tolerable. For example, a client-server application with 
a very large number of BPull clients would require the 
server to know who holds a reference to it, which is not 
scalable. It would also mean that each client reloca- 
tion forces the server and all other clients to relocate, 
which is typically not reasonable. This in fact suggests 
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yet another useful reference type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Inverted Pull - in 
which only the target can relocate, and when it does, 
all source references follow. Although we haven’t imple- 
mented Inverted Pull references, one can see how this 
type hierarchy can be enriched incrementally as the need 
arises. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Space, Time and other Reference Attributes 
So far, we have left out precise definition of co-locality 
and the timing of relocation (i.e., when relocation oc- 
curs). The default values, as may be expected, are 
same address-space for co-locality, and “immediately” 
for time (i.e., with no delay). However, in many cases 
it is worthwhile to generalize these notions. For exam- 
ple, an Internet-based video application might require 
certain minimum bandwidth that can be provided by a 
LAN connection, but not by a WAN or a dial-up connec- 
tion. Or, complets may be allowed to operate within an 
Intranet but not across a firewall, and so forth. In such 
cases, it is useful to extend the notion of co-locality by 
defining a distance metric, and add it as an optional pa- 
rameter to a reference. For example, Pull(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, d)  means 
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY and p should operate within distance d, where d 
is interpreted according to the implemented metric. 

A second useful attribute which is also orthogonal to 
reference types is a delay factor. Consider the network- 
computing model, for example, by which a client down- 
loads a “thin” version of an application that has only 
the basic features, and the advanced (and rarely used) 
features are stayed in the server. However, if the client 
does want to use any of the advanced features, then 
upon the first reference to this feature, it gets lazily 
downloaded. This may be termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADelayed Pull. Alter- 
natively, the user may be able to execute this feature 
remotely (although more expensively), and only when 
s/he invokes it more than a certain number of times, 
it gets downloaded. In general, a delay metric can be 
formed with a delay factor attached to every reference. 

Finally, as with relocation types, these reference mod- 
ifiers are two of many other possible attributes. For 
example, another useful attribute is time-expiration, af- 
ter which a reference becomes invalid (e.g., to be used 
in electronic-commerce applications). 

The TODO Application 
Let us illustrate the programming model by presenting 
a simple multi-user tool for management of a project’s 
todo-list. The todo-list can be examined and updated 
concurrently by a number of users from different loca- 
tions. Shown in Figure 2, TODO consists of five kinds of 
complets. The User Interface complet is used for view- 
ing and updating the todo-list. The Engine complet 
receives updates from users and multicasts each update 
to all currently connected users. The Engine can move 
among a number of hosts to be as close as possible to 

Disk Startup 

Interface Interface Interface 

Figure 2: The TODO Application 

most of its clients (e.g., reside in different continents at 
different times of the day). The todo-list is persistently 
saved by the File complet, which receives a location on 
the local file system (a pathname) from the stable Disk 
complet. The Startup complet is used as the point of 
contact for joining users. Upon a request to connect, 
it instantiates a User Interface complet and moves it to 
the requester’s site. Below is a (simplified) portion of 
the user interface’s code: 

publ ic c lass  UserInterface- 
implements Complet { 

pr iva te  Engine engine; 
UserInterface-(Engine engine) I 
th is.engine = engine; 

3 
void addTask(String newTask) { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
engine.addTask(newTask); 

3 
/ /  . . .  

3 

Notice how this code is similar to regular Java. For 
example, the Engine complet instance is held as a reg- 
ular data field of the UserInterf ace complet and is in- 
voked with regular Java syntax, eventhough both com- 
plets may dynamically relocate. The only noticeable 
difference is an extra underscore character, explained 
later in Section 4. 

The complet references in Figure 2 that are not labeled 
are Link references. Since the Engine interacts with the 
File complet on every update of the todo-list, pulling it 
along on each movement is desirable. Thus, it points to 
the File complet with a Pull reference. Upon arrival to 
a new site, the File must contact the local Disk complet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
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to receive a new location on the local file system, thus 
it points at the (stationary) Disk complet with a Stamp 
reference. Finally, to offer many points of contact to 
the application, each new location that the Engine visits 
should become a possible target for a request to join the 
group of users. Thus, the Engine points at the Startup 
complet with a Duplicate reference. The Engine sets its 
reference to the Startup complet in its constructor as 
follows: 

publ ic Engine- (Star tup s ta r tup)  zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{ 
t h i s . s ta r tup  = s ta r tup ;  
CompletRef c r  = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACore.getCompletRef(startup) 
cr.  setRelocator (new Duplicate (1) ; 
// zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . f  

3 

Notice again the separation of concerns. The use of 
this reference for method invocation in the rest of En- 
gine's code (the application logic) is not affected by the 
manipulation of its relocation attribute (the layout se- 
mantics). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 LAYOUT PROGRAMMING USING MON- 

ITORING INFORMATION 

Layout programming in FarGo consists of three layers: 
a layout API that enables embedding of dynamic lay- 
out algorithms within applications, a high-level script 
language for attaching layout scripts to applications at 
runtime, and a graphical tool for layout management. 

Layout policy is specified in an event-based style, which 
involves registration for event notifications that are gen- 
erated by the Core, and specification of callback proce- 
dures that should be executed upon event notifications. 
The Core continuously performs a set of performance 
and resource utilization measurements which are exam- 
ined both by the Core itself, to determine when to fire 
events, and by the callback procedures, to determine 
what action to take upon the occurrence of an event. 

Both events and measurements are divided into three 
groups: those that act on a whole Core (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACore Shut- 
down and Complet Count L imi t ) ,  on a single complet 
(e.g., Complet Departure and Complet Arrival), and on 
a single complet reference (e.g., bandwidth, and average 
number of invocations per time unit). 

The layout API provides means to register to events and 
to perform the various measurements. This API is based 
on a simple distributed extension of the standard Java 
event model [22]. Unlike the distributed event model in 
Sun's Jini Technology [as], our extension is tailored es- 
pecially for layout programming, thus more simple and 
efficient. 

Scripting Language 
In addition to the API, FarGo provides a high-level 

Figure 3: The Graphical Monitor 

scripting language external to the application. Scripts 
are written in an Event-Action style. A script consists 
of a set of rules of the form: 

on event [at core] do actions 

An event is specified by its name and a set of at- 
tributes. For example, completArriva1 (complet , 
sourcecore) designates the arrival of a certain com- 
plet from a certain location. core specifies the Core on 
which the event is expected to occur (the default is the 
Core on which the script is running), and actions are one 
or more statements, each is either a built-in primitive 
(e.g. move) or means for interfacing with Java methods 
in which more sophisticated policies can be specified. 

Let us revisit the TODO example presented earlier and 
show how a script that relocates the Engine complet to 
its optimal location may be encoded: 

Scr ip t  Enginescript { 
on completDeparture(complet, t a rge t )  do { 
engine = thiscomplet () ; 
u s e r h t e r f a c e s  += complet; 
best = Locator. f indBest (userInterf aces) ; 
move (engine , best)  ; 

3 
on coreShutdown(coreNae) do { 
moveAll("zeus . technion.ac. i l " )  ; 

3 
3 

The first rule catches the completDeparture event on 
the local core. This event is fired when a new User In- 
terface complet is about to move from the local core 
to a new user. The action block of the rule adds 
the complet to  the user interfaces list, then invokes a 
Java method that finds the best location for the En- 
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Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Complet Reference’s Implementation 

gine complet, and finally moves the engine to that core. 
The second rule implies that upon shutdown of the lo- 
cal core all complets will relocate to a machine named zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zeus.technion.ac.il. 

The FarGo graphical monitor visualizes the state of a 
FarGo application. Figure 3 shows a visualization of 
TODO. This tool is used by an administrator to control 
and manipulate both running applications and Core en- 
vironments. Complet references can be examined and 
changed by simple point-and-click operations, and com- 
plets can be moved between cores using drag-and-drop 
operations. 

Monitoring support in FarGo is implemented using 
FarGo’s own facilities. The entity to  which scripts reg- 
ister is a special stationary event-notifier complet that 
resides in each Core that is willing to  be managed. This 
complet uses the basic layout API to contact its local 
Core. Each script is held and executed by a special 
script complet. Passing events to a script is imple- 
mented by using complet references for invoking event 
notification methods, which enable the scripts to relo- 
cate with the complets they manage and still listen to  
events that occur on remote cores. 

4 IMPLEMENTATION 
In this section we briefly overview the implementation 
of FarGo. A detailed discussion is given in [9]. 

Complet References 

The internal structure of a complet reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is 
shown in Figure 4. The source, a, holds a Java refer- 
ence to a stub object, that has the same method and 
constructor interface as that of P’s  anchor. The stub 
provides syntactic transparency in that, syntactically, 
invocations of its methods are identical to direct invo- 
cations of P’S anchor. 

The stub contains an object, termed meta reference 
that reifies the complet reference and allows to dynam- 

ically change it. The meta reference of a given com- 
plete reference can be fetched using the Core’s method 
getCompletRef. The meta reference can be used to 
examine the semantics of the complet reference by in- 
voking its getRelocator method, and to change the se- 
mantics by invoking the setRelocator method. Other 
properties that can be examined include complet refer- 
ence equivalence (two references are equivalent if they 
are both pointing to the same anchor), and co-locality 
with another complet. 

The stub holds a tracker object that functions as the 
means for maintaining the complet reference’s validity 
despite P’s  location changes. If p is local, the tracker 
points to its anchor directly with a regular Java refer- 
ence. Complet movement results in creation of a chain 
of trackers (as in [5, 19]), where each tracker points at 
its successor on a different site (inter-site pointing is 
implemented using RMI). For example, In Figure 4, the 
complet reference a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ,B embodies a chain of four track- 
ers. Possible creation of redundant cyclic chains, due to 
complet’s cyclic migration, is detected and prevented by 
the Core. Chains are shortened automatically whenever 
the source’s Core interacts with the target’s Core (e.g., 
on every method invocation), by setting each tracker 
along the chain to directly point to the chain’s tail. Af- 
ter shortening, each tracker that is no longer pointed to 
(Site3 in the Figure) becomes available for distributed 
garbage collection. Each site holds at most one tracker 
per referenced complet, which is shared among all the 
complet references of that site. In Figure 4, for exam- 
ple, the two complet references a + ,L? and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy + share 
the same tracker on Sitel. 

Invocation of complet methods is being relayed in the 
following way. The source invokes the stub, which in- 
vokes the tracker, which in turn either locally invokes 
the target’s anchor, or forwards the invocation through 
a chain, whose tail invokes the (remote) anchor. The 
meta reference is a system object that does not include 
any application-specific code. The stub and tracker 
classes are generated by a FarGo stub compiler, with 
methods and constructor signatures that are identical 
to  those of the anchor. 

Complet Design Issues 

As seen in code samples given in Section 2, an anchor 
class must end with a special marker (an underscore 
character) and must implement the empty Complet in- 
terface. The marker is needed simply to  distinguish 
between the name of the stub class and the name of 
the anchor class. By implementing a special interface, 
all Core mechanisms that should distinguish between 
anchors and other objects (e.g., the parameter passing 
and movement mechanisms) can identify an anchor ef- 
ficiently using Java’s instanceof operator. 
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Our approach in that matter differs from that of Voy- 
ager [17], where the mobile object’s class is free from 
interface inheritance requirement in order to support 
seamless conversion of any existing class to a mobile 
class. Following the approach of explicit distributed 
semantics advocated in Section 1, we claim that such 
automatic conversion might break the (local) semantics 
by which the existing class was designed, thus lead to 
programming errors. For cases where the semantics of 
the existing class is known and not problematic, FarGo 
(non-seamlessly) supports such conversion by wrapping 
the non-mobile class with a delegating anchor, which 
can be automatically built by the compiler upon re- 
quest. 

Unlike most other mobile frameworks, FarGo poses al- 
most no restrictions on the usage of the anchor from 
within its closure. For example, it can pass itself (us- 
ing Java’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis) as a parameter to a method of a dif- 
ferent complet (or a Core service). The parameter- 
passing mechanism automatically detects such cases and 
replaces the Java reference to the anchor with a com- 
plet reference (further implementation details are be- 
yond the scope of this paper, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]). 

Another syntactic transparency is provided with com- 
plet instantiation. Although it is very different from in- 
stantiating a regular Java object, it is identical from the 
programmer’s viewpoint, using the ordinary new opera- 
tor (unlike instantiation in Voyager [17], or Aglets [13]). 

Internally, the system objects that comprise the com- 
plet reference are constructed from the stub’s construc- 
tor. In addition to local complet instantiation, FarGo 
supports remote complet instantiation using the Core’s 
remoteNew method, which returns a reference to a com- 
plet after instantiating it on the remote site. 

Status 

Most of the FarGo system as described in this paper has 
been implemented, including a full implementation of 
the TODO application (which is intended to aid in our 
own development work). Monitor support is currently 
available only through the monitoring API; the script- 
ing language and graphical monitor are currently un- 
der development. Several additional utilities have been 
implemented, including a Core command-line shell (it- 
self a FarGo application) for remote management and 
debugging of Cores and a stub compiler compiler. The 
system’s codebase consists of approximately 40,000 code 
lines and the Core’s binary footprint is about 260KB. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 RELATED WORK 
The three most widely available environments for dis- 
tributed computing are CORBA [16], DCOM [4], and 
Java RMI [21]. The programming model presented by 
all these environments is based on an object oriented 
extension of the traditional RPC [3]. FarGo’s parame- 

ter passing semantics is closest to that of RMI (in fact 
FarGo uses RMI as part of its implementation). The 
anchor resembles RMI’s implementation of a remote in- 
terface and the complet’s stub resembles RMI’s stub. 
However, neither RMI nor CORBA or DCOM currently 
support dynamic relocation of distributed objects, let 
alone means to program the layout or monitor an ap- 
plication’s behavior. (Effort in this direction has started 
lately, see CORBA MAF [15].) 

Much research has been conducted in the field of mobile 
objects and agents in recent years. The language-based 
approach taken, for example, in Telescript [25], in the 
mobile agent extension of (the ML-based) Facile [12], 

and in Distributed Oz [6] suggests a new programming 
language that features object mobility. Other envi- 
ronments take a system-based approach where an ex- 
isting language is used as is, along with a set of li- 
braries and runtime support. Representatives are the 
Java based systems Aglets [13], Sumatra [l], and Voy- 
ager [17], and the multi-lingual systems D’Agents (for- 
merly AgentTCL) [7] and Tacoma [lo]. These envi- 
ronments also differ in their type of mobility. Strong 
mobility (as in Telescript) involves movement of a full 
program’s runtime context, including the stack and pro- 
gram counter. Weak mobility (as in Aglets) involves 
only movement of object’s code and state. FarGo be- 
longs to  the system-based Java-only environments. Be- 
ing Java-based implies weak mobility due to the use of 
a standard virtual machine that does not expose a pro- 
gram’s full runtime context (strong mobility is achieved 
in Sumatra at the cost of a non-portable implementa- 
tion). 

The most essential and unique characteristic of FarGo is 
its extensive support for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprogramming the dynamic lay- 
out separately from the application’s logic. Like FarGo, 
the above systems do support mobility, but in a model 
that tightly couples movement operations to the appli- 
cation’s logic. This reflects a major difference between 
most of these systems and FarGo that stems from their 
focus on agents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- autonomous entities that move them- 
selves as part of their computation, versus FarGo’s fo- 
cus on general widely-distributed applications, not nec- 
essarily autonomous-agents-based. As a result, unlike 
most of the above environments, FarGo’s programming 
model is very close to Java’s own model, which facili- 
tates programming scalability. In Aglets, for example, 
inter-agent communication is done using a special event 
model, not by regular Java invocations, which is not 
natural for a Java programmer. An agent class must 
be a subclass of a standard Aglet class, which limits 
the designer since Java permits only single inheritance. 
Agent instantiation both in Aglets and in Voyager is 
done using a special procedure, not by invoking a regu- 
lar object constructor as in FarGo. 
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Another unique aspect of FarGo is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhow dynamic lay- 
out is integrated with the overall architecture of the 
application. All the above environments only provide 
movement primitives and leave all the rest to the pro- 
grammer. FarGo, on the other hand, introduces the 
notion of references that may occupy sophisticated relo- 
cation semantics and are manipulated using a reflective 
mechanism. €+om a software architecture perspective, 
these references function as architectural connectors (as 
proposed in UniCon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ZO]), which explicitly specify the 
architectural glue between components with respect to 
their (re)location. 

An additional dimension of support for dynamic layout 
programming is enabled with the monitoring informa- 
tion supplied by the Core. Of all the above systems, only 
Sumatra employs such support, but using a drastically 
different programming model and API, which tightly 
couples relocation into the application’s logic. Exter- 
nal attachment of layout policies to a live application, 
which is not supported in Sumatra, further promotes 
decoupling between the two. Using a high-level script- 
ing language as means for monitoring-based layout pro- 
gramming, adds another dimension of dynamicity. 

Playground Ill], Darwin [14], Polylith [18] and Hadas [a, 
81 are component-coordination environments for devel- 
opment of distributed applications. They are all cen- 
tered on separating component interconnections (com- 
position) from their individual behavior, and some (e.g., 
Darwin, Hadas) allow dynamic-reconfiguration of the 
connections between components. This architectural 
principle is also incorporated in FarGo’s complet refer- 
ences and layout scripts. However, none of these sys- 
tems supports full mobility of deployed components, 
and thus the layout programming layer is not even appli- 
cable to them. Hadas, FarGo’s predecessor, provides a 
limited form of mobility via Ambassadors, which are dy- 
namically adaptable and deployable component stubs, 
but general relocation is not programmable. 

6 CONCLUSIONS AND FUTURE WORK 

This paper proposes a new dimension of flexibility for 
the architects of large-scale distributed systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the 
ability to program dynamic layout policies separately 
from the application’s logic. We have developed a pro- 
gramming model that carefully balances between pro- 
gramming scalability and system scalability, and which 
uses the inter-component reference as its main abstrac- 
tion vehicle. We have also presented a monitoring fa- 
cility to assist in making relocation decisions, and an 
event-based scripting language to encode layout poli- 
cies. 

Future directions include the design of a global, yet scal- 
able, complet naming and location service, and also per- 
sistence and security mechanisms. With respect to the 

programming model, we intend to use the mechanisms 
described in this paper to develop “runtime patterns” 
(the runtime complement of design patterns), which will 
offer a taxonomy and optimized system support for com- 
monly used layout policies that could be easily assem- 
bled by applications to achieve sophisticated function- 
ality and a high level of scalability and adaptability. 
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