
Dynamic Layout of Distributed Applications in FarGo

Ophir Holder Israel Ben-Shad Hovav Gazit zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Department of Electrical Engineering

Technion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Israel Institute of Technology
Technion City, Haifa 32000, Israel

{ zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAholder@tx,issy@ee,ghovav@tx} .technion.ac.il
+972-4-829-(4659,4689,4659)

ABSTRACT

The design of efficient and reliable distributed appli-
cations that operate in large networks, over links with
varying capacities and loads, demands new program-
ming abstractions and mechanisms. The conventional
static design-time determination of local-remote rela-
tionships between components implies that (dynamic)
environmental changes are hard if not impossible to ad-
dress without reengineering. This paper presents a novel
programming model that is centered around the con-
cept of “dynamic application layout”, which permits the
manipulation of component location at runtime. This
leads to a clean separation between the programming of
the application’s logic and the programming of the lay-
out, which can also be performed externally at runtime.
The main abstraction vehicle for layout programming is
a reflective inter-component reference, which embodies
CO- and re-location semantics. We describe an extensi-
ble set of reference types that drive and constrain the
mapping of components to hosts, and show how this
model elevates application’s performance and reliability
yet requires minimal changes in programming the ap-
plication’s logic. The model was realized in the FarGo
system, whose design and implementation in Java are
presented, along with an event-based scripting language
and corresponding event-monitoring service for manag-
ing the layout of FarGo applications.

Keywords
Engineering Distributed Systems, Dynamic Objects,
Distributed Components, Mobile Objects, Java

1 INTRODUCTION AND MOTIVATION
The growing adoption of large-scale networking infras-
tructures is vastly changing the architecture of software
systems and applications. Many conventional stan-
dalone applications such as office automation and elec-
tronic publishing are becoming “network-enabled”. Dis-

Penriission to make digital or hard cop I‘ all or part of this work f b r

pcrsonal or classroom use is graiited without fee providcd that copics
are zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAt ~ ~ t inade or distributed for profit or cclnlnlercial advantage and that
copies bear this notice and the ful l citation 011 the first page. To copy

otherwise, 10 republish, to post on servcrs or zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAto irdisuibutc zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA10 lists.
rcqtiires prior spccific permission and/or a tic.
ICSE zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA99 Los Angclcs CA
Copyright ACM 1999 1-581 13-074-0/99/05 ... $5.00

tributed client-server applications that were designed to
run on a LAN must also be adapted in order to operate
correctly and efficiently in a W A N scope.

Wide-area computing introduces new challenges to ar-
chitects of scalable distributed applications. The large
deployment space - i.e., the large number of available
hosts that are connected by networks with varying ca-
pacities and loads - implies that the designer is un-
likely to know a priori how to structure the application
in a way that best leverages the available infrastructure.
Furthermore, the constantly changing nature of global
environments, such as varying network bandwidth, ma-
chine loads, and availability, implies that any assump-
tions that are made early at design time regarding the
underlying physical system are unlikely to hold during
deployment time, let alone throughout the application’s
lifetime.

Thus, any static and fixed determination of the local-
remote partitioning and the overall mapping of the dis-
tributed application (logic) onto a set of (physical) pro-
cesses/hosts, which we generically term the layout of the
application, is undesirable and likely to impact its scala-
bility. Moreover, design-time layout implies that layout
changes require application reengineering.

At first glance it might look appealing, then, to pro-
vide a dynamic application layout capability and defer
all layout decisions to runtime. However, ignoring alto-
gether distribution layout considerations at design time
is very problematic too. As pointed out in [24], this
implicit approach neglects the fundamental differences
between local and distributed computing. If ignored,
programmers are likely to encode unreliable applica-
tions since high latency and partial failure cannot be
treated robustly when the physical local-remote split is
unknown. Performance is also likely to be affected, since
co-location related optimizations cannot be made. In
this sense, global scope even reinforces these arguments.
Finally, the lack of shared memory in remote invoca-
tions implies that it is highly undesirable to fully mask
distribution at design time, since parameters cannot be
passed by-reference across address spaces. Providing
such transparency (via distributed shared memory, or

163

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

by making all language objects “remote” and passing
always remote references) is not scalable to wide-are de-
ployment. Thus, overlooking the difference between lo-
cal and remote invocation semantics, while tempting, is
misleading and is likely to cause many programming er-
rors. Indeed, most recent distributed frameworks (e.g.,
CORBA zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[16] and RMI [21]) follow the (static) explicit
approach, requiring different interfaces for local and re-
mote invocations, and even require different syntax that
forces programmers to be aware of the local-remote split
in their applications. For example, remote objects in
CORBA must be defined in a special Interface Defini-
tion Language, and in RMI they must inherit a manda-
tory interface and throwlcatch remote exceptions.

The implicit approach does have one clear advantage,
however. By masking the location of objects, program-
mers can use the same programming model for local and
remote objects. This eases the construction of large dis-
tributed applications since programmers can focus on
the logic of the application without being concerned
with the distributed aspects. In other words, the im-
plicit approach improves programming scalability.

A major challenge is then to design a distributed pro-
gramming model that provides a dynamic layout capa-
bility without compromising on explicit programmabil-
ity of the layout (thereby improving system scalability)
and yet retains as much as possible the local program-
ming language model (thereby improving programming
scalability). FarGo attempts to reconcile these seem-
ingly conflicting goals.

FarGo is an extension of Java. At the basic sys-
tem level it provides extensive dynamic layout capa-

bility, including arbitrary component mobility, attach-
ment of remote components into the same address space
and detachment of co-located components into differ-
ent address spaces. During these activities, all ref-
erences between components remain valid. Such dy-
namic mapping enables to adapt applications to ex-
ternal changes in the environment, including changes
in network bandwidth, machine loads, and partial net-
work or node failure (or addition of new nodes). On
top of the system level, FarGo provides a program-
ming model layer that supports the specification of vari-
ous co-location relationships between components, as in
the explicit approach, except: (1) the relative physical
structure between components (in terms of co-locality)
may be automatically retained despite possible reloca-
tion of (parts of) the application, and (2) both the
structure and re-location patterns may evolve at run-

cation) or after deployment using an external script-
ing facility. In order to enable layout programmers to
base their re- and co-location decisions on runtime in-
formation, FarGo provides a monitoring service that en-
ables applications to register for, and get notified about,
system events. Finally, we retainr as much zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas possible
the local programming model of Java for encoding the
logic of the application, as in the “implicit” approach.
This is only possible because of the clear separation be-
tween the programming of the application’s logic and
the programming of the layout. It is this principle
that permits to change the layout on-the-fly without
changing the code of the application. FarGo is imple-
mented and available for download and experimentation
inhttp://www.dsg.technion.ac.il/fargo.

The rest of the paper is organized as follows: Section 2
presents the programming model and its main entities:
complets, the relocatable application building blocks,
and complet references, FarGo’s main abstraction for
dynamic layout programming. Sections 3 overviews the
monitoring service along with an event-based scripting
language for external programming of the layout. Sec-
tion 4 discusses some implementation issues. Section zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA5
compares our work to other systems, and Section 6 sum-
marizes our contributions and points to future work.

2 THE PROGRAMMING MODEL
In general, a FarGo application is comprised of a set of
complets. Complets are the basic building blocks of the
application, somewhat analogous to modules in a con-
ventional programming language, except that they also
define the minimal unit of relocation. That is, a com-
plet instance relocates in its entirety.l Complets are
interconnected via inter-complet references, henceforth

termed complet references. Unlike remote references in
conventional distributed frameworks (e.g., RMI [Zl]),
the same complet reference may be at times local and
at times remote, depending on the (dynamic) reloca-
tion of its source or target complets during the lifetime
of the application. Unlike virtual references in other
mobile frameworks which mostly provide (re)location
transparency (e.g., Voyager [17]), complet references can
be associated with rich semantics that describe various
CO- and re-location relationships between complets, as
described below. Furthermore, these relationships are
reified by the reference, and thus can be interrogated
and evolve over time, e.g., to adhere to changes in the
environment that demand changes in the relationships.
Thus, complet references are a major abstraction mech-
anism for layout programming in FarGo.

time to address the dynamic variability in the environ-
ment. Thus, co-location relationships drive and con-

Relocation support is facilitated by a light runtime
infrastructure, consisting of a set of distributed Core zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-

strain the mapping process. Relocation, co-location re-
lationships, and evolution, may be either programmed
early at design time (as a separate part of the appli-

objects, also termed site objects (we will use these

lUnless otherwise specified, we will refer to complet instances

as complets, for brevity.

164

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

terms interchangeably throughout the paper). Cores are
uniquely-identifiable objects that provide various sys-
tem support for mobilizing and interconnecting com-
plets across machines. However, except for special ser-
vices that require direct interaction with the Core (e.g.,
reflection), most Core services are transparent to the ap-
plication programmer since they are abstracted via com-
plet references and a high-level monitoring API. Each
complet is associated with exactly one Core at any given
time, but a complet may relocate to a different Core dur-
ing its execution while preserving its state, including its
external outgoing and incoming (complet) references.
We now turn to discuss complets and their references in
detail. Core internals are mostly beyond the scope of
this paper, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Complets

A fundamental issue in dynamic layout support is the
granularity of the minimal relocatable entity. The fine-
grained approach supports relocation for every pro-
gramming language object. Since mobility affects all
objects, this approach is typically implemented by in-
troducing a special programming language, such as Dis-
tributed Oz zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[6]. Although flexible, this approach has
several major drawbacks. Firstly, well engineered ap-
plications are typically partitioned into modular units,
each containing several closely related and highly co-
hesive objects. But the fine-grained approach requires
mobility support to be built into each and every object,
thereby introducing unneeded overhead. Secondly, En-
forcing all programming language objects to adhere to
a remote-call semantics that assumes the lack of shared
memory, adds unnecessary complexity to programming.
Finally, requiring programmers to use a new program-
ming language is also problematic.

The coarse-grained approach, in contrast, divides the
application into a set of processes, each of which is as-
signed its own distinct address space, and can move
between hosts during its execution. Examples of this
approach include Telescript zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[25] and AgentTCL [7]. An
application designer must partition the application into
a number of processes, and populate each process with
a (possibly large) number of objects. While this ap-
proach clearly separates local and remote invocations,
its drawback is that if two or more processes happen to
be co-located, they cannot take advantage of the avail-
able shared memory. For example, they cannot pass
arguments by reference. This is particularly important
in cases where processes are intentionally relocated at
runtime to a shared host for the purpose of improving
their interaction. Thus, placing rigid process boundaries
on the unit of relocation seriously restricts the power of
dynamic relocation.

We take a mid-grained approach, in which the unit of
relocation - the complet - is a collection of local ob-

jects,' i.e., they share an address space and all refer-
ences among these objects are regular (local) references.
Each complet may be either co-located with, or remote
to, other complets, and as a complet moves, it dynam-
ically changes its locality relationship with other com-
plets. Each complet has a single object, termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAanchor,
whose interface is the interface of the complet.

Given the anchor a of a complet a, the set of objects
that comprise the complet, denoted as cZosure(a), is
defined recursively as follows: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 a E closure(a)
If b E cZosure(a) then 'dc such that b references c
(denoted as b + c) , if c # anchor(@, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA(p # a) , then
c E closure(cr)

That is, a complet closure is defined by the reachability
graph of objects and references, starting from the an-
chor, except for references that point to other anchor
objects, which are termed complet references.

Figure 1: Complet Structure

Figure 1 shows two complets, a and p, whose anchors
are a and b respectively. All objects inside the left cir-
cle comprise closure(a) while all those inside the right
circle comprise closure(p). The bold arrowhead line is
a complet reference from one of the objects of a to the
anchor of p, denoted as a + ,B. Relationships between
complets are defined by the set of complet-references,
as shown in the bottom of the figure.

The use of anchors provides a clean interface to com-
plets, but it also facilitates syntactic transparency be-
tween regular and complet references. Both are encoded
similarly, but complet references are treated differently
at runtime. Syntactic transparency helps to preserve
the conceptual separation between programming the
logic of the application and programming of its layout.

Semantically, intra- and inter-complet references must
differ at least because of relocatability and cross

21n principle these could be objects of any object-oriented lan-
guage but we use Java syntax throughout the paper since FarGo
supports Java.

165

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

address-space operation. One basic difference is in pass-
ing arguments in method invocations along references.
Inside a complet all objects are passed by (local) refer-
ence. Across complets (i.e., along complet references) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA,
the following rules apply: zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 regular (non-anchor) objects are passed by value.
0 anchor object are passed by (complet) reference.

The first rule allows the caller and the callee to operate
across address spaces (since arguments are copied over),
and it also ensures that non-anchor objects cannot be
referenced from a different complet, consistent with the
definition of complet closure. The second rule prevents
from automatically copying recursively all other (possi-
bly remote) complets that happen to be pointed to by
an object that is passed by value.

Notice that the programmer must be aware of the dis-
tinction between intra- and inter-complet interaction,
consistent with our general approach to distributed pro-
gramming. At the same time, it is important to note
that when the source and target objects of a complet
reference happen to be co-located, arguments are still
passed by value for consistency with the model, but
the complet reference is turned into a local reference,
thereby improving performance and reliability. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Complet References
In addition to the default semantics provided by a com-
plet reference - a pointer that remains valid despite its
source or target migration - FarGo provides means to
control the layout of the application by associating CO-

and re-location-related semantics with such references.

Relocation semantics are provided by an extensible hi-
erarchy of reference types, which collectively define the
basic layout programming interface. Since references
can evolve dynamically, each reference type has addi-
tional semantics that describe relocation activity that
occurs zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAas a result of a change in type. Finally, we define
a set of space and time modifiers that apply to all types,
allowing to generalize the notion of spatial and temporal
co-locality. Thus, in the general case co-locality is a rel-
ative term: it may mean the same host, same LAN, etc.
But we begin the discussion with an abstract notion of
co-locality and make it concrete later on.

Specifically, we provide five basic types of complet ref-
erences. This list is by no means exhaustive, however,
and we expect to enlarge the repository of basic types
as practical situations arise. For each type we define:
(1) the basic semantics, consisting of co-location rela-
tionship and how it is affected by relocation; (2) the
semantics when a type is dynamically changed; and (3)

in what situations the type is useful. We conclude the
section with an example application that exhibits the
various types.

166

1. Link(a,P) (denoted as zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa ‘3k zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp) - This is the
default basic complet reference from zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAQ to p, with no
constraints (and thus no special) co/re location seman-
tics:

0 CO-location: a and p may or may not be co-located.
0 Re-location: relocation of a does not affect the lo-

cation of p, and vice-versa.

a Link reference may be used when the source and the
target complets need not have any special relationship
with respect to relocation. It does provide, however,
location transparency, allowing to move both source and
target complets while keeping the validity of references.
This reference is used when no layout programming has
been performed.

2. Pull(a,p) (denoted as a ’$ p) - This reference
is used to ensure co-location between complets; when
the source complet relocates, it “pulls” its target along.
More precisely:

0 CO-location: a and /3 are co-located.
0 Re-location: if a relocates, p moves along to the

locality of cy.

This definition implies several additional constraints.
First, 0 cannot be relocated on its own (i.e., not as
a result of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa’s relocation), since this would violate the
first condition. Second, p can be referenced by at most

one Pull reference. Otherwise, if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy ’$’ p is also allowed,
then upon movement of cy one of the two above condi-
tions is not fulfilled: if p moves with a it is not co-local
with y, and if it does not move it is not co-local with
cy. Notice however, that a can still be a target of a Pull

reference, i.e., 6 ’3‘ cy is possible. Pull is transitive, and
relocation of 6 will relocate a, and hence p.
Both automation and enforcement of these semantics
are performed by the runtime infrastructure (this is true
for all reference types). That is, the target complet im-
plicitly moves along with the source, and upon an at-
tempt to create a second Pull reference to a complet,
or upon an attempt to move a complet which is a tar-
get of a Pull reference, an exception is raised and the
operation is canceled. Finally, we have to discuss what
happens when an existing (non Pull) reference is evolved
into a Pull reference. In order to fulfill the first condi-
tion, such a change leads to automatic movement of /3
to the locality of a, if it is not already local.

A Pull reference is useful when CY and p need to interact
frequently and/or require heavy data-transfer on each
interaction, yet they cannot be programmed inside a
single complet (e.g., because /3 needs to be referenced
by other complets, or because their coupling is needed

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

temporarily). In these cases, arbitrary physical disper-
sion of zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp might lead to poor performance and
reduced reliability, or even to halt the application. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3. Duplicate(a,P) (denoted as a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA%’ p) - This refer-
ence is similar to Pull, except it is sufficient to ensure
CO- and re-location with a copy of p, instead of with p
itself, where a copy of a complet is naturally defined as
a copy of its closure (including the anchor). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

0 CO-location: a and a copy of /3 are co-located.
0 Re-location: if a relocates, a copy of moves along

to the locality of a.

Unlike Pull references, there can be multiple Duplicate
references to the same complet. This is possible since

if zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy 3 p exists and a moves, it takes along a copy.of
p, and y continues to be co-local with 0. Also, (a copy
of) the target complet can be relocated, since it leaves
behind the original copy, thus all references still point to
it. Thus, a complet may be simultaneously the target
of a (single) Pull reference and the target of multiple
Duplicate references. This is a desirable property, since
it does not over-restricts Pull references by constraining
their compatibility with non-Pull references. When a
non-Duplicate reference is evolved into a Duplicate ref-
erence, then again, a copy of the target complet (not the
target complet itself) is created and sent to the source
complet. This ensures that semantics of other references
to the original target (e.g., Pull) are preserved.

Duplicate references are useful when the target complet
represents a read-only entity that can be easily repli-
cated without violating the logical semantics of the ap-
plication. In this case, the replication may speed-up
performance and improve reliability by decreasing the
amount of network messages, with no extra effort by the
programmer. All s/he has to do is set the reference as
Duplicate, and the rest is provided by the runtime.

4. Stamp(a,p) (denoted as a + p) - This ref-
erence is similar to Duplicate, but instead of creating
a copy at p’s locality and passing it along with a, a
locates a local instance of P’s type and connects to it:

0 Co-location: a and some instance of P’s type are
co-located.

0 Re-location: if a relocates, an instance of p’s type
is located in a ’ s new locality and gets attached to
it.

stamp

The implications on the target complet with respect to
relocation and compatibility with other references, are
similar to those of Duplicate references. An instance
of p’s type is free to move regardless of cy (which re-
mains connected to the original p), and multiple Stamp
and Duplicate references can co-exist along with a single
Pull. .,

By “a local instance of p’s type” we refer to type equiva-
lence, i.e., a local complet instance that implements the
interface (type) of p, although not necessarily an in-
stance of p’s implementation (class). In addition to ex-
plicit type equivalence test, FarGo allows to define name
equivalence (each complet can bind itself to a name at a
given core, and the equivalent target can be defined as
bound to the same name as the original), or any user-
defined equivalence procedure. Finally, upon evolution
of a reference into a Stamp type, an instance of p’s type
is located in cy’s locality and gets reconnected to a.

A useful application of a Stamp reference is for facili-
tating a constant connection from a mobile complet to
a non-mobile complet. For example, if the target com-
plet encapsulates a hardware device (e.g., a printer), a
Stamp reference could be used to reconnect the source
complet to a local printer after it arrives to a new loca-
tion. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 . Bi-directional Pull(a,P) (denoted as a b%66 p) -
This is the most powerful (but most expensive) reloca-
tion reference. It is similar to Pull, with the additional
rule that the target can Pull the source too.

0 Co-location: cy and ,8 are co-located.
0 Re-location: if a relocates, p moves along to the

locality of cy, and vice versa.

This implies a restriction similar to that of the Pull ref-
erence - p cannot be referenced by any Pull reference.
By definition, this reference enables the target to move
not only as a result of source relocation, so it is less
restrictive than the (uni-directional) Pull. This in turn
allows to remove the singleness constraint of Pull too,
i.e., a complet can be the target of multiple BPull refer-
ences. But the most interesting property of BPull is that
it effectively defines “group re-location’’ semantics. The
group is defined as the sub-graph of all nodes that are
connected via BPull references, and relocation of any
member of the group leads to relocation of all members
of the group. In case of evolution into a BPull reference,
we arbitrarily determine that the target relocates to the
locality of the source.

One issue with BPull references is that they ignore the
natural direction of the reference, from the source to
the target. Also, realization of this reference requires
a (hidden) back-reference from the target to each of its
sources, in order to track relocation of the source com-
plets. In certain applications, this overhead may be in-
tolerable. For example, a client-server application with
a very large number of BPull clients would require the
server to know who holds a reference to it, which is not
scalable. It would also mean that each client reloca-
tion forces the server and all other clients to relocate,
which is typically not reasonable. This in fact suggests

167

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

yet another useful reference type zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- Inverted Pull - in
which only the target can relocate, and when it does,
all source references follow. Although we haven’t imple-
mented Inverted Pull references, one can see how this
type hierarchy can be enriched incrementally as the need
arises. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
Space, Time and other Reference Attributes
So far, we have left out precise definition of co-locality
and the timing of relocation (i.e., when relocation oc-
curs). The default values, as may be expected, are
same address-space for co-locality, and “immediately”
for time (i.e., with no delay). However, in many cases
it is worthwhile to generalize these notions. For exam-
ple, an Internet-based video application might require
certain minimum bandwidth that can be provided by a
LAN connection, but not by a WAN or a dial-up connec-
tion. Or, complets may be allowed to operate within an
Intranet but not across a firewall, and so forth. In such
cases, it is useful to extend the notion of co-locality by
defining a distance metric, and add it as an optional pa-
rameter to a reference. For example, Pull(a, zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAp, d) means
that zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACY and p should operate within distance d, where d
is interpreted according to the implemented metric.

A second useful attribute which is also orthogonal to
reference types is a delay factor. Consider the network-
computing model, for example, by which a client down-
loads a “thin” version of an application that has only
the basic features, and the advanced (and rarely used)
features are stayed in the server. However, if the client
does want to use any of the advanced features, then
upon the first reference to this feature, it gets lazily
downloaded. This may be termed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBADelayed Pull. Alter-
natively, the user may be able to execute this feature
remotely (although more expensively), and only when
s/he invokes it more than a certain number of times,
it gets downloaded. In general, a delay metric can be
formed with a delay factor attached to every reference.

Finally, as with relocation types, these reference mod-
ifiers are two of many other possible attributes. For
example, another useful attribute is time-expiration, af-
ter which a reference becomes invalid (e.g., to be used
in electronic-commerce applications).

The TODO Application
Let us illustrate the programming model by presenting
a simple multi-user tool for management of a project’s
todo-list. The todo-list can be examined and updated
concurrently by a number of users from different loca-
tions. Shown in Figure 2, TODO consists of five kinds of
complets. The User Interface complet is used for view-
ing and updating the todo-list. The Engine complet
receives updates from users and multicasts each update
to all currently connected users. The Engine can move
among a number of hosts to be as close as possible to

Disk Startup

Interface Interface Interface

Figure 2: The TODO Application

most of its clients (e.g., reside in different continents at
different times of the day). The todo-list is persistently
saved by the File complet, which receives a location on
the local file system (a pathname) from the stable Disk
complet. The Startup complet is used as the point of
contact for joining users. Upon a request to connect,
it instantiates a User Interface complet and moves it to
the requester’s site. Below is a (simplified) portion of
the user interface’s code:

publ ic c lass UserInterface-
implements Complet {

pr iva te Engine engine;
UserInterface-(Engine engine) I
th is.engine = engine;

3
void addTask(String newTask) { zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
engine.addTask(newTask);

3
/ / . . .

3

Notice how this code is similar to regular Java. For
example, the Engine complet instance is held as a reg-
ular data field of the UserInterf ace complet and is in-
voked with regular Java syntax, eventhough both com-
plets may dynamically relocate. The only noticeable
difference is an extra underscore character, explained
later in Section 4.

The complet references in Figure 2 that are not labeled
are Link references. Since the Engine interacts with the
File complet on every update of the todo-list, pulling it
along on each movement is desirable. Thus, it points to
the File complet with a Pull reference. Upon arrival to
a new site, the File must contact the local Disk complet zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA

168

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

to receive a new location on the local file system, thus
it points at the (stationary) Disk complet with a Stamp
reference. Finally, to offer many points of contact to
the application, each new location that the Engine visits
should become a possible target for a request to join the
group of users. Thus, the Engine points at the Startup
complet with a Duplicate reference. The Engine sets its
reference to the Startup complet in its constructor as
follows:

publ ic Engine- (Star tup s ta r tup) zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA{
t h i s . s ta r tup = s ta r tup ;
CompletRef c r = zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACore.getCompletRef(startup)
cr. setRelocator (new Duplicate (1) ;
// zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA. . f

3

Notice again the separation of concerns. The use of
this reference for method invocation in the rest of En-
gine's code (the application logic) is not affected by the
manipulation of its relocation attribute (the layout se-
mantics). zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
3 LAYOUT PROGRAMMING USING MON-

ITORING INFORMATION

Layout programming in FarGo consists of three layers:
a layout API that enables embedding of dynamic lay-
out algorithms within applications, a high-level script
language for attaching layout scripts to applications at
runtime, and a graphical tool for layout management.

Layout policy is specified in an event-based style, which
involves registration for event notifications that are gen-
erated by the Core, and specification of callback proce-
dures that should be executed upon event notifications.
The Core continuously performs a set of performance
and resource utilization measurements which are exam-
ined both by the Core itself, to determine when to fire
events, and by the callback procedures, to determine
what action to take upon the occurrence of an event.

Both events and measurements are divided into three
groups: those that act on a whole Core (e.g., zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACore Shut-
down and Complet Count L imi t) , on a single complet
(e.g., Complet Departure and Complet Arrival), and on
a single complet reference (e.g., bandwidth, and average
number of invocations per time unit).

The layout API provides means to register to events and
to perform the various measurements. This API is based
on a simple distributed extension of the standard Java
event model [22]. Unlike the distributed event model in
Sun's Jini Technology [as], our extension is tailored es-
pecially for layout programming, thus more simple and
efficient.

Scripting Language
In addition to the API, FarGo provides a high-level

Figure 3: The Graphical Monitor

scripting language external to the application. Scripts
are written in an Event-Action style. A script consists
of a set of rules of the form:

on event [at core] do actions

An event is specified by its name and a set of at-
tributes. For example, completArriva1 (complet ,
sourcecore) designates the arrival of a certain com-
plet from a certain location. core specifies the Core on
which the event is expected to occur (the default is the
Core on which the script is running), and actions are one
or more statements, each is either a built-in primitive
(e.g. move) or means for interfacing with Java methods
in which more sophisticated policies can be specified.

Let us revisit the TODO example presented earlier and
show how a script that relocates the Engine complet to
its optimal location may be encoded:

Scr ip t Enginescript {
on completDeparture(complet, t a rge t) do {
engine = thiscomplet () ;
u s e r h t e r f a c e s += complet;
best = Locator. f indBest (userInterf aces) ;
move (engine , best) ;

3
on coreShutdown(coreNae) do {
moveAll("zeus . technion.ac. i l ") ;

3
3

The first rule catches the completDeparture event on
the local core. This event is fired when a new User In-
terface complet is about to move from the local core
to a new user. The action block of the rule adds
the complet to the user interfaces list, then invokes a
Java method that finds the best location for the En-

169

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

Figure zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA4: Complet Reference’s Implementation

gine complet, and finally moves the engine to that core.
The second rule implies that upon shutdown of the lo-
cal core all complets will relocate to a machine named zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
zeus.technion.ac.il.

The FarGo graphical monitor visualizes the state of a
FarGo application. Figure 3 shows a visualization of
TODO. This tool is used by an administrator to control
and manipulate both running applications and Core en-
vironments. Complet references can be examined and
changed by simple point-and-click operations, and com-
plets can be moved between cores using drag-and-drop
operations.

Monitoring support in FarGo is implemented using
FarGo’s own facilities. The entity to which scripts reg-
ister is a special stationary event-notifier complet that
resides in each Core that is willing to be managed. This
complet uses the basic layout API to contact its local
Core. Each script is held and executed by a special
script complet. Passing events to a script is imple-
mented by using complet references for invoking event
notification methods, which enable the scripts to relo-
cate with the complets they manage and still listen to
events that occur on remote cores.

4 IMPLEMENTATION
In this section we briefly overview the implementation
of FarGo. A detailed discussion is given in [9].

Complet References

The internal structure of a complet reference zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAa zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA3 zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAP is
shown in Figure 4. The source, a, holds a Java refer-
ence to a stub object, that has the same method and
constructor interface as that of P’s anchor. The stub
provides syntactic transparency in that, syntactically,
invocations of its methods are identical to direct invo-
cations of P’S anchor.

The stub contains an object, termed meta reference
that reifies the complet reference and allows to dynam-

ically change it. The meta reference of a given com-
plete reference can be fetched using the Core’s method
getCompletRef. The meta reference can be used to
examine the semantics of the complet reference by in-
voking its getRelocator method, and to change the se-
mantics by invoking the setRelocator method. Other
properties that can be examined include complet refer-
ence equivalence (two references are equivalent if they
are both pointing to the same anchor), and co-locality
with another complet.

The stub holds a tracker object that functions as the
means for maintaining the complet reference’s validity
despite P’s location changes. If p is local, the tracker
points to its anchor directly with a regular Java refer-
ence. Complet movement results in creation of a chain
of trackers (as in [5, 19]), where each tracker points at
its successor on a different site (inter-site pointing is
implemented using RMI). For example, In Figure 4, the
complet reference a zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA+ ,B embodies a chain of four track-
ers. Possible creation of redundant cyclic chains, due to
complet’s cyclic migration, is detected and prevented by
the Core. Chains are shortened automatically whenever
the source’s Core interacts with the target’s Core (e.g.,
on every method invocation), by setting each tracker
along the chain to directly point to the chain’s tail. Af-
ter shortening, each tracker that is no longer pointed to
(Site3 in the Figure) becomes available for distributed
garbage collection. Each site holds at most one tracker
per referenced complet, which is shared among all the
complet references of that site. In Figure 4, for exam-
ple, the two complet references a + ,L? and zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAy + share
the same tracker on Sitel.

Invocation of complet methods is being relayed in the
following way. The source invokes the stub, which in-
vokes the tracker, which in turn either locally invokes
the target’s anchor, or forwards the invocation through
a chain, whose tail invokes the (remote) anchor. The
meta reference is a system object that does not include
any application-specific code. The stub and tracker
classes are generated by a FarGo stub compiler, with
methods and constructor signatures that are identical
to those of the anchor.

Complet Design Issues

As seen in code samples given in Section 2, an anchor
class must end with a special marker (an underscore
character) and must implement the empty Complet in-
terface. The marker is needed simply to distinguish
between the name of the stub class and the name of
the anchor class. By implementing a special interface,
all Core mechanisms that should distinguish between
anchors and other objects (e.g., the parameter passing
and movement mechanisms) can identify an anchor ef-
ficiently using Java’s instanceof operator.

170

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

Our approach in that matter differs from that of Voy-
ager [17], where the mobile object’s class is free from
interface inheritance requirement in order to support
seamless conversion of any existing class to a mobile
class. Following the approach of explicit distributed
semantics advocated in Section 1, we claim that such
automatic conversion might break the (local) semantics
by which the existing class was designed, thus lead to
programming errors. For cases where the semantics of
the existing class is known and not problematic, FarGo
(non-seamlessly) supports such conversion by wrapping
the non-mobile class with a delegating anchor, which
can be automatically built by the compiler upon re-
quest.

Unlike most other mobile frameworks, FarGo poses al-
most no restrictions on the usage of the anchor from
within its closure. For example, it can pass itself (us-
ing Java’s zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAthis) as a parameter to a method of a dif-
ferent complet (or a Core service). The parameter-
passing mechanism automatically detects such cases and
replaces the Java reference to the anchor with a com-
plet reference (further implementation details are be-
yond the scope of this paper, see zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[9]).

Another syntactic transparency is provided with com-
plet instantiation. Although it is very different from in-
stantiating a regular Java object, it is identical from the
programmer’s viewpoint, using the ordinary new opera-
tor (unlike instantiation in Voyager [17], or Aglets [13]).

Internally, the system objects that comprise the com-
plet reference are constructed from the stub’s construc-
tor. In addition to local complet instantiation, FarGo
supports remote complet instantiation using the Core’s
remoteNew method, which returns a reference to a com-
plet after instantiating it on the remote site.

Status

Most of the FarGo system as described in this paper has
been implemented, including a full implementation of
the TODO application (which is intended to aid in our
own development work). Monitor support is currently
available only through the monitoring API; the script-
ing language and graphical monitor are currently un-
der development. Several additional utilities have been
implemented, including a Core command-line shell (it-
self a FarGo application) for remote management and
debugging of Cores and a stub compiler compiler. The
system’s codebase consists of approximately 40,000 code
lines and the Core’s binary footprint is about 260KB. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
5 RELATED WORK
The three most widely available environments for dis-
tributed computing are CORBA [16], DCOM [4], and
Java RMI [21]. The programming model presented by
all these environments is based on an object oriented
extension of the traditional RPC [3]. FarGo’s parame-

ter passing semantics is closest to that of RMI (in fact
FarGo uses RMI as part of its implementation). The
anchor resembles RMI’s implementation of a remote in-
terface and the complet’s stub resembles RMI’s stub.
However, neither RMI nor CORBA or DCOM currently
support dynamic relocation of distributed objects, let
alone means to program the layout or monitor an ap-
plication’s behavior. (Effort in this direction has started
lately, see CORBA MAF [15].)

Much research has been conducted in the field of mobile
objects and agents in recent years. The language-based
approach taken, for example, in Telescript [25], in the
mobile agent extension of (the ML-based) Facile [12],

and in Distributed Oz [6] suggests a new programming
language that features object mobility. Other envi-
ronments take a system-based approach where an ex-
isting language is used as is, along with a set of li-
braries and runtime support. Representatives are the
Java based systems Aglets [13], Sumatra [l], and Voy-
ager [17], and the multi-lingual systems D’Agents (for-
merly AgentTCL) [7] and Tacoma [lo]. These envi-
ronments also differ in their type of mobility. Strong
mobility (as in Telescript) involves movement of a full
program’s runtime context, including the stack and pro-
gram counter. Weak mobility (as in Aglets) involves
only movement of object’s code and state. FarGo be-
longs to the system-based Java-only environments. Be-
ing Java-based implies weak mobility due to the use of
a standard virtual machine that does not expose a pro-
gram’s full runtime context (strong mobility is achieved
in Sumatra at the cost of a non-portable implementa-
tion).

The most essential and unique characteristic of FarGo is
its extensive support for zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAprogramming the dynamic lay-
out separately from the application’s logic. Like FarGo,
the above systems do support mobility, but in a model
that tightly couples movement operations to the appli-
cation’s logic. This reflects a major difference between
most of these systems and FarGo that stems from their
focus on agents zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- autonomous entities that move them-
selves as part of their computation, versus FarGo’s fo-
cus on general widely-distributed applications, not nec-
essarily autonomous-agents-based. As a result, unlike
most of the above environments, FarGo’s programming
model is very close to Java’s own model, which facili-
tates programming scalability. In Aglets, for example,
inter-agent communication is done using a special event
model, not by regular Java invocations, which is not
natural for a Java programmer. An agent class must
be a subclass of a standard Aglet class, which limits
the designer since Java permits only single inheritance.
Agent instantiation both in Aglets and in Voyager is
done using a special procedure, not by invoking a regu-
lar object constructor as in FarGo.

171

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

Another unique aspect of FarGo is zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhow dynamic lay-
out is integrated with the overall architecture of the
application. All the above environments only provide
movement primitives and leave all the rest to the pro-
grammer. FarGo, on the other hand, introduces the
notion of references that may occupy sophisticated relo-
cation semantics and are manipulated using a reflective
mechanism. €+om a software architecture perspective,
these references function as architectural connectors (as
proposed in UniCon zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA[ZO]), which explicitly specify the
architectural glue between components with respect to
their (re)location.

An additional dimension of support for dynamic layout
programming is enabled with the monitoring informa-
tion supplied by the Core. Of all the above systems, only
Sumatra employs such support, but using a drastically
different programming model and API, which tightly
couples relocation into the application’s logic. Exter-
nal attachment of layout policies to a live application,
which is not supported in Sumatra, further promotes
decoupling between the two. Using a high-level script-
ing language as means for monitoring-based layout pro-
gramming, adds another dimension of dynamicity.

Playground Ill], Darwin [14], Polylith [18] and Hadas [a,
81 are component-coordination environments for devel-
opment of distributed applications. They are all cen-
tered on separating component interconnections (com-
position) from their individual behavior, and some (e.g.,
Darwin, Hadas) allow dynamic-reconfiguration of the
connections between components. This architectural
principle is also incorporated in FarGo’s complet refer-
ences and layout scripts. However, none of these sys-
tems supports full mobility of deployed components,
and thus the layout programming layer is not even appli-
cable to them. Hadas, FarGo’s predecessor, provides a
limited form of mobility via Ambassadors, which are dy-
namically adaptable and deployable component stubs,
but general relocation is not programmable.

6 CONCLUSIONS AND FUTURE WORK

This paper proposes a new dimension of flexibility for
the architects of large-scale distributed systems zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA- the
ability to program dynamic layout policies separately
from the application’s logic. We have developed a pro-
gramming model that carefully balances between pro-
gramming scalability and system scalability, and which
uses the inter-component reference as its main abstrac-
tion vehicle. We have also presented a monitoring fa-
cility to assist in making relocation decisions, and an
event-based scripting language to encode layout poli-
cies.

Future directions include the design of a global, yet scal-
able, complet naming and location service, and also per-
sistence and security mechanisms. With respect to the

programming model, we intend to use the mechanisms
described in this paper to develop “runtime patterns”
(the runtime complement of design patterns), which will
offer a taxonomy and optimized system support for com-
monly used layout policies that could be easily assem-
bled by applications to achieve sophisticated function-
ality and a high level of scalability and adaptability.

REFERENCES

[l] A. Acharya, M. Ranganathan, and J. Saltz. Suma-
tra: A language for resource-aware mobile pro-
grams. In Mobile Object Systems: Towards the
Programmable Internet, pages 111-130. Springer-
Verlag, April 1997. Lecture Notes in Computer
Science No. 1222.

[2] I. Ben-Shaul, A. Cohen, 0. Holder, and B. Lavva.
HADAS: A network-centric system for inter-
operability programming. International Jour-
nal of Cooperative Information Systems (IJCIS),
6(3&4):293-314, 1997.

131 A. Birell and B. Nelson. Implementing remote pro-
cedure calls. AGM Transactions on Computer Sys-
tems, 2(1):39-59, February 1984.

[4] N. Brown and C. Kindel. Distributed zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBACom-
ponent Object Model Protocol - DCOM/l.O.
Internet Draft, January 1998. Available at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA
http://www.microsoft.com/oledev/olecom/
draf t-brown-dcom-vi-spec-02. txt.

[5] S. J. Caughey, G. D. Parrington, and S. K. Shri-
vastava. Shadows - A flexible support system
for objects in distributed systems. In Proceed-
ings of the Third International Workshop on Object
Orientation and Operating Systems, pages 73-82,

Asheville, NC (USA), December 1993.

[6] P. V. R. et al. Mobile objects in Distributed Oz.
A C M Transactions on Programming Languages
and Systems, 19(5):804-851, September 1997.

[7] R. S. Gray. Agent TCL: A transportable agent sys-
tem. In Proceedings of the CIKM Workshop on In-
telligent Information Agents, Fourth International
Conference on Information and Knowledge Man-
agement (CIKM zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA95), Baltimore, Maryland, De-
cember 1995.

[8] 0. Holder and I. Ben-Shaul. A reflective model
for mobile software objects. In Proceedings of the
17th International Conference on Distributed Com-
puting Systems (ICDCS’97), pages 339-346, Balti-
more, Maryland, May 1997. IEEE Computer Soci-
ety Press.

172

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

http://www.microsoft.com/oledev/olecom

[9] 0. zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAHolder, I. Ben-Shaul, and H. Gazit. System sup-
port for dynamic layout of distributed applications.
Technical Report EE Pub No. 1191, Technion zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBA-
Israel Institute of Technology, October 1998.

[lo] D. Johansen, R. van Renesse, and F. B. Schnei-
der. Operating system support for mobile agents.
In zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAProceedings zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAof the 5th IEEE Workshop on Hot
Topics in Operating Systems, Orcas Island, WA,
USA, May 1995. IEEE Computer Society Press.

[ll] K. Goldman et al. The programmer's playground:
1/0 abstraction for user-configurable distributed
applications. IEEE Transactions on Software En-
gineering, 21(9):735-746, September 1995.

[12] F. C. Knabe. Language Support for Mobile Agents.
PhD thesis, Carnegie Mellon University, December
1995. Technical Report CMU-CS-95-223.

[13] D. B. Lange and D. T. Chang. IBM Aglets Work-
bench: Programming mobile agents in Java. A
white paper. Technical report, IBM, Tokyo Re-
search Lab, September 1996. Available at zyxwvutsrqponmlkjihgfedcbaZYXWVUTSRQPONMLKJIHGFEDCBAhttp:
//www.trl.ibm.co.jp/aglets/whitepaper.htm.

[14] J. Magee, N. Dulay, and J. Kramer. Structuring
parallel and distributed programs. Software Engi-
neering Journal, 8(2):73-82, March 1993.

[15] Object Management Group. Mobile Agent Facility
Specification, June 1997.

[16] Object Management Group. The Common Ob-
ject Request Broker: Architecture and Specifica-
tion. Revision 2.2, February 1998. Available at:
http://www.omg.org/corba/corbaiiop.htm.

[17] ObjectSpace Voyager core package: Tech-
nical overview, December 1997. Available
at: http: //www. objectspace. com/voyager/
whitepapers/VoyagerTechOview.pdf.

[IS] J. Purtilo. The POLYLITH software bus. ACM
Transactions on Programming Languages and Sys-
tems, 16(1):151-174, January 1994.

[19] M. Shapiro, P. Dickman, and D. Plainfosse. SSP
chains: Robust, distributed references support-
ing acyclic garbage collection. In Proceedings of
the ACM Symposium on Principles of Distributed
Computing, Vancouver, August 1992. ACM.

[20] M. Shaw, R. DeLine, and G. Zelesnik. Abstrac-
tions and implementations for architectural con-
nections. In Proceedings of the Third International
Conference on Configurable Distributed Systems,
May 1996.

[21] Sun Microsystems, Inc. Java Remote Method Invo-
cation (RMI) Specification, December 1997. Avail-
able at: http: //java. sun.com/products/jdk/l.
2/docs/guide/rmi/spec/rmiT0C.doc.html.

[22] Sun Microsystems, Inc. JavaBeans, July 1997.

Available at : http : // j ava. sun. com/beans/
docs/spec.html.

[23] J. Waldo. Distributed Event Specification, July
1998. Available at : http://java.sun.com/
products/jini/specs/.

[24] J. Waldo, G. Wyant, A. Wollrath,,and S. Kendall.
A note on distributed computing. Technical Report
TR-94-29, Sun Microsystems Laboratories, Inc.,
November 1994.

[25] J. E. White. Mobile agents make a network an
Com- open platform for third-party developers.

puter, 27(11):89-90, November 1994.

173

Authorized licensed use limited to: Technion Israel School of Technology. Downloaded on May 25, 2009 at 06:46 from IEEE Xplore. Restrictions apply.

http://www.omg.org/corba/corbaiiop.htm
http://java.sun.com

