
SIAM J. COMPUT. c© 2005 Society for Industrial and Applied Mathematics
Vol. 34, No. 4, pp. 894–923

DYNAMIC LCA QUERIES ON TREES∗

RICHARD COLE† AND RAMESH HARIHARAN‡

Abstract. We show how to maintain a data structure on trees which allows for the following
operations, all in worst-case constant time:

1. insertion of leaves and internal nodes,
2. deletion of leaves,
3. deletion of internal nodes with only one child,
4. determining the least common ancestor of any two nodes.

We also generalize the Dietz–Sleator “cup-filling” scheduling methodology, which may be of
independent interest.

Key words. LCA, dynamic LCA, “cup-filling” scheduling

AMS subject classifications. 68W05, 68W40, 68Q25, 68P05

DOI. 10.1137/S0097539700370539

1. Introduction. Finding least common ancestors (LCAs) in trees is a funda-
mental problem that arises in a number of applications. For example, it arises in
computing maximum weight matchings in graphs [Ga90], in computing longest com-
mon extensions of strings, finding maximal palindromes in strings, matching patterns
with k mismatches, and finding k-mismatch tandem repeats [Gus97]. The tree in-
volved in all but the first of these applications is a suffix tree.

The primary use of LCA computations in a suffix tree is to determine the longest
common prefix of two substrings in constant time. This operation is used heavily in
the above applications. The suffix tree for a given string can be constructed in linear
time [M76]. Each node in this tree corresponds to a substring of the given string. The
longest common prefix of any two substrings is the string corresponding to the LCA
of the corresponding nodes.

The first constant time LCA computation algorithm was developed by Harel and
Tarjan [HT84]. This algorithm preprocesses a tree in linear time and subsequently
answers LCA queries in constant time. Subsequently, Schieber and Vishkin [SV88],
Berkman and Vishkin [BV94], and Bender and Farach-Colton [BF00], gave simpler
algorithms with the same performance.

In this paper, we consider the dynamic version of the problem, i.e., maintaining
a data structure which supports the following tree operations: insertion of leaves and
internal nodes, deletion of internal nodes with only one child, and LCA queries. We
assume that when a new node is inserted, a pointer to the insertion site in the tree is
also given. The motivation is to maintain a suffix tree under insertion of new strings,
deletion of strings, and longest common prefix queries. One application of this problem
arises in maintaining a databaseof strings in order to answer queries of the following
kind: given a pattern string, find all its occurrences with up to k mismatches in the

∗Received by the editors April 5, 2000; accepted for publication (in revised form) July 6, 2004;
published electronically May 12, 2005. This work was supported by NSF grants CCR9503309,
CCR9800085, and CCR0105678.

http://www.siam.org/journals/sicomp/34-4/37053.html
†Department of Computer Science, Courant Institute of Mathematical Sciences, New York Uni-

versity, 251 Mercer Street, New York, NY 10012 (cole@cs.nyu.edu).
‡Department of Computer Science and Automation, Indian Institute of Science, Bangalore 560012,

India (ramesh@csa.iisc.ernet.in). This work was done in part while the author was visiting NYU.

894

LCA QUERIES ON TREES 895

strings in the database. Efficient algorithms for finding all occurrences of a pattern
in a text with up to k mismatches [LV86, CH97] require maintaining the suffix tree of
the text and processing it for LCA queries. Extending these algorithms to maintain a
database of strings supporting k-mismatch queries would require maintaining LCAs
dynamically.1 Additions and deletions of new strings to the database will change the
suffix tree as well as the LCA data structure. A new string can be inserted into a
suffix tree in time proportional to its length. The number of nodes inserted in the
process is proportional to the length of the string inserted. These nodes could be
leaves or internal nodes. Similarly, deletion of a string will cause the removal of some
nodes. Our goal is to minimize the work needed to maintain the data structure for
each node inserted or deleted.

Harel and Tarjan [HT84] gave an algorithm to maintain a forest under linking and
finding LCAs. This is useful in computing maximum weight matchings in graphs. The
link operation generalizes insertions of new leaves. Harel and Tarjan’s link operation
allowed only linking of whole trees, not linking of a tree to a subtree of another tree.
The amortized time taken by their link operation was α(m,n), where n is the size of
the tree and m is the number of operations. LCA queries were answered in constant
time. Gabow [Ga90] gave an algorithm which performs additions and deletions of
leaves in constant amortized time and also supports linking of trees to subtrees in
α(m,n) amortized time. The worst-case time for update operations in both these
algorithms was Ω(n). The worst-case time for an LCA query was O(1). Both the
above algorithms were motivated by the maximum weighted matching problem in
graphs.

Since our focus is different, namely suffix trees, we consider insertions and dele-
tions of leaves and internal nodes, but not the link operation. Note that neither
of the above algorithms considered insertions of internal nodes. Westbrook [We92]
built upon Gabow’s approach above to give an O(1) amortized time algorithm which
could perform insertions and deletions of leaves as well as internal nodes. Our focus,
however, is on worst-case insertion time rather than amortized time.

We give an algorithm which performs insertions and deletions of leaves and in-
ternal nodes while supporting LCA queries, all in constant worst-case time. This
algorithm is obtained in two stages. First, we give an algorithm which takes O(log3 n)
worst-case time for insertions and deletions and O(1) worst-case time for queries. This
is the core of our algorithm. Subsequently, we show how to improve the worst-case
time for insertions and deletions to O(1) by using a standard multilevel scheme. The
space taken by our algorithm is O(n).

Our basic O(log3 n) worst-case time algorithm broadly follows Gabow’s and Schie-
ber and Vishkin’s algorithm. The overall approach is to decompose the tree into cen-
troid paths and assign a code to each node. From the codes for two given nodes, the
centroid path at which their paths from the root separate can be easily determined in
constant time. And given two vertices on the same centroid path, the one closer to the
root can be determined by a simple numbering. Together, the codes and numberings
yield the LCA. The basic problem we have to solve is to maintain the centroid paths
and codes over insertions and deletions. Gabow’s algorithm does this in bursts, reor-
ganizing whole subtrees when they grow too large. This makes the worst-case time
large. However, the amortized time is O(log n) because each reorganization is coupled

1However, just maintaining LCAs alone is not sufficient to solve the dynamic k mismatches
problem with query time smaller than the obvious static algorithm. Therefore, we do not obtain any
results on the dynamic k mismatches problem here.

896 RICHARD COLE AND RAMESH HARIHARAN

with a doubling in size; this time is reduced to O(1) using a multilevel scheme. Note,
also, that Gabow does not consider insertions of internal nodes. Thus, two main issues
need to be tackled to get constant worst-case time.

The first issue is that of maintaining numbers on centroid paths so that the LCA
of two given nodes on the same centroid path can be found in constant time. For
this purpose, we use the Dietz–Sleator [DS87] data structure (or the Tsakalidis [Ts84]
data structure) which maintains order in a list under insertions and deletions.2

The second and the more serious issue by far is that of reorganizing trees to
maintain centroid paths and codes in constant worst-case time. Since we seek constant
worst-case time, there is little option but to delay this reorganization. We amortize
this reorganization over future insertions and deletions, i.e., spread the O(1) amortized
work of Gabow’s algorithm over future insertions/deletions so each insertion and
deletion does only a constant amount of work. This approach is not new and has
been used by Dietz and Sleator [DS87] and Willard [W82] among others. However,
the problems caused by this approach are nontrivial and specific to this setting.

The problem with this approach is that any change at a node v causes the codes
at all the nodes in the subtree rooted at v to change. Since updates of these codes
are spread over future insertions and deletions, queries at any given instant will find
a mixture of updated and not yet updated codes. This could potentially give wrong
answers. We avoid this with a two-phase update of a two-copy code.

What further complicates the situation is that reorganizations could be taking
place at many subtrees simultaneously, one nested inside the other. This implies that
the variation amongst nodes in the degree to which their codes have been updated
at any given instant could be arbitrarily large. Nonetheless, the two-phase update
ensures correct answers to the queries.

An additional complication is that the various nested reorganizations could pro-
ceed at very different speeds, depending upon the distribution of the inserted nodes.
In this respect, the situation is analogous to that encountered in asynchronous dis-
tributed computing, where interacting processes proceeding at arbitrarily different
speeds need to ensure they collectively make progress on their shared computation.

Our main contribution is to organize the various nested processes so that they
complete in time and also maintain codes which give correct answers to queries. This is
obtained by a nontrivial scheduling procedure coupled with an analysis which bounds
the total sizes of nested processes.

To understand our scheduling procedure it is helpful to recall the Dietz–Sleator
cup-filling methodology. It concerns a collection of tasks in which priorities increase in
an unknown but bounded way (i.e., adversarially set), each time unit; the scheduling is
very simple: simply select the current highest priority task and run it to completion.
They show this algorithm has a good performance which they tightly bound. We
are concerned with a similar scenario, but in which priorities are only approximately
known; naturally, we schedule the apparently highest priority task. We also allow
the tasks to be somewhat divisible so that they need not be run to completion once
started. Details appear in section 6.8.

2. Overview. We assume that the tree is a binary tree, without loss of general-
ity.

2We can also use the data structure given here but supporting only leaf insertion and deletion.
This results in the centroid paths being modified only at their endpoints, and a trivial numbering
scheme suffices to maintain order. This approach was suggested by Farach-Colton [F99].

LCA QUERIES ON TREES 897

First, we consider only insertions. Deletions are handled easily by just ignoring
them until they form a significant fraction of the number of nodes, at which point the
entire data structure is rebuilt. The original data structure is also maintained until
this rebuilding is complete in order to answer queries. Details on handling deletions
are deferred to section 8.

We also assume that the insertions at most double the tree size. This assumption
is also handled easily by rebuilding when the size of the tree increases by some suitable
constant factor, and again is addressed in section 8.

The paper is organized as follows. We give some definitions in section 3. Then we
describe the algorithm for the static case in section 4 and Gabow’s dynamic algorithm
in section 5. In section 6, we describe our O(log3 n) worst-case time algorithm. Sec-
tions 7 and 8 describe the improvement to O(1) time and the handling of deletions,
respectively.

3. Definitions. We partition the tree T into paths, called centroid paths, as
follows. Let Ty denote the subtree of T rooted at node y. Suppose 2i ≤ |Ty| < 2i+1.
Then, y is called a tail node if |Tz| < 2i for all children z of y, if any. Such vertices y
will lie in distinct centroid paths and will be the tails, i.e., bottommost vertices, in
their respective centroid paths. The centroid path containing y connects y to its
farthest ancestor x such that 2i ≤ |Tx| < 2i+1. x is called the head of this path. It is
easy to see that centroid paths defined as above are disjoint.

A centroid path π is said to be an ancestor of a node x if π contains an ancestor3

of x. A centroid path π is said to be an ancestor of another path π′ if π is an ancestor
of the head of π′. A centroid path π is a child of another path π′ if the head of π is
a child of a node on π′.

The least common centroid path (LCCP) of two nodes is the centroid path con-
taining their LCA. An off-path node with respect to a particular centroid path π is
a node not on π whose parent is on π. The branching pair (BP) of two nodes x, y is
the pair of nodes x′, y′ on the LCCP which are the least common ancestors of x, y,
respectively.

4. Outline of the static algorithm. The nodes of the tree are partitioned into
centroid paths. The nodes are then numbered so that parents have smaller numbers
than their children. In fact, the numbering need satisfy only the following property:
if x and y are distinct vertices on the same centroid path and x is a strict ancestor
of y then number(x) < number(y).

Each vertex is given a code of length O(log n) with the following property: the
LCCP and BP of x and y can be determined easily from the first bit in which the
codes for x and y differ. Let code(x) denote the code for node x.

The LCA of two nodes x, y is now easy to determine. The LCCP and BP of x, y
are found in constant time using a RAM operation for finding the leftmost bit which
differs in code(x) and code(y).4 Note that the nodes in the BP need not be distinct
(see Figure 1). The node in the BP with the smaller number is the desired LCA.

4.1. The codes. We still need to describe the assignment of codes to nodes.
Note that if the tree was a complete binary tree, all centroid paths would be just
single nodes. Furthermore, code(x) could be the canonical code obtained by labelling
the left-going edges 0 and right-going edges 1, and reading off the path labels from
the root to x.

3All references to ancestors in this paper will be in the nonstrict sense, unless otherwise stated.
4Or perhaps, using table look-up on a precomputed set of answers.

898 RICHARD COLE AND RAMESH HARIHARAN

Fig. 1. LCCP and BP.

For a general tree, code(x) is a concatenation of smaller bit strings, one for each
centroid path containing an ancestor of x.

First, we assign to each centroid path π a bit string called separator(π). These
strings have the following property. For each centroid path π, the separator strings
assigned to children centroid paths of π form a prefix-free set (i.e., no string is a prefix

of another string). The length of separator(π) is O(log |Tx|
|Ty|), where y is the head of π

and x is the head of the centroid path containing the parent of y.

code(x) is a concatenation of the separator strings assigned to ancestor centroid
paths of x (including the path containing x) in order of increasing distance from the
root. It is easy to show that the length of the code is O(log n) (take any sequence
of centroid paths encountered on a path from the root to a leaf and let x1 . . . xk be

the heads of these centroid paths; then the sum
∑k

i=2 log
|Txi−1

|
|Txi

| equals O(log |Tx1
|) =

O(log n)).

It will be convenient to have separator(π) be of length a(�log |Tx|� − �log |Ty|�)
for a suitable constant integer a ≥ 1, if need be by padding separator(π) with zeros
at the right end. This ensures that the length and position of separator(π) in a code
is fully determined by |Tx| and |Ty|.

Each separator string in code(x) is tagged with the name of the corresponding
centroid path, i.e., given the index of a bit in code(x), we can recover the name of the
path within whose separator this bit lies, in O(1) time. The functions number(x),
separator(π), code(x), and the above tagging can all be computed in O(n) time (we
comment briefly on this below).

The LCCP of nodes x and y is determined from code(x) and code(y) in O(1) time
as follows. We find the leftmost bit in which code(x) and code(y) differ; subsequently,
using the above tagging, we find the name of the two paths whose separators contain
this mismatch bit in code(x) and code(y), respectively. The parents of the heads of
these two paths will give the BP (see Figure 1) and the path containing this BP is
the LCCP. To see this, note that the separator strings in both codes corresponding
to the LCCP and centroid paths above the LCCP are identical. In addition, due to
the above prefix-free property, the separator strings corresponding to the two children
paths of the LCCP which are ancestors of x and y, respectively, necessarily differ in
some bit.

A special case arises when one or both of x, y are part of the LCCP. If both are
part of the LCCP, then the one with smaller number() is the LCA. Otherwise, if
x is part of the LCCP but y is not, then code(x) is a prefix of code(y). The path
containing x is the LCCP; BP is easy to determine as well.

Computation. We briefly touch upon how number(x), separator(π), and code(x)

LCA QUERIES ON TREES 899

can be computed in O(n) time and, further, how each separator string in code(x) can
be tagged with the name of the corresponding path.

Computing number(x) is clearly easy: in any centroid path the numbers only
need to be in increasing order of distance from the root.

Computing separator(π) involves assigning prefix-free codes. We outline how
this is done for child paths of a centroid path π with head x, given that the separator
for π has already been determined. Let π1 . . . πk denote the child paths of π and
x1 . . . xk their respective heads. We construct a weight-balanced binary search tree
on the weights |Tx1 | . . . |Txk

|. This tree can be constructed in O(k) time [Meh77] and

has the property that the height of the leaf corresponding to xi is O(log
∑k

j=1 |Txj
|

|Txi
|) =

O(log |Tx|
|Txi

|). Separator codes for π1 . . . πk are obtained by encoding left edges in the

weight-balanced tree by 0, encoding right edges by 1, and reading off the labels on the
path from the root to the appropriate leaves in this tree. Clearly, codes thus obtained
are prefix-free. The whole procedure takes O(k) time, which translates to O(n) time
over all of T .

code(x) is computed in O(1) time from code(y), where y is the parent of x, as
follows. If x and y are in the same centroid path, then the codes are the same.
Otherwise, x is in a child path π of the path containing y, and code(x) is obtained
by concatenating code(y) and separator(π). This is done in O(1) time using a RAM
operation.

There is one issue which needs clarification. Recall the tagging mentioned above.
One method to find the name of the centroid path whose separator string contains a
particular mismatch bit is to keep an array of size O(log n) for each vertex x; the array
for vertex x stores the relevant path name for each potential mismatch bit. Clearly,
given the leftmost bit in which code(x) differs from code(y), indexing into the above
arrays (one each for x and y) using the location of the mismatch bit will give us the
names of the required separator paths in O(1) time. However, setting this up would
require O(n log n) space and, therefore, O(n log n) time, over all nodes x. Both terms
can be reduced to O(n) in one of two ways.

The first involves using a multilevel data structure, similar to the one used by
Gabow [Ga90] and the one we use to get O(1) query time for the dynamic case; this
is elaborated upon further in section 7. In this paper, we will assume the framework
of this solution.

In the second solution, this tagging is avoided altogether. Instead, centroid paths
are named by the code given to their respective heads and the name of the LCCP of
two given nodes x and y is easily recovered in O(1) time, given their codes. Indeed,
only the following operation needs to be performed to determine the name of the
LCCP: given the mismatch bit in code(x), return the prefix of code(x) comprising
separators of all those centroid paths which are ancestors of that centroid path whose
separator contains the mismatch bit (and likewise for code(y)). This is easily done
using look-up tables of O(n) size.

5. The dynamic case: Gabow’s amortized bound. The main problem
in the dynamic case is to maintain the centroid paths along with the quantities
number(x), separator(π), and code(x).

Gabow [Ga90] gave an algorithm for the case when only leaf insertions were
allowed. Maintenance of number(x) is trivial in this case: new leaves are assigned
successively larger numbers. However, if insertions of internal nodes is allowed, then
it is not clear how to maintain number(x).

900 RICHARD COLE AND RAMESH HARIHARAN

Gabow’s approach to maintaining centroid paths is as follows. As insertions are
made, the centroid paths in the tree will change, in a manner yet to be described.
Gabow updates the centroid paths not incrementally but in bursts. Whenever the
subtree rooted at the head of a centroid path doubles5 in size, the entire subtree is
reorganized, i.e., reprocessed to construct new centroid paths, separators, and codes.

Gabow maintains separators and codes as follows. Instead of prefix-free separa-
tors, Gabow maintains a family of nested intervals. The interval for a centroid path is
a subinterval of the interval for any ancestor centroid path. In addition, the intervals
for the centroid paths which are children of a path π are all disjoint. A constrained
version of this approach is equivalent to maintaining separators, as we shall describe
shortly in section 6.2.

When a new off-path node y with respect to a particular centroid path π is
inserted, a new interval within the interval for π and to the right of all other intervals
for children of π is assigned to y. Gabow shows that there is always sufficient space
for this new interval, given that a subtree is reprocessed whenever its size doubles, at
which point intervals nested within another are packed together. We follow a similar
approach.

The time taken by Gabow’s algorithm on any single insertion is proportional to
the size of the subtree which is reorganized. Thus the worst-case time for an insertion
could be Ω(n). However, since the reorganization of a subtree is coupled with the
doubling in its size, the amortized time for an insertion is O(log n). Gabow converts
this to O(1) amortized time by using a multilevel approach.

6. Our O(log3 n) time worst-case algorithm. As described above, there are
two main hurdles to improving Gabow’s scheme to run in constant worst-case time,
or even poly-logarithmic worst-case time. The first is the maintenance of number(x)
when internal nodes are inserted. The second is the reorganization of subtrees.

The first problem is easy to overcome using an algorithm for maintaining order in
a list under insertions and deletions in O(1) worst-case time, due to Dietz and Sleator
[DS87]. We maintain each centroid path as an ordered list using this algorithm,
allowing us to answer queries about which node in a particular BP is closer to the
root in O(1) worst-case time.

The second problem is more serious. Our basic approach is to distribute the reor-
ganization of a subtree caused by a particular insertion over subsequent insertions. In
other words, the various operations involved in reorganizing a subtree are performed,
a poly-logarithmic number at a time, over future insertions.6 This means that queries
which come while a subtree is being reorganized will see a partially reorganized sub-
tree and therefore risk returning wrong answers. We describe our algorithm for the
reorganization in further detail next.

6.1. Weighted nodes. Our O(1) time algorithm for the LCA problem uses as
a subroutine an O(log3 n) algorithm for a slightly generalized problem. We indicate
the reasons behind the need for a generalization next.

Let T be the tree on which the LCA queries are being performed. Our approach
is to select Θ(n/ log3 n) nodes of T , which partition T into subtrees of size O(log3 n),
called small subtrees. The selected nodes are formed into an induced tree T1, to which
we apply the O(log3 n) time algorithm. It will be the case that for each Θ(log3 n)

5When it crosses a power of two boundary, actually.
6This general approach has also been followed by Dietz and Sleator [DS87] and by Willard [W82]

to convert algorithms with good amortized performance to worst-case performance.

LCA QUERIES ON TREES 901

Fig. 2. Changing centroid paths.

insertions into one of these small subtrees just O(1) nodes are added to T1. To
achieve the O(1) worst-case time bound, we need to perform the O(log3 n) operations
stemming from an insertion to T1 over the corresponding O(log3 n) insertions to the
relevant small subtree of T , at a rate of O(1) operations per insertion. To control this
appropriately, we weight the nodes of T1 as follows.
Weight constraints:

(i) All weights are integer multiples of 1/ log3 n.7

(ii) Node weights are in the range [0, 1].
(iii) If a node has weight less than 1, its parent has weight 1.
(iv) A weight 1 node has at most one child of weight less than 1.
Weight increases occur in integer multiples of 1/ log3 n; the largest possible in-

crease is by 1/ log2 n, as we will see in Remark 6.23. We will show that we can
maintain T1 with O(log3 n) operations per unit increase in weight. Later we will see
that each insertion to T results in at most a 4/ log3 n increase in weight, and we will
show that T1 can be maintained with O(1) work per insertion to T . For intuition,
the reader may find it helpful to think of nodes being inserted with weight 1 with the
caveat that this is not exactly the scenario we are describing.

When a node is inserted in T1 it will have weight zero initially. As the relevant
inservations to T occur, its weight is increased. Until its weight reaches 1, no further
nodes can be inserted in its neighborhood in T1, so as to meet constraints (iii) and (iv)
above.

6.2. Updating centroid paths. When a node’s weight is increased (by up to
1/ log2 n), each of its O(log n) ancestor centroid paths could shift down by one or two
nodes as shown in Figure 2, Case 1. New centroid paths of one or two nodes could
begin as well, as shown in Figure 2, Case 2. (If all node weights are equal to 1, the
shifts are only by one node and the new paths each have only one node.)

We would like to maintain the invariant that for each centroid path there is an
integer i such that for each node w on the path, 2i ≤ |Tw| < 2i+1, where |Tw| denotes
the weight of the subtree Tw rooted at w. We call such paths i-paths. Unfortunately,
as it is expensive to update the codes associated with the subtrees of a centroid path,
the changes to a centroid path may lag the increases in the sizes of the trees Tw.
Consequently, we will allow centroid paths to overlap.

More specifically, an i-path π, as in the static structure, comprises a maximal

7n is restricted to a range [2i, 2i+a] for some constant a, and we take log3 n to be the fixed value
(i + a)3.

902 RICHARD COLE AND RAMESH HARIHARAN

sequence of nodes w with 2i ≤ |Tw| < 2i+1, but in addition may include further
nodes z with 2i+1 ≤ |Tz| < 2i+1 +2i−1 +2i−2, for i ≥ 1. Any such node z is also part
of an (i + 1)-path π′. Naturally, the nodes of π are required to form a path.

Further, to accommodate leaves, which may have weight 0, we define a 0-path to
comprise a maximal sequence of nodes w such that 0 ≤ |Tw| < 2, and in addition it
may include further nodes z with 2 ≤ |Tz| < 2 3

4 .
If node v lies on both an i-path π and an (i+1)-path π′, π is said to be its primary

path and π′ its secondary path. If v lies on a single path π, π is its primary path.
We need to redefine the notion of parenthood for these paths.
Definition 6.1. Let π be a centroid path with topmost node x, called head(π). If

x is secondary on path π′, then π′ is the parent of π. Otherwise, if x is not secondary
on any path, the parent of π is given by the primary path of parent(x).

Lemma 6.2. Suppose that u and v are adjacent secondary nodes on (i+1)-path π′.
Then u and v are primary nodes on the same i-path π, where π′ is the parent of π.

Proof. W.L.O.G., let u be the parent of v. |Tv| ≥ 2i+1 as v lies on π′. Let
w be u’s other child, if any. Suppose, for a contradiction, that u and v were on
different i-paths. Also suppose that u is on i-path π. Then w must have been part
of π before |Tv| reached 2i, as otherwise at that point v would have joined π. For
i ≥ 1, it follows that |Tw| ≥ 2i. For i = 0, by weight constraint (iv), weight(w) must
reach 1 before v is inserted (with initial weight 0) in T1; thus here too, |Tw| ≥ 2i.
Thus |Tu| = weight(u) + |Tw| + |Tv| ≥ 2i+1 + 2i, and thus u cannot be on an i-path,
contrary to assumption.

The increment in weight of a node z may cause changes to the tails of some or all
of its ancestral centroid paths. Changes to the heads of the paths may be deferred;
their handling is described in subsequent sections. The reason for delaying changes
to the head is that such a change entails updating the codes of all the nodes in the
off-path subtree of the head node. The following changes may occur to an i-path with
tail y and head x.

1. If node z is not a descendant of y, then the tail of π is unchanged.
2. If z is a descendant of x and |Tx| increases from less than 2i+1 to at least

2i+1 due to the weight change, then x is added to an (i+1)-path. If the path
π′′, the parent of π, is an (i + 1)-path, then x becomes the tail of π′′. If not,
a new (i + 1)-path is created, comprising the single node x. In any event, x
remains on π for now. Note that there may be two nodes x1 and x2 for which
|Txh

|, h = 1, 2, increases from less than 2i+1 to at least 2i+1.
Remark 6.3. Clearly, as weights increase in the subtree rooted at the head x

of path π, eventually x must be removed from the head of π in order to maintain the
invariant that |Thead(π)| < 2i+1+2i−1+2i−2. Thus, over time, the path π will migrate
down the (growing) tree, but will never disappear.

Remark 6.4. Actually, the tail node u of an i-path might have children v and w
with |Tv|, |Tw| < 2i−1, but at least one of |Tv|, |Tw| will be of size 2i−2 or larger (for
to contradict this we would need 2i ≤ |Tu| = wt(u) + |Tv| + |Tw| < 1 + 2 · 2i−2, i.e.,
2i−1 < 1 or i < 1, and then u is a leaf). Thus as (i − 1)-path π′ migrates down
the tree from such a node u it might disappear; to avoid this we preserve it as a zero
length path at the “bottom” of node u and ancestral to both v and w. Later if either
|Tv| or |Tw| reaches size 2i−1, then the corresponding node (v or w) joins π′. When
a node z is inserted it joins a centroid path according to the following rules.

1. If z is inserted between two nodes in π, then z is added to π at the appropriate
place (possibly, z is added to two paths in this way, once as a primary node
and once as a secondary node).

LCA QUERIES ON TREES 903

5210 643 7 8

valid

invalidvalid

Fig. 3. Constrained intervals.

2. If node z is inserted between x, the head of path π, and x’s parent z′, then z is
added to the centroid path or paths to which x belongs. If as a result z is on
both an i- and an (i+1)-path, it will be the case that |Tz| < 2i+1+2i−1+2i−2,
since |Tz| = |Tx| at this point.

6.3. Updating separators. Separators and codes have to be updated to reflect
the above changes in the centroid paths; the update begins when a node previously
on an i-path joins an (i + 1)-path. When the update completes, the node leaves the
i-path. In between times it lies on both paths.

The following interpretation of separators in terms of intervals is helpful.
Separators as constrained intervals. Consider an interval of length m = 2k. All

subintervals we consider will have lengths which are powers of 2. Each integer point
on this interval has an associated k bit code (the leftmost point is coded with the all 0s
string, subsequent points are coded by the binary encoding of their distance from the
leftmost point; this encoding has length k). We allow a subinterval of length 2i to
begin only at those integer points which have i trailing 0s in their bits (see Figure 3);
with such a subinterval, we associate a bit string of length k − i given by the leading
k − i bits of the code for the starting point. It can easily be seen that given a set
of disjoint subintervals with this property, the bit strings assigned to the subintervals
form a prefix-free set. Thus assigning prefix-free separators is identical to assigning
subintervals with the above constraints. Henceforth, all our references to intervals
will be to intervals with the above constraints.

Mapping paths to intervals. With each i-path π we maintain an interval intπ of
length either 2ic or 2ic+c′ , c′ < c, where c and c′ are constants to be determined.
When π is created, intπ has length 2ic. At some point between the time Thead(π)

reaches size 2i+1 − 2i−3 and the time it reaches size 2i+1, intπ will gain length 2ic+c′ .
There are two goals. The first is to ensure that if the parent of head(π) lies on an
i-path (not π) as well as an (i + 1)-path, then intπ has length 2ic. The second is to
ensure that if a node originally on π is also secondary on path π′ then intπ has length
2ic+c′ . By definition, once Thead(π) first reaches size 2i +2i−1 +2i−2 the first situation
no longer applies. The second situation applies once Thead(π) reaches size 2i+1 (as
head(π) changes the size of Thead(π) may subsequently drop). Note that constraints
on c and c′ will be imposed by Lemma 6.10 below; setting c′ = 5 and c = 10 suffices.

A crucial property of an interval for an i-path π is that the rightmost bit for its
separator ends at a fixed location, so that in each code in which it occurs there are
a specified number of bits to its right whose values depend only on the separators
for h-paths, h < i, to which the relevant node belongs. The number of these bits is
either ic or ic + c′, corresponding to the size of intπ. This allows the code for intπ

904 RICHARD COLE AND RAMESH HARIHARAN

to be changed without requiring any change to the separators for h-paths, h < i,
contained in the codes in which intπ occurs. The one exception arises when the size
of the interval for π increases. But this can be viewed as simply prefixing c′ zeros to
the separator following π in the code for each node in Thead(π).

Updating intervals. The following updates need to be performed. See Figure 2.
1. Node x lies on paths π and π′; x is the head of π and is being removed from π;

in addition, there is a proper ancestor of x that is or had been on π′. Then
the centroid path π′′ whose head was the off-path child of x (with respect
to π) must be assigned a new interval. The interval for π′′ was earlier nested
within intπ and intπ′ . Now this interval must be reassigned so as to be
disjoint from intπ but still nested within intπ′ . The process which does this
is called Reassign(x).

2. Node x is on paths π and π′, and x is the head node of π and π′. Then π′ is a
new centroid path, and a new interval has to be assigned to π′. This interval
intπ′ must be nested within the interval intπ′′ for the path π′′, the previous
parent of π, and now the parent of π′. Further, intπ must be reassigned so
it is nested within intπ′ . This is done by a procedure called Assign(π′). In
addition, the interval associated with the path π′′ containing the off-path child
of x (with respect to π) must be reassigned so that it is also nested within
intπ′ . This is done by a procedure called Reassign(x). There are a few
details associated with this case which will be explained later in section 6.4.

3. Node x is the head of i-path π, and its parent y lies on class i path π′ �= π and
also necessarily on class i+1 path π′′ (for by the maximality of π, |Ty| ≥ 2i+1).
Note that by the time |Thead(π)| = 2i+1, y will no longer be on π′. Between
this time and before the time |Thead(π)| reaches 2i+1 + 2i−1 + 2i−2, a new
larger interval will have been assigned to path π; this new interval will be
contained within intπ′′ . This is done by a process called Rescale(π).

Thus as time proceeds, subintervals move from one interval to another and new
intervals are created. This movement and creation is done as follows. When a subin-
terval has to be removed from an interval, the subinterval is just marked as deleted
but not removed. When a new subinterval has to be assigned to π within intπ′ , where
π′ is the parent path of π, it is assigned in either the first half of intπ′ or the sec-
ond half of intπ′ , based on a logic to be described. In either case, it is assigned to
the leftmost available slot to the right of all assigned subintervals in constant time.
Note that a particular weight increase creates at most constant number of Rescale,
Reassign, or Assign processes at each ancestor centroid path of the reweighted node.

We need to ensure that Assign(π), Rescale(π), and Reassign(x) will always find
an empty slot as above to assign to the new interval for π. This is not hard to
ensure if nondeleted subintervals are separated by small gaps only. However, large
gaps could build up as subintervals enter and leave intervals. Consequently, we need
a background process which will start removing deleted subintervals and compacting
nondeleted subintervals within an interval, once the interval reaches a certain fraction
of its capacity. This process is described next.

The compacting process for an i-path π. The compacting process maintains the
interval intπ as two halves. At any given time, one half, the insertion half, will be
receiving newly inserted subintervals. At the same time the deleted subintervals in
the other half are being removed and the nondeleted subintervals are being moved
to the insertion half. By the time the insertion half is filled, the noninsertion half
will be empty, and then their roles are toggled. Actually, the toggling occurs at a
predetermined time when it is guaranteed that the noninsertion half is empty and the

LCA QUERIES ON TREES 905

insertion half has not overflowed. W.L.O.G., consider the instant at which the right
half becomes the insertion half. The compaction process moves through the subinter-
vals in the left half from left to right removing deleted subintervals and reassigning
undeleted subintervals at the leftmost possible slot in the right half (to the right of
already assigned subintervals in this half). Insertions subsequent to the beginning of
the compaction process will also be made in the right half until the stopping time,
which is no later than when the right half becomes full. We will show that the com-
paction process in the left half will have finished by the time this happens. At this
point, the compaction process will become active in the right half and insertions will
be performed in the left half. We call the above process Compact(π). Note that
a single insertion can initiate a compaction process at each of its ancestor centroid
paths.

Thus there are four kinds of processes which could be created when a node is
inserted: Assign(), Rescale(), Reassign(), and Compact(). Each process is
expensive and takes time at least proportioned to the size of the subtree in which it
modifies codes (this updating of codes will be elaborated upon shortly in section 6.4).
Thus these proceses have to be performed, a poly-algorithmic number of operations
at a time, over future insertions. Therefore, at any instant a number of such processes
could be underway.

6.4. Updating codes. We consider the updates that need to be made to the
various codes as a result of changes made to the intervals by Assign(), Reassign(),
Rescale(), and Compact() processes (as described in section 6.3).

First, consider an Assign(π′) process initiated by some node x, which is the head
node on i-path π and becomes the first node on (i + 1)-path π′. Assign(π′) must
assign a new interval to π′ and a new interval to π nested within the interval for π′.
It must then change the codes at all nodes in Tx to reflect the change to the above
two intervals. This is done as follows. The old separator string for π in the codes at
nodes in Tx (including x itself) will be updated to the new separator string for π. In
addition, the separator string for π′ will be incorporated into the codes at all nodes
in Tx. Thus the effect of Assign(π′) on the codes in Tx is to make π′ appear as a
path in their codes, but as a path with no primary nodes. Reassign(x) will perform
the changes needed to make x a primary node on π′.

Next, consider a Reassign(x) process. It is initiated when x is in the process of
leaving i-path π on which it is currently primary (recall x is also secondary on (i+1)-
path π′ in this scenario). The process must remove the separator string for π from
the code at x and from the codes at all the nodes in the subtree rooted at that child y
of x which is not on π. In addition, this process must assign a new separator string
for the path containing y and modify the codes at all nodes in the subtree rooted at y
to reflect this.

We need to specify the scheduling of Reassign(x) in more detail. When size(x)
reaches 2i+1, Reassign(x) is made pending. At some future point, Reassign(xi)
processes, 1 ≤ i ≤ k, are all initiated, where nodes x1, x2, . . . , xk are all the nodes
currently primary on π and secondary on π′. These Reassign() processes are per-
formed in top-to-bottom order (i.e., if the nodes x1, x2, . . . , xk are in top-to-bottom
order, then Reassign(x1), Reassign(x2), . . . , Reassign(xk) are performed in turn).
This collection of Reassign processes is called a Reassign superprocess.

A Compact(π) process for an i-path π must assign a new separator code to all
child paths of primary nodes on π (secondary nodes are themselves contained in a
child path of a primary node on π by Lemma 6.2). Compact(π) must also update

906 RICHARD COLE AND RAMESH HARIHARAN

codes at all nodes in the subtree rooted at the head of π (other than codes for primary
nodes on π). If π happens to be a zero length path, the above description applies to
its one or two child paths.

Finally, a Rescale(π) process must assign a new interval intπ to π contained
within intπ′ , where π′ is the parent of π. In addition, the process must update the
codes of all nodes in Thead(π), replacing the old separator for π with the new separator
(corresponding to the change to interval intπ).

In addition to updating the codes, it is also necessary to update the annotations
on the codes; recall the annotations label each bit in the code with the name of the
centroid path whose separator contains this bit (also note the tagging mentioned in
section 4.1). This can be done in O(log n) time per node.

We have now described the overall structure of the algorithm. For each unit weight
increase in a node (from 0 to 1), which occurs as a node is inserted, O(log n) work
is done in updating the ancestor centroid paths of the inserted node and initiating
a constant number of Assign, Rescale, Reassign, and Compact processes for each
such centroid path. A further O(log n) work is done to construct the code for the
inserted node along with the annotations, using the code for its parent or child (this
is explained in section 6.5). The work needed to be done on this insertion in order
to further the progress of unfinished processes will be described in section 6.6. This
part of the algorithm is what leads to the O(log3 n) bound. Before describing this
work, we introduce one more crucial aspect of the algorithm and also some crucial
invariants which we will maintain.

Two codes instead of one. Even though all of the above description has been in
terms of one code per node, we will actually maintain not one but two codes at each
node. We will refer to these two codes as the first code and the second code. The
reason for two codes is the following.

Consider two nodes x, y and any process which needs to modify codes at both
these nodes. At some intermediate time instant, this process could have modified the
code at x but not at y; as a consequence, the first bit of difference will no longer be
related to the LCCP of x and y. To make matters worse, there could be several such
processes which have modified codes at one but not both of x and y (actually, our
algorithm will ensure that there is only one such process).

To ensure that LCAs are indeed related to the very first bit of difference, we will
maintain two codes instead of one at each vertex. Each process will be required to
update both codes for all vertices of interest. However, all first codes will be updated
first, and all second codes will be updated only after all first codes have been updated.
The critical property is that at any instant of time, either both the first codes at x, y
would have been modified, or neither second code at x, y has been modified. Thus
either the first codes or the second codes will retain the relationship of the leftmost
difference bit to the LCCP at each instant of time.

In what follows, unless explicitly stated, we will refer to both the codes for node x
collectively as the code at node x, or as code(x).

6.5. Invariants maintained. To ensure that queries are answered correctly at
every instant, we schedule the various processes so that the two invariants described
below are maintained.

Invariant 1 states that each process finishes before the situation which caused the
initiation of the process changes too dramatically. Some additional terminology will
be helpful.

LCA QUERIES ON TREES 907

Definition 6.5. A process associated with an i-path is called an i-process (i-
Assign, etc.).

Definition 6.6. The size of path π, size(π), is defined to be |Thead(π)|.
Definition 6.7. A weight increase is in the domain of path π, or into π for

short, if it is applied to a node in the subtree rooted at the current head of π.
Invariant 1. Each process associated with i-path π completes within a weight

increase of 2i−3 into π from the time the process was initiated. In addition to this,
the following rules apply:

(a) Assign(π) is initiated when size(π) reaches 2i. (As size(π) may never be ex-
actly 2i, it is helpful to pretend that time is continous and that the weight in-
creases occur continuously, and then we can define the initiation of Assign(π)
to occur exactly when size(π) = 2i.)

(b) Compact(π) is initiated following each weight increase of 2i+1 into π from
the time of π’s creation (i.e., Assign(π)’s initiation).

(c) Pending Reassign(x) processes associated with π are initiated following
weight increase h 2i−2 + 2i−3 into π, from the time of π’s creation, for each
integer h ≥ 4.

(d) Rescale() is initiated when size(π) reaches 2i+1 − 2i−3.
Corollary 6.8. A Reassign(x) process associated with (i + 1)-path π′, which

removes x from i-path π, becomes pending when size(π) = 2i+1 and head(π) = x,
and completes before a further weight increase of 2i−1 + 2i−2 into π. In addition,
if a Reassign(z) process is created when node z is inserted as the parent of node x
with an already pending Reassign(x) process, the Reassign(z) completes before the
Reassign(x) process completes.

Finally, size(π) < 2i+1 + 2i−1 + 2i−2.
Proof. Reassign(x) becomes pending when x becomes secondary on π′, i.e., when

size(π) = 2i+1 with head(π) = x. By Invariant 1(c) applied to π′, Reassign(x) is
initiated before a further weight increase of 2i−1 into π′ and completes within another
weight increase of 2i−2 into π′. Any weight increase into π during this time is also
into π′. The first claim follows. The claim about Reassign(z) follows due to the
scheduling of Reassign() processes in top-to-bottom order.

To obtain the bound on size(π) we show that size(π) is less than 2i+1 + 2i−1

at the moment when a bunch of Reassign() processes removing nodes from π are
initiated. Let x be the highest node on π not being reassigned. Then, at that moment,
|Tx| < 2i+1. Following a weight increase of 2i−1 into π′, all the nodes being reassigned
have been removed, and the next bunch of Reassign() processes is being initiated; at
that moment again size(π) < 2i+1 + 2i−1. The maximum size for π therefore occurs
just before the Reassign() processes are completed, i.e., just before a weight increase
of 2i−2 into π′ (and hence into π) from the moment the Reassign() processes are
initiated. This yields the claimed bound on size(π).

Corollary 6.9. For each path π, there is at most one Assign(π), Rescale(),
Reassign(x) for x secondary on π, or Compact(π) under way at any given time.

Invariant 2. For any pair of nodes x, y there is at most one Assign(), Reassign(),
Rescale(), or Compact() process which must modify the codes at both x and y and
which has modified one but not both the first codes at these nodes. Similarly, there
is at most one process which must modify the codes at both x and y and which has
modified one but not both the second codes at these nodes. Finally, if a process with
the former description exists, then a process with the latter description cannot exist.

We remark that Invariant 1 is not hard to maintain. Similarly, Invariant 2 is easy
to maintain using a simple blocking mechanism for processes. However, maintain-

908 RICHARD COLE AND RAMESH HARIHARAN

ing both invariants simultaneously is nontrivial. This is because weight increases in
different parts of the tree may occur at different rates and unfinished processes will
therefore be driven at different speeds by these weight increases. In particular, a pro-
cess could be blocked indefinitely. One solution to this problem is to make a blocked
process help the blocking process. This will be described in detail in section 6.6.

We are now ready to show that the intervals are sufficiently large.

Lemma 6.10. Suppose Invariant 1 holds and that c′ ≥ 5 and c = 2c′. Let π be
an i-path.

(a) The insertion side of intπ cannot be filled up prior to the completion of
Rescale(π) (recall that intπ has size 2ic before Rescale(π) completes).

(b) The insertion side of intπ following the completion of Rescale(π) will not fill
up before the first initiation of Compact(π) (intπ now has size 2ic+c′).

(c) Consider an initiation of Compact(π). Over a subsequent weight increase of
2i+1 into π, the side of intπ being filled by Compact(π) will have room for
the subintervals being added to intπ.

Proof. The proof uses an induction on i. The result is trivially true for i = 0. Thus
the inductive step remains to be proven. We start with part (a). Up to the completion
of Rescale(π), size(π) remains less than 2i+1. We show that all the subintervals that
could be generated until Rescale(π) completes will fit into intπ.

We sum the length of all the subintervals inserted into intπ since the initiation
of Assign(π). Some of these intervals may have been deleted by the time Rescale(π)
completes. The length of each interval that is inserted is at most 2(i−1)c+c′ . A particu-
lar subtree rooted at an off-path node could repeatedly delete and insert subintervals
increasing in size by successive factors of 22c′ . Thus such a subtree, whose root is
a primary node in an h-path, could be responsible for a total subinterval of length∑2h+1

j=0 2jc
′
< 2(2h+2)c′

2c′−1 . The total length of gaps between subintervals is at most the to-
tal length of the subintervals. Since Rescale(π) completes following a weight increase
of 2i into π from the time π was created, the total length of intπ occupied by deleted

and undeleted subintervals and the gaps between them is at most 2
∑

r
2c′(2hr+2)

2c′−1 ,

where
∑

r 2hr ≤ 2i+1 = 4 · 2i−1 and hr ≤ i − 1. This is at most 8·2ic′

2c′−1 ≤ 22ic′

2 for
c′ ≥ 5.

The proof of part (c) is broadly similar. W.L.O.G., we assume that Compact(π)
inserts into the right half of intπ (now intπ has size 2ic+c′). We show that from
the time of the initiation of Compact(π), the subintervals in intπ when Compact(π)
was initiated together with any new subintervals inserted up until the next initiation
of Compact(π) will all fit in the right half of intπ. When Compact(π) is initiated,
size(π) < 2i+1 + 2i−1 + 2i−2; the next initiation of Compact(π) occurs following a
weight increase of 2i+1 into π. The length of each subinterval inserted into intπ is at
most 22ic′ ; such a subinterval would be due to a subtree of size at least 2i. Similarly to
before, the total length of subintervals for which such a subtree could be responsible

is less than 22ic′ +
∑2i−1

j=0 2jc
′
< 2(2i+1) c′

2c′−1
. A smaller subtree, whose root is a primary

node on an h-path could contribute subintervals of total length no more than 2(2h+2) c′

2c′−1
.

As before, the total length of the right half of intπ occupied by deleted and undeleted

subintervals and the gaps between them is less than 2a·2(2i+1) c′

2c′−1
+ 2

∑
r

2(2hr+2) c′

2c′−1
,

where a · 2i +
∑

r 2hr < 2i+1 + 2i−1 + 2i−2 + 2i+1 and hr ≤ i − 1. This is at most

(8 · 2(2i+1) c′ + 4 · 22ic′)/(2c
′ − 1) ≤ 12 · 2(2i+1) c′/(2c

′ − 1) ≤ 2(2i+1) c′/2, if c′ ≥ 5.

The proof of part (b) is identical to that of part (c) except that we need only

LCA QUERIES ON TREES 909

consider the intervals due to an initial weight of 2i (when π was created) and a weight
increase of 2i+1 (namely, up to the time when Compact(π) is first initiated).

6.6. Some details of processes. Before proceeding, some details of Assign(),
Reassign(), Rescale(), and Compact() processes need to be carefully examined.
These details arise because a process is performed over a sequence of future insertions.
A fundamental issue here is that nodes can lie on two paths: on one as a primary
node and on the other as a secondary node.

Our goal, which enables the O(1) query procedure, is to establish the following
claim.

Claim 6.11. The changes due to x becoming primary on path π′ and ceasing to
be primary on path π are reflected in the code at a descendant node y of x only due to
the modifications performed by the process carrying out x’s change of primary paths.

Process blocking. To maintain Invariant 2, the following strategy is used. A
process first updates all the first codes for the nodes it needs to process in preorder
and then updates all the second codes, again in preorder. When the process begins
work on the first codes of a subtree rooted at a node z it will mark z as blocked and
will only remove the mark when it has finished updating the first codes in z’s subtree.
It will follow the same blocking procedure when updating second codes. If a process P
comes to a blocked node it will not proceed with its work until the node is unblocked
(later, we explain the helping of the blocking process undertaken by P while it is
waiting).

In addition, a process keeps the topmost node it is updating blocked until it is
completed. Finally, a Reassign(x) process, in addition to keeping x blocked through-
out its processing, will as its last step make x primary on the path on which x had
been secondary.

We specify later just how a newly inserted node is marked.
Constructing codes for newly inserted nodes. Recall that each node has two asso-

ciated codes, a first code and a second code. For a newly inserted node x, each code
is obtained from the corresponding code for its parent or child as follows.

1. If x is inserted as a child of a leaf node, then it is given the same code as its
parent. This reflects the fact that x lies on the same 0-path as its parent. Of
course, if and when x’s weight increases sufficiently, its parent will leave this
0-path.

2. If x is inserted as a leaf child of an internal node v, then it forms a new
singleton path. A new interval is assigned for this path. The code for x is
just the code for its parent appended with the separator string for this new
singleton path. There is one more complicated scenario, which arises when a
Reassign(v) process is underway, and the first code for v has been updated,
but the second has not. Let π be v’s primary path and π′ its secondary
path. In this case, x is assigned two subintervals, one in intπ′ for its first
code and one in intπ for its second code. When the Reassign(v) process
updates second codes it will replace the subinterval in x’s second code with
the subinterval in intπ′ used in its first code.

3. If x is inserted as an internal node, then the code for x is made identical to
that for its child. This makes x primary on the same path π as its child. In
addition, if x’s child is marked, then so is x. Of course, it may be that x
is also added to the parent path of π, in which case a Reassign(x) process
is created. There is one exception. Let y be x’s child. If a Reassign(y) is
already underway, the code for x is set to the updated code for y, i.e., the

910 RICHARD COLE AND RAMESH HARIHARAN

code with separator(π) removed, and in this case x is not marked.
We mention here that Invariant 2 also applies to newly inserted nodes x and y

which inherit their codes from partially processed nodes (i.e., nodes for which one but
not both codes have been updated by some process).

Process roots. Each process must modify codes at certain nodes in the tree. The
node closest to the root of T1 whose code a process must modify is called the root
of the process. Since nodes are inserted dynamically, the root of a process needs
to be defined more precisely. For an Assign(π), Compact(π), or Rescale(π) process,
head(π) is the root of the process; if a new node z is inserted and becomes the head of π
as one of these processes is underway, z becomes the new root of the process. While
one of these processes is underway no node x leaves π due to a Reassign(x) process
until the Assign(π), Rescale(π), or Compact(π) has completed; this is a consequence
of the blocking strategy. For a Reassign(x) process, the root is always x.

Helping a blocking process. If a process P reaches a marked node x, it will seek to
help an unblocked process in Tx so as to advance the processing that will lead to the
removal of the mark on x. To this end it traverses a path of marked nodes from x;
at the last marked node y, it discovers the process Q that marked y and performs
the next code update for Q. This may entail unmarking O(log n) nodes and marking
up to one node (since Q marks a nonleaf node prior to updating it). To facilitate
this process, each mark includes the name of the process making the mark. As it
suffices to have P help some unblocked process on which it is waiting either directly
or indirectly, it suffices that P traverse a maximal path of marked nodes in Tx; thus
this process takes O(log n) time. It is called a basic step.

i-process P could be blocked by an ancestral process or by a descendant process.
We will need to ensure that P is blocked by at most one ancestral process. Further,
this only happens at P ’s initiation. If P is so blocked, it puts a subsidiary mark on its
root. The meaning of this mark is that as soon as Q’s mark is removed, where Q is the
blocking process, P ’s mark is then instantiated. As there is only one active process
per path, there are at most two such subsidiary marks per node (two paths can share
a root, either because a new path has only secondary nodes and hence shares its root
with a child path, or because a path temporarily has no nodes; the nodeless path will
use its parent node as its root for any associated processes). In the case that two
marks are present, the mark for the deeper path will be instantiated. It remains the
case that each process P is blocked by at most one ancestral process.

Process interleaving and its effect on code updates. We need to examine the
interleaving of processes for paths π and π′, π′ a child of π, and how this may affect
the update of code portions corresponding to sep(π) and sep(π′).

Because of their relative timing, Compact(π), Rescale(π), Assign(π), and
Reassign(x) for x secondary on π do not overlap.

Compact(π) and Reassign(x) for x secondary on π, update only the portion of
the code corresponding to sep(π′) for π′ a child of π; Rescale(π) updates only the
portion of the code corresponding to sep(π); Assign(π), on the other hand, updates
the portions of the code corresponding to both sep(π) and sep(π′), where π′ is the
primary path for nodes secondary on π. Thus we will need to consider the possible
interaction of Compact(π) and Assign(π′) or Rescale(π′), and of Reassign(x) and
Assign(π′′′) or Rescale(π′′′) where x is secondary on π, primary on π′, and π′′′ is the
off-path child of x (w.r.t. π′).

Consider such a Compact(π) process. Let y be an off-path child of π, second-
ary on π′ and primary on π′′. So there is an Assign(π′) process at hand. If the
Compact(π) process updates code(y) first, then π′′ receives a new subinterval in the

LCA QUERIES ON TREES 911

insertion half of intπ, the right half say; subsequently, the Assign(π′) gives π′ a new
subinterval in the right half of intπ. On the other hand, if the Assign(π′) process
updates code(y) first, but after the Compact(π) process has been initiated, then the
Assign(π′) process gives π′ a new subinterval in the right half of intπ, and sub-
sequently the Compact(π) process does nothing further to intπ′ and the codes for
nodes in Ty. The possible interactions of Compact(π) and Rescale(π′) are identical.

Next, we consider a Reassign(x) process for a node x, primary on π′ and second-
ary on π. Let y be the child of x which is not on π′. Let π′′ be the path containing y.
After the creation of the Reassign(x) process suppose that y becomes secondary on a
new centroid path π′′′. π′′′ now becomes the parent of π′′ and an Assign(π′′′) process
is initiated. We consider two cases in turn.

First, suppose that Assign(π′′′) modifies the code for y before Reassign(x) does
so. Then the separator for π′ will be in code(y) when it is processed by Assign(π′′′).
Thus intπ′′′ will be assigned so that it is nested within intπ′ . At some subsequent
point, Reassign(x) will remove the separator string for π′ from code(y) and reassign
intπ′′′ so that it is nested within intπ.

Second, suppose that Reassign(x) has updated code(y) before Assign(π′′′). Then,
when Assign(π′′′) processes code(y) it no longer contains the separator for π′. The
behavior of Assign(π′′′) is now as expected with intπ′′′ being assigned so as to be
nested within intπ. But note that when Reassign(x) processed code(y), code(y) indi-
cated that y was primary on π′′. So π′′ was reassigned a new subinterval within intπ
and the resulting separator string was included within code(y). At some later instant,
Assign(π′′′) included the separator string for π′′′ in code(y) and replaced the current
separator string for π′′ with a new separator string corresponding to a subinterval
nested within intπ′′′ . Ultimately, the Reassign(y) process created by y becoming sec-
ondary on π′′′ removed the latter separator string from code(y). Again, the possible
interactions of Reassign(x) and Rescale(π′′′) are identical.

Consider Claim 6.11. Note that it would not hold if, in the first case above,
Assign(π′′′) assigned an interval to π′′′ nested within the interval for π and incor-
porated the associated separator into code(y). For if Assign(π′′′) did so then the
change resulting from x becoming primary on π would be reflected in code(y) by a
modification made by Assign(π′′′) and not by Reassign(x).

It is possible for the updates described above involving two processes (Compact(π)
and Assign(π′) or Rescale(π′), Reassign(x) and Assign(π′′′) or Rescale(π′′′)) to
occur in a different order on the two codes. The only possible interleaving for
the Compact(π) process is that first Compact(π) updates the first codes of nodes
in Ty, then Assign(π′) (or Rescale(π′)) updates both codes of nodes in Ty, and
then Compact(π) examines Ty but makes no further updates to the codes. For the
Reassign(x) process, the only possible interleaving is that first Reassign(x) updates
the first codes of nodes in Ty, then Assign(π′′′) (or Rescale(π′′′)) updates both codes
of nodes in Ty, the Reassign(x) updates the second codes of nodes in Ty. Each update
follows the appropriate rules for the codes it encounters which will differ for the first
and second codes. All we have to ensure is that the subintervals chosen for the second
codes within a particular interval are the same as those selected for the first codes
within the same interval. Thus, for example, in the Reassign(x)/Assign(π′′′) scenario
above, Assign(π′′′) assigns a separator for π′′′ to code(y), (sep(π′′′))1 say, contained
in intπ, while for the second code it assigns a separator (sep(π′′′))2 for π′′′ contained
within intπ′ , and then Reassign(x) replaces this separator with (sep(π′′′))1.

912 RICHARD COLE AND RAMESH HARIHARAN

6.7. Processing queries. The algorithm ensures that the first bit of difference
between either the first codes at x and y or the second codes at x and y is related to
the LCCP, which itself can be obtained using the algorithm detailed below. The first
step is to find the leftmost bit of difference dfirst, between the first codes at x and y,
and thereby to find the rightmost path πfirst such that the first codes at x and y agree
on all separators up to and including that for πfirst. Similarly, dsecond and πsecond

are identified with respect to the second codes at x and y.
Consider zfirst = head(πfirst) and zsecond = head(πsecond). As we will see, if the

first code of zfirst agrees with the first code of x (and of y) on all separators up to
πfirst and the same is true for zsecond, then one of πfirst and πsecond is the LCCP of
x and y; if it holds only for zfirst, then πfirst is the LCCP, and similarly for zsecond.

Lemma 6.12. If a process P updates the separator sep(π) for a path π, then
sep(π) is identical either for all first codes for nodes in Thead(π) or for all second
codes for nodes in Thead(π), and when P unmarks Thead(π) it is identical both for all
first codes for nodes in Thead(π) and for all second codes, although its encoding in the
first and second codes may differ.

Proof. The proof uses an induction on time. So assume that the result is true at
the moment P marks Thead(π). Any process that updates sep(π) must mark Thead(π),
thus until P unmarks Thead(π), only P can update sep(π) in the codes for nodes in
Thead(π). The lemma follows.

Comment. The interleaving described in the previous section shows that the two
codes may differ following completion of a process, though when the second process
touching these codes also completes, the equality will be restored.

Lemma 6.13. If sep(π) appears in code(x), then head(π) is an ancestor of x.
Proof. The proof is by induction on time. When a node is inserted, if a leaf it

inherits its code from its parent and thus the claim is true at this point; if an internal
node, it inherits its code from its child and the claim is true at this point too.

An update which changes head(π) will occur only after sep(π) is appropriately
updated in the codes for all descendants of head(π) and thus the claim continues to
hold.

Let z be the LCA of x and y, and suppose that z is primary on π and let
w = head(π). Then we have the following.

Lemma 6.14. Suppose either that w is not marked, or if w is marked, then
W.L.O.G. it is the second codes in Tw that are begin updated. Then z and zfirst lie
on the same path. Also, the first code of zfirst agrees with the first code of x on all
the separators up to πfirst. Finally, πfirst is the LCCP of x and y.

Proof. By Lemma 6.12, any encoding sep(π̃) for path π̃ appearing in the first
code of z must also appear in the first codes of x and y. Thus zfirst lies on the
same path as z or is a descendant of z. But clearly if sep(π̃) appears in code(x),
then there is a node v on π̃ with v an ancestor of x (v may be primary or secondary
on π̃). Thus there are nodes on πfirst ancestral to each of x and y, which must include
zfirst = head(πfirst). Thus zfirst and z lie on the same path.

Corollary 6.15. One of πfirst and πsecond is the LCCP of x and y.
By Lemma 6.13 πfirst and πsecond are both ancestral to each of x and y. Thus

if πfirst = πsecond they are both the LCCP. Otherwise, let πfirst be a j-path and
πsecond a k-path. The one with the larger index (among j and k) provides the LCCP.

This yields the O(1) algorithm for finding the LCCP and hence the LCA.

6.8. Running time. In order to maintain Invariant 2 while meeting Invariant 1,
a process may need to help (perform the work of) other processes that are blocking it.

LCA QUERIES ON TREES 913

Thus the main issue is to determine how much work a process may do. We measure
this work in basic steps.

Definition 6.16. A basic step of a process is the traversal of O(log n) edges of
the subtree it is processing followed by the updating of one of the codes at a single node
in this subtree. (The final basic step entails only edge traversals.)

Claim 6.17.

(i) A basic step takes O(log n) time to perform.
(ii) A process rooted at node x performs at most 2|Tx|+ 1 basic steps on its task,

where |Tx| is the size of tree Tx in vertices immediately before the completion
of the process.

Lemma 6.18. An Assign(π), Compact(π), Rescale(π), or Reassign superpro-
cess associated with class i path π performs at most e · 2i · i basic steps on itself and
all the tasks it helps, for a suitable constant e > 0.

Lemma 6.18 depends on a scheduling algorithm which ensures that for each weight
increase of 2i−3 into path π, at least e · i · 2i basic steps are performed on process P
and the tasks it helps, where P is associated with path π. We describe the scheduler
later. Clearly, if the scheduler exists, then the truth of Lemma 6.18 up to a given
time immediately implies Invariant 1 also holds up to that time.

Proof of Lemma 6.18. The proof uses a double induction, the outer induction
being on t, the weight increase since the data structure was initiated (time for short),
and the inner induction being on the class i of the i-path π. Note that time proceeds
in increments of 1/ log3 n. Our proof depends on the following claim, whose proof
uses the inductive hypothesis.

Claim 6.19. Suppose Lemma 6.18 holds through time t and for processes asso-
ciated with h-paths, h < i, at time t + 1/ log3 n. Then consider an i-path π at time
t + 1/ log3 n with head x. Consider the collection of all h-processes, h < i, having
roots in Tx which have been activated by time t+ 1/ log3 n. The total number of basic
steps that have been performed on all these processes through time t + 1/ log3 n since
their first activation is O(i · 2i).

Proof of Claim 6.19. We first note that if Lemma 6.18 holds for a given process P
associated with an i-path at its termination, then the size of the subtree rooted at
P ’s root at its termination is less than 2i+1 + 2i−1 + 2i−2, by Corollary 6.8. Conse-
quently, if a process associated with an i-path is not complete at a time t′ for which
Lemma 6.18 holds, then the subtree rooted at the process root has size less than
2i+1 + 2i−1 + 2i−2. In particular, the subtree rooted at P ’s root has size less than
2i+1 + 2i−1 + 2i−2 at time t, and hence size less than 2i+1 + 2i−1 + 2i−2 + 1/ log2 n at
time t + 1/ log3 n.

Now, we bound the number of basic steps performed by each type of process
having its root in Tx, where x is P ’s root.

Assign() processes. There is one Assign() process for each path inside Tx. By
the inductive hypothesis, for an Assign(π′) process associated with h-path π′, h < i,
the associated subtree has size less than 2h+1 + 2h−1 + 2h−2 at time t + 1/ log3 n
and hence the Assign(π′) process has had at most O(2h) basic steps performed on it.
For each h < i, each h-path has a distinct set of nodes of combined size at least 2h

associated with it, namely either the subtree rooted at the head of the path, or if the h-
path π′ has h-path π′′ as a child, the associated nodes are given by Thead(π′)−Thead(π′′).

Thus there are at most (2i+1 + 2i−1 + 2i−2 + 1/ log2 n) /2h h-paths in Tx, and the
total number of basic steps performed through time t + 1/ log3 n on their Assign()
processes is O(2i). Summing over all h < i gives a bound of O(i · 2i) on the number
of basic steps performed on Assign() processes for h-paths, h < i, inside Tx.

914 RICHARD COLE AND RAMESH HARIHARAN

Rescale() processes. The analysis is identical to that for the Assign() processes.

Compact() processes. Recall that successive Compact(π′) processes for h-path π′

are separated by weight increases of 2h+1 into π′. Likewise the first Compact(π′)
process occurs following a weight increase 2h+1 from the initiation of Assign(π′).
Further, each weight increase at a node contributes only to the weight increase for
paths that are the node’s ancestors, hence for at most two h-paths for each value of h.
Thus at most 2(2i+1 +2i−1 +2i−2 +1/ log2 n) /2h+1 Compact(π′) processes have been
activated for h-paths π′ contained in Tx. By the inductive hypothesis, these processes
have each had at most O(2h) basic steps performed on them by time t+1/ log3 n, and
hence summing over all h < i, and all paths in Tx, yields a bound of O(i · 2i) basic
steps performed on the Compact() processes for h-paths, h < i, inside Tx.

Reassign() processes. The argument is very similar to that for the Compact()
processes, with each bunched Reassign() superprocess resembling a Compact() pro-
cess in its cost. We account for a bunched h-superprocess by associating it with the
at least 2h−2 insertions to its associated h-path π′ from either the time of the cre-
ation of π′ or the start of the previous Reassign() superprocess associated with π′,
whichever is more recent, to the moment the current superprocess begins to be pro-
cessed.

Consider a weight increase; it is charged for the Reassign() superprocesses at its
ancestors, i.e., for at most two Reassign() h-superprocesses, for each h. It follows
that there have been at most 2(2i+1+2i−1+2i−2+1/ log2 n) /2h−2 such superprocesses
activated in Tx. Summing over all paths and h < i, we conclude that a total of O(i·2i)
basic operations have been performed on the Reassign() superprocesses with roots
in Tx.

This concludes the proof of Claim 6.19.

We now complete the proof of Lemma 6.18.

Consider the currently active process P associated with i-path π, if any. By
Claim 6.19, P has performed at most O(i · 2i) basic operations helping processes
associated with h-paths, h < i. Since P has not completed at time t, as already
noted, |Tx| < 2i+1 + 2i−1 + 2i−2 + 1/ log2 n at time t+ 1/ log3 n. Thus the number of
basic steps performed on P ’s task and the up to one other task it may help associated
with some ancestral j-path, j > i, is O(2i). This gives a total bound of O(i · 2i) on
the basic steps performed by P .

We must still describe the processing performed following a weight increase. Fol-
lowing a Θ(1/ log n) weight increase at a node, the size of each of its O(log n) ancestral
central paths are incremented, up to O(log n) new secondary nodes are added to the
paths to which they newly belong, and up to O(log n) new processes are initiated.
Then e basic steps are performed on the active process at each ancestral centroid
path, if any, for a total of O(log n) basic steps, which takes O(log2 n) time. Node
insertion costs O(log n) per node, but there are O(1) node insertions per unit weight
increase, so this is relatively insignificant.

The O(1) time algorithm requires a more elaborate scheduling procedure for two
reasons. First, we cannot keep the recorded sizes of the centroid paths completely up
to date and so processes may be late in getting underway, and second, we do not want
to have multiple basic steps partially completed. This leads us to perform basic steps
over a Θ(1/ log2 n) weight increase once started, even if the weight increase is not
all occuring in the relevant subtree. Our scheduling procedure is based on a variant
of the Dietz–Sleator “cup-filling” methodology [DS87], which we develop in the next
section.

LCA QUERIES ON TREES 915

6.9. Dietz–Sleator “cup-filling” with dated priorities. We seek to handle
a task scheduling scenario of the following flavor. There are at most k tasks at any
one time. Tasks have associated priorities which increase, possibly at different rates,
as they are delayed. Furthermore, the known priorities may be somewhat dated and
hence potentially inaccurate. Our goal is to determine conditions under which the
following strategy is effective: schedule for atom steps the task with current highest
known priority and iterate.

So let Γ = {P1, P2, . . .} be a collection of no more than k tasks. Suppose each
task is performed in atomic chunks of length atom and suppose each task has length
at most �, an integer multiple of atom. Task Pi has an associated priority pi ≥ 0.
Priorities only increase. At any time a new task of priority 0 may be created so long
as there are at most k tasks altogether. It will be convenient to keep placeholder tasks
of priority 0 to ensure that there are always exactly k tasks at hand.

After every atom steps a task Pi is chosen to be executed for the next atom steps
(possibly, but not necessarily, the same task as on the previous atom steps) which
satisfies the following rule:

λ pi − work performed on Pi + λ · error ≥ λpj − work performed on Pj for all j �= i,

where error represents the maximum error in the recorded priorities (as opposed to
the actual priorities pi, pj) and λ > 0 is a scale parameter relating priorities to steps
executed. After executing these atom steps, the priorities of an arbitrary subset of
tasks are increased by a combined total of at most p-inc.

Lemma 6.20. The above scheduling algorithm, if atom ≥ 4λmax{error, p-inc},
satisfies

λpi + �− work performed on Pi ≤ λ (error + p-inc) + (atom + �)

+ 4λ(error + p-inc) log k.

Corollary 6.21. pi ≤ (error+ p-inc)+ 1/λ(atom+ �)+ 4(error+ p-inc) log k.
Proof of Lemma 6.20. We use a potential argument. We show that if there

is a task Pj with priority plus 1/λ times remaining work (strictly, 1/λ(� − work
performed on Pj)) at least �/λ+ error+atom/λ, when a task is chosen to have atom
steps executed, then the potential will not increase following these atom steps being
performed and the applying of the combined p-inc increment to the priorities.

We associate potential cri with task Pi, 1 ≤ i ≤ k, where c > 1 is a suitable
constant and ri is defined as follows: ri = λ pi + �− work performed on Pi.

Clearly, following atom steps being executed on Pi and potentials being incre-
mented by p-inc, the maximum increase in potential occurs if all the incremental pri-
ority is concentrated on the task Pj with largest rj . We note that ri + λ · error ≥ rj
prior to the execution of atom steps on Pi. Thus if rj ≥ � + λ · error + atom, then
ri ≥ � + atom, so after atom steps of work are performed on Pi, Pi’s potential de-
creases by a multiplicative factor of catom. We want to ensure that the potential does
not increase. For this, it suffices that

crj+λ p-inc + cri−atom ≤ crj + cri .

Clearly, this is hardest to satisfy with ri + λ · error = rj ; so it suffices that

cλ(error + p-inc) + c−atom ≤ cλ · error + 1.

916 RICHARD COLE AND RAMESH HARIHARAN

Let Δ = λmax{error, p-inc}. Choosing c so that c2Δ =
√

2 and choosing atom ≥ 4Δ
yields a sufficient condition of

√
2 + (1/

√
2)2 ≤ 1 + 1,

which is true.
Thus the largest potential possible is less than

(k − 1) cλerror+(atom+�) + cλ(error+p-inc)+(atom+�) ≤ k cλ(error+p-inc)+(atom+�).

Hence cri ≤ k cλ(error+p-inc)+(atom+�) for all i, from which the claimed bound on ri
follows.

A special case arises when error = 0 and atom = �.
Corollary 6.22. If error = 0 and atom = �, then pi ≤ (9 + 4 log k) p-inc.
Proof. Set λ = atom/(4p-inc).
Dietz and Sleator proved this bound with somewhat tighter constants, namely

pi ≤ p-inc · (log k + O(1)). This is often called the Dietz–Sleator cup-filling lemma.

6.10. Scheduling in the O(1) time algorithm. In the O(1) time algorithm
a layered structure will be used. The tree is binarized and partitioned into subtrees
of size O(log3 n). The roots of these subtrees and their LCAs form an implicit tree on
which the previous O(log3 n) time update algorithm is run. Intuitively, the subtree
roots change only every Θ(log3 n) insertions, which provides enough time to perform
the O(log3 n) operations needed for an update.

Let T denote the tree of n nodes on which LCA queries are being performed and
let T1 denote the implicit tree. As we will see, T1 has at most 4n/ log3 n nodes, and
this relationship applies to each subtree of T and the corresponding subtrees of T1.
An insertion of a node v in T will result in a weight increase of either 0 or 4/ log3 n
to the following node in T1: the node that is the root of the size O(log3 n) subtree
containing v in the binarized version of T . The rule for the weight increase is discussed
later in section 7 when we discuss how to maintain the size O(log3 n) subtrees.

Also, a new node of weight zero may be inserted in T1 as a result of an insertion
into T . As already noted, weight 0 nodes are adjacent only to weight 1 nodes. Again,
details on when this happens are given in section 7.

At this point, we describe a schedule that updates path weights and performs
Assign(), Rescale(), Reassign(), and Compact() processes as needed but with
only O(1) work per insertion to T .

The major difficulty we face is that on updating the weight of a node (as a result
of an insertion in T), we cannot immediately update the weights of all the ancestral
centroid paths (note that we only track the weight of the subtrees rooted at the heads
of centroid paths—together with the individual node weights, this suffices to track the
weight changes when a head node leaves a centroid path). Instead we create a weight
update task for each node in T1. The weight update task for node v is responsible for
updating the weights of head nodes ancestral to v to reflect an increase in v’s weight.
It may be run multiple times. The execution of weight update tasks is alternated
with the execution of Assign(), Rescale(), Reassign(), and Compact() processes
in stages of length Θ(logn), with each update weight task being run to completion
once initiated. An update weight task will take O(log n) time to run to completion, as
we will see. This ensures that the Assign(), Rescale(), Reassign(), and Compact()
processes, when underway, always see a tree T1 with consistent weights at the different
head nodes.

LCA QUERIES ON TREES 917

Recall that we also need to track the weight of insertions made to each i-path so as
to know when to initiate an i-process (it suffices to keep track of this value mod 2i+1).
To this end, each update weight task also increments these weights. The update
weight task for node v needs to store two values: the first value is the increment being
made to each of its ancestral centroid paths if it is underway, which equals the weight
increment to v between the start of the previous and current runs of the task; the
second value is the weight increment to v since the task last began running.

The weight update tasks are scheduled using the standard Dietz–Sleator cup-
filling scheduler. A task’s priority is given by the sum of the two increment values
it holds. Here atom = Θ(p-inc) = Θ(1/ log2 n) and k = Θ(n/ log3 n), for p-inc, the
increase in priority during the execution of one task is defined to be a tight upper
bound on the total weight increase to T1 when performing one run of one task. We
choose the constant of proportionality so that the start of successive runs of the task
for a node v are separated by at most a weight increase of α/ log n on v’s part, for a
suitable constant α > 0.

Remark 6.23. This implies that when a weight is updated, it is updated by at
most p-inc ≤ α/(4 log2 n) ≤ 1/ log2 n, as we will choose α ≤ 1.

By Corollary 6.22 this entails that (9 + 4 logn) p-inc ≤ α/ log n, i.e., that an
update task runs to completion during a period bounded by a weight increase of
α/[(9 + 4 logn) log n] to T1. But such a weight increase requires Ω(log n) insertions,
and as one run of the task takes O(log n) time, this takes O(1) time per insertion
to T .

Now we can show the following lemma.

Lemma 6.24. The recorded size of an i-path is at most α(2i+1+2i−1+2i−2)/ log n
smaller than the actual size and no larger than the actual size, assuming the actual
size is less than 2i+1 + 2i−1 + 2i−2.

Proof. Consider the subtree rooted at the head node of the i-path. If it has
r nodes of weight 1 it has at most 2r + 1 nodes of weight less than 1 (since all but
possibly one node of weight less than 1 has a parent, necessarily of weight 1, and since
each weight 1 node has at most one child of weight less than 1). Since the subtree has
size less than 2i+1 +2i−1 +2i−2, it has at most 2i+1 +2i−1 +2i−2 nodes of weight less
than 1. But the recorded weight of each such node is in deficit by at most α/ log n,
and the result follows.

We are ready to describe the scheduling of the Assign(), Rescale(), Reassign(),
and Compact() processes. For each i, we run a separate modified cup-filling procedure
for the i-processes. The priority of a process is simply the weight of insertions in the
associated subtree since the moment when the process would have been initiated in our
original algorithm. For an Assign(π) process this is approximated using the current
size of i-path π minus 2i; the size of π when Assign(π) should have been initiated.
For Compact(π) and Reassign() superprocesses, we need to record the weight of
insertions mod 2i+1 that have occurred in the subtree rooted at the head of i-path π
since π was created. This term minus the starting time of the process mod 2i+1, as
specified in Invariant 1, yields the priority (for Reassign(), the priority is calculated
with a shift of 2i−3 mod 2i+1). It follows the recorded priority maybe too small, but
by at most α(2i+1 + 2i−1 + 2i−2)/ log n.

We perform each scheduled process for one basic step, cycling among the classes
of processes for each class of i-path (i = 0, 1, 2, . . .) in round robin order. We alternate
between performing one basic step and one complete task updating path sizes. This
ensures the recorded sizes of the centroid paths are always consistent when basic steps

918 RICHARD COLE AND RAMESH HARIHARAN

are being performed. Thus every Θ(log2 n) insertions, one basic step is performed on
one process associated with a class i-path for each i = 1, 2,

Lemma 6.25. With the following parameter choices, each i-process finishes within
the time for 2i/8 weighted insertions into the corresponding i-path, assuming n ≥ 2.
The parameter choices are: error = 11α2i−1/ log n, � = e′ · i · 2i (measured in ba-
sic steps), λ = d log n, p-inc = atom/(4d log n), atom = 44α d 2i−1, d = 2/α,
e′ = � e

44� · 44, and α = 1/[4(154 + e′)].
Proof. We note that for these parameter values, � is an integer multiple of atom,

atom ≥ 4λmax{error, p-inc}, so Lemma 6.20 applies. Thus the process priorities are
always bounded by 11α 2i−1/ log n+11α 2i−1/ log n+1/(d log n)(44α d 2i−1+e′·i·2i)+
4(11α 2i−1/ log n + 11α 2i−1/ log n) log n ≤ α 2i−1(66/ log n + e′ · i/ log n + 88) ≤
2i/[8 · 4 (154 + e′)α] = 2i/8, assuming n ≥ 2.

It remains to show that O(1) work per weight increase of 4/ log3 n suffices.
Lemma 6.26. It suffices to perform O(1) work per weight increase of 4/ log3 n to

ensure that in the period in which an i-process performs atom basic steps the overall
weight and hence priority increase by at most p-inc.

Proof. These atom basic steps are performed over a period of Θ(atom log2 n) inser-
tions assuming O(1) work per insertion. (Recall that we cycle among the i-processes
for i = 0, 1, . . . , log n in round robin order, performing one basic step on an i-process
for each i, and each basic step takes O(log n) work.) Since each insertion causes a
weight increase of at most 4/ log3 n, the resulting weight gain is O(atom/ log n). No-
tice that the more work per insertion, the fewer insertions needed to complete the
atom basic steps and the smaller the weight increase. Thus with a large enough O(1)
work per insertion, the result holds.

We have shown the following theorem.
Theorem 6.27. The implicit tree T1 described above can be maintained in O(1)

work per insertion, assuming that each insertion results in a weight increase of 0 or
4/ log3 n, that each insertion adds at most one weight 0 node v to T1, and further that
such a node v is adjacent only to weight 1 nodes. Further, LCA queries on T1 can be
answered in O(1) time.

7. The O(1) worst-case algorithm. The tree T on which LCA queries are
being performed is made binary, using a standard binarization. More specifically, a
node v with d children is represented by d copies of v forming a chain of right children.
The actual children of v will be stored as the left children of this chain of nodes. Note
that if n items are inserted in an initially empty tree the binarized tree will contain
at least n nodes and at most 2n− 1. As a result, an insertion may entail the addition
of two nodes to the binarized tree, called T henceforth. To simplify the discussion,
from now on we term a node addition to T an insertion, understanding that a real
insertion may induce two insertions into T .

As already noted, T is kept partitioned in at most 4n/ log3 n subtrees, called
partitioning subtrees, each of size at most log3 n/4 (strictly, �(log n)/4	3). We assume
that n lies in the range [n, 2n); section 8 explains how to handle n increasing to 2n or
beyond. We create a tree T1 which contains the root of each subtree in the partition
of T . These subtrees are chosen so that the LCA of the roots of any two partitioning
subtrees is itself the root of a partitioning subtree. A node v in T1 is the parent of
node w in T1 if v is the nearest ancestor of w in T such that v is in T1. Clearly, as T
is binary, so is T1.

When a partitioning subtree grows too large it is split, causing the addition of
one or two nodes to T1 (two nodes may be needed to maintain the LCA property on

LCA QUERIES ON TREES 919

subtree roots). But, as we will see, a newly created partitioning subtree once initiated
is itself partitioned only following Θ(log3 n) insertions into itself.

A partition of partitioning subtree S, rooted at node v, proceeds as follows. Once
initiated, within 1

4 log3 n further insertions into S it determines the root(s) of the new
subtrees. It then inserts one of the news roots in T1 as a child of v, giving it weight 0.
Over the next 1

4 log3 n insertions into S the weight of the new root is increased in

increments of 4/ log3 n until its actual weight is 1. Within the next 1
8 log3 n insertions

into S, we ensure v’s recorded weight becomes 1, as follows. Instead of following the
previously stated rule for giving priorities to weight update tasks, once the actual
weight of a node reaches 1, on each insertion to subtree S, we continue incrementing
its priority by 4/ log3 n. To bring the new root’s recorded weight to 1 may need the
completion of one run of its weight increase task and a full second run of the task.
We have ensured this occurs within a weight increase of 2α/ log n, so it suffices that
2α/ log n ≤ 1

8 log3 n · 4/ log3 n, and α ≤ 1/4 suffices for n ≥ 2. The second new root,
if any, is then inserted in the same way. Note that this ensures that any node in T1 of
weight less than 1 is adjacent only to nodes of weight 1, and nodes of weight 1 have
at most one child of weight less than 1.

To answer a query LCA(u, v), we first determined if u and v are in different
partitioning subtrees by finding, in O(1) time, the roots ru and rv of their respective
partitioning subtrees. If ru �= rv, we compute LCA(ru, rv) on T1 in O(1) time as
previously described (see Theorem 6.27). Otherwise, the query is handled recursively.

To support queries on the partitioning subtrees, they are partitioned in turn into
subtrees of size at most 4 log log3 n.8 For each partitioning subtree S of T we maintain
a tree S1 comprising the roots of S’s partitioning subtrees. Updates are performed us-
ing our previous algorithm, i.e., with O(log log3 n) work over Θ(log log3 n) insertions.
Queries are performed as in the previous paragraph. It is helpful to let T2 denote the
union of all the S1 trees.

The recursion bottoms out at the partitioning subtrees of size O(log log3 n) for,
as we will see, there are o(n) distinct partitioning trees of this size, and their updating
can be done via table lookup in O(1) time per insertion, as can LCA queries. The
requisite tables use o(n) space.

7.1. Details of the data structures. Each node in T keeps a pointer to its
newest ancestor in T2, the root of the size O(log log3 n) partitioning subtree to which
it belongs. Similarly, each node in T2 keeps a pointer to its nearest ancestor in T1, the
root of the size O(log3 n) partitioning subtrees to which it belongs. On an insertion,
the weight of the appropriate nodes in T2 and T1 are incremented in O(1) time, using
the above pointers.

Definition 7.1. The size of a partitioning subtree is the sum of the weights of
the nodes it contains.

The size of partitioning subtrees are recorded with their roots. On an insertion,
the up to two subtree sizes that change are incremented (by 4/ log log3 n and 4/ log3 n,
respectively); these sizes are stored at the subtrees’ roots.

Additional data is needed to support the splitting of the partitioning subtrees.
We begin by describing what is needed for splitting the size O(log log3 n) partitioning
subtrees. In addition to storing the subtrees themselves, we keep a table of all possible
trees, represented canonically. Using the canonical representation, in O(1) time we
will be able to answer LCA queries and to determine the new canonical tree resulting

8log log3 n is our notation for (log log n)3.

920 RICHARD COLE AND RAMESH HARIHARAN

from an insertion. Finally, by linking the nodes of the actual tree to those of the
corresponding canonical tree, we will be able to translate query answers on canonical
tree to answers on the actual tree in O(1) time.

The following information is maintained for each actual tree S.
1. For each node v in S, a distinct label, denoted label(v) in the range [1, log log3 n].

In addition, the up to two edges going to children outside S are also recorded.
(The structure of S along with the associated labels provides the appropriate
canonical labelled tree used to answer LCA queries on S.)

2. An array � to n(S) storing, for each label in the range [1, log log3 n], the node
in S corresponding to this label, if any. This inverse map is used to convert
the LCA obtained using lookup tables on the canonical tree from a label to
an actual node (for the canonical tree nodes are named by their labels).

3. The name name(S) of the labelled canonical tree associated with S, the root
root(S), of S, along with a pointer pointer(v) from each node v in S to the
location storing � to n(S), name(S), root(S), size(S), and flag(S). The role
of flag(S) is explained next.

4. Actually, two copies of label(v) and pointer(v) are maintained for each node v
in S. One of these copies will be “old” and the other “current.” This will
be indicated by the flag(S) field above. The flag(S) field pointed to by
the “old” pointer(v) will be set to 0 while that pointed to by the “current”
pointer(v) will be set to 1.

5. In addition to the above, there is a static table for each labelled tree of size
at most 4 log log3 n supporting the following queries: given two labels in the
tree, return the label of the LCA, and given a new label (corresponding to
a newly inserted node) and the label(s) corresponding to the node(s) at the
insertion site, return the name of the resulting labelled tree. Note that labels
for nodes in S are allocated in sequential order of insertion.
Since there are O(28 log log3 n (4 log log3 n)4 log log3 n) labelled binary trees of
size at most 4 log log3 n with labels in the range [1, log log3 n], the total space
occupied by the above tables is O(n). These tables can also be built in O(n)
time.

Processing insertions. Each insertion will do O(1) work at each of the 3 lev-
els. This will result in Θ(log3 n) work being available for each insertion into T1 and
Θ(log log3 n) work for each insertion into T2.

Insertions into T will require the following actions. First, the insertion into the
appropriate size O(log log3 n) partitioning subtree S of T rooted at a node in T2 is
made. This is done using a constant time table lookup to calculate the name of the
new subtree after insertion. Second, if S reaches size 3(log log3 n) then it is partitioned
into two or three subtrees, each of size at most 3 log log3 n, over the next log log3 n
insertions to S.

An insertion of node u into T is processed as follows.
Let v be the parent of u in T . u is viewed as being inserted into the partitioning

subtrees Sb and Sa containing v, of sizes O(log log3 n) and O(log3 n) and rooted in
T2 and T1, respectively. On following pointer(v), � to n(Sb), name(Sb), and size(Sb)
are readily updated in O(1) time (using table lookup for name(Sb)). If size(Sb)
reaches 3 log log3 n, a split of Sb is initiated. It is carried out as described below.
O(1) work is then performed on the tasks associated with the trees T1 and T2.

Splitting S = Sb. The first step is to find a splitting location that divides the
tree into two pieces each of size at least log log3 n. This can be done by depth first
search in O(log log3 n) time, or by table lookup in O(1) time. To ensure that the new

LCA QUERIES ON TREES 921

trees have at most two external children each, we find the LCAs of the new roots
and the up to two external children; if one of these LCAs is not a new root, it is
also introduced as a third root. The one or two new roots are added to tree T2 with
the already explained timing (it suffices to carry out the depth first search within
1
4 log log3 n insertions). To simplify the notation, we continue to suppose that only
two new trees are created; the changes if there are three new trees are evident.

The new roots define S1 and S2, the trees that Sb is split into. Next, root(S1),
� to n(S1), name(S1), size(S1), root(S2), � to n(S2), size(S2), and name(S2) are
computed in the obvious way in O(log log3 n) time (e.g., by traversing each of S1 and S2

in turn and “inserting” their nodes one by one). Then for each node w the “old”
label(w) and pointer(w) are updated to be in accordance with S1 or S2, whichever
contains v, also in O(log log3 n) time.

Note that all this while the “current” label(v), pointer(v), name(S), root(S), and
� to n(S) are used to answer LCA queries; furthermore these structures are updated
with each insertion that occurs even after the splitting process starts. Also note
that after the splitting process starts, new insertions are neglected in constructing S1

and S2 and the associated fields name(S1), root(S1), � to n(S1), name(S2), root(S2),
� to n(S2). This is easily implemented by putting a time-stamp on each inserted
node and ignoring nodes which are time-stamped later than the start of the splitting
process. These insertions are just queued up and performed on S1 or S2 as appropriate
after they have been constructed. When all log log3 n insertions have been performed,
flag(S1) and flag(S2) are set and flag(S) is reset so that for each v in S1 and S2 the
“old” label(v) and pointer(v) become “current” and vice versa; this takes O(1) time.
Note that S1 and S2 each have size at most 3 log log3 n at this point.

Splitting algorithm for a size O(log3 n) partitioning subtree Sa. The splitting
algorithm on Sa begins when its size reaches 3 log3 n and is similar to the previous
splitting algorithm but is done without table lookup. For each partitioning Sa the
following information is maintained, in addition to the data structure storing the tree
itself.

1. For each node v, code(v), along with the annotations, and number(v).
2. The structure cpath(Sa) storing centroid paths and associated information

for paths in Sa.
3. For each node v, a pointer pointer(v) to the location storing cpath(Sa),

root(Sa), and flag(Sa).
4. Two copies of code(v), number(v), pointer(v), maintained as before. One of

these copies will be “old” and the other “current.” The appropriate flag(Sa)
indicates which of these copies is current.

The algorithm proceeds as before. First, the location of the split is determined
in O(log3 n) time using depth-first search. This splits Sa into two pieces each of size
at least log3 n, thereby defining S1 and S2. Then the data structures for S1 and S2

are computed, the backlog of insertions is applied, and finally the appropriate flats
are set. This all takes O(log3 n) time.

We have shown the following lemma.

Lemma 7.2. There is a data structure for trees of size in the range [n, 2n) which
answers LCA queries in O(1) time and performs insertions to the tree in O(1) time.

Remark 7.3. Although space is not freed when subtrees are split, the space used
is still linear. For each split of a size s tree, using space Θ(s), only happens after
Θ(s) insertions.

922 RICHARD COLE AND RAMESH HARIHARAN

8. Handling deletions and changing values of n. We note that the need
for the limited range in Lemma 7.2 arises for two reasons: first, the construction in
section 7 requires a fixed value of log3 n (and of log log3 n), and second, the basic
algorithm takes O(log3 n) time per update; here the log3 n is not fixed. But we could
readily change the range to [n, 2dn) for any fixed n by replacing log3 n by (logn+ d)3

in section 7. As we will see, d = 3 suffices.

We do not perform deletions explicitly. Instead, deleted items will just be marked
as such, or rather the topmost copy of the corresponding node will be so marked. Thus
the size of the current tree would include the count of both deleted and nondeleted
nodes. We will periodically rebuild the data structure from scratch, in the background,
so as to maintain the following invariant.

Invariant 3. The insertion count, the number of items in the data structure plus
the number of items marked deleted, lies in the range [4 ·2i, 32 ·2i]; the actual number
of items in the data structure lies in the range [6 · 2i, 32 · 2i]. In addition, the number
of deleted items is at most 3 · 2i. Furthermore, immediately after being rebuilt the
insertion count is in the range [8 ·2i, 31 ·2i], the actual count in the range [7 ·2i, 31 ·2i],
and the deletion count is at most 2i+1.

Invariant 3 implies that the number of nodes in the tree lies in the range [4 · 2i,
64 · 2i), and thus d = log 64/4 = 4 suffices.

Let the actual size of the data structure denote the number of undeleted items. If
the insertion count reaches 31·2i, the data structure is rebuilt in the range [8·2i, 64·2i];
if the actual size decreases to 7n, then it is rebuilt in the range [2 ·2i, 16 ·2i]; if neither
of these apply but the number of items marked deleted reaches 2i+1, then it is rebuilt
either in the range [4 · 2i, 32 · 2i] if the actual size is at least 8n, and in the range
[2 · 2i, 16 · 2i] otherwise. The rebuilding is completed within 2i insertions; this takes
O(1) time per insertion. It is readily checked that Invariant 3 continues to hold
following the rebuilding.

An easy way to perform the rebuilding is to traverse the current tree, determining
the undeleted items and then inserting them in the new tree, one by one, using the
appropriate value for log3 n. Of course, new insertions and deletions are performed
on the current tree and queued so they can be performed on the new tree.

We have shown the following theorem.

Theorem 8.1. There is a linear time data structure that supports LCA queries
on a tree undergoing insertions and deletions such that each update and query can be
performed in worst case O(1) time.

Acknowledgments. We thank the referees for urging us to seek a less complex
solution which led us to the present version of the data structure.

REFERENCES

[BF00] M. Bender and M. Farach-Colton, The LCA problem revisited, in Proceedings of Latin
American Theoretical Informatics, 2000, pp. 88–94.

[BV94] O. Berkman and U. Vishkin, Finding level ancestors in trees, J. Comput. System Sci.,
48 (1994), pp. 214–230.

[CH97] R. Cole and R. Hariharan, Approximate string matching: A simpler faster algorithm,
SIAM J. Comput., 31 (2002), pp. 1761–1782.

[DS87] P. Dietz and D. Sleator, Two algorithms for maintaining order in a list, in Proceedings
of the 19th ACM Symposium on Theory of Computing, 1987, pp. 365–371.

[F99] M. Farach-Colton, private communication, 1999.

LCA QUERIES ON TREES 923

[Ga90] H. Gabow, Data structures for weighted matching and nearest common ancestors with
linking, in Proceedings of the 1st ACM-SIAM Symposium on Discrete Algorithms,
1990, pp. 434–443.

[Gus97] D. Gusfield, Algorithms on Strings, Trees, and Sequences: Computer Science and Com-
putational Biology, Cambridge University Press, Cambridge, UK, 1997, pp. 196–207.

[HT84] D. Harel and R. Tarjan, Fast algorithms for finding nearest common ancestors, SIAM
J. Comput., 13 (1984), pp. 338–355.

[LV86] G. Landau and U. Vishkin, Fast parallel and serial approximate string matching, J.
Algorithms, 10 (1989), pp. 157–169.

[M76] E. McCreight, A space-economical suffix tree construction algorithm, J. ACM, 23 (1976),
pp. 262–272.

[Meh77] K. Mehlhorn, A best possible bound for the weighted path length of binary search trees,
SIAM J. Comput., 6 (1977), pp. 235–239.

[SV88] B. Schieber and U. Vishkin, On finding lowest common ancestors: Simplification and
parallelization, SIAM J. Comput., 17 (1988), pp. 1253–1262.

[Ts84] A. Tsakalidis, Maintaining order in a generalized link list, Acta Inform., 21 (1984),
pp. 101–112.

[We92] J. Westbrook, Fast incremental planarity searching, in Proceedings of the 19th Inter-
national Colloquium on Automata, Languages and Programming, Lecture Notes in
Comput. Sci. 623, Springer-Verlag, 1992, pp. 342–353.

[W82] D. Willard, Maintaining dense sequential files in a dynamic environment, in Proceedings
of the 24th ACM Symposium on Theory of Computing, 1982, pp. 114–121.

