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Abstract 
 Scan chain defect diagnosis is important to silicon 
debug and yield enhancement. Traditional simulation-
based chain diagnosis algorithms may take long run 
time if a large number of simulations are required. In 
this paper, a novel dynamic learning based scan chain 
diagnosis is proposed to speedup the diagnosis run 
time. Experimental results illustrate that by using the 
proposed dynamic learning techniques, the diagnosis 
run time can be reduced about 10X on average. 
 
 
1. Introduction 
  
 ATPG patterns that utilize scan chains to provide 
stimulus and capture responses from circuitry have 
become the primary method for achieving test coverage 
in digital logic circuits. Scan based testing has proven 
to be a cost effective method to achieve good test 
coverage with minimal test time and pattern 
development overhead. Meanwhile, scan based 
diagnosis has also opened up new avenues for failure 
analysis. Scan diagnosis can be utilized to quickly 
isolate the suspects and provide efficient guidance to 
physical failure analysis (PFA).  
 The Achilles’ heel for the application of scan-
based diagnosis is the integrity of the scan chains. The 
amount of die area consumed by the scan flops, scan 
chain connections, and scan control circuitry can range 
from 15-30% [GUO01]. The number of die failing the 
scan chain integrity test will typically scale 
proportionally with the percentage of total circuitry 
involved with the scan chains. Several previous papers 
[KUN94][CRO05] did a good job of describing the 
challenges of diagnosing the scan chain defects. One of 
the very important issues of the chain diagnosis is the 
run time. With the requirement of volume diagnosis in 
the manufacture environment for yield improvement, 
the diagnosis run time becomes even more important.    
 In this paper, the run time bottleneck of the 
previously published chain diagnosis algorithms is 
identified. Several novel dynamic learning techniques 
are proposed. We will illustrate later in the 
experimental results that applying the new dynamic 
learning techniques can reduce the chain diagnosis run 
time about one order of magnitude on average.  

 The rest of this paper is organized as follows. 
Section 2 reviews prior art of chain diagnosis 
algorithms. In Section 3, dynamic learning based chain 
diagnosis is proposed to boost chain diagnosis speed. 
Section 4 presents experimental results and conclusions 
are drawn in Section 5. 
 
2. Review of chain diagnosis  
  
 The previous chain diagnosis methodologies can 
be classified into two categories: hardware-based and 
software-based. Hardware-based methods use some 
special scan chain and scan cell designs to facilitate the 
diagnosis process [SCH92] [WU98] [EDI95] [NAR97]. 
In this paper, we do not consider hardware based chain 
diagnosis methods because normally these methods 
incur some hardware overhead that prevents them from 
being applied in practice.  
 Software-based algorithms do not need any 
modification of the basic scan circuitry [KUN94] 
[GUO01] [STA01] [HUA03]. In [KUN94], it generates 
special patterns to diagnose chain failures. In [GUO01] 
and [STA01] fault simulation and matching algorithms 
are applied to identify the defective scan cells. In 
[HUA03], algorithms are proposed to diagnose realistic 
chain defects by targeting intermittent scan chain faults. 
Note that with the more popular embedded 
compression, chain diagnosis procedures need to be 
enhanced to incorporate the compactor functions 
[HUA05]. Compared with the hardware-based methods, 
software-based techniques are more attractive due to 
not requiring design modification and no extra 
hardware overhead.   
  A typical software-based chain diagnosis 
algorithm, like [STA01] [GUO01] or [HUA03], is 
based on simulation. The chain diagnosis algorithm 
proposed in [STA01] includes two steps. Next, we will 
use an example to illustrate these two steps. Assume a 
design has one defective scan chain composed of 12 
scan cells numbered from cell 0 to cell 11. Cell 0 is 
connected to scan chain output while cell 11 is 
connected to scan chain input.   
 Step 1: Identify faulty chains and fault types using 
chain integrity test patterns. 
 Suppose the faulty scan chain with 12 scan cells is 
loaded with a chain pattern 001100110011, where the 
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leftmost bit is loaded into cell 11 and the rightmost bit 
is loaded into cell 0. If failures are observed at cells 2, 
3, 6, 7, 10, 11 of this chain, then it can be determined 
that there is at least one stuck-at-1 fault on this chain. 
In reality, the chain defects can be modeled with 
various fault models such as stuck-at or hold-time fault. 
 Step 2: Locate faulty scan cells by injecting fault 
at each cell on the fault chain and simulating the failed 
scan patterns. 
 The objective of this step is to locate the suspect 
scan cells. If a fault is “injected” on a scan cell on the 
faulty chain, loaded values in the downstream of this 
scan cell on the faulty chain will be modified for all 
failed scan patterns. For example, suppose a scan 
pattern has good machine loaded value 001110011010 
on the faulty chain.  If a stuck-at-1 fault is injected on 
scan cell 8 of this chain, the loaded values will be 
modified as 001111111111. After pulsing the capture 
clock, simulated captured values in the upstream of the 
faulty scan cell on this chain will be modified.  For 
example if the simulated captured value is 
101011101011, the unloaded values will be 
111111101011. The fault simulation is performed one 
cell at a time. The simulation results are compared with 
the results observed on ATE and the cell(s) that 
matches the best are finally reported as suspect(s). 
 Obviously, step 2 of the above-mentioned 
algorithm will need simulation of injecting fault on 
every scan cell on the whole faulty chain. If a faulty 
chain has a large number of scan cells, the run time 
could be prohibitive. To enhance the diagnosis 
efficiency, in [GUO01], an additional step is added 
between the above-mentioned two steps. This extra 
step will identify the range of suspect faulty cells 
before simulation.  
 In [GUO01], a full-masked method was proposed. 
In this method, each scan pattern is modified by 
changing the loaded values of all faulty scan chains to 
“X”s. Good machine simulation is performed with 
these modified patterns. If after simulating a pattern, 
some known values are captured into a faulty chain 
then bounds will be determined based on the captured 
known values and the corresponding tester observed 
values. In the example described earlier, assume a 
permanent stuck-at-1 fault exists on the defective scan 
chain with 12 scan cells. Suppose a scan test pattern 
loads 011000110001 into the scan cells on this faulty 
chain.  Based on full-masked method, the loaded 
values for this faulty chain are changed to 
“XXXXXXXXXXXX”. After good machine 
simulation, assume the captured values on the faulty 
chain are X10XX01X10XX. Since the loaded values 
for all faulty chains were changed to “X”s, the known 
values (“1”s and “0”s) captured into the faulty scan 
chain must be independent of the loaded values in the 
faulty chains. If the observed unloaded value at scan 

cell 9 is incorrect (i.e., simulated captured value is “0”, 
ATE measured value is a “1”), a stuck-at-1 fault must 
be in the downstream of scan cell 9. In other words, 
cell 9 is upper bound (denoted UB thereafter) of the 
faulty cells. Similarly, if the observed unloaded value 
at scan cell 6 is correct (simulated capture value is “0”, 
ATE measured value is “0”), the stuck-at-1 fault must 
be in the upstream of cell 6. In other words, cell 6 is 
lower bound (denoted LB thereafter) of the faulty cells. 
So the range of the stuck-at-1 fault is in [6, 9]. Hence, 
instead of simulating all 12 scan cells as in [STA01], 
the diagnosis algorithm proposed in [GUO01] will only 
have to simulate 4 scan cells. The run time will 
speedup 3X in this example.  
 In [HUA03], an iterative partial-masked method 
was proposed to enhance the range calculation in 
[GUO01]. The method initializes UB and LB to the 
leftmost and the rightmost scan cell of the faulty chain 
respectively. In each iteration, simulation is performed 
with the modified scan patterns and UB / LB are 
refined. The scan patterns are modified such that, 
instead of changing all the loaded values of the faulty 
chains to Xs like in the full-masked method, only the 
loaded values of scan cells from UB to right-most cell 
(cell 0) are modified to Xs. Consider the previous 
example, after determining that the fault is in the down 
stream of scan cell 9, loaded values of all scan patterns 
on the faulty chain are changed to “X” only from cell 9 
to cell 0. This way, chances are increased that more 
known values are captured into the faulty chain in the 
downstream of cell 9 and more useful information is 
obtained for chain diagnosis. Once UB / LB is updated, 
one more iteration of partial-masked range calculation 
is performed by using the updated UB / LB. The above 
iterative procedure stops when the UB and LB cannot 
be updated anymore. It is possible that the range 
obtained by partial-masked method is further narrowed 
down and the simulation run time is further reduced 
compared to the full-masked method.  
  In [KUO06], parallel fault simulation is proposed.  
It simulates 32/64 chain faults for each pattern. 
However, it is unclear if this method can achieve better 
run time compared to parallel pattern simulation used 
in [GUO01][HUA03], where each simulation run 32/64 
patterns with one injected chain fault.  
    
3. Dynamic learning based chain 
diagnosis 
 
 In our chain diagnosis practice, we found that for 
big industrial designs, the diagnosis run rime could be 
unacceptably long, even after applying the previously 
mentioned partial-masked method to calculate range. In 
order to find the run time bottleneck, we select an 
industrial design to run some experiments. The design 
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has about 2M gates and 64 scan chains. We select one 
longest scan chain that has 3181 scan cells. Each time, 
we inject one stuck-at-1 fault at a scan cell on this 
chain to create one fail log. The fault locations we 
selected are 6 cells apart along this chain. I.e., we 
select cells 0, 6, 12 … 3180. This way, we create 531 
simulated chain failures cases. Due to ATE fail buffer 
size and test time limit, normally we cannot log too 
many failure patterns if a scan chain has defect. In this 
experiment, we only use the first 10 scan patterns to 
run chain diagnosis. We run partial-masked chain 
diagnosis algorithm, and statistically measure the run 
time spent in each step. We find that the time spend in 
the first step (identify faulty chain and fault type) is 
less than 1%. The time spent in the second step 
(partial-mask based range calculation) is less than 4%. 
The last step (simulation on each cell within the range) 
cost more than 95% of run time. Not surprisingly, the 
run time bottleneck is in the last simulation step. The 
reason behind this statistical result is that in many cases, 
we find range calculation cannot render a tight range 
such that the last step simulation has to be run on a 
large number of cells within the range. Statistically 
analysis shows that 201 out of 531 cases have range 
with more than 1000 scan cells. Evidently, partial-
masked method based range calculation is still 
inefficient for many cases.        
 In the last step of chain fault simulation, a 
mismatch is defined as the simulated unloaded value at 
a scan cell or a PO is “1” (or “0”), whereas the ATE 
observed value at this bit is “0” (or “1”). If a fault is 
injected at a scan cell such that no mismatch happened, 
this cell is called a perfect-match cell. There could be 
one or multiple scan cells that are perfect-match cells. 
If there are multiple of them, it means the current 
patterns used for diagnosis cannot distinguish them. 
The real defect should be one of these perfect-match 
cells. Therefore, the diagnosis will try to find all 
perfect-match cells and report them as suspects. In the 
previous chain diagnosis algorithms, even we already 
find one perfect-match cell, we still have to continue 
run simulation on all other cells in the pre-calculated 
range. One interesting observation is that it is very 
likely that the perfect-match cells are neighboring cells 
within a segment of the faulty chain. That is to say, the 
indistinguishable chain faults are most likely on 
consecutive cells. Intuitively, this is easy to understand 
because the closer two faults are on a chain, the smaller 
probability that it creates enough different loaded and 
unloaded bits to distinguish the two faults. Hence the 
last step of simulation of chain fault at each cell within 
the range can be modified to finding the leftmost and 
rightmost perfect-match cell. Assuming the scan chain 
shift direction is from left to right, we call the leftmost 
perfect-match cell the perfect-match upper bound 
(denoted UBp thereafter) and we call the rightmost 

perfect-match cell the perfect-match lower bound 
(denoted LBp thereafter). All the cells within 
[LBp,UBp] will not be simulated. Instead, we will 
report them as suspect as well. It is possible that one or 
more cells within [LBp , UBp] are not perfect-match 
cells. We do not simulate each cell within [LBp , UBp] 
due to two other reasons besides the run time efficiency. 
(1) Statistical analysis of 531 chain failure cases 
showed that less than 2% of cases have nonconsecutive 
perfect-match cells. 
(2) Such cases usually have too many perfect-match 
cells that make the diagnosis results having small value 
to guide PFA. Normally PFA only performed on the 
cases with less than 3 or 4 suspect cells. 
 Given the above explanations, now the last step of 
our new chain diagnosis algorithm is modified to 
finding [LBp , UBp] from [LB , UB]. In the previous 
chain diagnosis algorithms, when we run fault 
simulation on a scan cell, and if the simulation does not 
match the ATE observation, we will discard the 
simulation results and try the next scan cell. In fact, we 
can learn some useful information from the previous 
unsuccessful simulation and use the learned 
information to direct us to tighten the range. Since each 
time we inject a chain fault at a different cell, we will 
learn different information from each simulation. We 
call this technique “dynamic learning”. If we only 
consider single permanent chain fault, there are five 
basic learning rules described as follows. We will use 
stuck-at fault as examples to illustrate each rule. 
Rule 1: Inject a fault at the current LB, if mismatch 
happens at good chain or PO or on faulty chain at a cell 
< LB, back trace from the mismatched bit to the faulty 
chain. Update the LB to the cell LBnew, where LBnew is 
calculated as in the following steps: 
Step 1: Find all cells on the faulty chain that are 
driving the mismatched bit. Put these driving cells into 
a set C. 
Step 2: For the mismatched pattern, if the good 
machine loaded value at a driving cell is not sensitive 
to the chain fault (i.e., the chain fault has no impact to 
its loaded value), remove this driving cell from C. 
Step 3: If a driving cell is in the downstream of LB (i.e. 
its cell number < LB), drop this cell from C. 
Step 4: Set LBnew as the cell with the minimum cell 
number in C.  

 
   Figure 1 An Example for Rule 1 
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 An example to explain Rule 1 is illustrated in 
Figure 1. Suppose the current LB is cell 1 on the faulty 
chain. Assume if we inject a fault at cell 1 on the faulty 
chain, we find a mismatch happens on cell 4 on a good 
chain (highlighted in red color). Obviously the 
mismatch on any good chain or PO or on faulty chain 
at a cell < LB must be caused by the mismatch between 
the simulated loaded values at the faulty chain and their 
real loaded values on ATE. By using critical path 
tracing, we can find all cells on the faulty chain that are 
driving the mismatched bit. Assuming cells 0, 2, 4, 6 
on the faulty chain are driving cell 4 on the good chain, 
we initialize C = {0, 2, 4, 6} in step 1. By considering 
the pattern loaded value and the fault type, we can 
identify which cells will not be impacted by the chain 
fault. In this example, suppose cell 2 on the faulty 
chain has a good machine loaded value “1” and we 
know the faulty chain has stuck-at-1 fault. We can 
deduce that the mismatch must not be caused by cell 2. 
That is to say, at least one mismatched loaded value at 
cells 0, 4, 6 at the faulty chain caused the mismatched 
simulation result at cell 4 on the good chain. Therefore 
we get C = {0, 4, 6} in step 2. Since cell 0 is in the 
downstream of the currently injected fault (cell 1), cell 
0’s loaded values has been modified by considering the 
chain fault. That left us only cells 4 and 6 that may 
have caused the mismatch, which leads us to update C 
= {4, 6} in step 3. Finally in step 4, to be conservative, 
we set the minimum cell number (cell 4) in C as the 
updated lower bound LBnew. This way, the learned 
information will direct us to inject the next fault at cell 
4 instead of cell 2 as in the traditional diagnosis 
algorithm.  
Rule 1 Extension: 
 When we apply Rule 1 mentioned above, if we 
find multiple mismatched bits at good chains or POs or 
on faulty chain at a cell < LB, we apply Rule 1 to every 
mismatched bit i and get LBnew,i . Finally we pick 
LBnew = Maximum (LBnew, i).  Proof Skipped.  
Rule 2: Inject a fault at the current LB, if mismatch 
happens on the faulty chain at a cell ≥ LB. Update the 
LB to the cell LBnew in the following 3 steps: 
Step 1: Find all mismatched cells ≥ LB on the faulty 
chain. Put these cells into a set C. 
Step 2: Pick from C the cell with the maximum id, and 
denote its cell number as M.  
Step 3: Set LBnew = M + 1  

 
   Figure 2 An Example for Rule 2 

 An example to explain Rule 2 is illustrated in 
Figure 2. Suppose the current LB is cell 1 on the faulty 
chain. Assume if we inject a stuck-at-1 fault at cell 1 
on the faulty chain, we find two mismatches happening 
on cells 4 and 6 on the faulty chain. It implies: 
(1) The simulated value at these two cells must be “1” 
since the injected stuck-at-1 fault at cell 1 will change 
their unloaded values to “1”. 
(2) The real ATE observations at these two cells must 
be “0”. 
 We can learn that the fault should not block the 
unloading procedure of cells 4 and 6. Therefore, we 
initialize C = {4, 6} in step 1, and set M = 6 in step 2. 
Finally, we move LBnew to cell 6+1=7. Note that this 
rule applies only to permanent chain fault but not for 
intermittent chain fault. 
Rule 3: Inject a fault at the current UB, if mismatch 
happens on good chain or PO or on faulty chain at a 
cell < LB, back trace from the mismatched point to the 
faulty chain. Update the UB to the cell UBnew, where 
UBnew is calculated as in the following steps: 
Step 1: Find all cells on the faulty chain that are 
driving the mismatched bit. Put these driving cells into 
a set C. 
Step 2: For the mismatched pattern, if the good 
machine loaded value at a driving cell is not sensitive 
to the chain fault (i.e., the chain fault has no impact to 
its loaded value), remove this driving cell from C. 
Step 3: If a driving cell is in the upstream of UB, drop 
this driving cell from C. 
Step 4: Pick from C the cell with the maximum cell 
number, and denote its cell number as M.  
Step 5: Set UBnew = M - 1  

 
   Figure 3 An Example for Rule 3 

 
 An example to explain Rule 3 is illustrated in 
Figure 3. Suppose the current UB is cell 7 on the faulty 
chain. Assume if we inject a fault at cell 7 on the faulty 
chain, we find a mismatch happens on cell 4 on a good 
chain (highlighted in red color). Obviously the 
mismatch at any good chain or PO or on faulty chain at 
a cell < LB, must be caused by the mismatch between 
the simulated loaded values at the faulty chain and their 
real loaded values on ATE. By using critical path 
tracing, we can find all cells on the faulty chain that are 
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driving the mismatched bit. Assuming cells 1, 3, 5, 8 
on the faulty chain are driving cell 4 on the good chain, 
we initialize C = {1, 3, 5, 8} in step 1. By considering 
the pattern loaded value and the fault type, we can 
identify which cells will not be impacted by the chain 
fault. In this example, suppose cell 1 on the faulty 
chain has a good machine loaded value “1”, and we 
know the faulty chain has stuck-at-1 fault. We can 
deduce that the mismatch must not be caused by cell 1 
on the faulty chain. Hence, we remove cell 1 from C 
and get C = {3, 5, 8} in step 2. Since cell 8 is in the 
upstream of the currently injected fault (cell 7), its 
loaded values are not impacted by the fault. So we 
remove cell 8 from C and get C = {3, 5} in step 3. At 
this point, we can learn that the chain fault should have 
no impact on at least one of the cells in C. To be 
conservative, in step 4, we pick the cell with the 
maximum cell number in C and set M = 5. Finally, we 
set the updated upper bound UBnew = 5-1 = 4. This 
way, the learned information will direct us to inject the 
next fault at cell 4 instead of cell 6 as in the traditional 
diagnosis algorithm. 
Rule 3 Extension: 
 When we apply Rule 3 mentioned above, if we 
find multiple mismatched bits at good chains or POs or 
on faulty chain with mismatched cell < LB, we apply 
the learning rule to every mismatched bit i and get 
UBnew,i . Finally we set UBnew=Minimum(UBnew, i). 
Proof Skipped.  
Rule 4: Inject a fault at the current UB, suppose a 
mismatch satisfies the following 2 conditions 
simultaneously: 
(1) The mismatch happens on the faulty chain at a cell 
such that UB < cell < LB. 
(2) The ATE observed value at this mismatched cell is 
inconsistent with the fault type of the faulty chain. 
 We can apply both learning Rules 2 and 3 (and its 
extension) introduced above. 

 
  

Figure 4 An Example for Rule 4 
 

 An example to explain Rule 4 is illustrated in 
Figure 4. Suppose the faulty chain has current UB at 
cell 7 and LB at cell 1. Assume if we inject a fault at 
cell 7 on the faulty chain, we find a mismatch happens 
on cell 3 on the same faulty chain (highlighted in red 
color). If the faulty chain has a stuck-at-1 fault, and 
ATE observation on cell 3 is “0”, it implies the 
simulated unload value at cell 3 is “1”. We know that 

there should be no stuck-at-1 fault in the downstream 
of cell 3. Otherwise, we cannot observe “1” at cell 3 on 
ATE. So Rule 2 can be applied to update LBnew= 4. We 
also deduce that the simulated “1” at cell 3 are caused 
by the mismatched driving bits. So we can apply Rule 
3 as well. Assuming cell 1 and cell 6 are the driving 
cells of cell 3, we will update the UBnew=5 per Rule 3. 
Note that this learning rule can update both UB and LB.  
Rule 5: Inject a fault at the current UB, suppose a 
mismatch satisfies the following 2 conditions 
simultaneously: 
(1) The mismatch happens on the faulty chain at a cell 
such that UB < cell < LB. (Same condition as in Rule 
4) 
(2) The ATE observed value at this mismatched cell is 
consistent with the fault type of the faulty chain. 
 We can only apply learning Rule 3 and its 
extension introduced above. However, we cannot apply 
Rule 2. Still using the previous example illustrated in 
Figure 4, but we change the chain fault type to stuck-
at-0 this time. If the faulty chain has a stuck-at-0 fault, 
and ATE observation on cell 3 is “0”, it implies the 
simulated unload value at cell 3 is “1”. This time we do 
not know whether there is a stuck-at-0 fault in the 
downstream of cell 3 or not. So Rule 2 cannot be 
applied. Rule 3 can still be applied.  
 If any learning rule is applicable during searching 
of LBnew/UBnew, using the learning rules will speedup 
the searching compared to the traditional chain 
diagnosis algorithm that searches all cells in the range 
one by one. By learning, the next simulated cell may 
not be the neighbor cell of the currently simulated cell. 
The “jump distance" depends on the mismatched 
patterns, mismatched scan cell locations and the circuit 
structure. If no rule is applicable at some point, using 
next-cell searching, i.e., LBnew= LB+1 or UBnew = UB-
1, may make learning rules applicable at the new 
searching points. We start searching from current UB 
(LB) and stop searching if we find the perfect-match 
cell UBp (LBp).  
 Note that so far we only illustrated the basic 
dynamic learning rules by considering (1) single faulty 
chain, (2) single fault per chain, (3) permanent chain 
fault, (4) non-compactor based scan architecture and 
(5) stuck-at fault as examples. In reality we have to 
consider (1) multiple faulty chains, (2) multiple faults 
(with same fault model) per chain, (3) intermittent 
chain faults, (4) scan architectures with any embedded 
compactor and (5) any fault models including timing-
related chain fault (e.g. scan chain hold-time fault). The 
proposed dynamic learning can be implemented by 
either adapting existing rules or adding new rules. Due 
to space limit, we do not illustrate more complicated 
learning techniques to handle these complicated cases. 
We already implemented all rules to consider all those 
real case situations into a commercial diagnosis tool.   
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4. Experimental results 
 
 In order to measure the efficiency of the proposed 
dynamic-learning based chain diagnosis, we compare 
one old chain diagnosis and the new learning based 
chain diagnosis algorithm on 531 simulated chain 
failures cases mentioned in Section 3. The old chain 
diagnosis we used for comparison is the one proposed 
in [HUA03] since it is more efficient than the 
algorithms introduced in [STA01] and [GUO01]. As 
introduced in Section 2, this chain diagnosis algorithm 
used partial-masked range calculation and simulation 
of each scan cell within the range. The run time 
speedup ratios are shown in Figure 5.  
 

  
        Figure 5 Run Time Speedup Ratios  

 
 We measure run time speedup ratios for all 531 
test cases and calculate the average. The proposed 
dynamic-learning based diagnosis algorithm is about 
10X enhancement, which is shown as the leftmost bar 
in Figure 5. In the rest of bars we show the speedup 
ratios for only a subset of circuits. Among 531 cases, 
336 of them had partial-masked range > 10. Among 
these 336 cases, 240 of them had partial-masked range 
> 100. Among 240 cases, 201 of them had partial-
masked range > 1000. The experimental results 
indicate that the speedup ratios are about 12X, 18X and 
20X for the subsets of cases with ranges >10, >100 and 
>1000 respectively. Obviously, the larger a range is, 
the more efficient the proposed dynamic-learning 
based chain diagnosis shows. In terms of absolute run 
time, the proposed dynamic learning based chain 
diagnosis use only about a few minutes on average for 
one case. The diagnosis experiments are run on a 64-
bits Linux machine.          
 Diagnosis quality of results are measured in terms 
of their accuracy (whether the reported suspect(s) 
include the injected fault) and resolution (the number 
of suspects reported). In all of the 531 cases, accuracy 

was not a problem. The resolution is almost the same 
the old chain diagnosis algorithms.  
 
5. Conclusions 
 
 In this paper, we investigated the run time 
bottleneck for the traditional chain diagnosis 
algorithms. A novel dynamic-learning based chain 
diagnosis methodology is proposed. The new algorithm 
is based on several learning rules. The rules analyze the 
circuit, patterns, and mismatched bits to figure out 
what cell(s) should be simulated in the next iteration. 
Therefore instead of simulating every one cell within a 
range, we may only need simulation of a few cells to 
find out perfect-match suspects. Experiments with a 
large number of simulated test cases showed that the 
proposed methods can achieve about 10X run time 
speedup on average. Although we discuss learning 
based chain diagnosis in this paper, the concept may 
also be applied to system logic diagnosis if a new set of 
learning rules are defined for logic diagnosis.    
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