
 1

Dynamic Learning Based Scan Chain Diagnosis

Yu Huang
Mentor Graphics Corporation, 300 Nickerson Road, Marlborough, MA 01752, USA

Abstract
 Scan chain defect diagnosis is important to silicon
debug and yield enhancement. Traditional simulation-
based chain diagnosis algorithms may take long run
time if a large number of simulations are required. In
this paper, a novel dynamic learning based scan chain
diagnosis is proposed to speedup the diagnosis run
time. Experimental results illustrate that by using the
proposed dynamic learning techniques, the diagnosis
run time can be reduced about 10X on average.

1. Introduction

 ATPG patterns that utilize scan chains to provide
stimulus and capture responses from circuitry have
become the primary method for achieving test coverage
in digital logic circuits. Scan based testing has proven
to be a cost effective method to achieve good test
coverage with minimal test time and pattern
development overhead. Meanwhile, scan based
diagnosis has also opened up new avenues for failure
analysis. Scan diagnosis can be utilized to quickly
isolate the suspects and provide efficient guidance to
physical failure analysis (PFA).
 The Achilles’ heel for the application of scan-
based diagnosis is the integrity of the scan chains. The
amount of die area consumed by the scan flops, scan
chain connections, and scan control circuitry can range
from 15-30% [GUO01]. The number of die failing the
scan chain integrity test will typically scale
proportionally with the percentage of total circuitry
involved with the scan chains. Several previous papers
[KUN94][CRO05] did a good job of describing the
challenges of diagnosing the scan chain defects. One of
the very important issues of the chain diagnosis is the
run time. With the requirement of volume diagnosis in
the manufacture environment for yield improvement,
the diagnosis run time becomes even more important.
 In this paper, the run time bottleneck of the
previously published chain diagnosis algorithms is
identified. Several novel dynamic learning techniques
are proposed. We will illustrate later in the
experimental results that applying the new dynamic
learning techniques can reduce the chain diagnosis run
time about one order of magnitude on average.

 The rest of this paper is organized as follows.
Section 2 reviews prior art of chain diagnosis
algorithms. In Section 3, dynamic learning based chain
diagnosis is proposed to boost chain diagnosis speed.
Section 4 presents experimental results and conclusions
are drawn in Section 5.

2. Review of chain diagnosis

 The previous chain diagnosis methodologies can
be classified into two categories: hardware-based and
software-based. Hardware-based methods use some
special scan chain and scan cell designs to facilitate the
diagnosis process [SCH92] [WU98] [EDI95] [NAR97].
In this paper, we do not consider hardware based chain
diagnosis methods because normally these methods
incur some hardware overhead that prevents them from
being applied in practice.
 Software-based algorithms do not need any
modification of the basic scan circuitry [KUN94]
[GUO01] [STA01] [HUA03]. In [KUN94], it generates
special patterns to diagnose chain failures. In [GUO01]
and [STA01] fault simulation and matching algorithms
are applied to identify the defective scan cells. In
[HUA03], algorithms are proposed to diagnose realistic
chain defects by targeting intermittent scan chain faults.
Note that with the more popular embedded
compression, chain diagnosis procedures need to be
enhanced to incorporate the compactor functions
[HUA05]. Compared with the hardware-based methods,
software-based techniques are more attractive due to
not requiring design modification and no extra
hardware overhead.
 A typical software-based chain diagnosis
algorithm, like [STA01] [GUO01] or [HUA03], is
based on simulation. The chain diagnosis algorithm
proposed in [STA01] includes two steps. Next, we will
use an example to illustrate these two steps. Assume a
design has one defective scan chain composed of 12
scan cells numbered from cell 0 to cell 11. Cell 0 is
connected to scan chain output while cell 11 is
connected to scan chain input.
 Step 1: Identify faulty chains and fault types using
chain integrity test patterns.
 Suppose the faulty scan chain with 12 scan cells is
loaded with a chain pattern 001100110011, where the

978-3-9810801-2-4/DATE07 © 2007 EDAA

 2

leftmost bit is loaded into cell 11 and the rightmost bit
is loaded into cell 0. If failures are observed at cells 2,
3, 6, 7, 10, 11 of this chain, then it can be determined
that there is at least one stuck-at-1 fault on this chain.
In reality, the chain defects can be modeled with
various fault models such as stuck-at or hold-time fault.
 Step 2: Locate faulty scan cells by injecting fault
at each cell on the fault chain and simulating the failed
scan patterns.
 The objective of this step is to locate the suspect
scan cells. If a fault is “injected” on a scan cell on the
faulty chain, loaded values in the downstream of this
scan cell on the faulty chain will be modified for all
failed scan patterns. For example, suppose a scan
pattern has good machine loaded value 001110011010
on the faulty chain. If a stuck-at-1 fault is injected on
scan cell 8 of this chain, the loaded values will be
modified as 001111111111. After pulsing the capture
clock, simulated captured values in the upstream of the
faulty scan cell on this chain will be modified. For
example if the simulated captured value is
101011101011, the unloaded values will be
111111101011. The fault simulation is performed one
cell at a time. The simulation results are compared with
the results observed on ATE and the cell(s) that
matches the best are finally reported as suspect(s).
 Obviously, step 2 of the above-mentioned
algorithm will need simulation of injecting fault on
every scan cell on the whole faulty chain. If a faulty
chain has a large number of scan cells, the run time
could be prohibitive. To enhance the diagnosis
efficiency, in [GUO01], an additional step is added
between the above-mentioned two steps. This extra
step will identify the range of suspect faulty cells
before simulation.
 In [GUO01], a full-masked method was proposed.
In this method, each scan pattern is modified by
changing the loaded values of all faulty scan chains to
“X”s. Good machine simulation is performed with
these modified patterns. If after simulating a pattern,
some known values are captured into a faulty chain
then bounds will be determined based on the captured
known values and the corresponding tester observed
values. In the example described earlier, assume a
permanent stuck-at-1 fault exists on the defective scan
chain with 12 scan cells. Suppose a scan test pattern
loads 011000110001 into the scan cells on this faulty
chain. Based on full-masked method, the loaded
values for this faulty chain are changed to
“XXXXXXXXXXXX”. After good machine
simulation, assume the captured values on the faulty
chain are X10XX01X10XX. Since the loaded values
for all faulty chains were changed to “X”s, the known
values (“1”s and “0”s) captured into the faulty scan
chain must be independent of the loaded values in the
faulty chains. If the observed unloaded value at scan

cell 9 is incorrect (i.e., simulated captured value is “0”,
ATE measured value is a “1”), a stuck-at-1 fault must
be in the downstream of scan cell 9. In other words,
cell 9 is upper bound (denoted UB thereafter) of the
faulty cells. Similarly, if the observed unloaded value
at scan cell 6 is correct (simulated capture value is “0”,
ATE measured value is “0”), the stuck-at-1 fault must
be in the upstream of cell 6. In other words, cell 6 is
lower bound (denoted LB thereafter) of the faulty cells.
So the range of the stuck-at-1 fault is in [6, 9]. Hence,
instead of simulating all 12 scan cells as in [STA01],
the diagnosis algorithm proposed in [GUO01] will only
have to simulate 4 scan cells. The run time will
speedup 3X in this example.
 In [HUA03], an iterative partial-masked method
was proposed to enhance the range calculation in
[GUO01]. The method initializes UB and LB to the
leftmost and the rightmost scan cell of the faulty chain
respectively. In each iteration, simulation is performed
with the modified scan patterns and UB / LB are
refined. The scan patterns are modified such that,
instead of changing all the loaded values of the faulty
chains to Xs like in the full-masked method, only the
loaded values of scan cells from UB to right-most cell
(cell 0) are modified to Xs. Consider the previous
example, after determining that the fault is in the down
stream of scan cell 9, loaded values of all scan patterns
on the faulty chain are changed to “X” only from cell 9
to cell 0. This way, chances are increased that more
known values are captured into the faulty chain in the
downstream of cell 9 and more useful information is
obtained for chain diagnosis. Once UB / LB is updated,
one more iteration of partial-masked range calculation
is performed by using the updated UB / LB. The above
iterative procedure stops when the UB and LB cannot
be updated anymore. It is possible that the range
obtained by partial-masked method is further narrowed
down and the simulation run time is further reduced
compared to the full-masked method.
 In [KUO06], parallel fault simulation is proposed.
It simulates 32/64 chain faults for each pattern.
However, it is unclear if this method can achieve better
run time compared to parallel pattern simulation used
in [GUO01][HUA03], where each simulation run 32/64
patterns with one injected chain fault.

3. Dynamic learning based chain
diagnosis

 In our chain diagnosis practice, we found that for
big industrial designs, the diagnosis run rime could be
unacceptably long, even after applying the previously
mentioned partial-masked method to calculate range. In
order to find the run time bottleneck, we select an
industrial design to run some experiments. The design

 3

has about 2M gates and 64 scan chains. We select one
longest scan chain that has 3181 scan cells. Each time,
we inject one stuck-at-1 fault at a scan cell on this
chain to create one fail log. The fault locations we
selected are 6 cells apart along this chain. I.e., we
select cells 0, 6, 12 … 3180. This way, we create 531
simulated chain failures cases. Due to ATE fail buffer
size and test time limit, normally we cannot log too
many failure patterns if a scan chain has defect. In this
experiment, we only use the first 10 scan patterns to
run chain diagnosis. We run partial-masked chain
diagnosis algorithm, and statistically measure the run
time spent in each step. We find that the time spend in
the first step (identify faulty chain and fault type) is
less than 1%. The time spent in the second step
(partial-mask based range calculation) is less than 4%.
The last step (simulation on each cell within the range)
cost more than 95% of run time. Not surprisingly, the
run time bottleneck is in the last simulation step. The
reason behind this statistical result is that in many cases,
we find range calculation cannot render a tight range
such that the last step simulation has to be run on a
large number of cells within the range. Statistically
analysis shows that 201 out of 531 cases have range
with more than 1000 scan cells. Evidently, partial-
masked method based range calculation is still
inefficient for many cases.
 In the last step of chain fault simulation, a
mismatch is defined as the simulated unloaded value at
a scan cell or a PO is “1” (or “0”), whereas the ATE
observed value at this bit is “0” (or “1”). If a fault is
injected at a scan cell such that no mismatch happened,
this cell is called a perfect-match cell. There could be
one or multiple scan cells that are perfect-match cells.
If there are multiple of them, it means the current
patterns used for diagnosis cannot distinguish them.
The real defect should be one of these perfect-match
cells. Therefore, the diagnosis will try to find all
perfect-match cells and report them as suspects. In the
previous chain diagnosis algorithms, even we already
find one perfect-match cell, we still have to continue
run simulation on all other cells in the pre-calculated
range. One interesting observation is that it is very
likely that the perfect-match cells are neighboring cells
within a segment of the faulty chain. That is to say, the
indistinguishable chain faults are most likely on
consecutive cells. Intuitively, this is easy to understand
because the closer two faults are on a chain, the smaller
probability that it creates enough different loaded and
unloaded bits to distinguish the two faults. Hence the
last step of simulation of chain fault at each cell within
the range can be modified to finding the leftmost and
rightmost perfect-match cell. Assuming the scan chain
shift direction is from left to right, we call the leftmost
perfect-match cell the perfect-match upper bound
(denoted UBp thereafter) and we call the rightmost

perfect-match cell the perfect-match lower bound
(denoted LBp thereafter). All the cells within
[LBp,UBp] will not be simulated. Instead, we will
report them as suspect as well. It is possible that one or
more cells within [LBp , UBp] are not perfect-match
cells. We do not simulate each cell within [LBp , UBp]
due to two other reasons besides the run time efficiency.
(1) Statistical analysis of 531 chain failure cases
showed that less than 2% of cases have nonconsecutive
perfect-match cells.
(2) Such cases usually have too many perfect-match
cells that make the diagnosis results having small value
to guide PFA. Normally PFA only performed on the
cases with less than 3 or 4 suspect cells.
 Given the above explanations, now the last step of
our new chain diagnosis algorithm is modified to
finding [LBp , UBp] from [LB , UB]. In the previous
chain diagnosis algorithms, when we run fault
simulation on a scan cell, and if the simulation does not
match the ATE observation, we will discard the
simulation results and try the next scan cell. In fact, we
can learn some useful information from the previous
unsuccessful simulation and use the learned
information to direct us to tighten the range. Since each
time we inject a chain fault at a different cell, we will
learn different information from each simulation. We
call this technique “dynamic learning”. If we only
consider single permanent chain fault, there are five
basic learning rules described as follows. We will use
stuck-at fault as examples to illustrate each rule.
Rule 1: Inject a fault at the current LB, if mismatch
happens at good chain or PO or on faulty chain at a cell
< LB, back trace from the mismatched bit to the faulty
chain. Update the LB to the cell LBnew, where LBnew is
calculated as in the following steps:
Step 1: Find all cells on the faulty chain that are
driving the mismatched bit. Put these driving cells into
a set C.
Step 2: For the mismatched pattern, if the good
machine loaded value at a driving cell is not sensitive
to the chain fault (i.e., the chain fault has no impact to
its loaded value), remove this driving cell from C.
Step 3: If a driving cell is in the downstream of LB (i.e.
its cell number < LB), drop this cell from C.
Step 4: Set LBnew as the cell with the minimum cell
number in C.

 Figure 1 An Example for Rule 1

 4

 An example to explain Rule 1 is illustrated in
Figure 1. Suppose the current LB is cell 1 on the faulty
chain. Assume if we inject a fault at cell 1 on the faulty
chain, we find a mismatch happens on cell 4 on a good
chain (highlighted in red color). Obviously the
mismatch on any good chain or PO or on faulty chain
at a cell < LB must be caused by the mismatch between
the simulated loaded values at the faulty chain and their
real loaded values on ATE. By using critical path
tracing, we can find all cells on the faulty chain that are
driving the mismatched bit. Assuming cells 0, 2, 4, 6
on the faulty chain are driving cell 4 on the good chain,
we initialize C = {0, 2, 4, 6} in step 1. By considering
the pattern loaded value and the fault type, we can
identify which cells will not be impacted by the chain
fault. In this example, suppose cell 2 on the faulty
chain has a good machine loaded value “1” and we
know the faulty chain has stuck-at-1 fault. We can
deduce that the mismatch must not be caused by cell 2.
That is to say, at least one mismatched loaded value at
cells 0, 4, 6 at the faulty chain caused the mismatched
simulation result at cell 4 on the good chain. Therefore
we get C = {0, 4, 6} in step 2. Since cell 0 is in the
downstream of the currently injected fault (cell 1), cell
0’s loaded values has been modified by considering the
chain fault. That left us only cells 4 and 6 that may
have caused the mismatch, which leads us to update C
= {4, 6} in step 3. Finally in step 4, to be conservative,
we set the minimum cell number (cell 4) in C as the
updated lower bound LBnew. This way, the learned
information will direct us to inject the next fault at cell
4 instead of cell 2 as in the traditional diagnosis
algorithm.
Rule 1 Extension:
 When we apply Rule 1 mentioned above, if we
find multiple mismatched bits at good chains or POs or
on faulty chain at a cell < LB, we apply Rule 1 to every
mismatched bit i and get LBnew,i . Finally we pick
LBnew = Maximum (LBnew, i). Proof Skipped.
Rule 2: Inject a fault at the current LB, if mismatch
happens on the faulty chain at a cell ≥ LB. Update the
LB to the cell LBnew in the following 3 steps:
Step 1: Find all mismatched cells ≥ LB on the faulty
chain. Put these cells into a set C.
Step 2: Pick from C the cell with the maximum id, and
denote its cell number as M.
Step 3: Set LBnew = M + 1

 Figure 2 An Example for Rule 2

 An example to explain Rule 2 is illustrated in
Figure 2. Suppose the current LB is cell 1 on the faulty
chain. Assume if we inject a stuck-at-1 fault at cell 1
on the faulty chain, we find two mismatches happening
on cells 4 and 6 on the faulty chain. It implies:
(1) The simulated value at these two cells must be “1”
since the injected stuck-at-1 fault at cell 1 will change
their unloaded values to “1”.
(2) The real ATE observations at these two cells must
be “0”.
 We can learn that the fault should not block the
unloading procedure of cells 4 and 6. Therefore, we
initialize C = {4, 6} in step 1, and set M = 6 in step 2.
Finally, we move LBnew to cell 6+1=7. Note that this
rule applies only to permanent chain fault but not for
intermittent chain fault.
Rule 3: Inject a fault at the current UB, if mismatch
happens on good chain or PO or on faulty chain at a
cell < LB, back trace from the mismatched point to the
faulty chain. Update the UB to the cell UBnew, where
UBnew is calculated as in the following steps:
Step 1: Find all cells on the faulty chain that are
driving the mismatched bit. Put these driving cells into
a set C.
Step 2: For the mismatched pattern, if the good
machine loaded value at a driving cell is not sensitive
to the chain fault (i.e., the chain fault has no impact to
its loaded value), remove this driving cell from C.
Step 3: If a driving cell is in the upstream of UB, drop
this driving cell from C.
Step 4: Pick from C the cell with the maximum cell
number, and denote its cell number as M.
Step 5: Set UBnew = M - 1

 Figure 3 An Example for Rule 3

 An example to explain Rule 3 is illustrated in
Figure 3. Suppose the current UB is cell 7 on the faulty
chain. Assume if we inject a fault at cell 7 on the faulty
chain, we find a mismatch happens on cell 4 on a good
chain (highlighted in red color). Obviously the
mismatch at any good chain or PO or on faulty chain at
a cell < LB, must be caused by the mismatch between
the simulated loaded values at the faulty chain and their
real loaded values on ATE. By using critical path
tracing, we can find all cells on the faulty chain that are

 5

driving the mismatched bit. Assuming cells 1, 3, 5, 8
on the faulty chain are driving cell 4 on the good chain,
we initialize C = {1, 3, 5, 8} in step 1. By considering
the pattern loaded value and the fault type, we can
identify which cells will not be impacted by the chain
fault. In this example, suppose cell 1 on the faulty
chain has a good machine loaded value “1”, and we
know the faulty chain has stuck-at-1 fault. We can
deduce that the mismatch must not be caused by cell 1
on the faulty chain. Hence, we remove cell 1 from C
and get C = {3, 5, 8} in step 2. Since cell 8 is in the
upstream of the currently injected fault (cell 7), its
loaded values are not impacted by the fault. So we
remove cell 8 from C and get C = {3, 5} in step 3. At
this point, we can learn that the chain fault should have
no impact on at least one of the cells in C. To be
conservative, in step 4, we pick the cell with the
maximum cell number in C and set M = 5. Finally, we
set the updated upper bound UBnew = 5-1 = 4. This
way, the learned information will direct us to inject the
next fault at cell 4 instead of cell 6 as in the traditional
diagnosis algorithm.
Rule 3 Extension:
 When we apply Rule 3 mentioned above, if we
find multiple mismatched bits at good chains or POs or
on faulty chain with mismatched cell < LB, we apply
the learning rule to every mismatched bit i and get
UBnew,i . Finally we set UBnew=Minimum(UBnew, i).
Proof Skipped.
Rule 4: Inject a fault at the current UB, suppose a
mismatch satisfies the following 2 conditions
simultaneously:
(1) The mismatch happens on the faulty chain at a cell
such that UB < cell < LB.
(2) The ATE observed value at this mismatched cell is
inconsistent with the fault type of the faulty chain.
 We can apply both learning Rules 2 and 3 (and its
extension) introduced above.

Figure 4 An Example for Rule 4

 An example to explain Rule 4 is illustrated in
Figure 4. Suppose the faulty chain has current UB at
cell 7 and LB at cell 1. Assume if we inject a fault at
cell 7 on the faulty chain, we find a mismatch happens
on cell 3 on the same faulty chain (highlighted in red
color). If the faulty chain has a stuck-at-1 fault, and
ATE observation on cell 3 is “0”, it implies the
simulated unload value at cell 3 is “1”. We know that

there should be no stuck-at-1 fault in the downstream
of cell 3. Otherwise, we cannot observe “1” at cell 3 on
ATE. So Rule 2 can be applied to update LBnew= 4. We
also deduce that the simulated “1” at cell 3 are caused
by the mismatched driving bits. So we can apply Rule
3 as well. Assuming cell 1 and cell 6 are the driving
cells of cell 3, we will update the UBnew=5 per Rule 3.
Note that this learning rule can update both UB and LB.
Rule 5: Inject a fault at the current UB, suppose a
mismatch satisfies the following 2 conditions
simultaneously:
(1) The mismatch happens on the faulty chain at a cell
such that UB < cell < LB. (Same condition as in Rule
4)
(2) The ATE observed value at this mismatched cell is
consistent with the fault type of the faulty chain.
 We can only apply learning Rule 3 and its
extension introduced above. However, we cannot apply
Rule 2. Still using the previous example illustrated in
Figure 4, but we change the chain fault type to stuck-
at-0 this time. If the faulty chain has a stuck-at-0 fault,
and ATE observation on cell 3 is “0”, it implies the
simulated unload value at cell 3 is “1”. This time we do
not know whether there is a stuck-at-0 fault in the
downstream of cell 3 or not. So Rule 2 cannot be
applied. Rule 3 can still be applied.
 If any learning rule is applicable during searching
of LBnew/UBnew, using the learning rules will speedup
the searching compared to the traditional chain
diagnosis algorithm that searches all cells in the range
one by one. By learning, the next simulated cell may
not be the neighbor cell of the currently simulated cell.
The “jump distance" depends on the mismatched
patterns, mismatched scan cell locations and the circuit
structure. If no rule is applicable at some point, using
next-cell searching, i.e., LBnew= LB+1 or UBnew = UB-
1, may make learning rules applicable at the new
searching points. We start searching from current UB
(LB) and stop searching if we find the perfect-match
cell UBp (LBp).
 Note that so far we only illustrated the basic
dynamic learning rules by considering (1) single faulty
chain, (2) single fault per chain, (3) permanent chain
fault, (4) non-compactor based scan architecture and
(5) stuck-at fault as examples. In reality we have to
consider (1) multiple faulty chains, (2) multiple faults
(with same fault model) per chain, (3) intermittent
chain faults, (4) scan architectures with any embedded
compactor and (5) any fault models including timing-
related chain fault (e.g. scan chain hold-time fault). The
proposed dynamic learning can be implemented by
either adapting existing rules or adding new rules. Due
to space limit, we do not illustrate more complicated
learning techniques to handle these complicated cases.
We already implemented all rules to consider all those
real case situations into a commercial diagnosis tool.

 6

4. Experimental results

 In order to measure the efficiency of the proposed
dynamic-learning based chain diagnosis, we compare
one old chain diagnosis and the new learning based
chain diagnosis algorithm on 531 simulated chain
failures cases mentioned in Section 3. The old chain
diagnosis we used for comparison is the one proposed
in [HUA03] since it is more efficient than the
algorithms introduced in [STA01] and [GUO01]. As
introduced in Section 2, this chain diagnosis algorithm
used partial-masked range calculation and simulation
of each scan cell within the range. The run time
speedup ratios are shown in Figure 5.

 Figure 5 Run Time Speedup Ratios

 We measure run time speedup ratios for all 531
test cases and calculate the average. The proposed
dynamic-learning based diagnosis algorithm is about
10X enhancement, which is shown as the leftmost bar
in Figure 5. In the rest of bars we show the speedup
ratios for only a subset of circuits. Among 531 cases,
336 of them had partial-masked range > 10. Among
these 336 cases, 240 of them had partial-masked range
> 100. Among 240 cases, 201 of them had partial-
masked range > 1000. The experimental results
indicate that the speedup ratios are about 12X, 18X and
20X for the subsets of cases with ranges >10, >100 and
>1000 respectively. Obviously, the larger a range is,
the more efficient the proposed dynamic-learning
based chain diagnosis shows. In terms of absolute run
time, the proposed dynamic learning based chain
diagnosis use only about a few minutes on average for
one case. The diagnosis experiments are run on a 64-
bits Linux machine.
 Diagnosis quality of results are measured in terms
of their accuracy (whether the reported suspect(s)
include the injected fault) and resolution (the number
of suspects reported). In all of the 531 cases, accuracy

was not a problem. The resolution is almost the same
the old chain diagnosis algorithms.

5. Conclusions

 In this paper, we investigated the run time
bottleneck for the traditional chain diagnosis
algorithms. A novel dynamic-learning based chain
diagnosis methodology is proposed. The new algorithm
is based on several learning rules. The rules analyze the
circuit, patterns, and mismatched bits to figure out
what cell(s) should be simulated in the next iteration.
Therefore instead of simulating every one cell within a
range, we may only need simulation of a few cells to
find out perfect-match suspects. Experiments with a
large number of simulated test cases showed that the
proposed methods can achieve about 10X run time
speedup on average. Although we discuss learning
based chain diagnosis in this paper, the concept may
also be applied to system logic diagnosis if a new set of
learning rules are defined for logic diagnosis.

REFERENCES
[CHE04] W.-T. Cheng, K.-H. Tsai, Y. Huang, N.
Tamarapalli and J. Rajski, “Compactor Independent Direct
Diagnosis,” Asian Test Symposium, 2004, pp. 204 – 209.
[CRO05] A. Crouch, “Debugging and Diagnosing Scan
Chains,” EDFAS, Vol. 7, Feb., 2005, pp 16-24.
[EDI95] S. Edirisooriya and G. Edirisooriya, “Diagnosis of
Scan Failures,” Proc. VLSI Test Symposium 1995, pp.250-
255.
[GUO01] R. Guo and S. Venkataraman, “A Technique for
Fault Diagnosis of Defects in Scan Chains,” Proc. Int’l Test
Conference, 2001, pp. 268-277.
[HUA03] Y. Huang, W.-T. Cheng, S.M. Reddy, C.-J. Hsieh,
Y.-T. Hung, “Statistical Diagnosis for Intermittent Scan
Chain Hold-Time Fault,” Int’l Test Conference, 2003,
pp.319-328.
[HUA05] Y. Huang, W.-T. Cheng, and J. Rajski,
“Compressed Pattern Diagnosis For Scan Chain Failures,”
Proc. Int’l Test Conf. 2005.
[KUN94] S. Kundu, “Diagnosing Scan Chain Faults,” IEEE
Trans. On VLSI Systems, Vol. 2, No. 4, 1994, pp.512-516.
[KUO06] Y.-L. Kuo, W.-S. Chuang and J. C.-M. Li, "Jump
simulation: a technique for fast and precise scan chain fault
diagnosis," Proc. Int'l Test Conference, 2006, Paper 22.1.
[NAR97] S. Narayanan and A. Das, “An Efficient Scheme to
Diagnose Scan Chains,” Proc. Int’l Test Conference, 1997,
pp. 704-713.
[SCH92] J. Schafer, F. Policastri and R. Mcnulty, “Partner
SRLs for Improved Shift Register Diagnostics,” Proc. VLSI
Test Symposium, 1992, pp.198-201.
[STA01] K. Stanley, “High-Accuracy Flush-and-Scan
Software Diagnostic,” IEEE Design & Test of Computers,
Nov-Dec, 2001, pp.56-62.
[WU98] Y. Wu, “Diagnosis of Scan Chain Failures,” Proc.
Int’l Symp. on Defect and Fault Tolerance in VLSI Systems,
1998, pp.217-222.

