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ABSTRACT. The best known methods for estimating hazard rate functions in survival 
analysis models are either purely parametric or purely nonparametric. The parametric 
ones are sometimes too biased while the nonparametric ones are sometimes too vari­
able. In the present paper a certain semiparametric approach to hazard rate estimation, 
proposed in Hjort (1991), is developed further, aiming to combine parametric and non­
parametric features. It uses a dynamic local likelihood approach to fit the locally most 
suitable member in a given parametric class of hazard rates, and amounts to a version 
of non parametric parameter smoothing within the parametric class. Thus the parametric 
hazard rate estimate at time 8 inserts a parameter estimate that also depends on 8. We 
study bias and variance properties of the resulting estimator and methods for choosing the 
local smoothing parameter. It is shown that dynamic likelihood estimation often leads to 
better performance than the purely nonparametric methods, while also having capacity 
for not losing much to the parametric methods in cases where the model being smoothed 
is adequate. 

KEY WORDS: dynamic likelihood, hazard rate, kernel smoothing, local goodness of fit, 
local modelling, semiparametric estimation 

1. Introduction and summary. This paper concerns a class of semiparametric type methods 

of estimating hazard rate functions in models for life history data. The best known methods for 

estimating such hazard rates are those that are either purely parametric or purely nonparametric. 

The parametric methods are usually biased since parametric models are usually imperfect, and the 

nonparametric methods often have high estimation variance. There should accordingly be room 

for methods that somehow lie between the parametric and the nonparametric ones. One might 

hope that such methods are better than the nonparametric ones if the true hazard is in the vicinity 

of the parametric model, while not being much worse than the parametric ones if the parametric 

model is true. 

Although results can be obtained in a more general framework of counting process models 

we shall mainly be content to illustrate and investigate ideas for the 'random censorship' model, 

which is the simplest and perhaps most important special case of such models for censored life­

time data. It postulates that life-times Xf, ... , X~ from a population are i.i.d. with density /(. ), 

cumulative distribution F(.), and hazard rate function a(.) given by a(8) = /(8)/ F[8, oo ); a(8) d8 

is the probability of failing in [8, 8 + d8) given that an individual is still at risk at time 8. The 

life-time Xf may not be directly observed, however, because of a possibly interfering censoring 

variable Ci; only Xi = min(Xf, Ci) and the indicator variable 5i = I{Xf ~ Ci} are observed. 

For simplicity and concreteness we stipulate that the Ci's are independent of the life-times and 

i.i.d. according to a distribution with cumulative function G. In particular then pairs (Xi, Di) are 

i.i.d. Finally we shall assume that data are obtained on a finite time horizon basis, say on [0, T] 
for a known and finite T. This is convenient for some of the martingale convergence theory and is 

not a practical limitation. 

The parametric approach is to postulate that a(8) = a(8, 0) for a suitable family, indexed by 

some one- or multi-dimensional 0. Typical examples include the exponential, the Weibull, the simple 

frailty model with a(8) = 01/(1 + 02 8), the piecewise constant hazard rate model, the Gompertz­

Makeham distribution, the gamma, and the log-normal. Properties of the maximum likelihood 

method for estimating 0 with censored data have been studied by Borgan (1984) and others under 

the condition that the model is correct, i.e. that there really is some 00 with a( s) = a( s, 00 ) on 
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[0, T]. In practice the model is never perfect, however, and it is useful to study estimation methods 

outside model conditions, where the best parameter is to be thought of as being 'least false' or 

'most suitable', as opposed to 'true'. The large-sample behaviour of several estimation methods 

in this wider setting has been explored in Hjort (1992). Some results about this are reviewed in 

Section 2 and are used in later sections. 

In Section 3 a dynamic likelihood approach to parametric hazard rate estimation is presented. 

It takes as its basis any given parametric hazard function and consists of inserting a local parameter 

estimate 0( s) in a( s, 0) at time s, producing 

a(s) = a(s, o(s)), 

where the parameter estimate is obtained using only information on those individuals that have 

survived up to s- th and what happens to them on [s- th, s + thJ. This amounts to a kind 

of nonparametric parameter smoothing within a given parametric class. A more general estimator 

involving smoothing with a kernel function is also discussed. Bias and variance properties are 

studied in Section 3 for one-dimensional and in Section 4 for multi-dimensional families. It turns 

out that 

Ea(s) = a(s) + t.Bxh2 b(s) and Vara(s) = :~ ;~;~, 

where ,8x and 'YK are characteristics of the kernel function used and y(s) is the limiting proportion 

of individuals still at risk at time s. The b(s) is a certain bias factor, the size of which depends 

on both a" ( s) and characteristics of the underlying parametric model used. These results match 

closely those of the most usual nonparametric method, that of smoothing the empirical cumulative 

hazard function, for which 

Ea(s) = a(s) + t.Bxh2a"(s) and Vara(s) = :~ ;~;~. 

In Section 5 situations are characterised where the new method performs better than the traditional 

nonparametric method. Methods for choosing the local smoothing parameter h are discussed in 

Section 6, including the arduous one that for each s expands the s ± th interval until a goodness 

of fit criterion rejects the model. Overall it transpires that a suitable dynamic likelihood estimator 

often can perform better than the purely nonparametric ones, while at the same time not losing 

much to parametric ones when the true hazard is close to the parametric hazard. Finally some 

supplementing results and remarks are offered in Section 7. 

This paper expands in several ways on the basic results that were already presented in Hjort 

(1991). That paper also proposed two further semiparametric estimation schemes, one using or­

thogonal expansions to correct on an initial parametric guess, and one Bayesian procedure that 

employs a nonparametric prior around a given parametric hazard model. 

2. Purely nonparametric and purely parametric estimation. This section introduces 

some basic notation and reviews properties of the Nelson-Aalen estimator for the cumulative haz­

ard function in the nonparametric case and of the maximum likelihood and maximum weighted 

likelihood estimators in the parametric case. These will be used in later sections. Since our ambi­

tion is to go beyond ordinary parametric methods the behaviour of these must be considered also 

outside the conditions of the postulated parametric model. 

2.1. NONPARAMETRIC ESTIMATION. Let N(t) = l::=l l{Xi :::; t, 5i = 1} be the counting 

process and Y(s) = l::=l I{Xi ~ s} the at risk process, and form from these the Nelson-Aalen 
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estimator 

~ 1t dN(s) ~ 5i 
A(t) = 0 Y(s) = ~ Y(Xi)I{Xi 5 t} (2.1) 

for the cumulative hazard rate A(t) = J: a(s) ds. Its properties are best explained using the 

martingale B(t) = N(t)- J: Y(s)a(s) ds. Let y(s) be the limit in probability of y(s) = Y(s)fn, 
i.e. the limiting proportion of individuals under risk at times, and equal to F[s, oo )G[s, oo) under 

present circumstances, where G(.) is the censoring distribution. A basic large-sample property of 

B is that B(t)f y'n goes to a Gaufiian martingale V(t) with independent increments and noise level 

VardV(s) = y(s)a(s) ds, and, more generally, that J: Hn(s) dB(s)fy'ii tends to J: h(s) dV(s) in 

distribution, in cases where Hn(.) is previsible (its value at sis known at s-) and converges to the 

deterministic h(.). It follows from these facts that 

y'ii{dA(s)- dA(s)} = I{Y~(~)~ 1} dj,;)- I{Y(s) = o} dA(s) 
(2.2) 

=d y(s)-1dB(s)/vfn ~d y(s)-1 dV(s) 

in the large-sample limit. In particular dA(s) is very nearly unbiased for dA(s) and y'n{A(t)-A(t)} 

tends to the Gaufiian martingale J: y(s)-1 dV(s) with variance J: y(s)-1a(s) ds. See for example 

the recent book Andersen, Borgan, Gill & Keiding (1993, Chapter TI) for more details. The usual 

nonparametric way of estimating the hazard rate itself is to smooth the Nelson-Aalen and take the 

derivative, see (5.1). 

2.2. MAXIMUM LIKELIHOOD ESTIMATION. A parametric model is of the form a(t) = a(t, 0), 

where 0 = ( 01 , ... , Op)' is some p-dimensional parameter. The log-likelihood for the observed data 

can be written Ln(O) = J0T {loga(t, 0) dN(t)-Y(t)a(t, 0) dt}, see for example Andersen et al. (1993, 

Chapter VI). This defines the maximum likelihood estimator 0. 
To explain the large-sample behaviour of this estimator, let Un(O) = n-1 J0T ,P(t,O){dN(t)­

Y(t)a(t, 0)} dt be the p-vector of first partial derivatives of n-1 Ln(O), where we write ,P(t, 0) = 
:Sloga(t,O). Under natural regularity conditions Un(O) tends in probability to u(O) = J: y(t) 
,P(t, O){a(t)- a(t, 0)} dt, with y(t) as above. The maximum likelihood estimator, which solves 

Un(O) = 0, converges in probability to the particular parameter value 00 that solves u(00 ) = 0. We 

think of this as the 'least false' or 'agnostic' parameter value, and it minimises the distance measure 

d[a, a(.,O)] = 1T y[a{loga -log a(., 0)}- {a- a(., 0)}] dt (2.3) 

between true model and approximating model. This is proved in Hjort (1992). In later sections we 

shall also need the large-sample distribution, and quote the following result from Hjort (1992). Con­

sider the pX p-matrix ,P*(t, 0) = 82 loga(t, 0)/8080' and the function E(t) = J: y(s),P(s, 00 ){ a(s)­

a(s, Oo)} ds (in particular E(O) = E(T) = 0). Define p X p-matrices 

J = 1T [y(t),P(t, 00 )1/l(t, 00 )'a(t, 00 )- y(t),P*(t, 00 ){a(t)- a(t, 00 )}] dt, 

M = 1T [y(t),P(t, Oo),P(t, 00 )'a(t) + {,P(t, 00 )E(t)' + E(t),P(t, 00 )'}a(t, 00 )] dt. 

Then y'ii(O- 00 ) ~d Np{O, J-1 M J-1 }. Note that under model conditions a(t) is indeed equal to 

a(t, Oo), the expressions for J and M simplify and become equal, and we have the more familiar­

looking limit distribution Np{O, J-1 }, a result proved by Borgan (1984). 
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2.3. M-ESTIMATOR.S. We shall also need some general results about weighted likelihood 

estimators, from Hjort (1992, Section 5). Consider IoT Gn(t){log a(t, 0) dN(t) - Y(t)a(t, 0) dt} 

instead of the ordinary log-likelihood (which uses Gn(t) = 1), and let 09 maximise. This estimator 

also solves I{ Gn(t)1/l(t, 0){ dN(t) - Y(t)a(t, 0) dt} = 0, and belongs to the class of M-estimators 

for this counting process model, see Hjort (1985) and Andersen et al. (1993, Chapter VI). Assume 

that the weight function Gn(t) is previsible and goes in probability to g(t). The first result is that 

this estimator is consistent for the particular least false parameter value Oo,g that minimises the 

distance function 

d9 [a,a(.,O)] = 1T gy[a{loga -loga(.,O)}- {a- a(.,O)}] dt, 

a generalisation of (2.3). It also solves I{ g(t)y(t)1/l(t,O){a(t)- a(t, 0)} dt = 0. Secondly, 

vn(09 - Oo,9 ) -+d .N'p{O, J;1 M9J;1 }, 

where J9 and K 9 are appropriate generalisations of those appearing above. In fact 

19 = LT gy[1/lo1/l~ao -1/l~(a- ao)] dt, 

M 9 = LT [g 2 y1/lo1/l~a + g{1/loE~ + E 9 1/l~}ao] dt, 

(2.4) 

(2.5) 

(2.6) 

in which E9 (t) = I: gy1/lo(a- ao) ds, and where ao = a(s, Oo,9 ), 1/lo = 1/l(s, Oo,9 ). Note that both 

E9 (0) and Eg{T) are equal to 0, and that the expressions for J9 and M9 simplify when the model 

happens to be correct. 

3. Dynamic likelihood estimation. Of course the parametric estimation method of 2.2 

works best if the postulated model is adequate, i.e. if there really is a single 00 that secures a( s) ::::: 

a(s, Oo) throughout [0, T]. Otherwise there is modelling bias present and it could for example be 

advantageous to use different 00 's in different sub-intervals. We shall pursue a somewhat more 

extreme version of this idea, namely to fit a local estimate 0( s) for each s, and then use a( s, 0( s)) 

in the end. 

3.1. DYNAMIC LIKELIHOOD. The dynamic or local likelihood estimation proposal is to use 

the M-estimator apparatus with a 'window function' Gn(t) = g(t) = I{t E W}, where W = 
[ s - t h, s + t h] is a local interval around a given fixed s. So let 0( s) maximise 

Lw(O) = fw {loga(t, 0) dN(t)- Y(t)a(t, 0) dt}. (3.1) 

The resulting dynamic likelihood hazard rate estimator is 

a(s) = a(s, O(s)). (3.2) 

Note that Lw(O), the local log-likelihood at window W around s, is a bona fide log-likelihood, 

namely that based on those individuals that have survived up to s- th and information about 

what happens to them in [s - th, s + th]. Showing this is not difficult by first noting that this 

group of individuals have 

probability density = a(t, 0) exp{- ILh/2 a(u, 0) du} fortE [s- th, s + th], 

and chance = exp{- I:~:/: a(u, 0) du} of further surviving s + th. 
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Consciously disregarded, for example, is information about individuals failing in [0, s- th). In­

cluding such a [1- exp{ -A(s- th, O)}]no term would have strengthened the likelihood and made 

our 0 estimator more precise - but only if the parametric form of the hazard is correct also to the 

left of s- th. The crucial idea here is to only trust the parametric form locally, and this leads to 

the (3.1) log-likelihood. Of course if his large, which should correspond to trusting the model over 

the full range, then we get back the full log-likelihood and ordinary maximum likelihood. 

The B(s) estimator aims at the locally most suitable parameter value Oo(W) = Oo(s) that 

minimises {2.4) with g = Iw, or, equivalently, solves fw y(t)tfJ(t, O){a(t) - a(t, 0)} dt = 0. Its 

large-sample behaviour is described by (2.5), which suggests 

EB(s) = Oo(s), VARB(s) = J;} MwJi/ fn, 

where Jw and Mw are as in {2.6) with g(t) = I{t E W}. This transforms into corresponding 

properties for a( s) by Taylor expansions and delta-method arguments: 

Ea(s,O(s)) = a(s,Oo(s)), 

Vara(s, B(s)) = a(s, Oo(s))2 t/J(s, Oo(s))' Ji} MwJi}t!J(s, Oo(s))fn. 
(3.3) 

These approximations are valid if h is fixed and n is large. But we are also interested in 

becoming increasingly fine-tuned about the s ± th interval as n grows. In order to study the bias 

and variance properties more closely, observe first that if z(t) is a twice differentiable function 

defined in a neighbourhood of s, then fw z(t) dt = z(s)h+ 2
1
4 z"(s)h3 by a simple Taylor argument. 

From this and the defining equation for 00 ( s) we see that 

y(s)tfJ(s,O){a(s)- a(s,O)} + 214 {yt/J(.,O)(a- a(s,O)))"(s)h2 = O, 

for the particular value 0 = 00 (s), where (fgh)"(s) means the second derivative ofthe f(s)g(s)h(s) 
function evaluated at s. This implies generally that a(s, 00 (s)) = a(s) + O(h2). One can also show 

from this that 

Ea(s, B(s)) = a(s, 00 (s)) + 0(1/n) = a(s) + O(h2 + 1/n). 

In order for the bias of the (3.2) estimator to go to zero it is therefore necessary that h -+ 0 as 

n-+ oo. 

At the moment we shall be content to give a bias formula for the case of a one-parameter 

family a(s, 0), for which 

a(s, Oo(s)) = a(s) + h2 
[a"(s)- a"(s) + 2{a'(s)- a' (s)}{ y'(s) + t/JMs) }] . {3.4) 

24 ° 0 y(s) t/Jo(s) 

In this formula a~(s) means the derivative of a(s, 0) w.r.t. s, and then inserted 0 = 00 (s), and 

similarly for a~(s) and t/J6(s). The case of multi-parametric classes of hazard rates is handled in 

Section 4. 

Turning next to the variance matrix, one finds after using the (2.6) expressions and the pre­

viously established O(h2 ) result for the bias that Jw = y(s)tfJ0 (s)tfJ0 (s)'a(s, 00 (s)) h + O(h3 ) and 

Mw = y(s)t/Jo(s)t/Jo(s)'a(s) h + O(h3 ), under smoothness assumptions on a(.) andy(.), and writ­

ing for simplicity t/Jo(s) for t/J(s, 00(s)). We note here for the one-parameter case that VarB(s) = 
(nh)-1 {y(s)a(s)tflo(s)2}-1 , which in its turn implies 
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Thus nh ~ oo is necessary for the variance to go to zero, and this together with h ~ 0 suffices for 

consistency of the (3.2) estimator. 

3.2 SPECIAL CASE: ESTIMATING THE LOCAL CONSTANT. The simplest model to try out is the 

one having a(s, 0) = 0, a constant hazard. The local hazard estimate and its limit in probability 

are 

a(s) = O(s) = Iw dN(t) ~ Iw y(t)a(t) dt = 0 (s) 
Iw Y(t) dt P Iw y(t) dt 0 ' 

(3.6) 

again with W = [s- th, s + thJ. The estimate is of the type total occurrence over total exposure, 

and the underlying local least false parameter is a local y-weighted average of the true hazard rate. 

By earlier efforts 

h2{ y'(s)} 
Ea(s) = a(s) + 24 a"(s) + 2a'(s) y(s) d , 7 ~( ) • 1 a( s) 

an varas = nh y(s). (3.7) 

This can also be verified directly. Further attention to these details is given in the next subsection. 

A general remark about the dynamic likelihood method is that the particular parametric model 

used should be allowed to be quite crude, since we only employ it as a local approximation to the 

true hazard rate. This example illustrates this. (3.7) shows that even when a(.) simplistically is 

modelled as being locally a constant the result is a reasonable nonparametric estimator. 

3.3. KERNEL SMOOTHED DYNAMIC LIKELIHOOD. The dynamic likelihood method of Sections 

3.1 and 3.2 can be generalised to kernel smoothed variants. Let K(u) be a symmetrickernelfunction 

with support [- t, t) and integral 1. Define the local kernel smoothed likelihood estimator 0( s) to 

maximise 

Lw(O) = fw K(h-1(t- s)){loga(t,O)dN(t)- Y(t)a(t,O)dt}. (3.8) 

The hazard rate estimator is as in (3.2) with this more general estimate of 0. The previously defined 

local likelihood estimate corresponds to the special case K(u) = 1 on [-t, tJ. This uniform choice 

has perhaps some special appeal since the dynamic log-likelihood Lw( 0) then can be interpreted 

as a genuine log-likelihood for a subgroup of the individuals under study. The current smoothed 

likelihood is more of a mathematical construction, but turns out to produce estimators with slightly 

better properties, for good choices of K(u). 

We can draw on the general results of 2.3 to find approximate bias and variance for the 

maximiser of (3.8). Let f3x = I u2 K(u) du and /K = I K(u) 2 du. (2.6) with Taylor expansion 

quickly gives 

Jw = y(s)'l/lo(s)'l/lo(s)'a(s, Oo(s)) h + O(h3 ), 

Mw = /KY(s)'l/lo(s)'l/lo(s)'a(s) h + O(h3 ), 
(3.9) 

The multi-parameter case requires more precise expansions, since the inverse of Jw is needed and 

1/!o( s )1/lo( s )' has rank 1. Leaving the multi-parameter case for Section 4, consider an arbitrary one­

parameter family a(s, 0), where O(s) solves Iw K(h-1(t- s))'l/l(t, 0){ dN(t)- Y(t)a(t, 0) dt} = 0. It 

aims at the locally leastfalse 00 = Oo(W) that solves Iw K(h- 1(t-s))1/l(t, O)y(t){ a(t)-a(t, 0)} dt = 

0, or I K( u )1/1( s + hu, O)y( s + hu ){a( s + hu) - a( s + hu, 0)} du = 0. Taylor expansion shows that 

I K( u)z(s+hu) du = z(s)+ tf3xh2 z"(s) +O(h4 ) for smooth z(.) functions, and this, in conjunction 

with (3.3) and (3.9), leads to 

~ 2 ~ • /K a(s) 
Ea(s,O(s))::: a(s) + th f3xb(s) and Vara(s,O(s)) = nh y(s), (3.10) 
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where the bias factor is 

b( 8) = a" ( 8) - a" ( 8) + 2{ a' ( 8) - a' ( 8)} { y' ( 8) + t/JM 8) } . 
0 0 y(8) t/Jo(8) 

(3.11) 

The fact that J uK(u) du = 0 is used here. When K(u) is uniform we get back (3.4) and (3.5). 

Observe that the approximate variance does not depend on the parametric family employed (to the 

order of approximation used). 

3.4. SPECIAL CASE: LOCAL CONSTANT WITH A KERNEL. Let us illustrate this for the special 

case where a(8,0) = 0. Then 

(3.12) 

a locally weighted occurrence over locally weighted exposure estimate. Here and later on Zi denotes 

the observed value of Xi = min(Xf, Ci)· Previous efforts give 

Ea(8) = a(8) + t.Bxh2 {a 11 (8) + 2a1(8)y 1(8)jy(8)} + O(h4 ), 

and variance 'Yx(nh)-1 a(8)jy(8) as before. This generalises (3.7). 

One theoretical advantage that (3.12) has over the (3.6) estimator is that it has smaller mean 

squared error, for several natural choices of kernel K, see 6.1. A more immediate practical advantage 

is that K can be chosen to make it smoother than the (3.6) version, which is discontinuous at time 

points 8 where 8 ±this equal to observed failure times. (3.12) is continuous when K(±t) = 0, 

and has a continuous derivative if K is chosen such that K'(±t) = 0. 

4. Dynamic likelihood for multi-parameter families. The dynamic likelihood and 

kernel smoothed dynamic likelihood ideas of Section 3 can be applied for any smooth parametric 

family of hazards, but the basic bias and variance properties have so far only been derived for 

one-parameter families. We saw in (3.9), for example, that the multi-parameter case requires more 

careful expansions. It is not clear at the outset that we gain in precision by smoothing e.g. a 

two-parameter hazard family. We should perhaps expect larger windows to be required to be able 

to estimate both parameters with reasonable precision. 

4.1. A RUNNING GOMPERTZ ESTIMATOR. The hazard function model a(t) = aexp(,Bt) is 

sometimes called the Gompertz model. Concentrating on a fixed 8 with fixed window W = 8 ± th, 
we may reparametrise the hazard as 

a(t, 0, ,B)= aexp(,B8) exp(,B(t- 8)) = Oexp(,B(t- 8)} fortE [8- th, 8 + thJ, (4.1) 

and interpret 0 as the 'local level' and ,8 as the 'local slope'. Define 0( 8) and ,8( 8) as those maximising 

the kernel smoothed dynamic likelihood 

Lw(O,,B) = fw K(h-1(t- 8)} [{logO+ ,B(t- 8)} dN(t)- Y(t)Oexp(,B(t- 8)) dt]. (4.2) 

One has 
~ fw K(h- 1(t- 8)) dN(t) 

0(8,,B) = fw K(h-l(t- 8)}Y(t) exp(,B(t- 8)) dt' 
(4.3) 
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and the resulting profile dynamic likelihood can be shown to be concave in f3, and accordingly not 

very difficult to maximise. The maximiser found is then inserted into (4.3) to give 8{8). Note that 

the general dynamic likelihood recipe gives 

a(8) = a(8, 0(8),,8(8)) = 0(8), {4.4) 

simply, so the f3 parameter estimate is only somewhat silently present. From the general theory 

of Section 2.3 we know that 0( 8) and ,8( 8) aim at certain appropriate least false parameter values 

Oo = Oo(8) and f3o = {30 (8), depending on the window W, and that fo(0(8)- Oo,P(8)- f3o) goes to 

a zero-mean normal with covariance matrix Ji/ MwJi/. Here Jw and Mw are as in (2.6) with 

g = Iw. We now set out to provide informative approximations for these and for the least false 

local parameters. 

The least false parameter values are such that they solve the two equations fw K(h-1(t-

8))t/l(t,Oo,f3o)Y(t){a(t)-Ooexp(f3o(t-8))}d8 = 0, where t/l(t,0,/3) = (1/0,t-8). The first equation 

gives 

0 _ fw K(h-1(t- 8))y(t)a(t) dt _ J K(u)y(8 + hu)a(8 + hu) du 
0 - fwK(h- 1 (t-8))y(t)exp(f30(t-8))dt- J K(u)y(8+hu)exp(f30 hu)du' 

where the latter integrals are over the support [-t, tJ for the kernel function K(u). Upon using 

J K(u)z(8 + hu) du = z(8) + f/3xh2 z11(8) + O(h4 ) again, one finds after some calculations that 

Oo ='= a(8) + f/3xh2 [{y(t)a(t)} 11(8)- a(8){y(t)exp(f3o(t- 8))}"(8)]jy(8) = a(8) + f/3xh2 b(8,f3o), 

say, up to O{h4 ) terms, where in fact b(8,{30 ) = a 11(8)- a(8){3~ + 2{y1(8)/y(8)}{a1(8)- a(8){30 }. 

Similarly the second equation gives J K(u)uy(8 + hu){a(8 + hu)- 00 exp(f30 hu)} du = 0, which 

upon using J K(u)uz(8 + hu) du = f3xz 1(8)h + O(h3 ) delivers {30 = a1(8)ja(8) + O(h2 ). This can 

be plugged into b(8,{30 ) above to give 

a(8, Oo(8),f3o(8)) = Oo = a(8) + f/3xh2{a 11(8)- a 1(8)2 ja(8)} + O(h4 ). (4.5) 

Note that the bias is only O(h4 ) at 8 if the true a(.) is locally like a Gompertz hazard. 

Next consider.the matrices that determine the approximate variances for 0(8) and 1J(8). From 

(2.6), 

I ( -1( )) ( >[( 1/0~ (t-8)/0o) ( ( )) Jw = lw K h t- 8 y t (t _ 8)/0o (t _ 8 ) 2 00 exp {30 t- 8 

+ ( 1 1:~ ~) {a(t)- Oo exp(f3o(t- 8))}] dt. 

We :find 

Jn = h j K(u)y(8 + hu)002 a(8 + hu) du = hy(8)a(8)/0~ + f/3xh 3 (ya) 11 (8)/0~ + O(h5) 

for the (1,1) element. Similar calculations give 

Jw = h[(Y(8)a(8)j0~ 0) + f3xh2 (an au )J + O(h5), 
0 0 au a22 

where in fact au = t(ya) 11 (8)/0~, au = y'(8) + y(8)f3o, and a 22 = y(8)00 • Next look at 

Mw = I [K(h-1(t- 8))2y(t) ( 1 1°~ (t- 8)/:o) a(t) 
lw (t- 8)/0o (t- 8) 

+ K(h-l(t _ 8)) ( 2Et(t)f0o E2(t)/Oo + Et(t)(t- 8))] dt 
E2(t)/Oo + E1(t)(t- 8) 2(t- 8)E2(t) ' 
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where E 1(t) and E2(t) are the components of the E(t) function defined after (2.6). It turns out 

that E 1 (t) = O(h3 ) while E2(t) = O(h4 ), so the second part of the Mw matrix is of a smaller size 

than the first. We find after some expansion work that 

M _ h[(IKY(s)a(s)/8~ 0) +S h2 (611 612 )] + (O(h4
) O(h5

)) 
w- 0 0 K 612 622 O(h5 ) O(h5 ) ' 

where IK =I K(u)2 du and 5x =I u 2 K(u)2 du, and where 6u = t(ya)"(s)/8~, 612 = (ya)'(s)/Oo, 
and 622 = y(s)a(s). 

To reach expressions for JH} MwJH} we need to work with a matrix of the form (cEu + 
h2 A)-1 (dE11 + h2 B)(cE11 + h2 A)-1 , where E11 is the matrix with 1 as (1,1) element and zeros 

elsewhere. The result, after lengthy but elementary calculations, is of the form 

for certain Cii· We are primarily interested in the approximate variance for the local O(s), in view 

of (4.4), and this is (nh)-11xa(s)fy(s) + O(h/n), precisely as in the one-dimensional case (3.10). 

Hence bias and variance properties are of the same form as in the one-dimensional case, but with 

a different bias factor, inherited from the model one smooths. 

4.2. DYNAMIC LIKELIHOOD FOR A GENERAL MULTI-PARAMETER MODEL. Suppose the hazard 

rate model is of the type a(t) = a1(t, {3), i.e. a constant parameter a times a function which depends 

on a possibly multi-dimensional parameter {3 but not on a. Reparametrise locally to 

a(t) = a1(s,f3){1(t,f3)h(s,{3)} = Oexp{C(t,{3)- C(s,/3)} fortE [s- th,s + th]. (4.6) 

The score type function of the model is .,P(t,0,/3) = (1/0,C*(t,/3)- C*(s,/3)), where C*(t,/3) = 

~C(t,{3). Notice that the local estimate P(s) is only 'silently present', in that it is used only in 

conjunction with finding the local O(s), as with (4.3) and {4.4). 

Now the calculations of the Gompertz model above can be repeated with the necessary modi­

fications. As in that case one finds 80 = a(s) + tf3xh2 6(s,{30 ) with a similar 6(s,{30 ), and also that 

80 c(s,f3o) = a'(s) + O(h2 ), where c(t,{3) = gtc(t,{3). This leads to 

Ea(s) = a(s) + tf3xh2 [a"(s)- a(s){c(s,f3o)2 + c'(s,f3o)} 

+ 2{y'(s)/y(s)}{a'(s)- a(s)c(s,,80 )}] + O(h4 ) 

= a(s) + tf3xh2 [a"(s)- Oo{c(s,f3o)2 + c'(s,f3o)} + 2{y'(s)fy(s)}O(h2 )] + O(h4 ) 

= a(s) + tf3xh2 {a"(s)- a~(s)} + O(h4 ), 

where a~(s) is the second derivative of the model's hazard rate Oexp{C(t,{3)- C(s,/3)} w.r.t. t, 

evaluated at s, and with the local least false parameters 80 = 80 (W) and {30 = {30 (W) inserted. We 

also have ag(s) = Oo{c(s,/30 ) 2 + c'(s,{30 )} = a'(s) 2 fa(s) + a(s)c'(s,{30 ) + O(h2 ). Note that (4.5) is 

a special case. 

One next finds that the {1,1) element of the appropriate Jir1 MwJir1 matrix is yet again equal 

to h - 11 xa( s) / y( s) + 0 (h), albeit with a more involved expression for the constant in the secondary 

0 (h) term. The basic properties for the dynamic likelihood estimator are accordingly once more 

of the familiar type 

Ea(s) = a(s) + tf3xh2{a"(s)- a~(s)} + O(h4 ) and Vara(s) = :~ ;~;~, (4.7) 
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with a bias term f.8Kh2b(s) appropriate to the parametric model employed. As noted above there 

are also alternative useful expressions for the b(s) term, since we can move out O(h2 ) terms. 

4.3. A RUNNING WEIBULL ESTIMATOR. As an example of the previous general machin­

ery, consider the Weibull model, which uses a(t) = abtb-1 for certain parameters a and b. We 

reparametrise to a(t) = O(tjs)f3, where 0 = absb-1 and ,8 = b- 1. Let O(s) and P(s) maximise the 

kernel smoothed dynamic log-likelihood 

fw K(h-1(t- s)) [{logO+ ,B(logt -logs)} dN(t)- Y(t)O(tjs)f3 dt]. 

Then use a(s) = O(s) in the end. The results above imply 00 ,80 = sa'(s) + O(h2 ), and the bias is 

The approximate variance is yet again 'YK(nh)-1 a(s)jy(s). Note that the bias is only O(h4 ) if the 

true hazard is locally a Weibull hazard. 

4.4. A DYNAMIC NONINCREASING ESTIMATOR. As a final example, consider the simple frailty 

model with hazard rate aj(1+,8t). This is the hazard rate in a population where each individual has 

a constant hazard rate but where these vary in the population according to a gamma distribution 

with mean a and variance ,8. The local parametrisation is 0(1 + ,Bs )/(1 + ,Bt) fort E [s- th, s + fh]. 
Even though the model can tolerate a small negative value for ,8 we shall in this example take it a 

priori asa nonnegative quantity. So let O{s) and P(s) maximise 

fw K(h-1(t- s)) [{logO+ log(1 + ,Bs) -log(1 + ,Bt)} dN(t)- Y(t)(1 + ,Bs) dt/(1 + ,Bt)], 

and use a( s) = 0( s) in the end. Then 

Ea(s) = a(s) + t.8Kh2{a"(s)- 2a'(s)2 fa(s)} + O(h4 ) and Vara(s) = :~ ;i:i. {4.9) 

5. Comparison with the traditional kernel estimator. Estimators developed in Sections 

3 and 4 can now be compared with the classical nonparametric estimator. 

5.1. THE SMOOTHED NELSON-AALEN ESTIMATOR. The traditional nonparametric estimator 

is a kernel smooth of the (2.1) estimator of the cumulative, 

a(s) = fw h-1 K(h-1(t- s)) dA(t) = L h-1 K(h- 1(2li- s))5i/Y(si)· (5.1) 

lz;-•I:S:h/2 

When K(u) is uniform this becomes {A(s + fh)- A(s- fh)}jh, for example. From the properties 

of A reviewed in Section 2 it is not difficult to derive 

Ea(s) = a(s) + f.8Kh2a"(s) and Varli(s) = :~ ;i:i · (5.2) 

See also Ramlau-Hansen {1983), Yandell {1983), and Tanner and Wong {1983), who all studied 

estimators of this type, and Andersen et al. {1993, Chapter IV). It is remarkable that the new 

estimators a(s, O(s)) and the traditional one have exactly the same approximate variance and the 
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same type of approximate bias, when they use the same kernel and the same bandwidth; see (3.10), 

(4.4) and (4.7). 

5.2. WHEN IS THE DYNAMIC METHOD ALWAYS BETTER.? The dynamic kernel smoothed likeli­

hood estimator has approximate bias t.Bxh2b(s), with a b(s) function depending on the underlying 

parametric family used. In view of the comparison already made above it follows that the new 

method is always as good as or better than the Ramlau-Hansen-Yandell estimator, with the same 

kernel and the same window size, provided only lb(s)l $ la"(s)!. 
For the one-parameter situation the question is whether 

la"(s)- a~(s) + 2{a'(s)- a~(s)}{y'(s)fy(s) + 1/J~(s)/1/Jo(s)}l $ la"(s)!. (5.3) 

This can easily happen if the parametric family is only moderately acceptable. For the special case 

(3.12), for which a~(s), ag(s) and 1/J~(s) are absent, the inequality might take place in regions where 

a is convex and increasing, or concave and decreasing. When there is no censoring y = exp(-A) 

and y' fy = -a, and then the criterion for when (3.12) is better than then the traditional (5.1) 

becomes 0 $ a(s)a'(s)fa"(s) $ 1. 

For the multi-parametric families of Section 4 we have established b(s) = a"(s)- ag(s), with 

ag(s) stemming from the model used, and with certain useful alternative expressions. The dynamic 

likelihood estimator is better than (5.1), when the same his used, whenever la"(s) - ag(s)l $ 

la"(s)!, which can be rewritten 
a"(s) 

0<-0 -<2 
- a"(s) -

(5.4) 

when the second derivative of the true hazard is not zero. H the parametric model used is locally 

correct, then the ratio is 1 and the bias is O(h4 ) only. H we take 'the parametric model is roughly 

adequate' to mean (5.4), then indeed the dynamic likelihood estimator is always better than (5.1) 

under such circumstances, for each h and each K. 

For the two-parametric running Gompertz estimator (4.4) the criterion is 

0 $ a'(s)2 f{a(s)a"(s)} $ 2, (5.5) 

and the ratio is 1 exactly for Gompertz hazards aexp(,Bs). H for example a(s) = a+ bee• is of 

Gompertz-Makeham form, then the ratio is bee• /(a+ bee•) and well inside (0, 2), showing that ( 4.4) 

will be better than (5.1) for all such hazards. Similarly, for the two-parametric running Weibull 

estimator of 4.3, the new estimator is always better than (5.1) in regions where 

0 $ a1(s) 2 f{a(s)a"(s)}- a'(s)/{sa"(s)} $ 2, (5.6) 

and the function appearing in the middle is equal to 1 exactly for Weibull hazards. And finally the 

criterion for when the estimator of 4.4 is always better than (5.1) is 

0 $ a'(s)2 f{a(s)a"(s)} $ 1. (5.7) 

5.3. VICINITY OF PAR.AMETR.IC MODEL. As explained above one can expect the methods 

developed to perform better than the traditional (5.1), and surely also better than other purely 

nonparametric estimators, if only the parametric model used is roughly adequate. So far this 

statement has been referring to a comparison when the two methods have used the same window 

width h. But in these cases we would really expect the new methods to perform not only better but 
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much better, by carefully choosing a good window width. When the bias is smaller we can select 

a larger window and be rewarded with smaller variability, cf. the mean squared error calculations 

of 6.1. 

It should also be possible to improve on the convergence rate if the true hazard lies suitably 

close to the parametric family. A mathematical framework to make this notion more precise could 

be as follows. There is a sequence of experiments where at stage n there are data (Xi, 5i) on n 

individuals coming from a distribution with true hazard a(.)= an(.). Suppose this is such that the 

bias factor is b( s) = b0 ( s )n-t:, for some e E [0, t ). Then the best achievable mean squared error is of 

size proportional to n-<4- 2t:)/5 , and this happens with h chosen as a suitable ho = cYn(s)-<1 - 2t:)/5 • 

A cross validation or other clever h selection scheme will pick this up, cf. the following section. The 

best nonparametric convergence rate is n-4/ 5 , for both point-wise and integrated mean squared 

error, and these calculations show that this can be improved upon for alternatives in the vicinity 

of the parametric model. H a"(s)- ag(s) = O(n-114 ), for example, then the mean squared error 

is O(n-9110), and alternatives lying almost O(n-112 ) away, in the above sense, are estimated with 

almost full parametric O(n-1) precision. The point of comparison is that the traditional (5.1) 
estimator will still only accomplishes O(n-415 ) precision for these hazard rates. 

6. Choosing the smoothing parameter. We have defined a( s) = a( s, 0( s)) for given 

parametric family a(s, 9) and kernel K. The most decisive influence on the estimator is due to the 

smoothing parameter h. 

6.1. MEAN SQUARED ERROR CALCULATIONS. By (3.10) and (4.7) the approximate mean 

squared error is of the form 

where b( s) is the appropriate bias factor stemming from the parametric recipe used. The mean 

squared error is minimised for 

{ 'YK a(s) }1/5 1 

ho(s) = Pk b(s)2 {ny(s)}1/5. 
(6.1) 

The resulting minimal mean squared error is t(f3K'Yk?l5a(s)415b(s)215 f{ny(s)} 415 • Different 

choices of reasonable kernels give about the same result, but the best choice, managing to minimise 

f3K'Yk among kernels on [-t, il with integral!, is the Bartlett-Yepanechnikov kernel Ko(u) = 
i{ 1 - 4u2 ) on [- t, t]. The resulting a( s, 0( s)) estimator is continuous in s but its derivative will 

have discontinuities at points s where s ± ih hits an observed failure time. 

We have seen that the new methods can outperform the traditional ones by reducing the bias, 

say from btrad(s) = a"(s) of (5.1) to possibly smaller b(s) = a"(s)- ag(s) for those of Section 

4. It is therefore of interest to note that the squared bias makes up 20% and the variance 80% 

of the approximate mean squared error, so bias reduction can perhaps not be expected to give 

dramatic gains. H b(s) = ibtrad(s), for example, then the best theoretical window width becomes 

ho = 1.32 ho,trad, and the mean squared error is reduced with 24%. 

The h0 formula cannot be put to direct use since it depends on the hazard rate itself, but the 

rate of convergence to zero of mean squared error becomes the optimal n-4 / 5 when his chosen 

proportional to n-1/ 5 • The formula indicates that h should be chosen proportional to Y(s)-115 

in practice. One possibility is to use hn = cY(s)-115 and try to minimise a global criterion 
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like E J0T w(s){a(s)- a(s)P ds w.r.t. c. The result is a local variable kernel smoothed likelihood 

estimator with 

{ 'YK J0T w(s)y(s)-415a(s) ds }1/5 1 

hn = Pic J0T w(s)y(s)-4 f5b(s)2 ds Y(s)1 / 5 • 
(6.2) 

We might for example choose weight function w( s) = y( s )415 here, this being inversely proportional 

to the optimal mean squared error, and this simplifies (6.2). The nominator integral can be esti­

mated with n112-precision. Some pilot estimate apih like the (5.1) estimator with an overall twice 

differentiable kernel K 2 and a somewhat large h2, can be used to estimate the denominator integral. 

A final adjustment is needed since J0T b( s )2 ds will be biased. Working out expressions for the bias 

of J0Tb(s)2 ds as an estimator of J0T b(s)2 ds takes some efforts, for the most interesting estimators 

of Sections 3 and 4, but is within comfortable reach of Ramlau-Hansen's (1983) methods. In the 

end this produces a practical algorithm of 'plug-in' type. 

The discussion above is valid for one-parameter families and also for the class of multi­

parameter families considered in Section 4, since the approximate variance of a( s) also in these 

situations turned out to be of the form 'Yx(nh)-1a(s)fy(s). In the models of Section 4 there is a 

'local position' parameter (} and a 'local slope' parameter p. Note that the local slope estimate {i( s) 

has quite larger variance than the local position estimate O(s). In the running Gompertz case the 

slope estimate has variance proportional to n-1 h-3 f {y( s )a( s )}, for example. The best window size 

for p estimation is proportional toY( s )-1/ 7 , but the best size for (J estimation, which is our primary 

concern, is still proportional to Y( s )-1 / 5 • These quantitative results are perhaps as expected, in 

view of similar results from density estimation and nonparametric regression. They also suggest 

that the {i(s) that is inserted in O(s,fj) of (4.3) to produce the final (4.4) can be quite variable if 

produced from Y(s)-115-windows, and it may be advantageous to use a separate estimation scheme 

for estimation of this parameter, with somewhat larger windows. See also Remarks 7B and 7G. 

The reasoning that led to (6.1) and (6.2) is also pertinent for the problem of choosing h in the 

Ramlau-Hansen-Yandell estimator (5.1), since the bias and variance structure are of the same type, 

only with b(s) = a"(s) instead. We also note that there are other ways of obtaining a data-driven 

hn( s ), like cross validation or bootstrapping, but these are not discussed further here. References 

to cross validation techniques for the (5.1) estimator are Nielsen (1990) and Gregoire (1993), and 

these techniques should carry over at least to the (3.12) estimator. 

6.2. LOCAL GOODNESS OF FIT TESTING. If the parametric model doesn't fit well the dynamic 

likelihood hazard estimator is still reasonable, and resembles the nonparametric Nelson-Aalen 

smoother (5.1) in performance. At the same time our method is able to outperform (5.1) as well 

as other purely nonparametric methods in cases where the parametric family a( s, 0) used is only 

roughly acceptable, as explained in Section 5. In such cases the size of the bias is small, which 

by (6.2) suggests using quite a large bandwidth h, which in its turn almost amounts to using an 

ordinary parametric method. 

A natural but somewhat elaborate strategy is to choose h = h( s) to be the smallest h for which 

some convenient goodness of fit criterion rejects the parametric model on s ± th. The ultimate 

case is of course no detectable departure from the model over the full range [0, T], which then leads 

to using h = oo, i.e. ordinary parametric estimation a( s, ~o,T) ), say. 

Hjort (1985, 1990) has developed classes of goodness of fit tests for general parametric counting 

process models, and these are indeed presented there as tests of validity over the full range [0, T]. 
Similar mathematical techniques can however be used to construct procedures that check model 

adequacy over a general [a, b] interval, and some such are presented next. This apparatus would 
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then be used with [a, b] = [s- th, s + th], mostly, but to get the running estimator started one 

would look for model adequacy over [0, b] intervals first, cf. Remark 7 A. 

6.3. ONE-PARAMETER FAMILIES. Consider dynamic smoothing of an arbitrary one-dimensio­

nal parametric family a( u, 8). Let ~"·"I be the local maximum likelihood estimator using only (a, b] 

information, i.e. it solves J: 1/J( u, 8){ dN( u) - Y( u )a( u, 8) du} = 0. Let 

1/2 t ...... ...... 
Dn(t) = n- J" 1/J(u,8["·"1){dN(u)- Y(u)a(u,8[e~,&l)du} fortE [a, b). 

It uses the 'basic martingale' dN(u)- a(u, 8) du and is able to pick up departures from the para­

metric model. Notice that Dn(.) starts and ends at zero. Methods of Hjort (1990) can be used 

to prove that Dn(.), if indeed the model holds on [a,b], converges to a zero-mean Gatillian process 

D(.) with covariance function cov{D(t1),D(t2 )} = r 2 (b){p(t1 A t2)- p(tt)p(t2 )}, in which r 2 (t) = 
J:y(u)1/J(u,8)2a(u,8)du and p(t) = r 2(t)fr2(b). But this shows that D(.) is distributed as a 

scaled and time-transformed Brownian bridge, r(b)W0 (p(.)). Consequently max"9::;& IDn(t)l/f(b) 

is asymptotically distributed as IIW0 11 = maxo::;.::;1IW0 (s)l, where f 2 (b) = J:n-1Y(u)1/J(u}[",&l)2 

a(u, ~"·"I) du estimates r 2 (b). A natural procedure is therefore to stretch the [a, b] = (s- th, s+ th] 
interval until 

{ 
,, ...... 2 ...... } -1/2 I t ...... ...... I 

}" 1'( u)1/J( u, 8[e~,&l) a( u, 8[e~,&l) du "~~& J" 1/J( u, 8[e~,&l){ dN( u)-Y( u)a( u, 8[e~,&l) du} ~ 1.225, 

(6.3) 

say, 1.225 being the upper 10% point of the distribution of IIW0 11. One might opt for 1.359 instead, 

the upper 5% point. Observe that the maximum value must be attained at one of the points Zi of 

Zi-, with a$ Zi $ b, so the continuous maximum is really only a finite maximum, and is perfectly 

feasible to compute efficiently, for givens± th window. 

When choosing window sizes for the (3.12) estimator, for example, which uses local constants, 

the windows should be stretched until 

N[a,b]-112 max IN[a,t)- t Y(u)~"·"ldul ~ 1.225, 

e~9::;& '" 

(6.4) 

where in this case ~"·"I= N[a,b]/ J:Y(u) du. 

6.4. LOCAL MODEL ADEQUACY FOR MULTI-PARAMETER HAZARD RATES. Next turn attention 

to dynamic likelihood smoothing of a multi-parametric class of hazards, with p ~ 2 parameters. 

Let this time 

Dn(t) = n-112 { N[a,t] -it Y(u)a(u,~"·"l)du} fortE [a, b), 

with a view towards using the maximal absolute value as a test for model adequacy. Here ~"·"I 
is the local maximum likelihood estimator using [a, b)-information, i.e. solving the p equations 

J:tjJ(u,8){dN(u)- Y(u)a(u,8)du} = 0. Techniques of Hjort (1990) can be used to demonstrate 

process convergence of Dn(.) towards 

It I !" 
D(t) = V[a,t]- (j" y(u)1/J(u,8)a(u,8)du) :E-1 }" 1/J(u,8)dV(s), 

where V(.) is a Gaufiian martingale with noise level Var dV(u) = y(u)a(u, 8) du, and where :E = 
J:y(u)1/J(u,8)tjJ(u,8)'a(u,8)du. The D0 (t) = V[a,t] = J:dV(u) process is quite simple, it has 

Dynamic Likelihood 14 April1993 



independent increments and hence is a scale- and time-transformed Brownian motion process. The 

point is now that if one considers the Do(.) process conditioned on the p events J: '¢( u, 0) dV( u) = 0, 

then Gau:Bianeity and covariance calculations can be furnished to demonstrate that this is exactly 

distributed as the D(.) process; cf. Remark 7F in Hjort (1990). This makes it possible to bound the 

distribution of liD II = maxa9:5b ID(t)l, even though the exact distribution might be too difficult 

to obtain. 

We now specialise to a class of hazards of the form a( u, 0) = 0-y( u, {3), cf. ( 4.6), in which case the 

'¢(.)function has first component 1/0 and second component tf>(u,/3), say. In this case the limit pro­

cess D(.) is distributed as D0 (.), tied down first with D0 (b) = 0 and then with J: tf>(u,{3) dV(u) = 
0. Letting D*(.) be the result of tying down D0 (.) with only the first requirement, covariance 

calculations show that D*(.) =d T(b)W0(p(.)), this time with T2(t) = J: y(u)O-y(u,/3) du and 

p(t) = T2(t)fT2(b). So the distribution of D(.) is that of tying down D*(.) further, and it can 

be seen that the distribution of IIDII is stochastically smaller than the distribution of IID*II, just as 

the distribution of a maximal absolute Brownian bridge is stochastically smaller than the dis­

tribution of a maximal absolute Brownian motion. Here T 2 (b) is estimated consistently with 
b - - ...... b ...... 

fa n-1 Y(u)O[a,b]"Y(u,f3(a,bJ)du, and we also have O(a,b] = N[a,b]/ fa Y(u)"Y(u,f3(a,bJ)du. The end 

result is to use 

N[a, b]-112 max IN[a, t] -1t Y( u)~a b]"Y( u, P(a bJ) dul > 1.225 
a:5t:5b a ' ' -

(6.5) 

as a conservative 10% level test criterion for rejecting 0-y( u, {3) as a model for the hazard on [a, b]. 

It is worth noting that the difference between the distributions of liD II and liD* II is small when 

the [a, b] interval is not large, provided the model being tested has the local reparametrisation form 

( 4.6). This can be shown after expanding the :E-1 matrix here in a way similar to that for Jir1 in 

Sections 4.1 and 4.2. Thus 1.225 above is meant to be a conservative value but actually also an 

approximation to the real 0.90 point of the null distribution. Of course this approximation cannot 

be expected to be overly precise, and some experimentation with the 1.225 rejection limit would 

be needed. On the computational side we point out that the maximum again must be attained for 

one oft= Zi or Zi- with a~ Zi ~b. Furthermore, 

1111

' Y(u)~a,b]"Y(u,,B[a,bJ) du = L ~a,bJ{G(zi 1\ z;,,B(a,bJ)- G(a,,B[a,b])}, (6.6) 
a j:z; ~a 

where G(t,/3) = J: -y(u,/3) du. 

6.5. OTHER TESTS FOR MODEL ADEQUACY ON INTERVALS. There are naturally other possible 

goodness of :fit tests for intervals, see Hjort (1990) for other Dn(.) type functions and for classes of 

chi squared type tests and Hjort and Lumley (1993) for normalised local hazard plots. Chi squared 

methods would be awkward to implement in a general way here, since the [a, b] intervals would 

often be short. We record a couple of potentially useful variations on the Dn(.) theme, however, 

with a view towards quick calculations and decisions, since tests are to be carried out on slowly 

expanding [8- th, 8 + th] intervals for each 8. 

(6.3)-(6.5) arose as maxima of the Dn(.) process, and utilised convergence to suitably scaled 

and time-transformed Brownian bridges, as with Kolmogorov-Smirnov type tests. Martingale 

techniques for the counting process N can be used to show 

1b IDn(t)iq dN(t)fn --+d 1b ID(tWy(t)O-y(t,/3) dt 

~d 1b iT(b)W0 (p(t))iqT2 (b) dp(t) = T(b)2+q 11 IW0 (8)1q d8, 
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where '~d' means 'stochastically smaller than'. For q = 2 we have a Cramer-von Mises type test, 

with rejection criterion 

(6.7) 

on the 10% significance level. With wished for 5% level we would use 0.461 instead, the 0.95 

quantile of the J: W 0 (s) 2 ds distribution. The second variation is for q = 1, where we use 

l b n-1 "" ID (z·)l5· 
..... (b)-3 ID (t)l dN(t)/ = LiG<z;<b n ' ' 
T G n n (n-1N(a,b])3/2 

L:G<z·<b jN(a, Zi]- J:; Y(u)OiG,&p(u,,B[G,b)) duj - . 
N[a, b]312 

(6.8) 

~ 0.499 

for intended 10% significance level, and 0.582 for intended 5% significance level. 0.499 and 0.582 

are upper quantiles of the J0
1 IW0 (s)l ds distribution. There are simpler one-parameter analogues 

to (6.7) and (6.8), essentially as in these formulae but with -y(u,,B) = 1. Note that (6.6) can be 

used when computing any of these test statistics. 

Some experimentation with these h = h( s) selectors is necessary. One should avoid using too 

small windows since this would lead to too irregular local estimates. We should therefore only 

search for acceptable windows s ± th with hat least as large as some suitably determined ho(s). 

One possibility is to demand at least k observed zi's in the window, say with k = 10. Hence the 

(6.3)-(6.5) and (6.7)-(6.8) stopping criteria are to be used with such a modification. Secondly the 

realised h( s) could be somewhat irregular as a function of s. A natural modification is to smooth 

this curve first, before finally computing the local likelihood estimate a( s, ~•-h(•)/Z,•+h<•)/ 2 ) ). 

7. Supplementing remarks. 

7 A. STARTING THE ESTIMATOR.. We have defined a( s) = a( s, 0( s)) with parameter estimate 

obtained from s ± th data, which also means that a separate definition is required for s ~ th. One 

natural strategy is to use the model adequacy on intervals methods of Sections 6.3-6.5 to find the 

smallest b for which the model is rejected on [O,b], and then use a(s) = a(s,~o,boJ) for s E [O,b0], 

with a somewhat smaller b0 than b. Another possibility is to use a(s, O(th)) on [0, thJ. 

7B. PosT-SMOOTHING OF PARAMETER. ESTIMATES. The basic estimator is a(s) = a(s, B(s)) 

where O(s) uses only s ± th information. It is useful in practical applications to display not only 

the final a( s) but also the parameter estimate function or functions 0( s ). Sometimes this function 

has discontinuities, cf. (3.12) and the requirements on K noted there to give smoothness. A general 

alternative is to post-smooth the parameter estimates, before plugging in to give a( s ). Comments 

in 5.1, for example, suggest using post-smoothing of P(s) in (4.3) and (4.4). 

7C. DENSITY ESTIMATION WITH DYNAMIC LIKELIHOOD. When a(.) is estimated one can of 

course also estimate other quantities depending on a(.). The local likelihood methods of Sections 

3 and 4 therefore apply to nonparametric or semiparametric density estimation as well, via the 

f(t) = a(t) e:xp{ -A(t)} connection. Methods given there can be used to obtain a locally estimated 
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normal density of the type f(t) = N {j:i(t), u(t)2}(t), for example. There are at least two general 

immediate possibilities, namely 

ft(t) = a(t,O(t))exp{-A(t,O(t)} and 

h(t) = [IT {1- a(s, O(s)) ds}] a(t, O(t)) = exp{ -lot a(s, O{s)) ds }a(t, O(t)). 
~~ 0 

The simplest case would again be that of a locally constant hazard, for which 

ft(t) = O(t)exp{-O(t)t} and h(t) = exp{-fot O(s)ds} O(t). 

These are somewhat cumbersome density estimators. There are better schemes more directly geared 

towards the density estimation problem, but still with the same local likelihood characteristics, see 

Hjort and Jones (1993). 

7D. REGRESSION MODELS. Methods of this paper can be made to work in situations with 

covariate information. Consider the Cox regression model where individual i has hazard rate of the 

form 

ai(s) = ao(s) exp(,8'zi) for s E [0, T] and i = 1, ... , n. 

The a 0 (.) function is the hazard rate for individuals with covariate vector z = 0, and is left 

unspecified. This baseline hazard function can now be estimated using dynamic likelihood. H 

we fit a local constant on window W = s ± th the recipe is to maximise the kernel smoothed 

log-likelihood 

where dNi(t) = I{zi E [t, t + dt], 6i = 1} and Yi(t) = I{zi ~ t} are the 0-1 counting process and 

at risk process for individual i. This gives 

Here jj could be evaluated only locally, but if one trusts the Cox model then ,8 remains constant 

over the [0, T] range, and we should accordingly use the same jj regardless of s. But this is the 

same as smoothing the traditional Breslow estimator. One can similarly construct a nonparametric 

a 0 (.) estimator by fitting a running Weibull 0-rs-r-1 , for example. The result is of the form 

ao(s) = L:~= 1 fw K(h-1(t- s)~ dNi(t) ~ 
L:~= 1 fw K(h-1(t- s))Yi(t)::Y(s)t-r(•)-1 exp(,8'zi) dt 

Dynamic likelihood methods can also be developed in Aalen's linear hazard rate regression 

model, by local parametric modelling of the hazard factor functions. See Hjort (1993a). 

7E. MODERATELY INCORRECT PARAMETRIC MODELS. A parametric model does not have to 

be fully perfect in order for the methods based on it to be better than more conservative ones. In 

Hjort (1993b) a 'tolerance distance' is calculated from a moderately incorrect model to a wider and 

correct one; inside the tolerance radius estimators based on the incorrect model are better than 
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those based on the correct model. For an example, suppose the true model is the gamma one, with 

hazard function inherited from the density f(s, 8,7) = {fJ"Y /f{'Y)} s"Y-1 exp( -fJs). Then estimators 

based on the incorrect assumption of a constant rate (which corresponds to 7 = 1) are better than 

the two-parameter methods if I'Y- 11 ::s; 1.245/..Jii (assuming no censoring). This can be seen as 

yet another argument for not giving up simple parametric methods, even though the underlying 

models might be wrong. 

7F. COUNTING PROCESS MODELS. Methods and results of this paper can be generalised in 

various directions. They could be developed for Aalen's general multiplicative intensity model for 

counting processes, and hence be used to estimate hazard transition rates in time-inhomogeneous 

Markov chains, for example. There will then be a more complicated expression for the Mw matrix 

of {2.6), but otherwise there will be few complications. In another direction our results could be 

extended to the full halfline [0, oo) with appropriate extra assumptions on the censoring mechanism. 

7G. MORE THEORY. In our presentation we have concentrated on the perhaps most immediate 

aspects of the dynamic likelihood estimation method. There are further natural questions to ask 

and further natural results to prove. {i) One can prove uniform consistency of the {3.12) estimator 

without too much work, for example. One can more generally establish maxa<•<b la(s, O(s))­

a( s )I ---+p 0 under natural conditions. (ii) And the approximate size and distribution of this maximal 

deviation quantity are also of interest. (iii) It is not difficult to establish that {nh)112{a(s) -

a(s)- t.BKa"(s)} has a limiting zero-mean normal distribution, when h---+ 0 and nh---+ oo. This 

can also be used to construct point-wise approximate confidence band for the a(.) function, for 

example incorporating a bias correction -t.BKa"(s). (iv) One should work out a reliable cross 

validation method for minimising a nearly unbiased estimate of J0T w(s){a(s)- a(s)P ds, say, as 

a function of the window width h, or as a function of c in h = cYn{s)-116 • The crux is to estimate 

J0T w( s )a( s )a( s) ds. ( v) Theory can also be worked out for estimation of derivatives of the hazard 

function, as touched on in 6.1. Taking the derivative of (3.12) to define a'(s), with a smooth 

kernel function K, one can show that the bias is proportional to a h2 b1 (s) and that the variance is 

proportional to n - 1 h -a a( s) / y( s), but with a b1 ( s) function different from that of the derivative of 

the Ramlau-Hansen-Yandell estimator. 

7H. QUESTIONS. A simulation study comparing the various estimators would be welcome. 

Some of the questions to answer include: How much better are the new estimators than the purely 

nonparametric ones when the true hazard is in the vicinity of the parametric model used? How 

much do they lose to the parametric ones on the latter's home turf? Are there significant advantages 

to using multi-parameter models for the dynamic likelihood methods of Sections 3 and 4? What 

are the most useful ways of choosing window width h = hn(s)? 
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