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Dynamic Panel with Interactive Effects

Abstract

We analyze linear panel regression models with interactive fixed effects and predetermined

regressors, for example lagged-dependent variables. The first-order asymptotic theory

of the least squares (LS) estimator of the regression coefficients is worked out in the

limit where both the cross-sectional dimension and the number of time periods become

large. We find two sources of asymptotic bias of the LS estimator: bias due to correlation

or heteroscedasticity of the idiosyncratic error term, and bias due to predetermined (as

opposed to strictly exogenous) regressors. We provide a bias-corrected LS estimator. We

also present bias-corrected versions of the three classical test statistics (Wald, LR, and LM

test) and show their asymptotic distribution is a χ2-distribution. Monte Carlo simulations

show the bias correction of the LS estimator and of the test statistics also work well for

finite sample sizes.
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1 Introduction

In this paper, we study a linear panel regression model in which the individual fixed effects λi,

called factor loadings, interact with common time-specific effects ft, called factors. This inter-

active fixed effect specification contains the conventional individual specific effects and time-

specific effects as special cases but is significantly more flexible because it allows the factors ft

to affect each individual with a different loading λi.

Factor models have been widely studied in various economics disciplines, for example, in asset

pricing, forecasting, empirical macro, and empirical labor economics.1 The panel literature often

uses factor models to represent time-varying individual effects (or heterogenous time effects),

so-called interactive fixed effects. For panels with a large cross-sectional dimension (N) but

a short time dimension (T ), Holtz-Eakin, Newey, and Rosen (1988) (hereafter HNR) study a

linear panel regression model with interactive fixed effects and lagged dependent variables. To

solve the incidental parameter problem caused by the λi’s, they estimate a quasi-differenced

version of the model using appropriate lagged variables as instruments, and treating ft’s as

a fixed number of parameters to estimate. Ahn, Lee, and Schmidt (2001) also consider large

N but short T panels. Instead of eliminating the individual effects λi by transforming the

panel data, they impose various second-moment restrictions including the correlated random

effects λi, and derive moment conditions to estimate the regression coefficients. The more

recent literature considers panels with comparable size of N and T . The interactive fixed effect

panel regression model of Pesaran (2006) allows heterogenous regression coefficients. Pesaran’s

estimator is the common correlated effect (CCE) estimator that uses the cross-sectional averages

of the dependent variable and the independent variables as control functions for the interactive

fixed effects.2

Among the interactive fixed effect panel literature, most closely related to our paper is

Bai (2009). Bai assumes the regressors are strictly exogenous and the number of factors is

known. The estimator he investigates is the least squares (LS) estimator, which minimizes the

sum of squared residuals of the model jointly over the regression coefficients and the fixed effect

parameters λi and ft.
3 Using alternative asymptotics where N, T → ∞ at the same rate,4

Bai shows the LS estimator is
√
NT -consistent and asymptotically normal, but may have an

asymptotic bias. The bias in the normal limiting distribution occurs when the regression errors

are correlated or heteroscedastic. Bai also shows how to estimate the bias, and proposes a

bias-corrected estimator.

Following the methodology in Bai (2009), we investigate the LS estimator for a linear panel

3



Dynamic Panel with Interactive Effects

regression with a known number of interactive fixed effects. The main difference from Bai is

that we consider predetermined regressors, thus allowing feedback of past outcomes to future

regressors. One of the main findings of the present paper is that the limit distribution of the LS

estimator has two types of biases: one type of bias due to correlated or heteroscedastic errors

(the same bias as in Bai) and the other type of bias due to the predetermined regressors. This

additional bias term is analogous to the incidental parameter bias of Nickell (1981) in finite T

and the bias in Hahn and Kuersteiner (2002) in large T .

In addition to allowing for predetermined regressors, we also extend Bai’s results to models

in which both “low-rank regressors” (e.g., time-invariant and common regressors, or interactions

of those two) and “high-rank-regressors” (almost all other regressors that vary across individ-

uals and over time) are present simultaneously, wheras Bai (2009) only considers the low-rank

regressors separately and in a restrictive setting (in particular, not allowing for regressors that

are obtained by interacting time-invariant and common variables). A general treatment of low-

rank regressors is desirable because they often occur in applied work, for example, Gobillon and

Magnac (2013). The analysis of those regressors is challenging, however, because the unobserved

interactive fixed effects also represent a low-rank N × T matrix, thus posing a non-trivial iden-

tification problem for low-rank regressors, which needs to be addressed. We provide conditions

under which the different types of regressors are identified jointly, and under which they can be

estimated consistently as N and T grow large.

Another contribution of this paper is to establish the asymptotic theory of the three clas-

sical test statistics (Wald test, LR test, and LM (or score) test) for testing restrictions on the

regression coefficients in a large N , T panel framework.5 Regarding testing for coefficient re-

strictions, Bai (2009) investigates the Wald test based on the bias-corrected LS estimator, and

HNR consider the LR test in their 2SLS estimation framework with fixed T .6 What we show is

that the conventional LR and LM test statistics based on the LS profile objective function have

non-central chi-square limits due to incidental parameters in the interactive fixed effects. We

therefore propose modified LR and LM tests whose asymptotic distributions are conventional

chi-square distributions.

To establish the asymptotic theories of the LS estimator and the three classical tests, we

use the quadratic approximation of the profile LS objective function derived in Moon and

Weidner (2015). This method is different from Bai (2009), who uses the first-order condition

of the LS optimization problem as the starting point of his analysis. One advantage of our

methodology is that it can also directly be applied to derive the asymptotic properties of the

LR and LM test statistics.
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In this paper, we assume the regressors are not endogenous and the number of factors is

known, which might be restrictive in some applications. In other papers, we study how to

relax these restrictions. Moon and Weidner (2015) investigates the asymptotic properties of the

LS estimator of the linear panel regression model with factors when the number of factors is

unknown and extra factors are included unnecessarily in the estimation. We find that under

suitable conditions,7 the limit distribution of the LS estimator is unchanged when the number

of factors is overestimated. The extension to allow for endogenous regressors is very briefly

discussed in section 6 of the current paper, and is closely related to the results in Moon, Shum,

and Weidner (2012) (hereafter MSW). MSW’s main purpose is to extend the random coefficient

multinomial logit demand model (known as the BLP demand model from Berry, Levinsohn, and

Pakes (1995)) by allowing for interactive product and market specific fixed effects. Although the

main model of interest is quite different from the linear panel regression model of the current

paper, MSW’s econometrics framework is directly applicable to the model of the current paper

with endogenous regressors.8

Comparing the different estimation approaches for interactive fixed effect panel regressions

proposed in the literature, it seems fair to say that the LS estimator in Bai (2009) and our

paper, the CCE estimator of Pesaran (2006), and the IV estimator based on quasi-differencing

in HNR all have their own relative advantages and disadvantages. These three estimation

methods handle the interactive fixed effects quite differently. The LS method concentrates

out the interactive fixed effects by taking out the principal components. The CCE method

controls the factor (or time effects) using the cross-sectional averages of the dependent and

independent variables. The HNR’s approach quasi-differences out the individual effects, treating

the remaining time effects as parameters to estimate. The IV estimator of HNR should work

well when T is short, but is expected to also suffer from an incidental parameter problem when

T becomes large, because then many factors need to be estimated as parameters that enter the

model non-linearly. Pesaran’s CCE estimation method does not require the number of factors

to be known and does not require the strong factor assumption that we will impose below,

but for the CCE estimator to work, not only the DGPs of the dependent variable (e.g., the

regression model) but also the DGPs of the explanatory variables need to be restricted such

that their cross-sectional average can control for unobserved factors. The LS estimator and

its bias-corrected version perform well under relatively weak restrictions on the regressors, but

requires that T should not be too small and that the factors should be sufficiently strong to be

correctly picked up as the leading principal components.

The paper is organized as follows. In section 2, we introduce the interactive fixed effect model
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and provide conditions for identifying the regression coefficients in the presence of the interactive

fixed effects. In section 3, we define the LS estimator of the regression parameters and provide

a set of assumptions that are sufficient to show consistency of the LS estimator. In section 4,

we work out the asymptotic distribution of the LS estimator under alternative asymptotics. We

also provide a consistent estimator for the asymptotic bias and a bias-corrected LS estimator.

In section 5, we consider the Wald, LR, and LM tests for testing restrictions on the regression

coefficients of the model. We present bias-corrected versions of these tests and show that they

have chi-square limiting distributions. In section 6, we briefly discuss how to estimate the

interactive fixed effect linear panel regression when the regressors are endogenous. In section 7,

we present Monte Carlo simulation results for an AR(1) model with interactive fixed effects.

The simulations show the LS estimator for the AR(1) coefficient is biased, and the tests based

on it can have severe size distortions and power asymmetries, wheras the bias-corrected LS

estimator and test statistics have better properties. We conclude in section 8. We present all

proofs of theorems and some technical details in the appendix or supplementary material.

A few words on notation are due. For a column vector v, the Euclidean norm is defined by

‖v‖ =
√
v′v. For the n-th largest eigenvalues (counting multiple eigenvalues multiple times) of

a symmetric matrix B, we write µn(B). For an m×n matrix A, the Frobenius norm is ‖A‖F =√
Tr(AA′), and the spectral norm is ‖A‖ = max0 6=v∈Rn

‖Av‖
‖v‖

, or equivalently ‖A‖ =
√

µ1(A
′A).

Furthermore, we define PA = A(A′A)†A′ and MA = I−A(A′A)†A′, where I is the m×m identity

matrix, and (A′A)† is the Moore-Penrose pseudoinverse, to allow for the case that A is not of

full column rank. For square matrices B, C, we write B > C (or B ≥ C) to indicate B − C is

positive (semi) definite. For a positive definite symmetric matrix A, we write A1/2 and A−1/2

for the unique symmetric matrices that satisfy A1/2A1/2 = A and A−1/2A−1/2 = A−1. We use

∇ for the gradient of a function; that is, ∇f(x) is the column vector of partial derivatives of f

with respect to each component of x. We use “wpa1” for “with probability approaching one”.

2 Model and Identification

We study the following panel regression model with cross-sectional size N , and T time periods:

Yit = β0′Xit + λ0′
i f

0
t + eit, i = 1 . . . N, t = 1 . . . T, (1)

where Xit is a K×1 vector of observable regressors, β0 is a K×1 vector of regression coefficients,

λ0
i is an R×1 vector of unobserved factor loadings, f 0

t is an R×1 vector of unobserved common

factors, and eit are unobserved errors. The superscript zero indicates the true parameters. We
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write f 0
tr and λ0

ir, where r = 1, . . . , R, for the components of λ0
i and f 0

t , respectively. R is the

number of factors. Note that we can have f 0
tr = 1 for all t and a particular r, in which case the

corresponding λ0
ir become standard individual-specific effects. Analogously, we can have λ0

ir = 1

for all i and a particular r, so that the corresponding f 0
tr become standard time-specific effects.

Throughout this paper, we assume the true number of factors R is known.9 We introduce

the notation β0 ·X =
∑K

k=1 β0
k Xk. In matrix notation, the model can then be written as

Y = β0 ·X + λ0f 0′ + e ,

where Y , Xk, and e are N × T matrices, λ0 is an N ×R matrix, and f 0 is a T ×R matrix. The

elements of Xk are denoted by Xk,it.

We separate the K regressors into K1 “low-rank regressors” Xl, l = 1, . . . , K1, and K2 =

K −K1 “high-rank regressors” Xm, m = K1 + 1, . . . , K. Each low-rank regressor l = 1, . . . , L

is assumed to satisfy rank(Xl) = 1. Therefore, we can write Xl = wlv
′
l, where wl is an N -vector

and vl is a T -vector, and we also define the N ×K1 matrix w = (w1, . . . , wK1
) and the T ×K1

matrix v = (v1, . . . , vK1
).

Let l = 1, . . . , K1. The two most prominent types of low-rank regressors are time-invariant

regressors, which satisfy Xl,it = Zi for all i, t, and common (or cross-sectionally invariant)

regressors, in which case Xl,it = Wt for all i, t. Here, Zi and Wt are some observed variables,

which only vary over i or t, respectively. A more general low-rank regressor can be obtained by

interacting Zi and Wt multiplicatively, namely, Xl,it = ZiWt, an empirical example of which is

given in Gobillon and Magnac (2013). In these examples, and probably for the vast majority

of applications, the low-rank regressors all satisfy rank(Xl) = 1, but our results can easily be

extended to more general low-rank regressors.10

High-rank regressors are those whose distribution guarantees they have high rank (usually

full rank) when considered as an N × T matrix. For example, a regressor whose entries satisfy

Xm,it ∼ iidN (µ, σ), with µ ∈ R and σ > 0, satisfies rank(Xm) = min(N, T ) with probability

one.

This separation of the regressors into low- and high-rank regressors is important to formulate

our assumptions for identification and consistency, but actually plays no role in the estimation
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and inference procedures for β̂ discussed below.

Assumption ID (Assumptions for Identification).

(i) Existence of Second Moments:

The second moments of Xk,it and eit conditional on λ0, f 0, w exist for all i, t, k.

(ii) Mean Zero Errors and Exogeneity:

E
(
eit|λ0, f 0, w

)
= 0, and E(Xk,iteit|λ0, f 0, w) = 0, a.s., for all i, t, k.

The following two assumptions only need to be imposed if K1 > 0, that is, if low-rank regressors

are present:

(iii) Non-collinearity of Low-Rank Regressors:

Consider linear combinations α · Xlow =
∑K1

l=1 αlXl of the low-rank regressors Xl with

α ∈ R
K1. For all α 6= 0, we assume

E
[
(α ·Xlow)Mf0(α ·Xlow)

′
∣∣λ0, f 0, w

]
6= 0 , a.s.

(iv) No Collinearity between Factor Loadings and Low-Rank Regressors:

rank(Mwλ
0) = rank(λ0).11

The following assumption only needs to be imposed if K2 > 0, that is, if high-rank regressors are

present:

(v) Non-collinearity of High-Rank Regressors:

Consider linear combinations α ·Xhigh =
∑K

m=K1+1 αmXm of the high-rank regressors Xm

for α ∈ R
K2, where the components of the K2-vector α are denoted by αK1+1 to αK. For

all α 6= 0, we assume

rank
{
E
[
(α ·Xhigh)(α ·Xhigh)

′
∣∣λ0, f 0, w

]}
> 2R +K1 , a.s.

All expectations in the assumptions are conditional on λ0, f 0, and w; in particular, eit is

not allowed to be correlated with λ0, f 0, and w. However, eit is allowed to be correlated with

v (i.e., predetermined low-rank regressors are allowed). If desired, one can interchange the role

of N and T in the assumptions, by using the formal symmetry of the model under exchange of

the panel dimensions (N ↔ T , λ0 ↔ f 0, Y ↔ Y ′, Xk ↔ X ′
k, w ↔ v).

Assumptions ID(i) and (ii) have standard interpretations, but the other assumptions require

some further discussion.
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Assumption ID(iii) states the low-rank regressors are non-collinear even after projecting out

all variation that is explained by the true factors f 0. This assumption would, for example, be

violated if vl = f 0
r for some l = 1, . . . , K1 and r = 1, . . . , R, because then XlMf0 = 0 and we can

choose α such that Xlow = Xl. Similarly, Assumption ID(iv) rules out, for example, that wl = λ0
r

for some l = 1, . . . , K1 and r = 1, . . . , R, because then rank(Mwλ
0) < rank(λ0), in general. It

ought to be expected that λ0 and f 0 have to feature in the identification conditions for the

low-rank regressors, because the interactive fixed effects structure and the low-rank regressors

represent similar types of low-rank N × T structures.

Assumption ID(v) is a generalized non-collinearity assumption for the high-rank regressors,

which guarantees any linear combination α · Xhigh of the high-rank regressors is sufficiently

different from the low-rank regressors and from the interactive fixed effects. A standard non-

collinearity assumption can be formulated by demanding the N × N matrix E
[
(α · Xhigh)(α ·

Xhigh)
′
∣∣λ0, f 0, w

]
is non-zero for all non-zero α ∈ R

K2 , which can be equivalently expressed

as rank
{
E
[
(α ·Xhigh)(α ·Xhigh)

′
∣∣λ0, f 0, w

] }
> 0 for all non-zero α ∈ R

K2 . Assumption ID(v)

strengthens this standard non-collinearity assumption by demanding the rank not only to be

positive, but larger than 2R+K1. This also explains the name “high-rank regressors,” because

their rank has to be sufficiently large to satisfy this assumption. Note also that only the

number of factors R, but not λ0 and f 0, features in Assumption ID(v). The sample version

of this assumption is given by Assumption 4(ii)(a) below, which is also very closely related to

Assumption A in Bai (2009).

Theorem 2.1 (Identification). Suppose the Assumptions ID are satisfied. Then, the minima

of the expected objective function E

(
‖Y − β ·X − λ f ′‖2F

∣∣∣λ0, f 0, w
)
over (β, λ, f) ∈ R

K+N×R+T×R

satisfy β = β0 and λf ′ = λ0f 0′. This shows that β0 and λ0f 0′ are identified.

The theorem shows the true parameters are identified as minima of the expected value of

‖Y − β ·X − λ f ′‖2F =
∑

i,t(Yitβ
′ − Xit − λ′

ift)
2, which is the sum of squared residuals. We

use the same objective function, to define the estimators β̂, λ̂ and f̂ below. Without further

normalization conditions, the parameters λ0 and f 0 are not separately identified, because the

outcome variable Y is invariant under transformations λ0 → λ0A′ and f 0 → f 0A−1, where A is

a non-singular R×R matrix. However, the product λ0f 0′ is uniquely identified according to the

theorem. Because our focus is on identification and estimation of β0, we do not need to discuss

those additional normalization conditions for λ0 and f 0 in this paper.
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3 Estimator and Consistency

The objective function of the model is simply the sum of squared residuals, which in matrix

notation can be expressed as

LNT (β, λ, f) =
1

NT
‖Y − β ·X − λf ′‖2F

=
1

NT
Tr
[
(Y − β ·X − λf ′)

′
(Y − β ·X − λf ′)

]
. (2)

The estimator we consider is the LS estimator that jointly minimizes LNT (β, λ, f) over β, λ

and f . Our main objects of interest are the regression parameters β = (β1, ..., βK)
′, whose

estimator is given by

β̂ = argmin
β∈B

LNT (β) , (3)

where B ⊂ R
K is a compact parameter set that contains the true parameter, namely, β0 ∈ B,

and the objective function is the profile objective function

LNT (β) = min
λ,f

LNT (β, λ, f)

= min
f

1

NT
Tr
[
(Y − β ·X)Mf (Y − β ·X)′

]

=
1

NT

T∑

r=R+1

µr

[
(Y − β ·X)′ (Y − β ·X)

]
. (4)

Here, the first expression for LNT (β) is its definition as the minimum value of LNT (β, λ, f) over

λ and f . We denote the minimizing incidental parameters by λ̂(β) and f̂(β), and we define the

estimators λ̂ = λ̂(β̂) and f̂ = f̂(β̂). Those minimizing incidental parameters are not uniquely

determined – for the same reason that λ0 and f 0 are non uniquely identified – but the product

λ̂(β)f̂ ′(β) is unique.

The second expression for LNT (β) in equation (4) is obtained by concentrating out λ (anal-

ogously, one can concentrate out f to obtain a formulation whereby only the parameter λ

remains). The optimal f in the second expression is given by the R eigenvectors that corre-

spond to the R largest eigenvalues of the T × T matrix (Y − β ·X)′ (Y − β ·X). This insight

leads to the third line that presents the profile objective function as the sum over the T − R

smallest eigenvalues of this T ×T matrix. Lemma A.1 in the appendix shows equivalence of the

three expressions for LNT (β) given above.

Multiple local minima of LNT (β) may exist, and one should use multiple starting values for

the numerical optimization of β to guarantee the true global minimum β̂ is found.
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To show consistency of the LS estimator β̂ of the interactive fixed effect model, and also

later for our first-order asymptotic theory, we consider the limit N, T → ∞. In the following

we present assumptions on Xk, e, λ, and f that guarantee consistency.12

Assumption 1. (i) plimN,T→∞

(
λ0′λ0/N

)
> 0, (ii) plimN,T→∞ (f 0′f 0/T ) > 0.

Assumption 2. plimN,T→∞ [(NT )−1Tr(Xk e
′)] = 0, for all k = 1, . . . , K.

Assumption 3. plimN,T→∞

(
‖e‖/

√
NT

)
= 0.

Assumption 1 guarantees the matrices f 0 and λ0 have full rank, that is, that R distinct

factors and factor loadings exist asymptotically, and that the norm of each factor and factor

loading grows at a rate of
√
T and

√
N , respectively. Assumption 2 demands the regressors

are weakly exogenous. Assumption 3 restricts the spectral norm of the N × T error matrix

e. We discuss this assumption in more detail in the next section, and we give examples of

error distributions that satisfy this condition in section S.2 of the supplementary material. The

final assumption needed for consistency is an assumption on the regressors Xk. We already

introduced the distinction between the K1 “low-rank regressors” Xl, l = 1, . . . , K1, and the

K2 = K −K1 “high-rank regressors” Xm, m = K1 + 1, . . . , K above.

Assumption 4.

(i) plimN,T→∞

[
(NT )−1

∑N
i=1

∑T
t=1 XitX

′
it

]
> 0.

(ii) The two types of regressors satisfy:

(a) Consider linear combinations α ·Xhigh =
∑K

m=K1+1 αmXm of the high-rank regressors

Xm for K2-vectors α with ‖α‖ = 1, where the components of the K2-vector α are

denoted by αK1+1 to αK. We assume a constant b > 0 exists such that

min
{α∈RK2 ,‖α‖=1}

N∑

r=2R+K1+1

µr

[
(α ·Xhigh)(α ·Xhigh)

′

NT

]
≥ b wpa1.

(b) For the low-rank regressors, we assume rank(Xl) = 1, l = 1, . . . , K1; that is, they can

be written as Xl = wlv
′
l for N-vectors wl and T -vectors vl, and we define the N ×K1

matrix w = (w1, . . . , wK1
) and the T × K1 matrix v = (v1, . . . , vK1

). We assume a

constant B > 0 exists such that N−1 λ0′ Mw λ0 > B IR and T−1 f 0′ Mv f
0 > B IR,

wpa1.
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Assumption 4(i) is a standard non-collinearity condition for all the regressors. Assump-

tion 4(ii)(a) is an appropriate sample analog of the identification Assumption ID(v). If the sum

in Assumption 4(ii)(a) were to start from r = 1, we would have
∑N

r=1 µr

[
(α·Xhigh)(α·Xhigh)

′

NT

]
=

1
NT

Tr[(α ·Xhigh)(α ·Xhigh)
′], so that the assumption would become a standard non-collinearity

condition. Not including the first 2R + K1 eigenvalues in the sum implies the N × N matrix

(α ·Xhigh)(α ·Xhigh)
′ needs to have rank larger than 2R +K1.

Assumption 4(ii)(b) is closely related to the identification Assumptions ID(iii) and (iv). The

appearance of the factors and factor loadings in this assumption on the low-rank regressors is

inevitable to guarantee consistency. For example, consider a low-rank regressor that is cross-

sectionally independent and proportional to the r’th unobserved factor, for example, Xl,it = ftr.

The corresponding regression coefficient βl is then not identified, because the model is invariant

under a shift βl 7→ βl + a, λir 7→ λir − a, for an arbitrary a ∈ R. This phenomenon is well

known from ordinary fixed effect models, where the coefficients of time-invariant regressors are

not identified. Assumption 4(ii)(b) therefore guarantees for Xl = wlv
′
l that wl is sufficiently

different from λ0, and vl is sufficiently different from f 0.

Theorem 3.1 (Consistency). Let Assumptions 1, 2, 3, and 4 be satisfied; let the parameter

set B be compact; and let β0 ∈ B. In the limit N, T → ∞, we then have

β̂ −→
p

β0 .

We assume compactness of B to guarantee existence of the minimizing β̂. We also use

boundedness of B in the consistency proof, but only for those parameters βl, l = 1 . . . K1, that

correspond to low-rank regressors, that is, if only high-rank regressors (K1 = 0) are present,

the compactness assumption can be omitted, as long as existence of β̂ is guaranteed (e.g., for

B = R
K).

Bai (2009) also proves consistency of the LS estimator of the interactive fixed effect model,

but under somewhat different assumptions. He also employs what we call Assumptions 1 and

2, and he uses a low-level version of Assumption 3. He demands the regressors to be strictly

exogenous. Regarding consistency, the main difference between our assumptions and his is the

treatment of high- and low-rank regressors. He first gives a condition on the regressors (his

Assumption A) that rules out low-rank regressors, and later discusses the case in which all

regressors are either time-invariant or common regressors (i.e., are all low rank). By contrast,

our Assumption 4 allows for a combination of high- and low-rank regressors, and for low-rank

regressors that are more general than time-invariant and common regressors.
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4 Asymptotic Distribution and Bias Correction

Because we have already shown consistency of the LS estimator β̂, it is sufficient to study the

local properties of the objective function LNT (β) around β0 to derive the first-order asymptotic

theory of β̂. Moon and Weidner (2015) derived a useful approximation of LNT (β) around β0,

and we briefly summarize the ideas and results of this approximation in the following subsection.

We then apply those results to derive the asymptotic distribution of the LS estimator, including

working out the asymptotic bias, which was not done previously. Afterward, we discuss bias

correction and inference.

4.1 Expansion of the Profile Objective Function

The last expression in equation (4) for the profile objective function is convenient because it does

not involve any minimization over the parameters λ or f . On the other hand, this expression

cannot be easily discussed by analytic means, because in general, no explicit formula exists for

the eigenvalues of a matrix. The conventional method that involves a Taylor series expansion

in the regression parameters β alone seems infeasible here. In Moon and Weidner (2015), we

showed how to overcome this problem by expanding the profile objective function jointly in β

and ‖e‖. The key idea is the following decomposition:

Y − β ·X = λ0f 0′

︸ ︷︷ ︸
leading

term

−
(
β − β0

)
·X + e︸ ︷︷ ︸

perturbation term

.

If the perturbation term is zero, the profile objective LNT (β) is also zero, because the leading

term λ0f 0′ has rank R, so that the T − R smallest eigenvalues of f 0λ0′λ0f 0′ all vanish. One

may thus expect that small values of the perturbation term should correspond to small values

of LNT (β). This idea can indeed be made mathematically precise. By using the perturbation

theory of linear operators (see, e.g., Kato (1980)), one can work out an expansion of LNT (β) in

the perturbation term, and one can show this expansion is convergent as long as the spectral

norm of the perturbation term is sufficiently small.

The assumptions on the model made so far are in principle already sufficient to apply this

expansion of the profile objective function, but to truncate the expansion at an appropriate

order and to provide a bound on the remainder term that is sufficient to derive the first-order

asymptotic theory of the LS estimator, we need to strengthen Assumption 3 as follows.

Assumption 3∗. ‖e‖ = op(N
2/3).

13
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In the rest of the paper, we only consider asymptotics in which N and T grow at the same

rate; that is, we could equivalently write op(T
2/3) instead of op(N

2/3) in Assumption 3∗. In

section S.2 of the supplementary material, we provide examples of error distributions that satisfy

Assumption 3∗. In fact, for these examples, we have ‖e‖ = Op(
√

max(N, T )). A large literature

studies the asymptotic behavior of the spectral norm of random matrices; see, for example,

Geman (1980), Silverstein (1989), Bai, Silverstein, and Yin (1988), Yin, Bai, and Krishnaiah

(1988), and Latala (2005). Loosely speaking, we expect the result ‖e‖ = Op(
√
max(N, T )) to

hold as long as the errors eit have mean zero, uniformly bounded fourth moment, and weak

time-serial and cross-sectional correlation (in some well-defined sense, see the examples).

We can now present the quadratic approximation of the profile objective function LNT (β)

that we derived in Moon and Weidner (2015).

Theorem 4.1 (Expansion of Profile Objective Function). Let Assumption 1, 3∗, and 4(i)

be satisfied, and consider the limit N, T → ∞ with N/T → κ2, 0 < κ < ∞. Then, the profile

objective function satisfies LNT (β) = Lq,NT (β) + (NT )−1 RNT (β), where the remainder RNT (β)

is such that for any sequence ηNT → 0, we have

sup
{β:‖β−β0‖≤ηNT }

|RNT (β)|(
1 +

√
NT

∥∥β − β0
∥∥
)2 = op (1) ,

and Lq,NT (β) is a second-order polynomial in β; namely,

Lq,NT (β) = LNT (β
0) − 2√

NT
(β − β0)′ CNT + (β − β0)′ WNT (β − β0) ,

with K × K matrix WNT defined by WNT,k1k2 = (NT )−1 Tr(Mf0 X ′
k1
Mλ0 Xk2), and K-vector

CNT with entries CNT,k = C(1)
(
λ0 , f 0 , Xk e

)
+ C(2)

(
λ0 , f 0 , Xk e

)
, where

C(1)
(
λ0, f 0, Xk, e

)
=

1√
NT

Tr(Mf0 e′ Mλ0 Xk) ,

C(2)
(
λ0, f 0, Xk, e

)
= − 1√

NT

[
Tr
(
eMf0 e′ Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
)

+ Tr
(
e′Mλ0 eMf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

)

+ Tr
(
e′Mλ0 Xk Mf0 e′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

) ]
.

We refer to WNT and CNT as the approximated Hessian and the approximated score (at

the true parameter β0). The exact Hessian and the exact score (at the true parameter β0)

contain higher-order expansion terms in e, but the expansion up to the particular order above

is sufficient to work out the first-order asymptotic theory of the LS estimator, as the following

corollary shows.
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Corollary 4.2. Let the assumptions of Theorem 3.1 and 4.1 hold; let β0 be an interior point

of the parameter set B; and assume CNT = Op(1). We then have
√
NT

(
β̂ − β0

)
= W−1

NTCNT +

op(1) = Op(1).

Combining consistency of the LS estimator and the expansion of the profile objective function

in Theorem 4.1, one obtains
√
NT WNT

(
β̂ − β0

)
= CNT + op(1); see, for example, Andrews

(1999). To obtain the corollary, one needs in addition that WNT does not become degenerate as

N, T → ∞; that is, the smallest eigenvalue of WNT should be bounded from below by a positive

constant. Our assumptions already guarantee existence of such a lower bound, as is shown in

the supplementary material.

Analogous to the expansions of the profile objective function LNT (β), one can also derive

expansions of the projectors Mλ̂ and Mf̂ , and those can be used to show consistency of λ̂ and

f̂ , up to normalization; see Lemma S.10.4 in the supplementary material.

4.2 Asymptotic Distribution

We now apply Corollary 4.2 to work out the asymptotic distribution of the LS estimator β̂. For

this purpose, we need more specific assumptions on λ0, f 0, Xk, and e.

Assumption 5. A sigma algebra C = CNT (which in the following we will refer to as the

conditioning set) exists that contains the sigma algebra generated by λ0 and f 0, such that

(i) E
[
eit
∣∣ C ∨ σ({(Xis, ei,s−1), s ≤ t})

]
= 0, for all i, t.13

(ii) eit is independent over t, conditional on C, for all i.

(iii) {(Xit, eit), t = 1, . . . , T} is independent across i, conditional on C.

(iv) 1
NT

∑N
i=1

∑T
t,s=1

∣∣∣Cov
(
Xk,it, Xℓ,is

∣∣∣ C
)∣∣∣ = Op(1), for all k, ℓ = 1, . . . , K.

(v) 1
NT 2

∑N
i=1

∑T
t,s,u,v=1

∣∣∣Cov
(
eitX̃k,is, eiuX̃ℓ,iv

∣∣∣ C
)∣∣∣ = Op(1), where X̃k,it = Xk,it−E

[
Xk,it

∣∣C
]
,

for all k, ℓ = 1, . . . , K.

(vi) An ǫ > 0 exists such that E
(
e8it
∣∣ C
)
and E

(
‖Xit‖8+ǫ

∣∣ C
)
and E‖λ0

i ‖4 and E‖f 0
t ‖4+ǫ are

bounded by a non-random constant, uniformly over i, t and N, T .

(vii) β0 is an interior point of the compact parameter set B.
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Remarks on Assumption 5

(1) Part (i) of Assumption 5 imposes that eit is a martingale difference sequence over time

for a particular filtration. Conditioning on C, the time series of eit is independent over

time (part (ii) of the assumption) and the error term eit and regressors Xit are cross-

sectionally independent (part (iii) of the assumption), but unconditional correlation is

allowed. Part (iv) imposes weak time-serial correlation of Xit. Part (v) demands weak

time-serial correlation of X̃k,it = Xk,it − E
[
Xk,it

∣∣C
]
and eit. Finally, parts (vi) and (vii)

require bounded higher moments of the error term, regressors, factors and factor loadings,

and a compact parameter set with an interior true parameter.

(2) Assumption 5(i) implies E (Xk,iteit|C) = 0 and E (Xk,iteitXℓ,iseis|C) = 0 for t 6= s. Thus,

the assumption guarantees Xiteit is mean zero and uncorrelated over t, and independent

across i, conditional on C. Notice the conditional mean independence restriction in As-

sumption 5(i) is weaker than Assumption D of Bai (2009), besides sequential exogeneity.

Bai imposes independence between eit and ({Xjs, λj, fs}j,s).

(3) Assumption 5 is sufficient for Assumption 2. To see this, notice Tr(Xk e
′) =

∑
i,t Xk,iteit,

and also that the sequential exogeneity and the cross-sectional independence assump-

tion imply E

[(
(NT )−1

∑
i,t Xk,iteit

)2 ∣∣∣C
]
= (NT )−2

∑
i,t E

[
(Xk,iteit)

2
∣∣∣C
]
. Then, together

with the assumption of bounded moments, we have (NT )−1
∑

i,t Xk,iteit = op(1).

(4) Assumption 5 is also sufficient for Assumption 3∗ (and thus for Assumption 3), because eit

is assumed independent over t and across i and has a bounded fourth moment, conditional

on C, which by using results in Latala (2005), implies the spectral norm satisfies ‖e‖ =√
max(N, T ) as N and T become large; see the supplementary material.

(5) Examples of regressor processes, which satisfy Assumptions 5(iv) and (v), are discussed

in the following. These examples also illuminate the role of the conditioning sigma field C.

Examples of DGPs for Xit

Here we provide examples of the DGPs of the regressors Xit that satisfy the conditions in

Assumption 5. Proofs for these examples are provided in the supplementary material.

Example 1. The first example is a simple AR(1) interactive fixed effect regression:

Yit = β0Yi,t−1 + λ0′
i f

0
t + eit,
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where eit is mean zero, independent across i and t, and independent of λ0 and f 0. Assume

|β0| < 1 and that eit, λ0
i , and f 0

t all possess uniformly bounded moments of order 8 + ǫ.

In this case, the regressor is Xit = Yit−1 = λ0′
i F

0
t + Uit, where F 0

t =
∑∞

s=0(β
0)sf 0

t−1−s and

Uit =
∑∞

s=0(β
0)sei,t−1−s. For the conditioning sigma field C in Assumption 5, we choose

C = σ
(
{λ0

i : 1 ≤ i ≤ N}, {f 0
t : 1 ≤ t ≤ T}

)
. Conditional on C, the only variation in Xit stems

from Uit, which is independent across i and weakly correlated over t, so that Assumption 5(iv)

holds. Furthermore, we have E (Xit|C) = λ0′
i F

0
t and X̃it = Uit, which allows us to verify As-

sumption 5(v).

This example can be generalized to a VAR(1) model as follows:
(
Yit

Zit

)
= B

(
Yi,t−1

Zi,t−1

)

︸ ︷︷ ︸
=Xit

+

(
λ0′
i f

0
t

dit

)
+

(
eit
uit

)

︸ ︷︷ ︸
=Eit

, (5)

where Zit is an m×1 vector of additional variables and B is an (m+1)×(m+1) matrix of VAR

parameters whose eigenvalues lie within the unit circle. The m× 1 vector dit and the factors f 0
t

and factor loadings λ0
i are assumed to be independent of the (m + 1) × 1 vector of innovations

Eit. Suppose our interest is to estimate the first row in equation (5), which corresponds exactly

to our interactive fixed effects model with regressors Yi,t−1 and Zi,t−1. Choosing C to be the sigma

field generated by all f 0
t , λ

0
i , dit, we obtain X̃it =

∑∞
s=0 BsEi,t−1−s. Analogous to the AR(1) case,

we then find Assumption 5(iv) and (v) are satisfied in this example if the innovations Eit are

independent across i and over t, and have appropriate bounded moments.

Example 2. Consider a scalar Xit for simplicity, and let Xit = g (vit, δi, ht). We assume

(i)
{
(eit, vit)i=1,...,N ;t=1,...,T

}
⊥
{(

λ0
i , δi

)
i=1,...,N

, (f 0
t , ht)t=1,...,T

}
, (ii) (eit, vit, δi) are independent

across i for all t, and (iii) vis ⊥ eit for s ≤ t and all i. Furthermore, assume supit E|Xit|8+ǫ < ∞
for some positive ǫ. For the conditioning sigma field C in Assumption 5, we choose C =

σ
({

λ0
i : 1 ≤ i ≤ N

}
, {δi : 1 ≤ i ≤ N} , {f 0

t : −∞ ≤ t ≤ ∞} , {ht : −∞ ≤ t ≤ ∞}
)
. Further-

more, as in Hahn and Kuersteiner (2011), let F t
τ (i) = C ∨σ ({(eis, vis) : τ ≤ s ≤ t}), and define

the conditional α-mixing coefficient on C:

αm(i) = sup
A∈Ft

−∞
(i),B∈F∞

t+m
(i)

[P (A ∩ B)− P (A)P (B) |C] .

Let αm = supi αm(i), and assume αm = O
(
m−ζ

)
, where ζ > 12 p

4p−1
for p > 4. Then, Assump-

tions 5(iv) and (v) are satisfied.

In this example, the shocks ht (which may contain the factors f 0
t ), δi (which may contain

the factor loadings λ0
i ), and vit (which may contain past values of eit) can enter in a general

non-linear way into the regressor Xit.
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The following assumption guarantees the limiting variance and the asymptotic bias converge

to constant values.

Assumption 6. Let Xk = Mλ0 Xk Mf0, which is an N × T matrix with entries Xk,it. For

each i and t, define the K-vector Xit = (X1,it, . . . ,XK,it)
′. We assume existence of the following

probability limits for all k = 1, . . . , K:

W = plim
N,T→∞

1

NT

N∑

i=1

T∑

t=1

Xit X ′
it ,

Ω = plim
N,T→∞

1

NT

N∑

i=1

T∑

t=1

e2itXit X ′
it ,

B1,k = plim
N,T→∞

1

N
Tr
[
Pf0E

(
e′Xk

∣∣ C
)]

,

B2,k = plim
N,T→∞

1

T
Tr
[
E
(
ee′
∣∣ C
)
Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
]
,

B3,k = plim
N,T→∞

1

N
Tr
[
E
(
e′e
∣∣ C
)
Mf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

]
,

where C is the same conditioning set that appears in Assumption 5.

Here, W and Ω are K × K matrices, and we define the K-vectors B1, B2, and B3 with

components B1,k, B2,k and B3,k, k = 1, . . . , K.

Theorem 4.3 (Asymptotic Distribution). Let Assumptions 1, 4, 5, and 6 be satisfied,14

and consider the limit N, T → ∞ with N/T → κ2, where 0 < κ < ∞. Then we have

√
NT

(
β̂ − β0

)
→
d

N
(
W−1B, W−1 ΩW−1

)
,

where B = −κB1 − κ−1B2 − κB3.

From Corollary 4.2, we already know the limiting distribution of β̂ is given by the limiting

distribution of W−1
NTCNT . Note WNT = 1

NT

∑N
i=1

∑T
t=1 Xit X ′

it; that is, W is simply defined as

the probability limit of WNT . Assumption 4 guarantees W is positive definite, as shown in the

supplementary material.

Thus, the main task in proving Theorem 4.3 is to show the approximated score at the true

parameter satisfies CNT →d N (B,Ω). We find the asymptotic variance Ω and the asymptotic

bias B1 originate from the C(1) term, whereas the two further bias terms B2 and B3 originate

from the C(2) term of CNT .

The bias B1 is due to correlation of the errors eit and the regressorsXk,iτ in the time direction

(for τ > t). This bias term generalizes the Nickell (1981) bias that occurs in dynamic models
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with standard fixed effects, and it is not present in Bai (2009), where only strictly exogenous

regressors are considered.

The other two bias terms B2 and B3 are already described in Bai (2009). If eit is homoscedas-

tic, that is, if E(eit|C) = σ2, then E (ee′|C) = σ2
IN and E (e′e|C) = σ2

IT , so that B2 = 0 and

B3 = 0 (because the trace is cyclical and f 0′Mf0 = 0 and λ0′Mλ0 = 0). Thus, B2 is only

non-zero if eit is heteroscedastic across i, and B3 is only non-zero if eit is heteroscedastic over t.

Correlation in eit across i or over t would also generate non-zero bias terms of exactly the form

B2 and B3, but is ruled out by our assumptions.

4.3 Bias Correction

Estimators for W , Ω, B1, B2, and B3 are obtained by forming suitable sample analogs and

replacing the unobserved λ0, f 0, and e by the estimates λ̂, f̂ , and the residuals ê.

Definition 1. Let X̂k = Mλ̂ Xk Mf̂ . For each i and t, define the K-vector X̂it = (X̂1,it, . . . , X̂K,it)
′.

Let Γ : R → R be the truncation kernel defined by Γ(x) = 1 for |x| ≤ 1, and Γ(x) = 0 otherwise.

Let M be a bandwidth parameter that depends on N and T . We define the K ×K matrices Ŵ

and Ω̂, and the K-vectors B̂1, B̂2, and B̂3 as follows:

Ŵ =
1

NT

N∑

i=1

T∑

t=1

X̂it X̂ ′
it ,

Ω̂ =
1

NT

N∑

i=1

T∑

t=1

(êit)
2 X̂it X̂ ′

it ,

B̂1,k =
1

N

N∑

i=1

T−1∑

t=1

T∑

s=t+1

Γ

(
s− t

M

) [
Pf̂

]
ts
êit Xk,is ,

B̂2,k =
1

T

N∑

i=1

T∑

t=1

(êit)
2
[
Mλ̂ Xk f̂ (f̂ ′f̂)−1 (λ̂

′
λ̂)−1 λ̂

′
]
ii
,

B̂3,k =
1

N

N∑

i=1

T∑

t=1

(êit)
2
[
Mf̂ X

′
k λ̂ (λ̂

′
λ̂)−1 (f̂ ′f̂)−1 f̂ ′

]
tt
,

where ê = Y − β̂ ·X − λ̂ f̂ ′, and êit denotes the elements of ê, [A]ts denotes the (t,s)th element

of the matrix A.

Notice the estimators Ω̂, B̂2, and B̂3 are similar to White’s standard error estimator under

heteroskedasticity, and the estimator B̂1 is similar to the HAC estimator with a kernel. To show
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consistency of these estimators, we impose some additional assumptions.

Assumption 7.

(i) ‖λ0
i ‖ and ‖f 0

t ‖ are uniformly bounded over i, t, and N , T .

(ii) There exist c > 0 and ǫ > 0 such that for all i, t,m,N , and T , we have∣∣∣ 1N
∑N

i=1 E(eitXk,it+m

∣∣ C)
∣∣∣ ≤ cm−(1+ǫ).

Assumption 7(i) is made for convenience to simplify the consistency proof for the estimators

in Definition 1. Weakening this assumption is possible by only assuming suitable bounded

moments of ‖λ0
i ‖ and ‖f 0

t ‖. To show consistency of B̂1, we need to control how strongly eit

and Xk,iτ , t < τ , are allowed to be correlated, which is done by Assumption 7(ii). It is

straightforward to verify Assumption 7(ii) is satisfied in the two examples of regressor processes

presented after Assumption 5.

Theorem 4.4 (Consistency of Bias and Variance Estimators). Let Assumptions 1, 4,

5, 6, and 7 hold, and consider a limit N, T → ∞ with N/T → κ2, 0 < κ < ∞, such that

the bandwidth M = MNT satisifies M → ∞ and M5/T → 0. We then have Ŵ = W + op(1),

Ω̂ = Ω + op(1), B̂1 = B1 + op(1), B̂2 = B2 + op(1), and B̂3 = B3 + op(1).

The assumption M5/T → 0 can be relaxed if additional higher- moment restrictions on eit

and Xk,it are imposed. Note also that for the construction of the estimators Ŵ , Ω̂, and B̂i, i =

1, 2, 3, knowing whether the regressors are strictly exogenous or predetermined is unnecessary;

in both cases, the estimators for W , Ω, and Bi, i = 1, 2, 3, are consistent. We can now present

our bias-corrected estimator and its limiting distribution.

Corollary 4.5. Under the assumptions of Theorem 4.4, the bias-corrected estimator

β̂
∗
= β̂ + Ŵ−1

(
T−1B̂1 +N−1B̂2 + T−1B̂3

)

satisfies
√
NT

(
β̂
∗ − β0

)
→d N (0, W−1 ΩW−1).

According to Theorem 4.4, a consistent estimator of the asymptotic variance of β̂
∗
is given

by Ŵ−1 Ω̂ Ŵ−1.

An alternative to the analytical bias-correction result given by Corollary 4.5 is to use Jack-

knife bias correction to eliminate the asymptotic bias. For panel models with incidental param-

eters only in the cross-sectional dimensions, one typical finds a large N, T leading incidental

parameter bias of order 1/T for the parameters of interest. To correct for this 1/T bias, one
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can use the delete-one Jackknife bias correction if observations are iid over t (Hahn and Newey,

2004) and the split-panel Jackknife bias-correction if observations are correlated over t (Dhaene

and Jochmans, 2015). In our current model, we have incidental parameters in both panel di-

mensions (λ0
i and f 0

t ), resulting in leading bias terms of order 1/T (bias term B1 and B3) and

of order 1/N (bias term B2). Fernández-Val and Weidner (2013) discuss the generalizations of

the split-panel Jackknife bias-correction to that case.

The corresponding bias-corrected split-panel Jackknife estimator reads β̂
J
= 3β̂NT−βN,T/2−

βN/2,T , where β̂NT = β̂ is the LS estimator obtained from the full sample, βN,T/2 is the average of

the two LS estimators that leave out the first and second halves of the time periods, and βN/2,T

is the average of the two LS estimators that leave out half of the individuals. Jackknife bias

correction is convenient because only the order of the bias, and not the structure of the terms

B1, B2, and B3, needs not be known in detail. However, one requires additional stationarity

assumptions over t and homogeneity assumptions across i to justify the Jackknife correction and

to show that β̂
J
has the same limiting distribution as β̂

∗
in Corollary 4.5; see Fernández-Val and

Weidner (2013) for more details. They also observe through Monte Carlo simulations that the

finite sample variance of the Jackknife-corrected estimator is often larger than of the analytically

corrected estimator. We do not explore Jackknife bias-correction further in this paper.

5 Testing Restrictions on β0

In this section, we discuss the three classical test statistics for testing linear restrictions on β0.

The null hypothesis is H0 : Hβ0 = h, and the alternative is Ha : Hβ0 6= h, where H is an

r ×K matrix of rank r ≤ K, and h is an r × 1 vector. We restrict the presentation to testing

a linear hypothesis for ease of exposition. One can generalize the discussion to the testing of

non-linear hypotheses, under conventional regularity conditions. Throughout this subsection,

we assume β0 is an interior point of B; that is, no local restrictions are on β as long as the null

hypothesis is not imposed. Using the expansion of LNT (β), one could also discuss testing when

the true parameter is on the boundary, as shown in Andrews (2001).

The restricted estimator is defined by

β̃ = argmin
β∈B̃

LNT (β) , (6)

where B̃ = {β ∈ B|Hβ = h} is the restricted parameter set. Analogous to Theorem 4.3 for the

unrestricted estimator β̂, we can use the expansion of the profile objective function to derive

the limiting distribution of the restricted estimator. Under the assumptions of Theorem 4.3, we

21



Dynamic Panel with Interactive Effects

have

√
NT (β̃ − β0) −→

d
N
(
W

−1B, W−1 ΩW
−1
)
,

where W−1 = W−1−W−1H ′(HW−1H ′)−1HW−1. The K×K covariance matrix in the limiting

distribution of β̃ is not full rank, but satisfies rank(W−1 ΩW
−1) = K − r, because HW

−1 = 0

and thus rank(W−1) = K − r. The asymptotic distribution of
√
NT (β̃ − β0) is therefore K − r

dimensional, as it should be for the restricted estimator.

Wald Test

Using the result of Theorem 4.3, we find that under the null hypothesis,
√
NT

(
Hβ̂ − h

)
is

asymptotically distributed as N (HW−1B, HW−1 ΩW−1H ′). Thus, due to the presence of the

biasB, the standardWald test statisticWDNT = NT
(
Hβ̂ − h

)′ (
HŴ−1 Ω̂ Ŵ−1H ′

)−1 (
Hβ̂ − h

)

is not asymptotically χ2
r distributed. Using the estimator B̂ = −

√
N
T
B̂1−

√
T
N
B̂2−

√
N
T
B̂3 for

the bias, we can define the bias-corrected Wald test statistic as

WD∗
NT =

[√
NT

(
Hβ̂

∗ − h
)]′ (

HŴ−1 Ω̂ Ŵ−1H ′
)−1 [√

NT
(
Hβ̂

∗ − h
)]

, (7)

where β̂
∗
= β̂ − Ŵ−1B̂ is the bias-corrected estimator. WD∗

NT is just the standard Wald test

statistics applied to β̂
∗
. Under the null hypothesis and the Assumptions of Theorem 4.4, we

find WD∗
NT →d χ2

r.

Likelihood Ratio Test

To implement the LR test, we need the relationship between the asymptotic Hessian W and

the asymptotic score variance Ω of the profile objective function to be of the form Ω = cW ,

where c > 0 is a scalar constant. This condition is satisfied in our interactive fixed effect model

if E(e2it|C) = c, that is, if the error is homoskedastic. A consistent estimator for c is then given

by ĉ = (NT )−1
∑N

i=1

∑T
t=1 ê

2
it, where ê = Y − β̂ ·X − λ̂ f̂ ′. Because the likelihood function for

the interactive fixed effect model is just the sum of squared residuals, we have ĉ = LNT (β̂). The

likelihood ratio test statistic is defined by

LRNT = ĉ−1 NT
[
LNT

(
β̃
)
− LNT

(
β̂
)]

.

Under the assumption of Theorem 4.3, we then have

LRNT −→
d

c−1C ′W−1H ′(HW−1H ′)−1HW−1C ,
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where C ∼ N (B,Ω), i.e. CNT →d C. It is the same limiting distribution that one finds for the

Wald test if Ω = cW (in fact, one can show WDNT = LRNT + op(1)). Therefore, we need to do

a bias-correction for the LR test to achieve a χ2 limiting distribution. We define

LR∗
NT = ĉ−1NT

[
min

{β∈B|Hβ=h}
LNT

(
β + (NT )−1/2Ŵ−1B̂

)
−min

β∈B
LNT

(
β + (NT )−1/2Ŵ−1B̂

)]
,

(8)

where B̂ and Ŵ do not depend on the parameter β in the minimization problem.15 Asymp-

totically, we have minβ∈B LNT

(
β + (NT )−1/2Ŵ−1B̂

)
= LNT (β̂), because β ∈ B does not

impose local constraints; in other words, close to β0, whether one minimizes over β or over

β + (NT )−1/2Ŵ−1B̂ does not matter for the value of the minimum. The correction to the LR

test therefore originates from the first term in LR∗
NT . For the minimization over the restricted

parameter set, whether the argument of LNT is β or β+(NT )−1/2Ŵ−1B̂ matters, because gener-

ically, we have HW−1B 6= 0 (otherwise, no correction would be necessary for the LR statistics).

One can show that

LR∗
NT −→

d
c−1(C − B)′W−1H ′(HW−1H ′)−1HW−1(C − B) ;

that is, we obtain the same formula as for LRNT , but the bias-corrected term C − B replaces

the limit of the score C. Under the Assumptions of Theorem 4.4, if H0 is satisfied, and for

homoscedastic errors eit, we have LR
∗
NT →d χ2

r. In fact, one can show LR∗
NT = WD∗

NT + op(1).

Lagrange Multiplier Test

Let ∇̃LNT be the gradient of the LS objective function (2) with respect to β, evaluated at the

restricted parameter estimates; that is,

∇̃LNT = ∇LNT (β̃, λ̃, f̃) =

(
∂LNT (β, λ̃, f̃)

∂β1

∣∣∣∣
β=β̃

, . . . ,
∂LNT (β, λ̃, f̃)

∂βK

∣∣∣∣
β=β̃

)′

= − 2

NT

(
Tr (X ′

1ẽ) , . . . ,Tr (X
′
K ẽ)

)′
,

where λ̃ = λ̂(β̃), f̃ = f̂(β̃), and ẽ = Y − β̃ ·X − λ̃ f̃ ′. Under the assumptions of Theorem 4.3,

and if the null hypothesis H0 : Hβ0 = h is satisfied, one finds that16

√
NT ∇̃LNT =

√
NT ∇LNT (β̃) + op(1). (9)

Due to this equation, one can base the Lagrange multiplier test on the gradient of LNT (β̃, λ̃, f̃),

or on the gradient of the profile quasi-likelihood function LNT (β̃), and obtain the same limiting

distribution.
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Using the bound on the remainder RNT (β) given in Theorem 4.1, one cannot infer any

properties of the score function, that is, of the gradient ∇LNT (β), because nothing is said about

∇RNT (β). The following theorem gives a bound on ∇RNT (β) that is sufficient to derive the

limiting distribution of the Lagrange multiplier.

Theorem 5.1. Under the assumptions of Theorem 4.1, and with WNT and CNT as defined

there, the score function satisfies

∇LNT (β) = 2WNT (β − β0) − 2√
NT

CNT +
1

NT
∇RNT (β) ,

where the remainder ∇RNT (β) satisfies for any sequence ηNT → 0:

sup
{β:‖β−β0‖≤ηNT }

‖∇RNT (β)‖√
NT

(
1 +

√
NT

∥∥β − β0
∥∥
) = op (1) .

From this theorem, and the fact that β̃ is
√
NT -consistent under H0, we obtain

√
NT ∇̃LNT =

√
NT ∇Lq,NT (β̃) + op(1)

= 2
√
NT WNT (β̃ − β0)− 2CNT + op(1) .

Remember β̃ is the restricted estimator defined in equation (6). Using this result and the known

limiting distribution of β̃, we now find

√
NT ∇̃LNT −→

d
−2H ′(HW−1H ′)−1HW−1C . (10)

Note also that
√
NTHW−1∇LNT (β̃) →d −2HW−1C. We define B̃, W̃ , and Ω̃, analogous to

B̂, Ŵ , and Ω̂, but with unrestricted parameter estimates replaced by restricted parameter

estimates. The LM test statistic is then given by

LMNT =
NT

4
(∇̃LNT )

′W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1∇̃LNT .

One can show the LM test is asymptotically equivalent to the Wald test: LMNT = WDNT +

op(1); that is, again, bias-correction is necessary. We define the bias-corrected LM test statistic

as

LM∗
NT =

1

4

(√
NT ∇̃LNT + 2B̃

)′
W̃−1H ′(HW̃−1Ω̃W̃−1H ′)−1HW̃−1

(√
NT ∇̃LNT + 2B̃

)
.

(11)

The following theorem summarizes the main results of the present subsection.
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Theorem 5.2 (Chi-Square Limit of Bias-Corrected Test Statistics). Let the assumptions

of Theorem 4.4 and the null hypothesis H0 : Hβ0 = h be satisfied. For the bias-corrected Wald

and LM test statistics introduced in equation (7) and (11), we then have

WD∗
NT −→

d
χ2
r , LM∗

NT −→
d

χ2
r .

If, in addition, we assume E(e2it|C) = c, that is, the idiosyncratic errors are homoscedastic, and

we use ĉ = LNT (β̂) as an estimator for c, the LR test statistic defined in equation (8) satisfies

LR∗
NT −→

d
χ2
r .

6 Extension to Endogenous Regressors

In this section, we briefly discuss how to estimate the regression coefficient β0 of Model (1)

when some of the regressors in Xit are endogenous with respect to the regression error eit. The

question is how instrumental variables can be used to estimate the regression coefficients of the

endogenous regressor in the presence of the interactive fixed effects λ0′
i f

0
t .

The existing literature has already investigated similar questions under various setups. Hard-

ing and Lamarche (2009; 2011) investigate the problem of estimating an endogenous panel (quan-

tile) regression with interactive fixed effects, and show how to use IVs in the CCE estimation

framework. Moon, Shum, and Weidner (2012) (hereafter MSW) estimate a random coefficient

multinomial demand model (as in Berry, Levinsohn, and Pakes (1995)) when the unobserved

product-market characteristics have interactive fixed effects. The IVs are required to identify

the parameters of the random coefficient distribution and to control for price endogeneity. They

suggested a multi-step “least squares-minimum distance” (LS-MD) estimator.17 The LS-MD

approach is also applicable to linear panel regression models with endogenous regressors and

interactive fixed effects, as demonstrated in Lee, Moon, and Weidner (2012) for the case of a

dynamic linear panel regression model with interactive fixed effects and measurement error.

We now discuss how to implement the LS-MD estimation in our setup. Let Xend
it be the

vectors of endogenous regressors, and let Xexo
it be the vector of exogenous regressors, with

respect to eit, such that Xit = (Xend′
it , Xexo′

it )′. The model then reads

Yit = β0′
endX

end
it + β0′

exoX
exo
it + λ0′

i f
0
t + eit,

where Xexo
it denotes the exogenous and Xend

it denotes the endogenous regressors (wrt to eit).

Suppose Zit is an additional L-vector of exogenous instrumental variables (IVs), but Zit may be
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correlated with λ0
i and f 0

t . The LS-MD estimator of β0 =
(
β0′
end, β

0′
exo

)′
can then be calculated

by the following three steps:

(1) For given βend, we run the least squares regression of Yit − β′
endX

end
it on the included

exogeneous regressors Xexo
it , the interactive fixed effects λ′

ift, and the IVs Zit :

(
β̃exo (βend) , γ̃ (βend) , λ̃ (βend) , f̃ (βend)

)

= argmin
{βexo,γ,λ,f}

N∑

i=1

T∑

t=1

(
Yit − β′

endX
end
it − β′

exoX
exo
it − γ′Zit − λ′

ift
)2

.

(2) We estimate βend by finding γ̃ (βend), obtained by step (1), that is closest to zero. To do

so, we choose a symmetric positive definite L× L weight matrix W γ
NT and compute

β̂end = argmin
βend

γ̃ (βend)
′ W γ

NT γ̃ (βend) .

(3) We estimate βexo (and λ, f) by running the least squares regression of Yit − β̂
′

endX
end
it on

the included exogeneous regressors Xexo
it and the interactive fixed effects λ′

ift:

(
β̂exo, λ̂, f̂

)
= argmin

{βexo,γ,λ,f}

N∑

i=1

T∑

t=1

(
Yit − β̂

′

endX
end
it − β′

exoX
exo
it − λ′

ift

)2
.

The idea behind this estimation procedure is that valid instruments are excluded from the model

for Yit, so that their first-step regression coefficients γ̃ (βend) should be close to zero if βend is

close to its true value β0
end. Thus, as long as Xexo

it and Zit jointly satisfy the assumptions of the

current paper, we obtain γ̃
(
β0
end

)
= op(1) for the first-step LS estimator, and we also obtain

the asymptotic distribution of γ̃
(
β0
end

)
from the results derived in section 4.

However, to justify the second-step minimization formally, one needs to study the properties

of γ̃ (βend) also for βend 6= β0
end. To do so, we refer to MSW. Our βend, βexo, and Yit − β′

endX
end
it

correspond to their α, β, and δjt (α), respectively. Assumptions 1 - 5 in MSW can be translated

accordingly, and the results in MSW show large N, T consistency and asymptotic normality of

the LS-MD estimator.

The final step of the LS-MD estimation procedure is essentially a repetition of the first step,

but without including Zit in the set of regressors, which results in some efficiency gains for β̂exo

compared to the first step.
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7 Monte Carlo Simulations

We consider an AR(1) model with R = 1 factors:

Yit = ρ0 Yi,t−1 + λ0
i f

0
t + eit .

We estimate the model as an interactive fixed effect model; that is, no distributional assumptions

on λ0
i and f 0

t are made in estimation. The parameter of interest is ρ0. The estimators we

consider are the OLS estimator (which completely ignores the presence of the factors), the least

squares estimator with interactive fixed effects (denoted FLS in this section to differentiate

from OLS) defined in equation (3),18 and its bias-corrected version (denoted BC-FLS), defined

in Theorem 4.5.

For the simulation, we draw the eit independently and identically distributed from a t-

distribution with five degrees of freedom, the λ0
i independently distributed from N (1, 1), and

we generate the factors from an AR(1) specification, namely, f 0
t = ρf f

0
t−1 + ut, where ut ∼

iidN (0, (1−ρ2f )σ
2
f ), and σf is the standard deviation of f 0

t . For all simulations, we generate 1,000

initial time periods for f 0
t and Yit that are not used for estimation. This approach guarantees

the simulated data used for estimation are distributed according to the stationary distribution

of the model.

This setup contains no correlation and heteroscedasticity in eit; that is, only the bias term

B1 of the FLS estimator is non-zero, but we ignore this information in the estimation; that

is, we correct for all three bias terms (B1, B2, and B3, as introduced in Assumption 6) in the

bias-corrected FLS estimator.

Table 1 shows the simulation results for the bias, standard error, and root mean square error

of the three different estimators for the case N = 100, ρf = 0.5, and σf = 0.5, and different

values of ρ0 and T . The OLS estimator, the FLS estimator (computed with correct R = 1), and

the corresponding bias-corrected FLS estimator with factors (BC-FLS) were computed for 10,000

simulation runs. The table lists the mean bias, the standard deviation (std), and the square

root of the mean square error (rmse) for the three estimators. As expected, the OLS estimator

is biased because of the factor structure and its bias does not vanish (it actually increases)

as T increases. The FLS estimator is also biased, but as theory predicts its bias vanishes as

T increases. The bias-corrected FLS estimator performs better than the non-corrected FLS

estimator, in particular, its bias vanishes faster. Because we only correct for the first-order bias

of the FLS estimator, we could not expect the bias-corrected FLS estimator to be unbiased.

However, as T gets larger, more and more of the FLS estimator bias is corrected for; for example,

for ρ0 = 0.3, we find that at T = 5, the bias correction only corrects for about half of the bias,
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whereas at T = 80, it already corrects for about 90% of it.

Table 2 is similar to Table 1, with the only difference being that we allow for misspecification

in the number of factors R, namely, the true number of factors is assumed to be R = 1 (i.e.,

same DGP as for Table 1), but we incorrectly use R = 2 factors when calculating the FLS and

BC-FLS estimator. By comparing Table 2 with Table 1, we find this type of misspecification

of the number of factors increases the bias and the standard deviation of both the FLS and

the BC-FLS estimator in finite samples. That increase, however, is comparatively small once

both N and T are large. According to the results in Moon and Weidner (2015), we expect the

limiting distribution of the correctly specified (R = 1) and incorrectly specified (R = 2) FLS

estimator to be identical when N and T grow at the same rate. Our simulations suggest the

same is true for the BC-FLS estimator. The remaining simulation all assume correctly specified

R = 1.

An import issue is the choice of bandwidth M for the bias correction. Table 3 gives the

fraction of the FLS estimator bias that is captured by the estimator for the bias in a model

with N = 100, T = 20, ρf = 0.5, σf = 0.5 and different values for ρ and M . The table shows

the optimal bandwidth (in the sense that most of the bias is corrected for) depends on ρ0: it

is M = 1 for ρ = 0, M = 2 for ρ = 0.3, M = 3 and ρ = 0.6, and M = 5 for ρ = 0.9.

Choosing too large or too small a bandwidth results in a smaller fraction of the bias to be

corrected. Table 4 also reports the properties of the BC-FLS estimator for different values of ρ0,

T , and M . It shows the effect of the bandwidth choice on the standard deviation of the BC-FLS

estimator is relatively small at T = 40, but is more pronounced at T = 20. The issue of optimal

bandwidth choice is therefore an important topic for future research. In the simulation results

presented here, we tried to choose reasonable values for M , but made no attempt to optimize

the bandwidth.

In our setup, we have ‖λ0f 0′‖ ≈
√
2NTσf and ‖e‖ ≈

√
N +

√
T .19 Assumptions 1 and

3 imply ‖λ0f 0′‖ ≫ ‖e‖ asymptotically. We can therefore only be sure our asymptotic results

for the FLS estimator distribution are a good approximation of the finite sample properties if

‖λ0f 0′‖ & ‖e‖, that is, if
√
2NTσf &

√
N +

√
T . To explore this further, we present in Table 5

simulation results for N = 100, T = 20, ρ0 = 0.6, and different values of ρf and σf . For σf = 0,

we have 0 = ‖λ0f 0′‖ ≪ ‖e‖, and this case is equivalent to R = 0 (no factor at all). In this case,

the OLS estimator estimates the true model and is almost unbiased, and correspondingly, the

FLS estimator and the bias-corrected FLS estimator perform worse than OLS in finite samples

(though we expect all three estimators are asymptotically equivalent), but the bias-corrected

FLS estimator has a lower bias and a lower variance than the non-corrected FLS estimator.
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The case σf = 0.2 corresponds to ‖λ0f 0′‖ ≈ ‖e‖, and one finds the bias and the variance of the

OLS estimator and of the FLS estimator are of comparable size. However, the bias-corrected

FLS estimator already has much smaller bias and a bit smaller variance in this case. Finally,

in the case σf = 0.5, we have ‖λ0f 0′‖ > ‖e‖, and we expect our asymptotic results to be a

good approximation of this situation. Indeed, one finds that for σf = 0.5, the OLS estimator is

heavily biased and very inefficient compared to the FLS estimator, whereas the bias-corrected

FLS estimator performs even better in terms of bias and variance.

In Table 6, we present simulation results for the size of the various tests discussed in the

last section when testing the null hypothesis H0 : ρ = ρ0. We choose a nominal size of 5%,

ρf = 0.5, σf = 0.5, and different values for ρ0, N , and T . In all cases, the size distortions of

the uncorrected Wald, LR, and LM test are rather large, and the size distortion of these tests

do not vanish as N and T increase: the size for N = 100 and T = 20 is about the same as

for N = 400 and T = 80, and the size for N = 400 and T = 20 is about the same as for

N = 1600 and T = 80. By contrast, the size distortions for the bias-corrected Wald, LR, and

LM test are much smaller, and tend toward zero (i.e., the size becomes closer to 5%) as N, T

increase, holding the ratio N/T constant. For fixed T , an increase in N results in a larger size

distortion, whereas for fixed N , an increase in T results in a smaller size distortion (both for

the non-corrected and for the bias-corrected tests).

In Table 7 and 8, we present the power and the size-corrected power when testing the

left-sided alternative H left
a : ρ = ρ0 − (NT )−1/2 and the right-sided alternative Hright

a : ρ =

ρ0+(NT )−1/2. The model specifications are the same as for the size results in Table 4. Because

both the FLS estimator and the bias-corrected FLS estimator for ρ have a negative bias, one

finds the power for the left-sided alternative to be much smaller than the power for the right-

sided alternative. For the uncorrected tests, this effect can be extreme and the size-corrected

power of these tests for the left-sided alternative is below 2% in all cases and does not improve

as N and T become large, holding N/T fixed. By contrast, the power for the bias-corrected

tests becomes more symmetric as N and T become large, and the size-corrected power for the

left-sided alternative is much larger than for the uncorrected tests, whereas the size-corrected

power for the right-sided alternative is about the same.

8 Conclusions

This paper studies the least squares estimator for dynamic linear panel regression models with

interactive fixed effects. We provide conditions under which the estimator is consistent, allowing
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for predetermined regressors and for a general combination of “low-rank” and “high-rank” re-

gressors. We then show how a quadratic approximation of the profile objective function LNT (β)

can be used to derive the first-order asymptotic theory of the LS estimator of β under the

alternative asymptotic N, T → ∞. We find the asymptotic distribution of the LS estimator

can be asymptotically biased (i) because of weak exogeneity of the regressors and (ii) because

of heteroscedasticity (and correlation) of the idiosyncratic errors eit. Consistent estimators for

the asymptotic covariance matrix and for the asymptotic bias of the LS estimator are provided,

and thus a bias-corrected LS estimator is given. We furthermore study the asymptotic distribu-

tions of the Wald, LR, and LM test statistics for testing a general linear hypothesis on β. The

uncorrected test statistics are not asymptotically chi-square because of the asymptotic bias of

the score and of the LS estimator, but bias-corrected test statistics that are asymptotically chi-

square distributed can be constructed. We also discussed a possible extension of the estimation

procedure to the case of endogeneous regressors. The findings of our Monte Carlo simulations

show our asymptotic results on the distribution of the (bias-corrected) LS estimator and of the

(bias-corrected) test statistics provide a good approximation of their finite sample properties.

Although the bias-corrected LS estimator has a non-zero bias in finite samples, this bias is much

smaller than that of the LS estimator. Analogously, the size distortions and power asymmetries

of the bias-corrected Wald, LR, and LM test are much smaller than for the non-bias-corrected

versions.

Appendix

A Proof of Consistency (Theorem 3.1)

The following theorem is useful for the consistency proof and beyond.

Lemma A.1. Let N , T , R, R1, and R2 be positive integers such that R ≤ N , R ≤ T , and

R = R1+R2. Let Z be an N ×T matrix, λ be an N ×R, f be a T ×R matrix, λ̃ be an N ×R1

matrix, and f̃ be a T × R2 matrix. Then the following six expressions (that are functions of Z

only) are equivalent:

min
f,λ

Tr [(Z − λf ′) (Z ′ − fλ′)] = min
f

Tr(ZMf Z
′) = min

λ
Tr(Z ′ Mλ Z)

= min
λ̃,f̃

Tr(Mλ̃ ZMf̃ Z
′) =

T∑

i=R+1

µi(Z
′Z) =

N∑

i=R+1

µi(ZZ
′).

30



Dynamic Panel with Interactive Effects

In the above minimization problems, we do not have to restrict the matrices λ, f , λ̃, and

f̃ to be of full rank. If, for example, λ is not of full rank, the generalized inverse (λ′λ)† is still

well defined, and the projector Mλ still satisfies Mλλ = 0 and rank(Mλ) = N − rank(λ). If

rank(Z) ≥ R, the optimal λ, f , λ̃, and f̃ always have full rank.

Lemma A.1 shows the equivalence of the three different versions of the profile objective func-

tion in equation (4). It also considers minimization of Tr(Mλ̃ ZMf̃ Z
′) over λ̃ and f̃ , which will

be used in the consistency proof below. The proof of the theorem is given in the supplementary

material. The following lemma is due to Bai (2009).

Lemma A.2. Under the assumptions of Theorem 3.1 we have

sup
f

∣∣∣∣
Tr(Xk Mf e

′)

NT

∣∣∣∣ = op(1) , sup
f

∣∣∣∣
Tr(λ0 f 0′ Mf e

′)

NT

∣∣∣∣ = op(1) , sup
f

∣∣∣∣
Tr(e Pf e

′)

NT

∣∣∣∣ = op(1) ,

where the parameters f are T ×R matrices with rank(f) = R.

Proof. By Assumption 2, we know the first equation in Lemma A.2 is satisfied when replacing

Mf by the identity matrix. So we are left to show maxf
∣∣ 1
NT

Tr(Ξ e′)
∣∣ = op(1), where Ξ is either

XkPf , λ
0f 0′Mf , or ePf . In all three cases, we have ‖Ξ‖/

√
NT = Op(1) by Assumption 1, 3,

and 4, respectively, and we have rank(Ξ) ≤ R. We therefore find20

sup
f

∣∣∣∣
1

NT
Tr(ΞPf e

′)

∣∣∣∣ ≤ R
‖e‖√
NT

‖Ξ‖√
NT

= op(1) .

Proof of Theorem 3.1. For the second version of the profile objective function in equa-

tion (4), we write LNT (β) = minf SNT (β, f), where

SNT (β, f) =
1

NT
Tr

[(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk + e

)
Mf

(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk + e

)′]
.

We have SNT (β
0, f 0) = 1

NT
Tr (eMf0 e′). Using Lemma (A.2), we find

SNT (β, f) = SNT (β
0, f 0) + S̃NT (β, f)

+
2

NT
Tr

[(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)
Mf e

′

]
+

1

NT
Tr (e (Pf0 − Pf ) e

′)

= SNT (β
0, f 0) + S̃NT (β, f) + op(‖β − β0‖) + op(1) , (12)

where we defined

S̃NT (β, f) =
1

NT
Tr

[(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)′]
.
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Up to this point, the consistency proof is almost equivalent to the one given in Bai (2009),

but the remainder of the proof differs from Bai, because we allow for more general low-rank

regressors, and because we allow for high-rank and low-rank regressors simultaneously. We split

S̃NT (β, f) = S̃
(1)
NT (β, f) + S̃

(2)
NT (β, f), where

S̃
(1)
NT (β, f) =

1

NT
Tr

[(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)′

M(λ0,w)

]

=
1

NT
Tr

[(
K∑

m=K1+1

(β0
m − βm)Xm

)
Mf

(
K∑

m=K1+1

(β0
m − βm)Xm

)′

M(λ0,w)

]
,

S̃
(2)
NT (β, f) =

1

NT
Tr

[(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)
Mf

(
λ0 f 0′ +

K∑

k=1

(β0
k − βk)Xk

)′

P(λ0,w)

]
,

and (λ0, w) is the N × (R +K1) matrix that is composed out of λ0 and the N ×K1 matrix w

defined in Assumption 4. For S̃
(1)
NT (β, f), we can apply Lemma A.1 with f̃ = f and λ̃ = (λ0, w)

(the R in the theorem is now 2R +K1) to find

S̃
(1)
NT (β, f) ≥

1

NT

N∑

i=2R+K1+1

µi

[(
K∑

m=K1+1

(β0
m − βm)Xm

)(
K∑

m=K1+1

(β0
m − βm)Xm

)′]

≥ b
∥∥βhigh − β0,high

∥∥2 , wpa1, (13)

where in the last step, we used the existence of a constant b > 0 guaranteed by Assump-

tion 4(ii)(a), and we introduced βhigh = (βK1+1, . . . , βK)
′, which refers to the K2 × 1 parameter

vector corresponding to the high-rank regressors. Similarly, we define βlow = (β1, . . . , βK1
)′ for

the K1 × 1 parameter vector of low-rank regressors.

Using P(λ0,w) = P(λ0,w)P(λ0,w) and the cyclicality of the trace, we see S̃
(2)
NT (β, f) can be written

as the trace of a positive definite matrix, and therefore S̃
(2)
NT (β, f) ≥ 0. Note also that we can

choose β = β0 and f = f 0 in the minimization problem over SNT (β, f); that is, the optimal

β = β̂ and f = f̂ must satisfy SNT (β̂, f̂) ≤ SNT (β
0, f 0). Using this result, equation (12),

S̃
(2)
NT (β, f) ≥ 0, and the bound in (13), we find

0 ≥ b
∥∥∥β̂

high − β0,high
∥∥∥
2

+ op

(∥∥∥β̂
high − β0,high

∥∥∥
)
+ op

(∥∥∥β̂
low − β0,low

∥∥∥
)
+ op(1) .

Because we assume β̂
low

is bounded, the last equation implies
∥∥∥β̂

high − β0,high
∥∥∥ = op(1); that is,

β̂
high

is consistent. What is left to show is that β̂
low

is consistent, too. In the supplementary

material, we show Assumption 4(ii)(b) guarantees that finite positive constants a0, a1, a2, a3,
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and a4 exist such that

S̃
(2)
NT (β, f) ≥

a0
∥∥βlow − β0,low

∥∥2
∥∥βlow − β0,low

∥∥2 + a1
∥∥βlow − β0,low

∥∥+ a2

− a3
∥∥βhigh − β0,high

∥∥− a4
∥∥βhigh − β0,high

∥∥ ∥∥βlow − β0,low
∥∥ , wpa1.

Using consistency of β̂
high

and again boundedness of βlow, the previous inequality implies a > 0

exists such that S̃
(2)
NT (β̂, f) ≥ a

∥∥∥β̂
low − β0,low

∥∥∥
2

+ op(1). With the same argument as for β̂
high

,

we therefore find
∥∥∥β̂

low − β0,low
∥∥∥ = op(1); that is, β̂

low
is consistent.

B Proof of Limiting Distribution (Theorem 4.3)

Theorem 4.1 is from Moon and Weidner (2015), and the proof can be found there. Note

Assumption 4(i) implies ‖Xk‖ = Op(
√
NT ), which we assume in Moon and Weidner (2015).

There, we also assume that ‖e‖ = Op(
√
max(N, T )) = Op(

√
N), whereas in the current paper

we assume ‖e‖ = op(‖N2/3‖). It is, however, straightforward to verify that the proof of Theorem

4.1 is also valid under this weaker assumption.

Moon and Weidner (2015) also includes the proof of Corollary 4.2. The proof requires

consistency of β̂, which in the current paper is derived under weaker assumptions than in Moon

and Weidner (2015), where no low-rank regressors are considered. Corollary 4.2 is therefore

stated under weaker assumptions here, but the proof is unchanged. In the supplementary

material, we show the assumptions of Corollary 4.2 already guarantee WNT does not become

singular as N, T → ∞.

For each k = 1, . . . , K, we define the N × T matrices Xk, X̃k, and Xk as follows:

Xk = E
(
Xk

∣∣ C
)
, X̃k = Xk − E

(
Xk

∣∣ C
)
, Xk = Mλ0 Xk Mf0 + X̃k.

Note the difference between Xk and Xk = Mλ0 Xk Mf0 , which was defined in Assumption 6. In

particular, conditional on C, the elements Xk,it of Xk are contemporaneously uncorrelated with

the error term eit, although the same is not true for Xk.

To present the proof of Theorem 4.3, it is convenient to first state two technical lemmas.
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Lemma B.1. Under the assumptions of Theorem 4.3, we have

(a)
1√
NT

Tr
(
Pf0 e′ Pλ0 X̃k

)
= op(1) ,

(b)
1√
NT

Tr
(
Pλ0 e X̃ ′

k

)
= op(1) ,

(c)
1√
NT

Tr
{
Pf0

[
e′ X̃k − E

(
e′ X̃k

∣∣ C
)]}

= op(1) ,

(d)
1√
NT

Tr
(
ePf0 e′ Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
)
= op(1) ,

(e)
1√
NT

Tr
(
e′ Pλ0 eMf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

)
= op(1) ,

(f)
1√
NT

Tr
(
e′Mλ0 Xk Mf0 e′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

)
= op(1) ,

(g)
1√
NT

Tr
{[

ee′ − E
(
ee′
∣∣ C
)]

Mλ0 Xk f
0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′

}
= op(1) ,

(h)
1√
NT

Tr
{[

e′e− E
(
e′e
∣∣ C
)]

Mf0 X ′
k λ

0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′
}
= op(1) ,

(i)
1

NT

N∑

i=1

T∑

t=1

[
e2it Xit X

′
it − E

(
e2it Xit X

′
it

∣∣ C
)]

= op(1),

(j)
1

NT

N∑

i=1

T∑

t=1

e2it (Xit X
′
it −Xit X ′

it) = op(1).

Lemma B.2. Under the assumptions of Theorem 4.3, we have

1√
NT

N∑

i=1

T∑

t=1

eitXit →
d

N (0,Ω) .

The proofs of Lemma B.1 and Lemma B.2 are provided in the supplementary material. We

briefly want to discuss why the asymptotic variance-covariance matrix in Lemma B.2 turns out

to be Ω. Note that because eitXit is mean zero and uncorrelated across both i and t, conditional

on C, we have

Var

(
1√
NT

N∑

i=1

T∑

t=1

eitXit

∣∣∣∣ C
)

=
1

NT

N∑

i=1

T∑

t=1

E
(
e2it Xit X

′
it

∣∣ C
)

=
1

NT

N∑

i=1

T∑

t=1

e2it Xit X
′
it + op(1)

=
1

NT

N∑

i=1

T∑

t=1

e2it Xit X ′
it + op(1)

= Ω + op(1), (14)
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where we also used part (i) of Lemma B.1 for the second equality and part (j) of Lemma B.1

for the third equality, and the definition of Ω in Assumptions 6 in the last step.

Using those lemmas, we can now prove the theorem on the limiting distribution of β̂ in the

main text.

Proof of Theorem 4.3. Assumption 5 implies ‖e‖ = Op(N
1/2) as N and T grow at the same

rate, as discussed in section S.2 of the supplementary material; that is, Assumption 3∗ is satisfied.

We can therefore apply Corollary 4.2 to calculate the limiting distribution of β̂. Note that

Mλ0XkMf0 = Xk−X̃k Pf0−Pλ0 X̃k+Pλ0 X̃k Pf0 . Using Lemmas B.1 and B.2 and Assumption 6,

we find

1√
NT

C(1)
(
λ0, f 0, Xk, e

)
=

1√
NT

Tr (e′ Mλ0 Xk Mf0)

=
1√
NT

Tr (e′Xk)−
1√
NT

Tr
[
Pf0 E

(
e′ X̃k

∣∣ C
)]

− 1√
NT

Tr
(
e′ Pλ0 X̃k

)
+

1√
NT

Tr
(
Pf0 e′ Pλ0 X̃k

)

− 1√
NT

Tr
{
Pf0

[
e′ X̃k − E

(
e′ X̃k

∣∣ C
)]}

=
1√
NT

Tr (e′Xk)−
1√
NT

Tr
[
Pf0 E

(
e′ Xk

∣∣ C
)]

+ op(1) .

→
d
N (−κB1, Ω) ,
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where we also used that E
(
e′ X̃k

∣∣ C
)
= E

(
e′ Xk

∣∣ C
)
. Using Lemma B.1, we also find

1√
NT

C(2)
(
λ0, f 0, Xk, e

)
=− 1√

NT

[
Tr
(
eMf0 e′ Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
)

+ Tr
(
e′Mλ0 eMf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

)

+ Tr
(
e′Mλ0 Xk Mf0 e′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

) ]

=
1√
NT

Tr
(
ePf0 e′ Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
)

− 1√
NT

Tr
{
[ee′ − E (ee′|C)] Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
}

− 1√
NT

Tr
[
E (ee′|C) Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
]

+
1√
NT

Tr
(
e′Pλ0 eMf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

)

− 1√
NT

Tr
{
[e′e− E (e′e|C)] Mf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

}

− 1√
NT

Tr
[
E (e′e|C) Mf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

]

+
1√
NT

Tr
(
e′Mλ0 Xk Mf0 e′ λ0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

)

=− 1√
NT

Tr
[
E (ee′|C) Mλ0 Xk f

0 (f 0′f 0)−1 (λ0′λ0)−1 λ0′
]

− 1√
NT

Tr
[
E (e′e|C) Mf0 X ′

k λ
0 (λ0′λ0)−1 (f 0′f 0)−1 f 0′

]
+ op(1) ,

=− κ−1B2 − κB3 + op(1) .

Combining these results, we obtain

√
NT

(
β̂ − β0

)
= W−1

NT

1√
NT

CNT

→
d

N
(
−W−1

(
κB1 + κ−1B2 + κB3

)
, W−1 ΩW−1

)
,

which is what we wanted to show.

Notes

1See, e.g., Chamberlain and Rothschild (1983), Ross (1976), and Fama and French (1993) for asset pricing;

Stock andWatson (2002) and Bai and Ng (2006) for forecasting; Bernanke, Boivin, and Eliasz (2005) for empirical

macro; and Holtz-Eakin, Newey, and Rosen (1988) for empirical labor economics.

36



Dynamic Panel with Interactive Effects

2The theory of the CCE estimator was further developed in, e.g., Harding and Lamarche (2009; 2011),

Kapetanios, Pesaran, and Yamagata (2011), Pesaran and Tosetti (2011), Chudik, Pesaran, and Tosetti (2011),

and Chudik and Pesaran (2015).
3The LS estimator is sometimes called “concentrated” least squares estimator in the literature, and in an

earlier version of the paper, we referred to it as the “Gaussian Quasi Maximum Likelihood Estimator”, because

LS estimation is equivalent to maximizing a conditional Gaussian likelihood function.
4Hahn and Kuersteiner (2002) introduced the alternative asymptotics to characterize the asymptotic bias due

to incidental parameter problems in fixed effect dynamic panel data models. See also Arellano and Hahn (2007)

and Moon, Perron, and Phillips (2014) and references therein.
5The “likelihood ratio” and the score used in the tests are based on the LS objective function, which can be

interpreted as the (misspecified) conditional Gaussian likelihood function.
6Another type of widely studied tests in the interactive fixed effect panel literature are panel unit root tests,

e.g., Bai and Ng (2004), Moon and Perron (2004), and Phillips and Sul (2003).
7In Moon and Weidner (2015) we do not consider low-rank regressors or testing problems, and we impose

more restrictive assumptions on the error term of the model implying that some leading bias terms of the LS

estimator are not present.
8Lee, Moon, and Weidner (2012) also apply the MSW estimation method to estimate a simple dynamic panel

regression with interactive fixed effect and classical measurement errors.
9To remove this restriction, one could estimate R consistently in the presence of the regressors. In the

literature so far, however, consistent estimation procedures for R are established mostly in pure factor models

(e.g., Bai and Ng (2002), Onatski (2010) and Harding (2007)). Alternatively, one could rely on Moon and

Weidner (2015) who consider a regression model with interactive fixed effects when only an upper bound on

the number of factors is known — but extending those results to the more general setup considered here is

mathematically challenging.
10If we have low-rank regressors with rank larger than one, then we writeXl = wlv

′
l, where wl is anN×rank(Xl)

matrix and vl is a T × rank(Xl) matrix, and we define w = (w1, . . . , wK1
) as a N ×∑L

l=1 rank(Xl) matrix, and

v = (v1, . . . , vK1
) ae a T ×∑L

l=1 rank(Xl) matrix. All our results are then unchanged, as long as rank(Xl) is

a finite constant for all l = 1, . . . ,K1, and we replace 2R + K1 by 2R + rank (w) in Assumption ID(v) and

Assumption 4(ii)(a).
11Note that rank(λ0) = R if R factors are present. Our identification results are consistent with the possibility

that rank(λ0) < R, i.e., that R only represents an upper bound on the number of factors, but later we assume

rank(λ0) = R to show consistency.
12We could write X

(N,T )
k , e(N,T ), λ(N,T ), and f (N,T ), because all these matrices, and even their dimensions,

are functions on N and T , but we suppress this dependence throughout the paper.
13Here and in the following, we write σ(A) for the sigma algebra generated by the (collection of) random

variable(s) A, and we write A ∨ B for the sigma algebra generated by the unions of all elements in the sigma

algebra A and B, so that in the conditional expectation in Assumption 5(ii), we condition jointly on C and

{(Xis, ei,s−1), s ≤ t}.
14Assumption 2 and 3∗ are implied by Assumption 5 and therefore need not be explicitly assumed here.
15Alternatively, one could use B̂(β̃) and Ŵ (β̃) as estimates for B and W , and would obtain the same limiting

distribution of LR∗
NT under the null hypothesis H0. These alternative estimators are not consistent if H0 is false,
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i.e. the power-properties of the test would be different. The question of which specification should be preferred

is left for future research.
16The proof of the statement is given in the supplementary material as part of the proof of Theorem 5.2.
17Chernazhukov and Hansen (2005) also used a similar method for estimating endogenous quantile regression

models.
18Here we can either use B = (−1, 1), or B = R. In the present model, we only have high-rank regressors; i.e.,

the parameter space need not be bounded to show consistency.
19To be precise, we have ‖λ0f0′‖/(

√
2NTσf ) →p 1, and ‖e‖/(

√
N +

√
T ) →p 1.

20Here we use |Tr (C)| ≤ ‖C‖ rank (C), which holds for all square matrices C; see the supplementary material.
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Tables with Simulation Results

Table 1: Simulation results for the AR(1) model described in the main text with N = 100,

ρf = 0.5, σf = 0.5, and different values of T (with corresponding bandwidth M) and true

AR(1) coefficient ρ0.

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS OLS FLS BC-FLS

T = 5 bias 0.1232 -0.1419 -0.0713 0.0200 -0.3686 -0.2330

(M = 2) std 0.1444 0.1480 0.0982 0.0723 0.1718 0.1301

rmse 0.1898 0.2050 0.1213 0.0750 0.4067 0.2669

T = 10 bias 0.1339 -0.0542 -0.0201 0.0218 -0.1019 -0.0623

(M = 3) std 0.1148 0.0596 0.0423 0.0513 0.1094 0.0747

rmse 0.1764 0.0806 0.0469 0.0557 0.1495 0.0973

T = 20 bias 0.1441 -0.0264 -0.0070 0.0254 -0.0173 -0.0085

(M = 4) std 0.0879 0.0284 0.0240 0.0353 0.0299 0.0219

rmse 0.1687 0.0388 0.0250 0.0434 0.0345 0.0235

T = 40 bias 0.1517 -0.0130 -0.0021 0.0294 -0.0057 -0.0019

(M = 5) std 0.0657 0.0170 0.0160 0.0250 0.0105 0.0089

rmse 0.1654 0.0214 0.0161 0.0386 0.0119 0.0091

T = 80 bias 0.1552 -0.0066 -0.0007 0.0326 -0.0026 -0.0006

(M = 6) std 0.0487 0.0112 0.0109 0.0179 0.0056 0.0053

rmse 0.1627 0.0130 0.0109 0.0372 0.0062 0.0053
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Table 2: Same DGP as Table 1, but misspecification in number of factors R is present. The

true number of factors is R = 1, but the FLS and BC-FLS are calculated with R = 2.

ρ0 = 0.3 ρ0 = 0.9

OLS FLS BC-FLS OLS FLS BC-FLS

T = 5 bias 0.1239 -0.5467 -0.3721 0.0218 -0.9716 -0.7490

(M = 2) std 0.1454 0.1528 0.1299 0.0731 0.1216 0.1341

rmse 0.1910 0.5676 0.3942 0.0763 0.9792 0.7609

T = 10 bias 0.1343 -0.1874 -0.1001 0.0210 -0.4923 -0.3271

(M = 3) std 0.1145 0.1159 0.0758 0.0518 0.1159 0.0970

rmse 0.1765 0.2203 0.1256 0.0559 0.5058 0.3412

T = 20 bias 0.1451 -0.0448 -0.0168 0.0255 -0.1822 -0.1085

(M = 4) std 0.0879 0.0469 0.0320 0.0354 0.0820 0.0528

rmse 0.1696 0.0648 0.0362 0.0436 0.1999 0.1207

T = 40 bias 0.1511 -0.0161 -0.0038 0.0300 -0.0227 -0.0128

(M = 5) std 0.0663 0.0209 0.0177 0.0250 0.0342 0.0225

rmse 0.1650 0.0264 0.0181 0.0390 0.0410 0.0258

T = 80 bias 0.1550 -0.0072 -0.0011 0.0325 -0.0030 -0.0010

(M = 6) std 0.0488 0.0123 0.0115 0.0182 0.0064 0.0057

rmse 0.1625 0.0143 0.0116 0.0372 0.0071 0.0058

Table 3: Simulation results for the AR(1) model with N = 100, T = 20, ρf = 0.5, and

σf = 0.5. For different values of the AR(1) coefficient ρ0 and of the bandwidth M , we give the

fraction of the LS estimator bias that is accounted for by the bias correction, i.e. the fraction√
NT E(β̂ − β)/E(Ŵ−1B̂), computed over 10,000 simulation runs. Here and in all following

tables it is assumed that R = 1 is correctly specified.

M = 1 M = 2 M = 3 M = 4 M = 5 M = 6 M = 7 M = 8

ρ0 = 0 0.889 0.832 0.791 0.754 0.720 0.689 0.660 0.633

ρ0 = 0.3 0.752 0.806 0.778 0.742 0.708 0.677 0.648 0.621

ρ0 = 0.6 0.589 0.718 0.728 0.704 0.674 0.644 0.616 0.590

ρ0 = 0.9 0.299 0.428 0.486 0.510 0.519 0.516 0.508 0.495
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Table 4: Same specification as Table 1. We only report the properties of the bias-corrected LS

estimator, but for multiple values of the bandwidth parameter M and two different values for

T . Results were obtained using 10,000 simulation runs.

BC-FLS for ρ0 = 0.3 BC-FLS for ρ0 = 0.9

M=2 M=5 M=8 M=2 M=5 M=8

T = 20 bias -0.0056 -0.0082 -0.0100 -0.0100 -0.0083 -0.0089

std 0.0239 0.0241 0.0247 0.0253 0.0212 0.0208

rmse 0.0245 0.0255 0.0266 0.0272 0.0228 0.0227

T = 40 bias -0.0017 -0.0023 -0.0030 -0.0024 -0.0019 -0.0018

std 0.0159 0.0159 0.0159 0.0095 0.0089 0.0085

rmse 0.0160 0.0161 0.0162 0.0098 0.0091 0.0087

Table 5: Simulation results for the AR(1) model with N = 100, T = 20, M = 4, and ρ0 = 0.6.

The three different estimators were computed for 10,000 simulation runs, and the mean bias,

standard deviation (std), and root mean square error (rmse) are reported.

ρf = 0.3 ρf = 0.7

OLS FLS BC-FLS OLS FLS BC-FLS

σf = 0 bias -0.0007 -0.0076 -0.0043 -0.0004 -0.0074 -0.0041

std 0.0182 0.0332 0.0243 0.0178 0.0331 0.0242

rmse 0.0182 0.0340 0.0247 0.0178 0.0339 0.0245

σf = 0.2 bias 0.0153 -0.0113 -0.0032 0.0474 -0.0291 -0.0071

std 0.0251 0.0303 0.0229 0.0382 0.0387 0.0272

rmse 0.0294 0.0323 0.0231 0.0609 0.0484 0.0281

σf = 0.5 bias 0.0567 -0.0137 -0.0041 0.1491 -0.0403 -0.0126

std 0.0633 0.0260 0.0207 0.0763 0.0298 0.0226

rmse 0.0850 0.0294 0.0211 0.1675 0.0501 0.0259
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Table 6: Simulation results for the AR(1) model with ρf = 0.5 and σf = 0.5. For the different

values of ρ0, N , T , and M , we test the hypothesis H0 : ρ = ρ0 using the uncorrected and bias-

corrected Wald, LR, and LM test, and nominal size 5%. The bias-corrected tests are indicated

by an asterisk superscript. The size of the different tests is reported, based on 10,000 simulation

runs.

size size

WD LR LM WD∗ LR∗ LM∗

ρ0 = 0

N = 100, T = 20, M = 4 0.219 0.214 0.192 0.066 0.062 0.056

N = 400, T = 80, M = 6 0.199 0.198 0.195 0.055 0.054 0.054

N = 400, T = 20, M = 4 0.560 0.556 0.532 0.089 0.088 0.076

N = 1600, T = 80, M = 6 0.593 0.591 0.586 0.056 0.055 0.055

ρ0 = 0.6

N = 100, T = 20, M = 4 0.326 0.311 0.272 0.098 0.091 0.077

N = 400, T = 80, M = 6 0.260 0.255 0.248 0.056 0.053 0.057

N = 400, T = 20, M = 4 0.591 0.582 0.552 0.174 0.167 0.136

N = 1600, T = 80, M = 6 0.666 0.663 0.656 0.060 0.058 0.059
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Table 7: As Table 6, but we report the power for testing the alternativesH left
a : ρ = ρ0−(NT )−1/2

and Hright
a : ρ = ρ0+(NT )−1/2. The bias-corrected tests are indicated by an asterisk superscript.

power power

WD LR LM WD∗ LR∗ LM∗

ρ0 = 0

N = 100, T = 20, M = 4 H left
a 0.094 0.089 0.076 0.128 0.123 0.121

Hright
a 0.526 0.515 0.487 0.235 0.227 0.206

N = 400, T = 80, M = 6 H left
a 0.066 0.064 0.063 0.154 0.151 0.153

Hright
a 0.549 0.545 0.540 0.194 0.191 0.190

N = 400, T = 20, M = 4 H left
a 0.306 0.305 0.284 0.100 0.097 0.096

Hright
a 0.791 0.787 0.769 0.309 0.305 0.279

N = 1600, T = 80, M = 6 H left
a 0.254 0.253 0.248 0.128 0.127 0.129

Hright
a 0.871 0.869 0.866 0.225 0.224 0.224

ρ0 = 0.6

N = 100, T = 20, M = 4 H left
a 0.192 0.180 0.147 0.184 0.171 0.171

Hright
a 0.619 0.605 0.563 0.335 0.318 0.294

N = 400, T = 80, M = 6 H left
a 0.081 0.079 0.076 0.184 0.195 0.200

Hright
a 0.680 0.675 0.668 0.335 0.262 0.267

N = 400, T = 20, M = 4 H left
a 0.421 0.412 0.378 0.184 0.160 0.150

Hright
a 0.792 0.787 0.765 0.335 0.426 0.399

N = 1600, T = 80, M = 6 H left
a 0.318 0.314 0.307 0.200 0.169 0.172

Hright
a 0.912 0.911 0.908 0.268 0.316 0.320
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Table 8: As Table 7, but we report the size-corrected power.

size-corrected power size-corrected power

WD LR LM WD∗ LR∗ LM∗

ρ0 = 0

N = 100, T = 20, M = 4 H left
a 0.010 0.011 0.010 0.105 0.104 0.112

Hright
a 0.211 0.208 0.206 0.199 0.197 0.193

N = 400, T = 80, M = 6 H left
a 0.008 0.008 0.008 0.143 0.143 0.145

Hright
a 0.236 0.237 0.235 0.181 0.182 0.181

N = 400, T = 20, M = 4 H left
a 0.008 0.008 0.009 0.055 0.052 0.062

Hright
a 0.187 0.185 0.181 0.210 0.208 0.208

N = 1600, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.119 0.119 0.120

Hright
a 0.226 0.227 0.225 0.213 0.213 0.212

ρ0 = 0.6

N = 100, T = 20, M = 4 H left
a 0.014 0.014 0.016 0.114 0.115 0.127

Hright
a 0.196 0.193 0.196 0.233 0.234 0.231

N = 400, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.114 0.187 0.184

Hright
a 0.288 0.288 0.288 0.233 0.252 0.247

N = 400, T = 20, M = 4 H left
a 0.013 0.016 0.015 0.114 0.039 0.051

Hright
a 0.128 0.127 0.126 0.233 0.201 0.209

N = 1600, T = 80, M = 6 H left
a 0.005 0.005 0.005 0.185 0.153 0.154

Hright
a 0.236 0.236 0.238 0.248 0.291 0.291
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