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An essential part of multivariate analysis in spectroscopic context is preprocessing. (e aim of preprocessing is to remove
scattering phenomena or disturbances in the spectra due to measurement geometry in order to improve subsequent predictive
models. Especially in vibrational spectroscopy, the Standard Normal Variate (SNV) transformation has become very popular and
is widely used in many practical applications, but standardization is not always ideal when performed across the full spectrum.
Herein, three different new standardization techniques are presented that apply SNV to defined regions rather than to the full
spectrum: Dynamic Localized SNV (DLSNV), Peak SNV (PSNV) and Partial Peak SNV (PPSNV). DLSNV is an extension of the
Localized SNV (LSNV), which allows a dynamic starting point of the localized windows on which the SNV is executed in-
dividually. Peak and Partial Peak SNV are based on picking regions from the spectra with a high correlation to the target value and
perform SNV on these essential regions to ensure optimal scatter correction. All proposed methods are able to significantly
improve the model performance in cross validation and robustness tests compared to SNV. (e prediction errors could be
reduced by up to 16% and 29% compared with LSNV for two regression models.

1. Introduction

Chemometric approaches are becoming increasingly pop-
ular as they enable more comprehensive extraction of rel-
evant information out of complex data provided by modern
instrumental analytics. At the same time, advances in data
analysis make it possible to reduce the size of the instrument
hardware by compensating for the missing measurement
quality of miniaturized instruments. In combination with
multivariate calibration, the development of models based
on low-cost analytics, such as vibrational spectroscopy, al-
lows the development of models that predict parameters
usually determined with cost-intensive measuring in-
struments or complex methods. Monitoring the alcoholic
fermentation [1] and determining the viscosity of engine oil
[2, 3] or proteins in milk [4] by spectroscopic means become
thus feasible. It has also been possible to determine specific

viscosity modifiers and pour point depressant additive
compounds in engine oils [5] by FTIR, which is due to the
fact that the concentration of a component follows,
according to the Lambert–Beer Law, a linear dependency on
the light absorbance of the medium [6, 7].

Preprocessing methods play a decisive role for the per-
formance of these models, as spectra can be influenced by
various disturbing factors that interfere with the significance of
the measurement [8–11]. (e main influence comes from the
measuring geometry, which includes the sample thickness, the
distance from the detector to sample, the contact pressure, and
the angle from the light source to sample [12, 13]. (e
elimination of scattering effects by particles of different size
and distribution also plays a major role in preprocessing.

Different spectroscopic measurement techniques suffer
from different major disturbing factors. In near-infrared
spectroscopy, it is usually a constant or linear baseline
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offset due to scattering light, Raman spectra often show
polynomial fluorescence background, and for mid-infrared
spectra, the sample thickness and thus the spectroscopic
response plays a crucial role [14, 15]. (e information about
the sample is present in the shape of the spectrum and
independent of the offset (additive effect) and the scaling of
the absolute signal intensity (multiplicative effect). (e task
of preprocessing is to remove these interfering factors from
the informative part of the spectrum, and there are different
approaches for this.

A method for eliminating constant offset terms is to
calculate the first derivative [9]. (is procedure can be ex-
tended to higher-order derivatives also eliminating offset
terms with linear or quadratic baseline curves. (e disad-
vantage of calculating the deviation of a spectrum is that
noise effects are amplified.

Multiplicative signal correction (MSC) is another tool
which can deal with the two major effects. A reference
spectrum, in most cases represented by the mean spectrum
of the calibration data set, is defined, and the spectra are
corrected for the baseline and the multiplicative amplifi-
cation effects [16, 17]. (e approach is associated with the
Kubelka–Munk theory, which takes optical phenomena
caused by light scattering into account [18, 19]. For each
spectrum, the two correction parameters are estimated via
a least squares regression calculation.

Standard normal variate (SNV) removes a constant offset
term by subtracting the mean value of the full spectrum and
brings all spectra to the same scale by subsequent division by
the standard deviation of the full spectrum [20]. Due to its
simplicity, SNV is a popular preprocessing method [21]. SNV
and MSC usually yield similar results and are often regarded
as exchangeable [22]. Since no extra regression step is needed
for the SNV transformation to estimate the correction pa-
rameters, in the following, the focus lies on SNV as themodels
should be kept as simple as possible.

Some efforts have been made to optimize standardiza-
tion techniques. A piecewise MSC (PMSC) method has been
proposed by Isaksson and Kowalski [23], which significantly
improved the predictive power of several regression models
based on near-infrared transmittance spectra. A Localized
SNV (LSNV) approach has been introduced by Bi et al.
performing the SNV not on the full spectrum but on sub-
sequent sequences [24]. (is strategy also yielded very
promising results in several regression cases based on
benchmark NIR data sets. In the following, a dynamic
version of the LSNV algorithm, called DLSNV, is presented.
By allowing for a dynamic starting point of the first and
subsequent SNV windows, it is more flexible to align the
SNV to important vibrational bands in the spectra. PSNV
and PPSNV are based on the idea that the standardization
can be optimized when performed on distinct wavenumber
windows across highly specific regions of the spectrum.

2. Experimental

As a sample set, data originated from an investigation about
aging and interaction phenomena in Automatic Trans-
mission Fluids (ATF) were used. Many ATF samples have

been stored for different periods at several temperatures to
produce artificially aged samples.

(e aim of the presented study was to transfer in-
formation coming from a highly specific, costly, and com-
plex measurement method (High-Performance Liquid
Chromatography coupled with Quadrupole Time-of-
Flight-Mass Spectrometry (HPLC-QToF-MS)) to data
measured with a low-cost, flexible tabletop instrument
(Fourier-Transform Infrared (FTIR) spectrometer).(is was
achieved by analyzing each sample coming from the storage
experiment and determining the additive response signals in
these samples by HPLC-QToF-MS. By using these additive
responses as reference values, a calibration model was
created in order to be able to predict the concentration of the
additive compounds in the samples by evaluating the FTIR
spectra. (e new standardization techniques proposed here
are being tested for the regression models.

2.1. Additive Compounds. Two additive compounds from
two different ATF oils were analyzed:

Within ATF A: an unsaturated ethoxylated amine
known as friction modifier

Within ATF B: a bis-tert-butyl-hydroxytoluene (BHT)
derivate known as phenolic antioxidant

2.2. Samples and Experiments. For the investigation of
degradation phenomena in ATFs, a comprehensive storage
experiment had been set up. (e effects of different materials
on ATFs and the impact of temperature on oil aging should be
analyzed. (erefore, the ATFs were stored under various
conditions in an oven. (ree parameters had been varied: the
storage temperature, the storage time, and added materials.
(e storage times had been adjusted to the temperatures so
that a comparable load, according to Arrhenius Law, could be
expected. (e parameters are listed in Table 1.

For all time/temperature combinations, three interaction
experiments have been conducted:

(i) storage with pure oil

(ii) storage with oil plus copper alloy chips

(iii) storage with oil plus chips from copper alloy, iron,
and PA66

(e samples were prepared by storing 100ml fresh oil in
a glass jar with a screw cap. (e lid had been manipulated
with a central hole that allowed air exchange.

2.3. Sample Measurements

2.3.1. FTIR. (e FTIR spectra were collected in transmis-
sion with a Bruker Alpha instrument in combination with
the QuickSnapTM transmission sample compartment in
the wavenumber region ranging from 4000 to 600 cm−1 with
a spectral resolution of 4 cm−1.

(e samples were measured without any special sample
preparation with two different setups: (1) a droplet of ATF
between two potassium bromide (KBr) discs separated by
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a teflon spacer with the thickness of about 50 μm, and (2)
fixed KBr cuvette of 100 μm thickness filled with ATF.

After each sample measurement, the KBr discs and the
cuvette were rinsed several times with petroleum ether in
order to prevent cross contamination. (e cuvette was dried
with N2 gas after rinsing, and the KBr discs were dried un-
der ambient air. For the measurement type (1), 4 spectra per
sample were recorded, and for type (2), one spectrum per
sample was recorded.

Due to the sample layer thickness, the hydrocarbon bands
are saturated, and therefore, the spectra had to be cut in the
wavenumber regions between 3000 and 2815 cm−1 (C-H
stretching mode) and between 1491 and 1424 cm−1 (C-H
bending and rocking mode). Additionally, the CO2 bands
were eliminated by cutting out the region from 2387 to
2285 cm−1 as well.(e spectra of ATFA are shown in Figure 1
in transmission without any preprocessing as measured, in
Figure 1(b) after truncation and SNV transformation, and in
Figure 1(c), SNV transformed after calculating the absorbance
spectra by using A � −log(T). In Figure 2, the same diagrams
are shown for ATF B. In both cases, two series of curves can be
discriminated from the raw spectra by the eye. (e blue series
comes from measurement type (1), and the red set comes
from the cuvette measurements (2). To combine the two data
sets from the measurement setups (1) and (2) are challenging
tasks for a predictive model as the main variance is due to the
thickness variation.(e data set demonstrates the importance
of suitable and sophisticated preprocessing methods in order
to eliminate the difference in the spectra induced by the
varying sample thickness. (e standardization techniques
presented here are able to meet this need.

2.3.2. Liquid Chromatography Coupled with Mass Spectrometry.
(e measurements for the determination of the additive
compound signals were performed with an Agilent liquid
chromatograph 1260 coupled with a high-resolution QToF
6540 mass spectrometer with methanol/water/ammonium
acetate and isopropanol as an eluent. Ionization was carried
out bymeans of electrospray (ESI).(e final compound peak
area data set was created using the Agilent MassHunter
Qualitative Analysis B. 06.00 analysis software.

(e response signals of the additive compounds are
standardized by subtracting mean and dividing by standard
deviation in order to bring all signal values on the same scale.
(e standardized signals are depicted in Figure 3.

3. Methods

3.1. Implementation. (e proposed novel standardization
methods and respective optimization processes were imple-
mented via Python scripts.

3.2. Regression Algorithm—Ridge. For the prediction, the
ridge regression estimator implemented in the Python scikit-
learn framework for machine learning applications was used
[25]. It is a linear model which solves a regression task via the
least squares loss function J(w) with L2 regularization [26].
Regularization is an approach to minimize the issue of
overfitting, which is particularly important for high-
dimensional data such as FTIR spectra, by controlling the
quadratic sum of the model coefficient w. (is is done by
adding the penalizing term L2 weighted by the hyper pa-
rameter λ.

λ‖w‖2 � λ∑
m

j�1

w
2
j . (1)

(us, the loss function is defined as

J(w) �∑
n

i�1

yi −yi,pred( )2 + λ‖w‖2, (2)

where yi stands for the reference value of the ith sample and
yi,pred for the prediction of this sample. Since the perfor-
mance of the preprocessing methods has to be assessed
independently from the actually used predictive regression
model, the same regression model with identical hyper-
parameter λ was applied to the various preprocessed data
sets. For the regression of the friction modifier compound of
ATF A, λ � 5, and for the antioxidant of ATF B, λ � 3 was
used. (ese parameters turned out to be the best choices
regarding cross validation and robustness for the SNV
transformed data set in a previously conducted internal
study.

3.3. Model Performance Evaluation. To assess the perfor-
mance of our models, two different approaches were chosen,
namely, the predictive power under cross validation and
noise addition.

3.3.1. Cross Validation. For cross validation, the mean from
the different measurements of one sample was calculated.
(e sample set was randomly divided 50 times into a cali-
bration and validation set by taking 70% of the data as
training samples and 30% as test samples in each validation
iteration with different combinations. Each separation run
was provided with a unique random seed to ensure that the
data set was split into the same training and test sets for each
model, enabling better comparability of results between the
different models.

3.3.2. Robustness against Noise. In order to assess the model
performance under noisy input spectra, the model was
calibrated by the full original data set. Random Gaussian-
distributed white noise was added to each data point. (ese
perturbed samples were predicted by the model and the
prediction error was monitored. (is was done for differ-
ent noise levels. (e random numbers added to each data
point were generated by a standard normal distributed
(mean: μ � 0 and standard deviation: σ � 1) random

TABLE 1

Temperature (°C) Storage time (h)

120 500 1000 2000 3000
140 105 210 415 625
160 25 50 105 165

Journal of Spectroscopy 3



number generator. �e noise levels were defined by the
factors (0.05, 0.10, 0.15, 0.20, 0.25, 0.30, 0.35, 0.40, and 0.45),
which were multiplied with the output of the random
number generator. For each noise level, 50 simulated noisy
data sets were generated and predicted by the pretrained
model in order to be able to make well-founded statements
about the model performance under noise perturbation.

�e noise robustness workflow is a very helpful tool to
investigate whether a good calibration error is a real advantage
or if the model ran into overfitting. Using the same regression
algorithm twice with different regularization parameters λ, the
lower regularized model will generate a lower initial calibration

error than the more stringent regularized model. But if the
models are tested for robustness, the latter tends to have a lower
error slope when the noise level increases.

3.4. Evaluation Metrics. �e built-in functions R2 score and
mean squared error (MSE) of the scikit-learn framework
were used as performance metrics.

3.4.1. Mean Squared Error (MSE). �e mean squared error
(MSE) of a prediction is calculated by the squared differences
between the predicted value yi,pred and the reference value yi
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Figure 1: FTIR spectra of ATF. (a) Raw full transmission spectra without any preprocessing. �e two data sets with different measurement
setups can be discriminated by eye. �e blue spectra originate from measurement type (1) with two KBr discs separated by a Teflon spacer,
and the red set of curves originates from the cuvette measurement (2). (b) SNV-transformed transmission spectra after truncation of the
saturated C-H vibrational regions and CO2 areas and (c) SNV-transformed absorbance spectra after truncation.
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Figure 2: FTIR spectra of ATF B. (a) Raw full transmission spectra without any preprocessing. (b) SNV-transformed transmission spectra
after truncation of the saturated C-H vibrational regions and CO2 areas and (c) SNV-transformed absorbance spectra after truncation.
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of the ith sample. For a given data set with n samples, theMSE
is the average value over all samples. It follows the following
formula [27]:

MSE y, ypred( ) � 1

n
∑
n

i�1

yi −yi,pred( )2. (3)

�e best possible MSE value is 0, and small values are
desirable as the deviation from the correct prediction is low.
From MSE, the root-mean-squared error (RMSE) was cal-
culated by taking the square root. �e RMSE value has the
same dimension as the original reference target values.

3.4.2. R2 Coefficient of Determination. R2 describes the
portion of the variance in the target values (dependent
variables) that can be predicted from the spectra (in-
dependent variables) by the model [28]. �e best possible
score for R2 is 1.0. R2 gets 0.0 for a constant model which
predicts a constant value disregarding of the input features.
For linear regression modeling with intercept, R2 is equal to
the square of Pearson correlation coefficient between pre-
dicted and reference target values [29]. For a data set
comprising n samples, the R2 score is given as

R2 y, ypred( ) � 1−
∑ni�1 yi −yi,pred( )2

∑ni�1 yi −ypred( )2
, (4)

where yi,pred is the model prediction of the ith sample which
has a reference value yi, and ypred is the mean value of all
predictions.

ypred �
1

n
∑
n

i�1

yi,pred. (5)

3.5. Standard Normal Variate. Each spectrum
x � (x1, x2, . . . , xk) with k measured data points is
transformed to the standardized form z � (z1, z2, . . . , zk)
by bringing the spectra to zero mean and unit variance.
For this purpose, the mean spectrum x is subtracted from
each data point xi and divided by the standard deviation.

zi �
xi − x������������

∑kj xi −x( )2/k
√ , (6)

with

x �
1

k
∑
k

j

xj. (7)

3.5.1. Dynamic Localized SNV (DLSNV). �e DLSNV
workflow is based on the SNV-transformed spectra data set
(Figure 4(a)). To calculate the DLSNV data, the spectra are
divided into multiple regions. On each of these regions,
standardization is performed. To adjust the windows to
important areas in the spectrum, a starting point can be
defined. In Figure 4(b), the DLSNV spectra are shown, with
a starting point of 100 and a window size of 300 pixels.

DLSNV algorithm

(i) Perform SNV on a window of the spectrum ranging
from first data point to the sth one

(ii) Subdivide spectra from sth data point into windows
of all the same size ws

To optimize the two parameters, window size ws and
starting point s, a three-step approach is performed. In each
step, the predictive power of the model is assessed via the
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Figure 3: Standardized additive responses used as target value for the FTIR regressionmodel for (a) the friction modifier compound and (b)
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coefficient of determination R2. �e prediction performance
of the chosen window size in combination with the re-
gression model is benchmarked by fitting the same model to
the single SNV data, indicated by a red line in Figure 4(c).
�e optimization steps can be summarized as follows:

(1) Perform LSNV with window sizes from 50 to 500
pixels, and determine R2 for all window sizes. Find
the optimal window size wsopt1.

(2) Perform LSNV with optimal window size of step 1
wsopt 1, vary the starting point from 0 to 2·wsopt 1, and
select the optimal starting point sopt.

(3) Perform LSNV with optimal starting point sopt with
window sizes from 50 to 2·wsopt 1 in order to find the
best combination of window size wsopt 2 and starting
point sopt.

In Figure 4(d), the final DLSNV spectra after optimi-
zation are shown. Note that jumps can occur between the
individual standardization windows since the mean value of
this current window is subtracted for each window. How-
ever, this does not affect the regression model.

In Figure 5(a), the ATF A samples are shown with
SNVperformed on the entire spectral region, and in Figure 5(b),
the same spectra are depicted after DLSNV optimization.
Figure 5(c) shows a zoom-in view of the highlighted region of
Figure 5(a), and in Figure 5(d), the same region is depicted after
DLSNV optimization. �e baseline is removed for the exact
spectra sequence, and thus, peaks are aligned in a way that the
different aging levels of the samples can already be recognized
by eye.�e shown snipped spectrum is the phenolic antioxidant
region.�us, the decrease of this band can be associatedwith the
aging level. Magenta indicates (relatively) fresh samples,
whereas red indicates a strong degradation level.

3.5.2. Peak SNV. �e idea behind the Peak SNV method is
to standardize the important areas of the spectrum in-
dependently of each other. �e optimization workflow for
PSNV is shown in Figure 6, starting from the single SNV
transformed data set. Data points with a high correlation
with the target values (points of interest, POI) are selected

(Figure 6(a)), and the SNV transformation is performed on
windows around the centroids. Once the POIs are identified,
the PSNV transformation is conducted as follows:

PSNV algorithm

(i) Subdivide spectra into sequences ranging from half
the distance from the previous POI to half the
distance to the next one (Figure 6(b)). SNV is
performed across these windows.

To find the POI, an initial regression model is fitted to
the data. In order to identify important regions of the
spectra, the model coefficients are assessed. �e normalized
absolute values of the coefficient vector are fed into a peak-
picking algorithm. Since it may occur that POIs are in close
proximity, an agglomeration of the POIs is conducted in
order to prevent from very narrow standardization windows.
Peak centroids are calculated via the mean value of the
combined POIs. �e task for the optimization process is to
find the best window for POI agglomeration, aggopt, which
is done by analyzing the calibration R2 for each agglom-
eration window and picking the window size with maximal
correlation between the predicted and reference target
(Figure 6(c)). �e steps are summarized as follows:

(1) Fit the data set to the target values (only calibration)

(2) Pick peaks from the normalized model coefficient
vector (|w|/max(|w|)), threshold for peaks� 0.1

(3) Combine peaks which are within a certain window
agg, and calculate the centroid of the agglomerated
POIs

(4) Perform PSNV across the centroid of the POIs

(5) Evaluate performance via R2 for agg between 10 and
50 data points, and choose aggopt according to
maximal R2

After optimization, each window has an individual
window size and range over the peak centroid of im-
portant signals in the spectrum. On these windows, SNV
transformation provides an optimal baseline and scatter
effect removal. �e optimized spectrum is shown in
Figure 6(d).
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SNV with starting point 100 and window 300 for visualization, (c) three-stage optimization process for window, starting point and final
window optimization, and (d) optimized DLSNV.

6 Journal of Spectroscopy



3.5.3. Partial Peak SNV. �e idea behind Partial Peak SNV is
similar to PSNV: picking the regions of the spectrum which
show a high correlation with the target values, agglomerating
POIs in close proximity, and standardizing these important
spectral features (Figure 7(a)). But unlike for PSNV, not only
the whole spectrum is finally taken into account but also
a small window around the POI. It may occur that the same
data point appears several times in different standardizations
(see overlapping regions in Figures 7(b) and 7(d)). Due to this
workflow, the PPSNV spectrum may have more data points
(due to overlapping) or less (because not the entire spectrum is
taken into account) than those of the original spectrum. A
PPSNV spectrum is calculated as follows:

PPSNV algorithm

(i) Perform SNV across the POIs with a left and right
margin of pw

�e optimization focuses on the adjustment of the
window size pw around the POIs in which the SNV is
applied for maximal predictive power in calibration (Fig-
ure 7(c)). �e optimization process is divided into the
following steps:

(1) Fit the data set to the target values (only calibration)

(2) Pick peaks from the normalized model coefficient
vector (|w|/max(|w|)), threshold for peaks� 0.1
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Figure 5: Demonstration of the improvement of peak alignment for DLSNV. (a) SNV-transformed transmission spectra with marked zoom
level of (c). (b) Optimized DLSV spectra with marked zoom area of (d). Magenta indicates (relatively) fresh samples, whereas red indicates
a strong degradation level.
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Figure 8: Cross validation results for (a) SNV, (b) Dynamic Localized SNV, (c) Peak SNV, and (d) Partial Peak SNV preprocessed spectra in
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(3) Perform PPSNV across the peaks with the window
size pw

(4) Evaluate the performance via R2 for pw between 1
and 200 data points, and choose pwopt according to
maximal R2

4. Results and Discussion

4.1. Cross Validation. In Figure 8(a), the cross validation
recovery function for predictions of the SNV preprocessed
spectra of the regression on the friction modifier compound
is shown. A 50-fold cross validation strategy with a cali-
bration/validation splitting of 70%/30% was used. Red dots
represent the prediction of calibration, and blue dots rep-
resent validation samples. It is obvious that the linear model
struggles to predict the high and low compound intensity
regions correctly. �e nonlinearity is visualized by an arrow
and a dashed line to guide the eye.

In Figure 8 also, the cross validation recovery function
for predictions after Dynamic Localized SNV (Figure 8(b)),
Peak SNV (Figure 8(c)), and Partial Peak SNV (Figure 8(d))
optimization are shown. �e saturation effect in the low
intensity area of the compound response is almost com-
pletely removed in the latter three cases. It is also notable
that the scattering around the green bisecting line is sig-
nificantly reduced. �us, the confidence interval for the
predictions is improved.

�e RMSEP values during the cross validation of the
regression of the friction modifier component are sum-
marized in Figure 9 in a box-and-whisker plot representa-
tion. �e red line indicates the median, within the boxes, the
interquartile range (IQR) (contains 50% of the data) is
depicted, and the margins of the whiskers represent
Q1 − 1.5 · IQR and Q3 + 1.5 · IQR for the lower and upper
bound, respectively (Q1 means the smallest 25% of the data
set are smaller than this value and Q3 means the smallest
75% are smaller than this value). Subplot Figure 9(a) refers to
the transmission spectra and Figure 9(b) refers to the ab-
sorbance spectra. �e labels are associated with (1) without
standardization, (2) single SNV transformation on the full
spectral range, (3) Localized SNV, (4) Dynamic Localized
SNV, (5) Peak SNV, and (6) Partial Peak SNV.

It is noticeable that the RMSEP is very poor in case of the
crude transmission spectra and that SNV has a very useful
impact on them, whereas the improvement after SNV is low
for absorbance spectra.

For all sophisticated optimized standardization ap-
proaches DLSNV, PSNV, and PPSNV, the median and the
scattering around the median of RMSEP decreases drasti-
cally with respect to the SNV-transformed full spectra but
also LSNV seems to be a reasonable choice. DLSNV on
absorbance spectra is characterized by the lowest median
and the smallest scattering confirmed by Table 2, summa-
rizing the mean values and standard deviation of RMSEP.
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Figure 9: Box-and-whisker plot representation of the root-mean-squared error of prediction of the cross validation strategy (50 folds,
random train test split of 70/30% of the data) for the friction modifier compound of ATF A. In (a), the RMSEP values for the transmission
spectra are shown, and in (b), the RMSEP values for the absorbance spectra are shown. Boxplot (1) is without standardization, (2) is with
a single SNV transformation on the full spectrum, (3) is with optimized LSNV, (4) is with optimized Dynamic DLSNV, (5) is with optimized
PSNV, and (6) is with optimized PPSNV.
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�e summarized RMSEPs of the regression to the antiox-
idant additive of ATF B are shown in Figure 10 in a box-and-
whisker plot representation where Figure 10(a) refers to the
transmission spectra and Figure 10(b) to the absorbance spectra.
In this case, DLSNV, PSNV, and PPSNV reduce both the
median and the scattering around themedian enormously when
compared with SNV on full spectra. �e best performance is
achieved by PPSNV conducted on the transmission spectra
confirmed by Table 2. On transmission spectra, DLSNV and
PPSNV perform better than LSNV, but PSNV only has a pos-
itive effect when compared to SNV. In relation to LSNV, using
PSNV, the predictive power is reduced. �e fact that PPSNV is
the best choice for this regression use case suggests that it is
beneficial to only use spectral regions with high correlation with
the target value and drop regions without or low correlation.

4.1.1. Noise Robustness. In Figure 11, the performance of the
regression model for the prediction of noisy spectra is
shown for the friction modifier. In subplot Figure 11(a),
the curves for all preprocessings, are depicted and in
Figure 11(b), a zoomed view is shown. Without any pre-
processing, the initial calibration error for both trans-
mission and absorbance spectra is very poor and rises very
fast with the increasing noise level factor. Although the
sophisticated preprocessing methods LSNV, DLSNV,
PNSV, and PPSNV show a lower initial calibration error,
the slope of the error is lower than for SNV. In Figure 11(b),
the trend of the transmission spectra having low error
steepness is visible. One may say that the three proposed
standardization techniques show a very similar noise ro-
bustness behavior and are significantly better than none or
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Figure 10: Box-and-whisker plot representation of the root-mean-squared error of prediction of the cross validation strategy for the
phenolic antioxidant compound of ATF B. In (a), the RMSEP values for the transmission spectra are shown, and in (b), the RMSEP values
for the absorbance spectra are shown. Boxplot (1) is without standardization, (2) is with a single SNV transformation on the full spectrum,
(3) is with optimized LSNV, (4) is with optimized Dynamic DLSNV, (5) is with optimized PSNV, and (6) is with optimized PPSNV.

Table 2: Summary of the model performances described by the mean value and the standard deviation of the RMSEP values during cross
validation. �e relative improvements and respective p-values compared with LSNV are also listed.

Method
Friction modifier ATF A Antioxidant ATF B

Transmission Absorbance Transmission Absorbance

Raw 0.83± 0.22 0.53± 0.16 0.90± 0.14 0.70± 0.11
Single SNV 0.34± 0.14 0.42± 0.17 0.61± 0.11 0.70± 0.13
LSNV 0.30± 0.07 0.31± 0.07 0.24± 0.04 0.24± 0.04
DLSNV 0.28± 0.06 0.26 ± 0.05 0.21± 0.04 0.21± 0.04
Rel. improvement 9% (p< 0.05) 16% (p< 0.001) 13% (p< 0.001) 13% (p< 0.001)
PSNV 0.28± 0.08 0.28± 0.06 0.33± 0.06 0.31± 0.07
Rel. improvement 8% (p> 0.05) 9% (p< 0.05) −41% (p< 0.001) −33% (p< 0.001)
PPSNV 0.26± 0.06 0.26± 0.06 0.17 ± 0.04 0.24± 0.05
Rel. improvement 13% (p< 0.01) 15% (p< 0.001) 29% (p< 0.001) −3% (p> 0.05)
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SNV preprocessing, indicating that the model did not
overfit the data as mentioned in Section 3.3.2.

In Figure 12, the performance of the regression model of
the antioxidant for the prediction of noisy spectra is shown.
(e absorbance spectra with or without preprocessing show
a similar noise trend as the SNV-transformed spectra. In
Figure 12(b), the localized versions are shown in a zoomed
view. (e PPSNV preprocessing on the transmission spectra
is characterized by the flattest noise dependency. (ese resuts
demonstrate the superiority of the PPSNVmethod in this use
case. As mentioned above, PSNV is not advantageous in this
application and shows the lowest noise immunity, but it is
preferable to the SNV across the whole spectrum.

4.2. Summary. (e optimized parameters for the pre-
processing methods are summarized in Table 3. (e LSNV
optimization process selects the same window size as
DLSNV. (us, the second window size run has no influence
on the final result in these two cases but the starting point
produces an improvement.

As already mentioned in Table 2, the cross validation
performances of the tested methods are summarized as mean
values and standard deviation for all cross validation runs. For
the friction modifier, the performances of DLSNV, PSNV,
and PPSNV are very similar. Table 2 also lists the relative

improvements against the benchmark preprocessing, LSNV,
accompanied by corresponding p values from a two-sided
t-test, which tests the significance of the mean values being
different (the deviation for relative improvements when the
same mean value is given due to the fact that the improve-
ments were calculated from exact values rather than rounded
values).

(e best mean RMSEP value for the regression model for
the frictionmodifier of 0.26 is produced by DLSNV based on
absorbance spectra. (e antioxidant compound is modeled
best by PPSNV preprocessing of the transmission spectra
and yields a very low prediction error of 0.17.

To summarize, one may say that all proposed methods
performed very well reducing both mean and standard
deviation of the cross validation error compared with SNV.
PSNV is not reasonable for the antioxidant additive as the
performance is poor compared with the benchmark pre-
processing method LSNV.

Which preprocessing method is the best depends on the
actual regression use case, but in general, it is shown that
PPSNV outperforms PSNV. (is suggests that it is bene-
ficial to drop spectral regions showing low or no de-
pendency on the target value and to only consider highly
correlated peaks.

For the antioxidant compound, PPSNV yielded an
enormous improvement. (is could be explained as the
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Figure 11: RMSE as a function of the noise level factor for the regression of the friction modifier compound of ATF A calibrated by the
unperturbed full data set. (e error bars represent the standard deviation of the prediction error calculated from the statistics of 50
repetitions of noise addition. In subplot (a), all curves are shown, and in (b), the sophisticated standardizations are shown.
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phenolic aging inhibitor is a compound with very narrow
vibrational band in the ATF B and thus does not have a great
impact when the SNV is carried out across the entire
spectrum. (is may lead to a suboptimal alignment of this
band. In case of novel standardizations, the SNV is opti-
mized to the high correlative bands, and scatter effects can be
compensated for these exact regions.

(e fact that PSNV is unsuccessful for the antioxidant
may be because the POIs are not centered to the middle of
the SNVwindow andmay have large left and right margins if
they are far away from other POIs. As a result, they may not
be optimally standardized. (is is shown in Figure 6(b),
where the single POI at about 2700 cm−1 has a large single
SNV window.

(e study provides an overview of model performances
when using transmission or absorbance spectra suggesting
that both cases can lead to valid regressionmodels. However,
for quantitative models built on transmission spectra, the
SNV is vital, whereas in the absorbance case, the predictive
power does not depend on SNV transformation. In absor-
bance spectra, the influence of the baseline constant is re-
duced because high transmission values are converted into
low absorbance values.

To conclude, DLSNV, PSNV, and PPSNV were able to
improve both transmission and absorbance predictive
models. (e scattering around the mean values are also

drastically reduced because the model does not have to learn
how to compensate for the baseline shift in each cross
validation step leading to more reproducible results. Each
vibrational band is optimally aligned so that the additive
depletion trend is encoded in the absolute signal intensity,
and the model does not have to weigh a data point as
background correction.

5. Conclusion

(e results presented in this study demonstrate the out-
performance of the proposed novel standardization
strategies Dynamic Localized SNV, Peak SNV, and Partial
Peak SNV to improve both the mean and scatter of RMSEP

Noise level factor

R
M

S
E

W/o standardization

SNV

LSNV

DLSNV

PSNV

PPSNV

Transmission

Absorbance

2.0

1.5

1.0

0.5

0.0
0.1 0.2 0.3 0.4

(a)

LSNV

DLSNV

PSNV

PPSNV

Transmission

Absorbance

R
M

S
E

Noise level factor

0.7

0.6

0.5

0.4

0.3

0.2

0.1
0.1 0.2 0.3 0.4

(b)

Figure 12: RMSE as a function of the noise level factor for the regression of the antioxidant compound of ATF B calibrated by the original
full data set. (e error bars represent the standard deviation of the prediction error calculated from the statistics of 50 repetitions of noise
addition. In subplot (a) all curves are shown, and in (b), the sophisticated standardizations are shown.

Table 3: Summary of the preprocessing parameters. For DLSNV
window size and starting point, for PSN agglomeration window,
and for PPSNV, window width around POI is shown.

Method
ATF A ATF B

Transmission Absorbance Transmission Absorbance

LSNV wopt � 52 wopt � 52 wopt � 51 wopt 2 � 51
DLSNV wopt 2 � 52 wopt 2 � 52 wopt 2 � 51 wopt 2 � 51

sopt � 5 sopt � 7 sopt � 48 sopt � 48
PSNV aggopt � 5 aggopt � 14 aggopt � 6 aggopt � 10
PPSNV pwopt � 17 pwopt � 25 pwopt � 15 pwopt � 38
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values in cross validation and the robustness against noise
drastically with respect to SNV transformation executed on
the entire spectrum. Against the benchmark LSNV, an
enhancement of the predictive power of a ridge regression
model by up to 16% and 29% could be achieved for the
friction modifier and the antioxidant compound, re-
spectively. (e demonstrated optimization workflows for
performing SNV on specific regions of the spectrum have
been introduced here for the first time. (erefore, the
standardization methods used in this paper are capable of
eliminating nonlinearities by flexible rescaling in defined
areas. To our knowledge, such standardization techniques
have not been presented elsewhere.
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