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Chapter 1

Introduction

1.1 Information and Flow of Opinion in Social

Networks

Information and reasoning in social networks. Humans are inherently
social beings that constantly influence each other. We all live in a web of social
networks that shape our opinions and behavior.

The importance of networks has long been recognized in various disciplines,
using different methodologies. The study of social influence, conceived as the way
“other people affect one’s beliefs, feelings and behavior” [122], lies at the heart
of social psychology, where much research takes the form of controlled laboratory
experiments with actual people.

Placing the focus on a higher aggregation level, scholars from other traditions,
such as economics, sociology, and political science, have studied social influence
via large-scale abstract social networks models (see [105], [71]). Typically, such
network models abstract away from much of the micro-level complexity of individ-
ual psychological processes. Nevertheless, they are ideal for modeling the effect
of social influence over time and over different configurations of social groups,
including the emergence of broader high-level patterns of group behavior. Two
characteristic examples, out of many, are models for diffusion of innovations [90]
or of creation of micro-cultures [14].1

In addition to these more empirical approaches, techniques for modeling and
designing networks and group behavior are also a prominent theme in mathemat-
ics [164], computer science [101, 7, 11, 9, 73, 151, 72, 161, 150], and in philosophy
[155]. In particular, modern computational systems are societies of agents that
have been studied extensively [149, 165] and one important theme in this study
is the fact that agents do not just form sets of separate individuals, but intercon-

1Networks are also crucial in cognitive neuroscience [156], and ‘societies of interacting neu-
rons’ sometimes show striking resemblances with models of social behavior.
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4 Chapter 1. Introduction

nected networks where social relations of neighborhood, informational access, and
hierarchy play a crucial role2. Indeed, theory and societal practice interact here,
since new networks are being created all the time, such as Facebook, Twitter,
and the like, with sometimes unintended and disturbing emergent behavior such
as informational bubbles and other public opinion phenomena that seem at odds
with the deliberation presupposed by a democratic society with rational citizens
[100]. It seems fair to say that theory is often running far behind these new
phenomena, and that we may not yet have the proper conceptual apparatus to
understand our situation, let alone, improve it. For an interesting and pioneering
attempt at changing this situation, see the analysis of various information-driven
social phenomena, and the plan of action outlined in [99, 100].

Against this background, here is what this thesis is about. We believe that
at the heart of social behavior, in both its better and worse manifestations, there
lies information flow and reasoning. And these are precisely the core topics of
the discipline of logic – and so, even though logicians can definitely not claim
exclusive insights into social structure, given the wide range of other disciplines
involved, adding perspectives from logic may be of use.

In particular, in this thesis, we will investigate how social influence and infor-
mation flow are entangled, and what laws of logic govern this interaction. This
will provide a logical perspective on the dynamics of social phenomena over net-
works, ranging from local social interactions to long-term group behavior: how
agents influence each other, how behavior spreads within a population, how such
diffusion interacts with information flow, and how the resulting dynamical pro-
cesses evolve in the limit.

Three major themes in social behavior. Before we explain the contents of
this thesis in more detail, we mention three main themes motivating and guiding
our research throughout, and thus unifying the different pieces of work presented
here. Together, they represent what is striking and challenging about social
interaction as we see it.

The first recurrent theme is what we see as the balance between “trans-
parency”, the idea that agents can “see” their own minds, and “opacity”, the
partially hidden nature of other agents’ minds: Agents are typically considered
to be mostly transparent to themselves, having privileged access to their own
mental states, knowing better than anyone else how they feel, what their opin-
ions are, and so on. But agents are much more “opaque” to each other, lacking
direct introspection of other minds. However, they may get to learn about each
other’s mental state by communicating with each other, or by interpreting ob-
served behavior. But this is only partial information, and as such, an agent’s
interpretation of others may be wrong.

The formal logical tools of this thesis allow us to analyze this balance as it
occurs in social phenomena. In particular, we will observe and explain how it is

2Also, in the realm of distributed computing, such interrelations are crucial, see e.g. [74].



1.1. Information and Flow of Opinion in Social Networks 5

often the “semi-opacity” of agents which causes surprising results at the group
level. In the first part of the thesis, we show how counterintuitive situations of
collective failures, such as informational cascades and pluralistic ignorance, are
the collective result of rational agents with full reasoning powers that are able
to observe each other’s actions but not each other’s reasons for these actions. In
this process, we will analyze what sort of information processing and reasoning
can guide agents of different types.

The second major theme, emerging from the first, is the transition from mi-
crobehavior of individual agents to macrobehavior of groups and systems that
may show emergent patterns. While the preceding discussion emphasized dis-
crepancies between rationality and achieving desirable goals at the two levels,
there are many more things to be understood here. In particular, we aim to cap-
ture significant logical laws of collective behavior, connecting the individual level
of agents with knowledge and beliefs that can reason and deliberate and agents in
networks that can be treated as essentially “parallel automata” reacting to their
social environment, repeatedly.

Hence, this thesis is also a logical investigation of long-term agent behavior,
where we are interested in questions such as the following. Will the current process
result in “public opinion” for the whole group of agents that stabilizes, or will it
oscillate, or even diverge? What happens when we assume diversity of agents,
even when we treat them as automata with fixed responses of various kinds?
The papers in the second part of the thesis propose just the general toolbox to
reason about such diffusion phenomena. We will first propose a general dynamic
framework allowing to “plug-in” different types of dynamics corresponding to
different types of agents. We then enrich this framework to include the modeling
of information and information change. And finally, we will propose a minimal
framework to model the diffusion of behavior ruled by a given threshold, when
agents adopt a behavior as soon a certain proportion of their neighbors have.
While the tools we use are of different types (propositional, modal, or hybrid
logics), the unity in our toolbox comes from the use of dynamic logics.

A third theme that runs throughout this thesis is the effect of social net-
work structures. Agent behavior is not just a matter of individual choices: it is
constrained in many ways by a social environment that determines what infor-
mational access is possible, what the “relevant others” are, and what actions are
available. This network structure plays right through the two preceding themes
that we identified, since it is a crucial factor in both individual micro-behavior
and global system macro-behavior.

Until recently, most of the literature in logics of agency considered either
individual actors, or multi-agent interactions based on bare sets of agents, without
an explicit account of group network structure. This is true for logics of knowledge
and belief [24, 70], of action [114], and even of most logics that have been used
to analyze games [132, 43, 37]. This is not to say that these research traditions
lack depth or strength: indeed, we will build squarely on this existing work. But



6 Chapter 1. Introduction

in this thesis, we will enrich the perspective, and throughout, take the effects of
group structure on board when analyzing the dynamics of information and the
spread of opinion in social groups.

What is to follow. In the sections that follow, we say a bit more about the
existing work on social networks that forms the direct backdrop to our work, and
we briefly place our logic-based approach within the area of logics of agency. After
that, we describe the contents of this thesis in more detail, chapter by chapter,
and we end by listing the publications on which this thesis is based.

1.2 Our Inspiration: Earlier Approaches to So-

cial Networks

General technical approaches. Our study of the dynamics of social phenom-
ena, such as the spread of behavior or opinions in networks, borrows insights from
a number of different fields. Most importantly, the backdrop to our work is the
large literature on logics of agency that has started in the 1980s, and still shows
no signs of diminishing. This broad research program brings together themes
from computer science, computational and philosophical logic, and we cannot
even begin to summarize it here. We refer the reader to [149, 165] for up-to-date
textbooks. The dynamic turn in logic [32] has also shifted the focus inside logic
itself towards the study of informational processes and agent-based interaction.

More specifically, our methodology touches upon work done in philosophy, in
particular in the area of social epistemology [167, 84, 85], while also drawing input
from philosophical studies of information and the information society [99, 100].
We also take many cues from the large existing body of work on social network
theory, among which [127, 71, 105]. Finally, as will be clear from references in
specific chapters below, we benefit from applied studies in the social and behav-
ioral sciences, economics, cognitive science, biology, and computer science. While
each of the latter areas comes with its own focus, studying specific types of popu-
lations, group behavior and dynamic processes, a methodology of formal methods
runs across them. These range from purely theoretical models based on a for-
mal language (be it probability theory, logic, or graph theory) to philosophical
analysis and the use of experimental data or even simulations with agent-based
modeling. Indeed much important network research has been in the tradition of
probabilistic and dynamical systems methods [153, 154].

Developments on the logic side. In this thesis, the formal tool that we
will mainly use is logic, together with philosophical analysis where appropriate.
In doing so, we draw on the insights obtained in modeling individual attitudes
(knowledge, beliefs, intentions, preferences, desires, and others) [102, 123, 149,
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119, 42, 26, 138], group attitudes (common knowledge, distributed knowledge,
common belief, and so on) [76, 158, 36], as well as the dynamics of information
change (knowledge updates or belief change) [44, 70, 24, 42, 27]. Our work aug-
ments this epistemic/doxastic dimension with a social dimension, by taking the
social structure of a group into account. These two dimensions were brought
together for the first time only recently.

Let us take a moment to reflect upon why it has taken so long to start building
bridges between logic and social network analysis. The past lack of interaction
may be explained by their distinct paradigmatic cases of inspiration. On the
one side, in social network analysis, one is typically concerned with diffusion
phenomena such as the spreading of infections, where agents are taken to be
simple bacteria-like automata, reacting all in the same way and all at the same
time, to their most direct environment, uniformly, and repeatedly. On the other
side, in the dynamic-epistemic logic tradition (and, by and large, in logics of
agency as a whole), agents are typically taken to come equipped with unlimited
higher-order reasoning powers aiming for the truth, updating their knowledge as
they receive new information. Moreover, informational events are typically taken
to be sequential. As a result, until a few years ago, the effects of how groups of
agents are structured – who communicates with whom, who interacts with whom,
who is influenced by whom – have been mostly left aside.

Still, it is fair to say that the idea of structuring groups was in the air: pri-
vate announcements [24] already distinguish between subgroups of “insiders” and
“outsiders”, [23], where private announcements only affect the insiders, leaving
the outsiders clueless about it. By contrast, public announcements reach the
whole group uniformly. Likewise, long-term dynamics of iterated update pro-
cesses had made its entrance earlier on, as witness the long-term limit scenarios
of announcements studied in [41], and the work on iterated belief revision policies
and convergence to the truth in the long run [29, 30, 81, 20, 21, 22, 108]. A
final related earlier research strand is the work on fixed points of belief revision
policies corresponding to different attitudes of trust towards information sources
[104, 135, 25].

Our most direct sources of inspiration. While acknowledging all the above,
the most direct influences on our style of analysis in this thesis are the following
two.

First, the work of Girard, Liu, and Seligman makes an inspirational jump
towards social structure in their seminal paper “Logic in the Community” [145].
The authors introduce a formal language to talk about networks and the knowl-
edge of agents in these, in a way that meets the received standards of epistemic
logic, dynamic logic, while employing notions from hybrid logics to represent in-
dexical aspects of social discourse. They also develop variations of the setting to
model preference change ([166], drawing on [119]), as well as belief change [120]
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under social influence. This line of logics that explicitly deal with social networks
has been taken up and refined by various authors [146, 83, 139, 141, 58, 94].

A second slightly different but important direction in logical studies of agency
puts the focus on communication networks and temporal protocols for sharing
information in groups. Recent work in this line is given by [7, 11, 72] and combines
tools from epistemic logic with techniques from distributed computing. This path
was paved by earlier work on different communication types, channels, sequences
and protocols [16, 136, 31, 161, 73, 151, 150, 69].

The preceding two logical traditions underlie the work in this thesis, which
aims to strengthen the connections between logic and social network analysis in
further ways.

Further directions: social choice and aggregation. It is also important to
stress one more area in which logical methods are gaining importance for study-
ing the social domain. Current work on social choice theory, in particular voting
theory, judgment aggregation and preference aggregation, has growing connec-
tions with recent developments in logic [31, 65, 88]. Different from our emphasis
on network structure and communication protocols, in social choice theory the
focus often lies on merging information, judgements, preferences or opinions in
the absence of individual communication. Such aggregation procedures, too, can
of course be taken as a basis for diffusion processes in social networks.

Part of the work we do in this thesis, especially in our second part, on the
spread of behavior and opinions makes use of update mechanisms that can also
model types of influence coming from aggregation procedures in social choice
theory. While we do not make this trajectory explicit, the recent work in [89]
illustrates the basic ideas of this connection for the case of opinion diffusion.
However, working in a communication-free environment poses some restrictions
that are not assumed in this thesis.3 Clearly, in social reality, agents can be
influenced by others via a whole range of methods, including voting, observations,
and explicit acts of communication. Accordingly, for many of the models that
we design for social scenarios in this thesis, aggregation procedures can form the
basis of influence mechanisms, but so can communication and deliberation. We
will also discuss the border line between the two in our second part.

1.3 Outline of the Thesis

This thesis uses logical tools to address a number of central issues about social
phenomena in networks that have been identified in broad outline in our first

3This difference touches upon a debate in the literature on rational consensus formation
(using, e.g., weighted models [68, 117]) on how to align aggregation procedures in social choice
theory with a perspective of deliberation and communication [56].
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section: the interplay of transparent and opaque knowledge about other agents,
the transition from micro- to macro-behavior, and the crucial role of network
structure in all of this in addition to the capabilities of individual agents. Each
part and each chapter provides a window for applying logic to address such issues.

Here is a brief overview of the content. Our parts and chapters also come with
brief further introductions and conclusions elaborating our story line.

Part I contains the preliminaries for the presentation of our research. Fol-
lowing the introduction and motivation of our topics in Chapter 1, Chapter 2
introduces some basic technical background material for what follows, coming
both from logic and from social networks analysis.

Part II focuses on the following question. When and how does individual
rationality lead to group success or group failure? In particular, can individu-
als who are behaving perfectly rationally lead a group to collective failure? We
present logical case studies of two well-known counterintuitive social effects: in-
formational cascades and pluralistic ignorance, where individual rationality can
lead to some form of group failure. In the process we will see precisely why this
happens, giving insight into how to change individual settings in order to change
collective outcomes.

Chapter 3 uses two variants of dynamic-epistemic logic to show how perfectly
rational agents who start following the crowd may get stuck in an “informational
cascade” leading everybody to be wrong, despite the availability of enough evi-
dence to avoid such a catastrophe. Our formal modeling confirms that, whether
agents are full-fledge Bayesian probabilists or use simpler reasoning methods,
and whether they have unbounded higher-order reasoning or not, informational
cascades are indeed inescapable: even individuals reasoning to the best of their
ability sometimes lead their whole community towards an epistemic catastrophe.

Chapter 4 models within hybrid logic a second counterintuitive social phe-
nomenon: “pluralistic ignorance”, in which all agents are mistaken about each
other’s beliefs and all wrongly believe that their own beliefs differ from those
of the others. Here, our formal modeling leads to a precise characterisation of
the dynamic properties of pluralistic ignorance often reported by social scientists:
its stability (if nothing special happens, the situation remains the same) and its
extreme fragility (changing the behavior of one single agent might entirely turn
around the situation).

Overall, by providing these two case studies of social phenomena, Part II shows
how significant social phenomena can be specified in logical languages, how their
information flow can be represented in terms of models for these languages, and
how logic also helps to understand the theoretical core features of social scenarios
that determine their limit behavior in the long run.

With our basic techniques for modeling stepwise updates in place, Part III
turns to two further questions about network evolution. First, what are the logical
properties of pure diffusion dynamics in social networks? And second, how does
agents’ knowledge of the network structure and of social influence effects interact
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with diffusion processes?
As for pure diffusion, we present two different takes: using a general dynamic

framework based on hybrid logic in Chapter 5, and a simplified propositional
dynamic logic in Chapter 7.

The general hybrid framework designed in Chapter 5 has the advantage of
allowing any locally definable rule of influence to be “plugged-into” the logic,
allowing for reasoning about a wide variety of diffusion phenomena. We show
how to apply the logic to real-life documented phenomena: the previously studied
case of pluralitic ignorance, and the diffusion of microfinance in villages.

To address the second question, Chapter 6 defines an epistemic extension of
the preceding hybrid approach, and shows how agents might guess each other’s
private opinions by observing how their public behavior evolves in response to
social conformity pressure. The resulting framework allows us to reflect how
diffusion dynamics induce specific correlated learning dynamics.

Finally, using a further combination of our earlier logics, Chapter 7 shows
how knowing more about the network structure and the behavior of agents in
the network may accelerate diffusion in threshold models. We show how “smart”
agents using all information available might anticipate diffusion. In the limit,
when the network structure and agents behavior are common knowledge, the
acceleration is maximal: the diffusion jumps directly to its fixed point in one
step.

Finally, Part IV summarizes what we take to be the main conclusions from this
thesis, presents some ongoing work, and points at some perspectives for future
research that builds on the groundwork in this thesis.
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A. Baltag, Z. Christoff, R.K. Rendsvig, & S. Smets (2015). Dynamic
Epistemic Logic of Prediction and Diffusion in Threshold Models. ILLC
Prepublication Series PP-2015-22. Submitted.





Chapter 2

Background Knowledge

In this chapter, we list some essential formal tools that will be used throughout
the thesis, first from social network analysis, and then from logic. In addition to
providing basic information, this will also serve to fix terminology for the main
body of this dissertation. Readers who are familiar with all or part of this material
can skip straightaway to the following Chapters.

2.1 Social Network Analysis

This section presents a few essential notions from social network analysis, in-
cluding some simplifying assumptions in the literature that will be used through-
out the thesis. Our presentation will be fast, since the different chapters to come
will give more elaborate definitions where needed. The main source for the ma-
terial presented here is [71].

As social networks can be represented by graphs, we start with a few graph
theoretical notions that will recur in this thesis.

2.1.1 Graph Theory for Social Networks

First things first, a graph is a set of nodes, among which some pairs are
connected by edges, and what we will call a social network is a graph where
nodes are agents and edges represent some social relationship.

The following notions will come useful when describing local properties of a
graph, i.e. the way two given nodes are related: A path in a graph is a sequence
of nodes such that any two consecutive nodes are related by an edge. A cycle is
a path such that the first and last node in the sequence are the same (and the
sequence contains at least one different node). The distance between two nodes
is the length of the shortest path between them, and two nodes are said to be
n-distant if this path is of length n+ 1.

13
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On the global level, a graph is then said to be connected if there exists a
path in between any two nodes, n-connected if the distance between any two
nodes is at most n, and fully connected if any two nodes are related by an edge.
The diameter of a graph is the smallest n such that the graph is n-connected.
Moreover, a graph is said to be acyclic if it contains no cycle.

Throughout this thesis, we will impose the following constraints on social
networks: they are undirected, without self-loop, connected, and finite. This cor-
responds to restricting ourselves to symmetric and irreflexive social relationships,
such as friendship or neighborship, and to populations such that there exists a
finite path in between any two pairs of agents, in other words, a “community”.
When two agents are related to each other by an edge in a social network, we will
therefore often say that they are “neighbors”, or “friends”.1

The well-known small-world phenomenon refers to the fact that the diameter
of big social networks is usually surprisingly short.2

However, to capture how connected a network is, it is not sufficient to describe
its diameter. Indeed, for diffusion phenomena for instance, it is also important
to be able to talk about how dense the network is. We will use the following
notions:

The clustering coefficient of an agent is the proportion of her neighbors who
are also neighbors to each other, and the clustering coefficient of a network is the
average of the clustering coefficient of the agents in the networks. A cluster of
density d is a set of agents such that, for each agent in the set, the proportion
of her neighbors which are also in the group is at least d.3 Note that an entire
network (of at least two agents) is a cluster of density 1, and that, when assuming
irreflexivity, a single agent is a cluster of density 0.

In the next section, we will briefly illustrate how the static network properties
introduced above constrain the diffusion phenomena over networks.

2.1.2 Diffusion Phenomena

Throughout this thesis, we will assume that social networks do not change.
What we are interested in capturing is another type of change: the way informa-
tion, opinions, behavior, or trends, can spread over a given social network.

A typical example is the diffusion of a contagious disease within a population.
Assuming that the disease can only be contracted by contagion from a neighbor
in one’s social network, the network structure (and in particular, the properties

1In Chapter 7, we will also require that networks are serial, i.e that each agent is related to
an agent, a natural assumption when modeling diffusion processes, as an isolated unique agent
would be an irrelevant case.

2The small-world phenomenon is sometimes confused with the famous but wrong idea that
any real social network presents at most “six degrees of separation”. See [p.30][71] for more
details.

3Note that what is called a cluster of density d in [71] is called a d-cohesive set in [126].
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introduced above) constrains how the infection will spread: how fast it spreads,
and what would be needed to contain it.

Epidemic behavior is of course not restricted to diseases, it can be generalized
to any feature of agents which may be affected by the features of their neighbors.
For instance, the way in which we commonly describe how information circulates
is directly inspired from this idea of the spreading of diseases (e.g. think of the
spread of computer viruses), and social network analysis also studies for instance
how some shared information “gets viral” within a community.

The “SI Model”. Let us start by considering a minimal example: the diffusion
of a disease within a population. Assume that each agent of the population is in
either of two states: infected with the disease or susceptible to it. This type of
models is commonly called “the SI Model” in the social networks literature [127].
Moreover, assume for instance that the disease can only be contracted by having
a neighbor infected in one’s social network graph.

Consider now how such an infection spreads within a community. This de-
pends on how contagious the disease is. Assume for instance that each agent
linked to an infected agent in the network will get infected too on the next day.
This means that if some agent a is infected to start with, all agents directly linked
to him will be infected on the next day, and then all agents linked to the agents
linked to him, and so on. According to this rule of contagion (and our connect-
edness assumption), all agents will get sick at some point. The social network
structure constrains how fast such a disease spreads. Locally, the distance from
an agent b to the initially infected agent a determines how many days it takes
before agent a will get infected. And globally, if nothing is done to stop the
epidemics, the whole population will be infected after a number of days which is
at most equal to the diameter of the network.

In this example, the dynamics is essentially captured by the following local
diffusion rule: If any of your neighbors is infected, become infected yourself at
the next moment (and stay infected forever).

However, one could very well imagine a different diffusion rule: after being
infected, an agent immediately recovers and becomes susceptible again at the
next moment. According to this new dynamic rule, agents might keep alternating
forever between being infected and being susceptible and the network might never
reach a stable state. Yet another type of dynamics is given by the “SIR Model”
(susceptible, infected, recovered), where agents recover after being infected and
are from then on immune to the disease.

In this thesis, we will focus on logics for diffusion processes of both types
described above: where agents can “get infected” by the spreading feature and
stay infected forever, in Chapter 7, and the case where they can “get infected”
and get “disinfected”, in Chapters 4 to 6.

Moreover, while the work done on simulations of networks is typically stochas-



16 Chapter 2. Background Knowledge

tic, we will restrict ourselves to diffusion rules which, as in the examples above,
are deterministic. We believe that the limit case of deterministic diffusion rules is
a good starting point for a logical approach. In every case modeled in this thesis,
probabilities could be added, and in various ways.

In the next section, we will introduce a specific type of diffusion rules, where
contagion occurs only when a certain proportion of neighbors are infected.

Threshold models. The notion of “threshold-limited influence” [71, 152], re-
lies on a conformity pressure effect: agents adopt a behavior, product, opinion,
fashion, etc., whenever a critical fraction of their neighbors in the network have
adopted it already.

The so-called threshold models, first introduced by [90, 144], are used precisely
to represent the dynamics of diffusion under threshold-limited influence. This
type of models has received a lot of attention in recent literature [71, 109, 126,
148, 8, 87, 118, 121]. Chapter 7 will design a logical framework for the diffusion
dynamics in threshold models.

The simplest type of threshold model consists of three components: a fixed
social network, a set of agents in the network which are “infected” (hold an
opinion, follow a fashion, etc), and a fixed uniform adoption threshold indicating
what proportion of neighbors need to be infected for the infection to spread.
A threshold model thus represents the current spread of an infection over the
network, while containing the adoption threshold which prescribes how this spread
will evolve. In such a model, infected agents will stay infected forever.

We have illustrated above how a static property of the network, its diameter,
determines an upper bound on the time left before an entire population would get
infected in the SI model.4 Similarly, we can illustrate how the density of a network
constrains the diffusion in threshold models. The higher the density of a group,
the better it will resist to influence from the outside [71, Ch.19.3]. The following
result from [126] makes this precise: for a given threshold θ, assuming that some
agents are already infected, the infection will reach the entire population if and
only if there is no cluster of density 1− θ among the healthy agents.

In the above, we have introduced a few notions from graph theory and social
network analysis which we will rely on throughout this thesis. We have given
examples of models of diffusion phenomena and illustrated how the static graph-
theoretical notions introduced constrain the diffusion dynamics we are interested
in. We will encounter more examples of this sort on our way, in particular in
Chapter 4, 7, and 8.

In the next section, we will introduce the logical background which we take as
our starting point in our quest for a logic for information and diffusion dynamics

4Note that the SI model above is a specific case of threshold model, where the threshold is
set to be 1

n
and n is at least as big as the maximal number of neighbors of any agent in the

network.
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on social networks.

2.2 Logic

This section introduces the logical background from this thesis. We first in-
troduce tools from dynamic epistemic logic [24, 70, 47], used to model knowledge
and beliefs of agents and their dynamics upon receiving new information. Later
on, we give a brief presentation of the existing work by Seligman, Liu and Girard
[145, 166, 120], on logics combining social networks to knowledge and belief.

2.2.1 Dynamic Epistemic Logic

The work on dynamic epistemic logic (DEL) [24, 70, 47] brings together two
structural ingredients, i.e. epistemics and dynamics, in one unified setting. On
the one hand, DEL allows us to model the static attitudes of different agents,
be it knowledge, beliefs, preferences or another attitude. On the other hand, it
allows us to model the change of these attitudes, i.e. knowledge updates, belief
dynamics and change of preferences.

In this section, we present the basic notions from the logic of knowledge update
and belief change. To do so, we will use the definitions from the work on epis-
temic logic, doxastic logic and dynamic epistemic logic [47, 41, 70, 24, 27, 123, 76].
Moreover, our presentation will follow very closely the order and style of presen-
tation adopted in [81, Section 2.2].

Epistemic Logic. We will start here by introducing the very basic components
of epistemic logic [97]. The epistemic language contains a modality Ka for each
agent a ∈ A.

2.2.1. Definition. [Syntax of LK] The epistemic language LK is defined as fol-
lows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kaϕ

where p ∈ Φ, a ∈ A, A is a finite set of agents, and Φ is a countable set of atomic
sentences.

Besides the standard Boolean operators, this language contains the epistemic
construction Kaϕ which we read as “agent a knows that ϕ”.

To build an interpretation, we first introduce the concept of an epistemic
(state) model, given by a set of possible worlds and, for each agent a in a given
finite set A, a binary relation, representing agent a’s subjective epistemic indis-
tinguishability:
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2.2.2. Definition. [epistemic (state) model] An epistemic (state) model M is
a triple:

(W, (∼a)a∈A, V ),

whereW ̸= ∅ is a set of possible worlds, for each a ∈ A, ∼a is a binary equivalence
relation on W , and V : Φ → P(W ) is a valuation.

An agent’s subjective epistemic indistinguishability is here represented via an
equivalence relation. In an alternative representation, following e.g. [13], this
relation defines separate information cells: the information cell [w]a of agent a in
state w is the set of worlds v ∈ W such that w ∼a v. What agent a knows in
world w is therefore defined as what is true everywhere in [w]a:

2.2.3. Definition. [Semantics of LK] Let M = (W, (∼a)a∈A, V ), w ∈ W , p ∈ Φ
and ϕ ∈ LE. The truth of ϕ at world w in M is defined as follows:

M, w |= p iff w ∈ V (p)
M, w |= ¬ϕ iff it is not the case that M, w |= ϕ
M, w |= ϕ ∨ ϕ iff M, w |= ϕ or M, w |= ψ
M, w |= Kaϕ iff for all v such that w ∼a v we have M, v |= ϕ

The proof system of epistemic logic K is axiomatized by using the axioms of
S5 and the rule of modus ponens and necessitation below:

PL ⊢ ϕ if ϕ all instantiations of propositional tautologies
K ⊢ Ka(ϕ→ ψ) → (Kaϕ→ Kaψ)
T ⊢ Kaϕ→ ϕ
4 ⊢ Kaϕ→ KaKaϕ
5 ⊢ ¬Kaϕ→ Ka¬Kaϕ
MP if ⊢ ϕ→ ψ and ⊢ ϕ, then ⊢ ψ
Nec if ⊢ ϕ, then ⊢ Kaϕ

Now that we have defined a static multi-agent epistemic model, let us turn to
how the knowledge state of an agent changes upon receiving new information. We
start with the simplest (and most radical) case of model transformation: update.

Update. The model transformation operation which incorporates the new in-
formation that ϕ is the case, when received from a source which is considered
to be infallible, is called “update”. Updating with formula ϕ simply deletes all
possible worlds which did not satisfy ϕ.

2.2.4. Definition. [update]
The update of an epistemic model M = (W, (∼a)a∈A, V ) with a formula ϕ, re-

strictsM to those worlds that satisfy ϕ, formallyM| ϕ = M′ := (W ′, (∼′
a)a∈A, V

′)
is given by:

W ′ = {w ∈ W | w |= ϕ};
for each a ∈ A,∼′

a = ∼a↾ W
′; and

V ′ = V ↾ W ′.
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The event of announcing truthful information to all agents is called a “public
announcement” and is noted by !ϕ. The language of public announcement logic
(PAL) LPAL consists of the language LK above, extended with dynamic formula
[!ϕ]ψ, reading “after public announcement of ϕ, ψ”. One of the general strengths
of DEL is that it can talk about the communication events themselves. Since ϕ
can itself contain dynamic modalities, the language of PAL can talk about public
announcements about public announcements, for instance.

2.2.5. Definition. [Semantics of LPAL] The semantics of LPAL is obtained by
the semantics of LE extended with the following clause:

M, w |= [!ϕ]ψ iff if M, w |= ϕ then M | ϕ,w |= ψ

The proof system of the logic PAL is obtained by adding the following “reduc-
tion axioms” [133] to the epistemic logic K given above:

⊢ [!ϕ]p↔ (ϕ→ p), for p ∈ Φ
⊢ [!ϕ]¬ψ ↔ (ϕ→ ¬[!ϕ]ψ)
⊢ [!ϕ](ψ ∨ ξ) ↔ ([!ϕ]ψ ∨ [!ϕ]ξ)
⊢ [!ϕ]Kaψ ↔ (ϕ→ Ka[!ϕ]ψ)

The logic PAL is complete with respect to the class of epistemic models [133].
Beyond public announcements, let us now generalize to other epistemic events.

Product update. An essential part of DEL is the mechanism that it uses to
represent event models and to let an event model act on a given state model: this
mechanism is standardly called the “product update” [24]. The product update
of an event model and a given state model produces a new state model. In effect
it means that the dynamic dimension in DEL expresses a model transforming
operation, an operation which marks a crucial difference with the representation
of actions (as a relation over possible worlds) in labelled state transition systems
such as e.g., propositional dynamic logic (PDL) [95].

2.2.6. Definition. [multi-agent event model] A multi-agent event model is a
triple:

E = (E, (∼E
a)a∈A, pre),

where E ̸= ∅ is a set of events, ∼E
a is a binary equivalence relation on E, and

pre : E → LEL, is a precondition function where LEL is a given epistemic
language.

The relation ∼E
a encodes what the agent a knows about the event itself. An

event can only occur in a state if that state satisfies its precondition.
In order to model fact changing operations in DEL via “actions which change

the truth values of atomic sentences” [24], one has to adapt the logical setting as
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in e.g. [24, 47, 17]. One standard way of doing this, is by extending the event
models with the specification of a postcondition to indicate the new valuation
after the event has happened. We will use DEL with fact changing operations
later in this thesis.

Given an initial state model and an event model, the product update yields
a general way for computing the epistemic state resulting from the given event
applied to the given state model [24]. The landscape of DEL comprises a whole
range of logical systems that all use the same idea of a model transforming mech-
anism (although the actual update mechanism itself can vary). The above public
announcement logic is seen as a special case of the following more general mech-
anism which allows for both public and private actions between agents:

2.2.7. Definition. [product update] Let M = (W, (∼a)a∈A, V ) be an epistemic
model and E = (E, (∼E

a)a∈A, pre) an event model. The product update M ⊗ E
states of which are the pairs (w, e) such that w ∈ W , e ∈ E, and w satisfies the
precondition of e. The epistemic relation in the resulting model is defined as:

(w, e) ∼a (w
′, e′) iff w ∼a w

′ and e ∼E
a e

′,

and the valuation is as follows:

(w, e) ∈ V (p) iff w ∈ V (p).

Belief. We now turn to an extended language to capture both knowledge and
belief. The following doxastic-epistemic language is obtained by adding a belief
modality to language LK :

2.2.8. Definition. [Syntax of LKB] The syntax of doxastic-epistemic language
LKB is defined as follows:

ϕ := p | ¬ϕ | ϕ ∨ ϕ | Kaϕ | Bψ
a ϕ

where p ∈ Φ is an element of a given countable set atomic sentences and a ∈ A
is an element of a given finite set of agents.

In addition to the standard Boolean operators, we have included a conditional
belief operator Bψ

a ϕ, which intuitively reads as “conditional on receiving ψ, agent
a would believe that ϕ was the case”. The temporal element in this interpretation
is crucial, as explained in [27]. Note further that belief simpliciter can be defined
in terms of the conditional belief operator by setting Baϕ := B⊤

a ϕ as given by
conditioning on a tautology.

To give an interpretation to the language construction containing the belief
modality, we introduce a new type of models. Different from the standard KD45
models in modal logic, often used to represent the doxastic attitudes of agents,
we work with so-called epistemic-plausibility models, following the work in [28,
27, 42]. The following definitions are given in [27]:
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2.2.9. Definition. [epistemic-plausibility model] An epistemic-plausibility model
M is a triple

(W, (∼a)a∈A, (≤a)a∈A, V ),

where W ̸= ∅ is a set of states, for each i ∈ A, ≤i is a total well-founded preorder
on W , and V : Φ → P(W ) is a valuation.

A pair (M, w), where M = (W, (∼a)a∈A, (≤a)a∈A, V ) an epistemic plausibility
model and w ∈ W , is called a pointed epistemic plausibility model.

For each a ∈ A we will assume that ≤a ⊆ ∼a.
5

2.2.10. Definition. [Semantics of LKB] The truth of a formula ϕ ∈ LKB in
a model M = (W, (∼a)a∈A, (≤a)a∈A, V ) is given by the epistemic clauses given
above extended with the following clause:

M, w |= Bψ
a ϕ iff for all v ∈ [w]a if v ∈ min≤i

([w]a ∩ ∥ψ∥) then v |= ϕ

The proof system of LKB and its complete axiomatization is given in [27].

Plausibility upgrade. Now that we have seen how to model beliefs in terms
of a plausibility ordering, let us introduce ways to represent belief change6 when
the agents face new incoming information. If the information source is taken to
be less than infallible, a “softer” type of model transformations can be applied,
which will result in a reordering of the possible states in the model, but will not
delete any [27, 42]. There is no unique way of defining such a reordering.

For simplicity, we will only introduce one example of such a plausibility up-
grade, the “lexicographic upgrade”.7

The effect of a lexicographic upgrade with formula ϕ is to force all worlds
which satisfied ϕ before the announcement to become more plausible than the
ones which did not. We use the following notation for the plausibility order
relative to satisfaction of a formula: ≤ϕ

a = ≤a↾ ∥ϕ∥, and ≤ϕ̄
a = ≤a↾ ∥¬ϕ∥.

2.2.11. Definition. [lexicographic upgrade] The lexicographic upgrade of an
epistemic plausibility model M = (W, (∼a)a∈A, (≤a)a∈A, V ) with a formula ϕ
is defined as follows:

M ⇑ ϕ := (W, (∼a)a∈A, (≤
′
a)a∈A, V ),

5Note that with this assumption, the definition of a plausibility model can be simplified
to (W, (≤a)a∈A, V ), when defining the epistemic accessibility relation in terms of the given
plausibility relation, as is done in [27].

6Note that our notion of “belief change” refers to the work in dynamic epistemic logic where
one makes a distinction between static AGM belief revision (modelled via conditional modal
operators) and dynamic belief change (modelled via dynamic modal operators). This distinction
is in detailed explained in [27].

7We leave out the notions of “radical upgrade” and “conservative upgrade” in [27]. Note that
under various names, such upgrades have been previously proposed in the literature on Belief
Revision, e.g. by Rott [137], and in the literature on dynamic semantics for natural language
by e.g. Veltman [159].
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where for each a ∈ A and for all v, w ∈ [w]a:

v ≤′
a w iff (v ≤ϕ

a w or v ≤ϕ̄
a w or (v |= ϕ and w |= ¬ϕ)).

The language of announcements inducing lexicographic upgrade is defined in
the following way.

2.2.12. Definition. [Syntax of LKB⇑] The syntax of the doxastic-epistemic lan-
guage LKB⇑ is defined by extending KB with [⇑ϕ]ψ.

The semantics is obtained by adding the following clause to the previously
defined semantics:

2.2.13. Definition. [Semantics of LKB⇑] Let M be a doxastic model, w ∈ W
the truth of a formula φ ∈ LKB⇑ is given by the semantic clauses for LKB extended
with:

M, w |= [⇑ϕ]ψ iff M ⇑ ϕ,w |= ψ

The given lexicographic upgrade mechanism is limited in the sense that it
assumes that all agents in the model will upgrade their beliefs in the same way.
Or in other words, it is common knowledge that all agents consider the source
fallible but highly trusted in the same way. In many scenario’s this assumption
is unrealistic and hence it has to be dropped. Different agents can have different
levels of trust in the information they receive. In addition some information
may be privately available only to a subgroup of agents. To model these more
advanced scenarios, we again have to turn to the standard ingredients of DEL by
including event models and a general upgrade mechanism. In the context of belief
change, the product update mechanism has to be adapted to allow our agents to
handle “soft information”. The mechanism in [27] designed for this task is called
the “action-priority update rule”. For the details of this construction, we refer
the reader to [27, 44].

2.2.2 Facebook Logic

Aside from DEL, we rely on another line of work within the field of logic, the
two-dimensional hybrid logic developed by Seligman, Girard, and Liu. Their three
initial papers in this direction propose such a framework to capture three types of
changes in social networks: the initial “Facebook logic” framework [145], dealing
with knowledge change via communication through an (online) social network;
and two variations of the first one, one of which applies to preferences change
under peer pressure [166], the other one to belief change under social influence
[120]. We present below the main ingredients of the latter.

The novelty of this line of work is to allow the logic to talk about both the
attitudes of agents (knowledge, preferences, or opinions) and about the social
network structures. Formally, this is rendered by a two-dimensional setting, where
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one dimension represents the (knowledge, preferences, or opinion) state of the
agents, and the other dimension captures the social network structure.

Below, we introduce the formal tools from the epistemic setting of [145], fol-
lowed by the ideas on opinion change under peer pressure from [120]

Epistemic social network logic. The “Facebook logic” from [145] is obtained
by combining a social network dimension to an epistemic dimension. More pre-
cisely, an epistemic network model is a multi-agent epistemic model, as introduced
in Section 2.2.1, with a social network structure in each possible world:

2.2.14. Definition. [Epistemic Social Network Model]
A model is a tuple

M = (A,W, (≍w)w∈W , (∼a)a∈A, g, V ),

where: A is a non-empty set of agents,W is a non-empty set of possible worlds, ≍w

is an irreflexive, symmetric, binary relation on A, for each w ∈ W (representing
the network structure at the world w), ∼a is an equivalence relation onW for each
a ∈ A (representing the uncertainty of a), g : NOM → A is a function assigning
an agent to each nominal, and V : Φ → P(W × A) is a valuation.

In addition to the standard knowledge modalityK, the language includes tools
from hybrid logic [10, 57]: Nominals are used to refer to the agents, and operators
@i, to switch the evaluation point to the unique agent named by nominal i. The
semantics is therefore indexical, in the sense that a formula is evaluated both at
a world and at some given agent. An additional modal operator F quantifies over
friends (or network neighbors): F reads “all of my friends” and its dual, ⟨F ⟩,
“some of my friends”.

2.2.15. Definition. [Epistemic Social Network Syntax]
The syntax of the epistemic network language L is defined as follows8:

ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | @iϕ | Kϕ | ↓ iϕ |

where p ∈ Φ, and i ∈ NOM.

The semantics is defined as follows:

8[145] discusses some extensions of this language with indexical announcement, which we do
not include in this introduction.
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2.2.16. Definition. [Epistemic Social Network Semantics]
Given a model M = (A,W, (≍w)w∈W , (∼a)a∈A, g, V ), a ∈ A, w ∈ W , and

formulas p ∈ Φ, i ∈ NOM, and ϕ ∈ L, the truth of ϕ at (w, a) in M is given by:

M, w, a |= p iff (w, a) ∈ V (p)
M, w, a |= i iff g(i) = a
M, w, a |= ¬ϕ iff it is not the case that M, w, a |= ϕ
M, w, a |= ϕ ∧ ψ iff M, w, a |= ϕ and M, w, a |= ψ
M, w, a |= Fϕ iff ∀b ∈ A; a ≍w b⇒ M, w, b |= ϕ
M, w, a |= Kϕ iff ∀v ∈ W ;w ∼a v ⇒ M, v, a |= ϕ
M, w, a |= @iϕ iff M, w, g(i) |= ϕ
M, w, a |=↓ iϕ iff M, w, gia |= ϕ

where gia = y if i = y and g(y) otherwise.

We will use the same hybrid tools to describe the network structure in Chap-
ters 4 to 6. Moreover, we will use an extension of this two-dimensional epistemic
hybrid setting in Chapter 6 to model the interaction between knowledge and
diffusion phenomena.

In addition to the formal tools from [145] introduced above, we also build on
the main ideas of the work of Seligman, Girard, and Liu on diffusion of opinions
under social influence from [120]. We will present those ideas below.

Opinion Change under Peer Pressure. The setting of [120] assumes that
each agent is always in one of the three following doxastic states, relatively to
a given proposition ϕ: either she believes that ϕ (Bϕ), or she believes that ¬ϕ
(B¬ϕ), or she is undecided about ϕ: (Uϕ – an abbreviation of ¬Bϕ ∧ ¬B¬ϕ).
Sentences are interpreted indexically at an agent in this hybrid setting: if p means
“I am a logician”, BFp reads “I believe that all my friends are logicians” and
FBp reads “each of my friends believes that s/he is a logician”.

This static framework is combined with an influence operator to represent how
belief repartition changes in a community, according to the following peer pressure
principle: every agent tends to align her belief with the ones of her friends.
The notions of Strong Influence and Weak Influence are defined, corresponding
respectively to the belief changing operators of revision (adoption of an opinion)
and contraction (abandon of an opinion) in the tradition of [4]. These two notions
determine entirely the dynamics:

An agent is strongly influenced (SI) to believe ϕ when all of her friends (and
at least one) believe that ϕ:

SIϕ := FBϕ ∧ ⟨F ⟩Bϕ

An agent under strong influence with respect to ϕ will come to believe ϕ too
whatever her initial attitude towards ϕ was9. An agent is already weakly influ-

9This implies that the revision process is restricted to successful formulas
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enced (WI) with respect to ϕ when some of her friends believe that ϕ and none
of her friends believe that ¬ϕ:

WIϕ := F¬B¬ϕ ∧ ⟨F ⟩Bϕ

Under weak influence, if the agent was undecided or if she already believed that
ϕ, nothing changes; but if she believed that ¬ϕ, she will drop her belief and
become undecided.

This simple setting is sufficient to model how opinions (about an implicit ϕ)
will spread in a community. Moreover, it allows for a simple characterization of
the stability and stabilization conditions of the influence process.

Stabilization. When is a configuration of opinions stable, according to the
above-defined dynamic rule? It is stable, trivially, when all agents are already
in the same state, but this is not the only case. For instance, if each agent has
both some friends who believe ϕ and some who believe ¬ϕ, or only has undecided
friends, then nothing will happen.

As in the case of the above mentioned threshold models, let us remark that
some configurations are particularly resistant to change: for example, a unani-
mously undecided (and therefore stable) community of three friends in which one
agent would start believing ϕ (for any reason other than influence) would continue
to be stable; and if all agents initially believe that ϕ and one agent revises with
¬ϕ, the community will resist the change even more strongly and immediately go
back to its initial (stable) state.

Interestingly, some configurations will never stabilize. If, for each agent (who
has at least one friend) in the community, all of her friends believe that ϕ and all
of their friends believe that ¬ϕ, they will keep switching beliefs forever, stuck in
a loop. Some configurations will stabilize after some iterated influence changes:
one undecided agent is sufficient for a configuration to be becoming stable.

One elegant advantage of such a simple framework is that it can talk about
stability and about stabilization within the language of friendship and belief.
The sufficient and necessary conditions simply correspond to the negation of the
preconditions of the revision and contraction actions, namely, SI and WI, both
for a given formula and for its negation.10 Moreover, all configurations which are
becoming stable can be fully characterized too, by simply negating the description
“looping scenario” mentioned above.1112

10For details, see [120][p. 8].
11Note that the only oscillating configurations are the ones where Bϕ and B¬ϕ are distributed

as a proper 2-coloring of the network graph. As a consequence, all networks which are not 2-
colorable, i.e. all networks containing cycles of odd length, guarantee stabilization of the opinion
distribution. We will come back to 2-colorability in Chapters 4 and 8.

12For more details about stabilization conditions for different diffusion rules and expressivity
of the corresponding languages, see Chapter 8 and our ongoing work in [61].
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This thesis takes its inspiration directly from the preceding lines of work, as
it investigates the way opinions and knowledge will or should change under social
influence.

More concretely, the material introduced in this chapter allows us to (1) de-
scribe properties of social network structures using graph theoretical notions,
(2) describe diffusion phenomena using models from social network analysis, (3)
model beliefs and knowledge of agents, and how these change when new informa-
tion is received using techniques from dynamic epistemic logic, and (4) specify
and axiomatize reasoning about social network structure and the evolution of
opinion under peer pressure, using ideas from Facebook logic and its follow-up
literature.

In the coming chapters, we will combine and enrich all those tools in several
ways as we confront concrete social scenarios and identify major general phenom-
ena to be explained in their proper generality.
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Introduction to Part II:
From Micro Success to Macro Failure?

Individual preferences sometimes give rise to counterintuitive results at the
collective level. This discrepancy between microbehavior and macrobehavior, il-
lustrated by Schelling’s work [144, 142, 143], is well-established in social sciences
and economics:

Economists are familiar with systems that lead to aggregate re-
sults that the individual neither intends nor needs to be aware of, the
results sometimes having no recognisable counterpart at the level of
the individual.[142, p.488]

A celebrated example is Schelling’s work on segregation modeling, thanks to which
he shows that strongly segregated neighborhoods are surprisingly not the result of
a strong preference of its habitants for living among similar individuals [142, 143].

This part of the thesis presents a logical case study of two social-epistemic
phenomena where individual and group behaviors seem to mismatch in a simi-
larly surprising way: individuals rationally hold beliefs which collectively lead the
group to some level of epistemic failure.

Chapter 3, based on the work published in [18], models the herding dynamic
phenomenon of informational cascades, where individuals are sequentially lead to
rationally form the same belief, whether it is true or not.

Chapter 4, presenting work published in [62], focuses on another form of collec-
tive error: pluralistic ignorance, a situation where all agents hold the same belief
but are all similarly mistaken about each other’s beliefs, this uniformity leading
everybody to stay in their state of error. Both phenomena feature discrepancies
between individual rationality and collective epistemic felicity.

Modeling these two phenomena should be seen a first step towards giving a
formal answer to a much more general question: under which conditions does
micro success lead to macro failure?





Chapter 3

Informational Cascades

3.1 Introduction

Informational cascades are social-informational herding phenomena, in which
sequential inter-agent communication might lead to collective epistemic failure,
despite availability of information that should be sufficient to track the truth.
This chapter models an example of an informational cascade in order to check
the correctness of the individual reasoning involved.

As there is no consensus on what this “correctness” amounts to exactly, we
will model the occurrence of the same cascade under two different rationality
assumptions : 1) standard Bayesian rationality, where agents are perfect proba-
bilistic reasoners; and 2) a simpler sumerical notion, where being rational amounts
to simply being able to count and compare the number of pieces of evidence for
two alternatives. To make sure cascades do not arise as the result of a lack of
higher-order reasoning, we assume, in both cases, that agents also are perfect
higher-order reasoners.

3.1.1 Outline

Section 3.1.2 first briefly introduces the phenomenon of informational cas-
cades, and Section 3.1.3 presents our motivation for a logical modeling of these.
Section 3.2 then recalls a paradigmatic example of a cascade and its standard
Bayesian analysis, as given in [71]. We then model the same example using two
different logical settings: an adaptation of probabilistic dynamic epistemic logic
[48, 112] in Section 3.3, and a new framework for counting evidence in Section 3.4.
Unlike the Bayesian modeling, both logical modelings represent agents with un-
bounded higher-order reasoning powers. Moreover, the first approach allows us
to still model perfect probabilistic reasoners, while the second one allows us to
model agents who use a heuristic reasoning method: they simply count pieces of
evidence supporting each alternative. Thanks to this twofold logical analysis, we
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will be able to generalize, beyond Bayesian rationality, the result that cascades
are sometimes unescapable by “rational” means. Indeed, the three different mod-
els confirm that the group’s inability to track the truth is sometimes a direct
consequence of each agent’s rational attempt at truth-tracking. In other words,
collective failure sometimes results from individual rationality.

3.1.2 The Phenomenon of Informational Cascades

We say that an informational cascade occurs when individuals in a sequence
imitate the choices of others despite the fact that their own private information
suggests otherwise. Let us illustrate the phenomenon by the example of the choice
of a restaurant, as given in [71]: Suppose an agent has some private information
that restaurant A is better than restaurant B. Nevertheless, when arriving at the
adjacent restaurants she sees a crowded restaurant B and an empty restaurant A,
which makes her decide to opt for restaurant B. In this case our agent interprets
the others’ choice for B as conveying some information about which restaurant is
better and this overrides her independent information that restaurant A is better.
However, it could very well be that all the people in restaurant B were confronted
with the same choice and chose that restaurant for the exact same reason.

By observing the decisions of the previous people in a sequence, individuals in
a cascade form an opinion about the information that the others might have, and
this opinion may outweigh other (private) information. In this way, individuals
in a sequence might be led to ignore their own private evidence and to simply
start following the crowd, whether the crowd is right or wrong. Examples of
informational cascades include bestseller lists for books, judges voting publicly
and sequentially, peer-reviewing processes, etc. [51]. While models of such phe-
nomena were independently developed in [50] and [34], the term informational
cascades is due to [50]. Traditionally investigated by the social sciences, informa-
tional cascades have recently become subject of philosophical reflection, as part of
the field of Social Epistemology [84, 86]. In particular, [99] gives a philosophical
discussion of informational cascades and the more general class of “info-storms”,
their triggers and their defeaters (“info-bombs”), as well as the epistemologi-
cal issues raised by the existence of such social-epistemic phenomena. We here
take the first step towards an epistemic logical study of informational cascades
by modeling cascades in a logical setting based on (both probabilistic and more
qualitative) versions of Dynamic-Epistemic Logic.

3.1.3 Mindless Imitation?

Intuitively, it may seem like individuals in a cascade, when following the crowd
in its error, must suffer from some form of irrationality: they must be misinter-
preting how previous agents have formed their beliefs or they must lack reasoning
power. However, it has already been shown that when agents are assumed to be
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Bayesian reasoners, they may still all enter a cascade, despite the fact that each
agent’s opinion is perfectly justified, given the information that is available to her.
In Section 3.2, we will recall one of the standard examples of such a “rational”
cascade, the “Urn example”, and its Bayesian model, as given in [71]. The in-
escapable conclusion seems to be that, in some cases, individual rationality leads
to group “irrationality”.

However, what is typically absent from this standard Bayesian analysis of
informational cascades is the agents’ higher-order reasoning about other agents’
minds and about the whole sequential protocol in which they are participating.
So one may still argue that by such higher-order reflection (and in particular, by
becoming aware of the dangers inherent in the sequential deliberation protocol),
“truly rational” agents should be able to avoid the formation of cascades.

We will go one step further and prove that there exists situations in which
no amount of higher-order reflection and meta-rationality can stop a cascade. To
show this, we present ( Section 3.3) a formalization of the above-mentioned Urn
example using Probabilistic Dynamic Epistemic Logic [48, 112]. Epistemic logic
takes into account all the levels of mutual belief/knowledge (beliefs about others’
beliefs, etc) about the current state of the world; while dynamic epistemic logic
adds also all the levels of mutual belief/knowledge about the on-going informa-
tional events (“the protocol”). As we will show, a cascade can still form. This
proves our point: some cascades cannot be prevented even by the most perfect,
idealized kind of individual rationality, one endowed with unlimited higher-level
reflective powers. Informational cascades of this “super-rational” kind can be
regarded as “epistemic Tragedies of the Commons”: paradoxes of (individual-
versus-social) rationality.

We then address a second objection raised against the Bayesian analysis of
informational cascades (Section 3.4). One may argue that real agents, although
engaging in cascades, do it for non-Bayesian reasons: instead of probabilistic con-
ditioning, they seem to use “rough-and-ready” qualitative heuristic methods, e.g.
by simply counting the pieces of evidence in favor of one hypothesis against its
alternatives. To model the reasoning produced by this kind of qualitative reason-
ing (by agents who still maintain their higher-level awareness of the other agents’
minds), we introduce a new framework – a multi-agent logic for counting evidence.
We show that, even if agents only use such a less sophisticated heuristic way of
reasoning than full-fledged probabilistic logic, they may still “rationally” engage
in informational cascades. Hence, the above conclusion can now be extended to
a wider range of agents: as long as the agents can count the evidence, then no
matter how high or how low are their reasoning abilities (even if they are capable
of full higher-level reflection about others’ minds, or dually even if they can’t go
beyond simple evidence counting), individual rationality may still lead to group
“irrationality”.
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3.2 The Bayesian Analysis of Cascades

The section recalls the Bayesian analysis of an informational cascade. We will
focus on a simple example that was created for studies of informational cascades
in a laboratory [5, 6].

3.2.1 The Urn Example

Consider two urns, respectively named UW and UB, where urn UW contains
two white balls and one black ball, and urn UB contains one white ball and two
black balls. One urn is randomly picked (say, using a fair coin) and placed in
a room. This setup is common knowledge to a group of agents, which we will
denote a1, a2, ..., an but they do not know which of the two urns is in the room.
The agents enter the room one at a time; first a1, then a2, and so on. Each agent
draws one ball from the urn, looks at it, puts it back, and leaves the room. Hence,
only the person in the room knows which ball she drew. After leaving the room
she makes a guess as to whether it is urn UW or UB that is placed in the room
and writes her guess on a blackboard for all the other agents to see. Therefore,
each individual ai knows the guesses of the previous people a1, a2, ..., ai−1 in the
sequence a1, a2, ..., an before entering the room herself. It is common knowledge
that they will be individually rewarded if and only if their own guess is correct.

3.2.2 Bayesian Analysis of the Example

To present the Bayesian Analysis of the urn example, we will follow the pre-
sentation of [71]. Let us assume that in fact urn UB has been placed in the room.
When a1 enters and draws a ball, there is a unique simple decision rule she should
apply: if she draws a white ball it is rational to make a guess for UW , whereas if
she draws a black one she should guess UB. We validate this by calculating the
probabilities. Let w1 denote the event that a1 draws a white ball and b1 denote
the event that she draws a black one. The proposition that it is urn UW which is
in the room will be denoted similarly by UW and likewise for UB. Given that it is
initially equally likely that each urn is placed in the room the probability of UW is
1
2
(P (UW ) = 1

2
), and similarly for UB. Observe that P (w1) = P (b1) =

1
2
. Assume

now that a1 draws a white ball. Then, via Bayes’ rule, the posterior probability
of UW is

P (UW |w1) =
P (UW ) · P (w1|UW )

P (w1)
=

1
2
· 2
3

1
2

=
2

3
.

Hence, it is indeed rational for a1 to guess UW if she draws a white ball (and
to guess UB if she draws a black ball). Moreover, when leaving the room and
making a guess for UW (resp. UB), all the other individuals can infer that she
drew a white (resp. black) ball.
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When a2 enters the room after a1, she knows the color which a1 drew and it
is obvious how she should guess if she draws a ball of the same color. If a1 drew
a white ball and a2 draws a white ball, then a2 should guess UW . Formally, the
probability of UW given that both a1 and a2 draw white balls is

P (UW |w1, w2) =
P (UW ) · P (w1, w2|UW )

P (w1, w2)
=

1
2
· 2
3
· 2
3

5
18

=
4

5
.

A similar reasoning applies if both drew black balls. If a2 draws an opposite
color of ball from a1, then the probabilities for UW and UB become equal. For
simplicity we will assume that any individual faced with equal probability for
UW and UB will guess for the urn that contains more balls of the color she saw
herself: if a1 drew a white ball and a2 draws a black ball, a2 will guess UB.

1 Hence,
independent of which ball a1 draws, a2 will always guess for the urn matching
the color of her privately drawn ball. We assume that this tie-breaking rule is
common knowledge among the agents too. In this way, every individual following
a2 can also infer the color of a2’s ball.

When a3 enters, a cascade can arise. If a1 and a2 drew balls of different
colors, a3 is rational to guess for the urn that matches the color of the ball she
draws. Nevertheless, if a1 and a2 drew the same color of balls (given the reasoning
previously described, a3 will know this), say both white, then no matter what
color of ball a3 draws the posterior probability of UW will be higher than the
probability of UB (and if a1 and a2 both drew black balls the other way around).
To check this let us calculate the probability of UW given that a1 and a2 drew
white balls and a3 draws a black one:

P (UW |w1, w2, b3) =
P (UW ) · P (w1, w2, b3|UW )

P (w1, w2, b3)
=

1
2
· 2
3
· 2
3
· 1
3

1
9

=
2

3
.

It is obvious that P (UW |w3, w2, w1) will be even larger, thus whatever ball a3
draws, it will be rational for her to guess for UW . Hence, if a1 and a2 draw the
same color of balls a cascade will start from a3 on!2 The individuals following a3
should therefore take a3’s guess as conveying no new information. Furthermore,
everyone after a3 will have the same information as a3 (the information about
what a1 and a2 drew) and their reasoning will therefore be identical to the one
of a3 and the cascade will continue.

1This tie-breaking rule is a simplifying assumption but it does not affect the likelihood of
cascades arising. Moreover, there seems to be some empirical evidence that this is what most
people do and it is also a natural tie-breaking rule if the individuals assign a small chance to
the fact that other people might make errors [6].

2Note that the cascade will start even if we change the tie-breaking rule of a2 such that she
randomizes her guess whenever she draws a ball contradicting the guess of a1. In this case, if a1
and a2 guess for the same urn, a3 will not know the color of a2’s ball, but she will still consider
it more likely that a2’s ball matches the ball of a1 and hence consider it more likely that the
urn which they have picked is the one in the room.
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If UB is, as we assumed, the urn actually placed in the room and both a1 and
a2 draw white balls (which happens with probability 1

9
) then a cascade leading to

everyone making the wrong guess starts. Note, however, that if both a1 and a2
draw black balls (which happens with probability 4

9
), then a cascade still starts,

but this time it will lead to everyone making the right guess. Thus, when a
cascade happens it is four times more likely in this example that it leads to right
guesses than to the wrong guesses. This already supports the claim that rational
agents can be well aware of the fact that they are in a cascade without it forcing
them to change their decisions.

The general conclusion of this example is that even though informational
cascades can look irrational from a social perspective, they are not irrational
from the perspective of any individual participating in them.

3.2.3 Objections

The above semi-formal analysis summarizes the standard Bayesian treatment
of the urn example, as given e.g. in [71]. However, as we mentioned in Sec-
tion 3.1.3, several objections may be raised against the way the conclusion is
reached by this analysis. First of all, the example has only been partially for-
malized, in the sense that the public announcements of the individuals’ guesses
are not explicitly present in it, neither is the reasoning that lets the individuals
ignore the guesses of the previous people caught in a cascade. Moreover, the pro-
posed analysis does not formally capture the agents’ full higher-order reasoning
(i.e. their reasoning about the others’ beliefs and about the others’ higher-order
reasoning about their beliefs, etc). Therefore, the above argument does not rule
out the possibility that some kind of higher-order reflection may help prevent (or
break) an informational cascade: it might be the case that, after realizing that
they are participating in a cascade, agents may use this information to try to stop
the cascade. For all these reasons, it seems necessary to give a more complete
analysis, capturing both the communication and the full higher-order reasoning
of the agents. This is precisely what we will do in the next sections: we will check
whether the same conclusion (the inescapability of cascades by rational means)
is reached when agents are dotted with more reasoning powers.

3.3 Probabilistic DEL Modeling

In this section we will analyze cascades using the tools of Probabilistic Dy-
namic Epistemic Logic [48, 112]. Our presentation will be based on a simplified
version of the framework from [48], in which agents are introspective as far as
their own subjective probabilities are concerned (so that an agent’s subjective
probability assignment does not depend on the actual state of the world but only
on that world’s partition cell in the agent’s information partition). We also use a
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slightly different graphic representation, which makes explicit the odds between
any two possible states (considered pairwise) according to each agent. This allows
us to present directly a comparative treatment of the rational guess of each agent
and will make obvious the similarity with the framework for “counting evidences”
that we will introduce in Section 3.4. We start with some definitions.

3.3.1 State Models

3.3.1. Definition. [Probabilistic Epistemic State Models] A probabilistic multi-
agent epistemic state modelM is a structure (S,A, (∼a)a∈A, (Pa)a∈A,Ψ, ∥•∥) such
that:

• S is a set of states (or “possible worlds”);

• A is a set of agents;

• for each agent a, ∼a ⊆ S × S is an equivalence relation interpreted as
agent a’s epistemic indistinguishability. This captures the agent’s hard
information about the actual state of the world;

• for each agent a, Pa : S → [0, 1] is a map that induces a probability measure
on each ∼a-equivalence class (i.e., we have

∑
{Pa(s

′) : s′ ∼a s} = 1 for each
a ∈ A and each s ∈ S). This captures the agent’s subjective probabilistic
information about the state of the world;

• Ψ is a given set of “atomic propositions”, denoted by p, q, . . .. Such atoms
p are meant to represent ontic “facts’ that might hold in a world.

• ∥•∥ : Ψ → P(S) is a “valuation” map, assigning to each atomic proposition
p ∈ Ψ some set of states ∥p∥ ⊆ S. Intuitively, the valuation tells us which
facts hold in which worlds.

3.3.2. Definition. [Relative Likelihood] The relative likelihood (or “odds”) of
a state s against a state t according to agent a, [s : t]a, is defined as

[s : t]a :=
Pa(s)

Pa(t)
.

We will draw probabilistic epistemic state models in the following way (see
Figure 3.1 below and the following ones): each state is drawn as an oval, con-
taining the name of the state and the facts p that are “true” at the state (i.e.
the atomic sentences p such that their valuation ∥p∥ contains this state). For
each agent a ∈ A, we draw a-labeled arrows going from each state s towards all
the states in the same a-information cell to which a attributes equal or higher
odds (than to state s). Therefore, the qualitative arrows represent both the hard
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information (indistinguishability relation) and the probability ordering relative to
an agent: arrows point towards the indistinguishable states that she considers to
be at least as probable. To make explicit the odds assigned by agents to states,
we label these arrows with the quantitative information (followed by the agents’
names in the brackets). For instance, the fact that [s : t]a =

α
β
is encoded by an

a-arrow from state s to state t labeled with the quotient α : β(a). For simplicity,
we don’t represent the loops relating each state to itself, in every model, since ev-
ery state of every model is trivially a-indistinguishable from itself for each agent,
with equal odds (1 : 1) to itself.

The initial situation. To illustrate a probabilistic epistemic state model with
odds, consider the initial situation of our urn example presented in Section 3.2 as
pictured in Figure 3.1. In this initial model M0, it is equally probable that UW
or UB is true (and therefore the prior odds are equal) and all agents know this.
The actual state (denoted by the thicker oval) sB satisfies the proposition UB,
while the state sW satisfies the proposition UW . The bidirectional arrow labeled
with “1:1 (all a)” represents the fact that all agents consider both states equally
probable.

sW

UW

sB

UB

1:1 (all a)

Figure 3.1: The initial probabilistic state model M0 of the urn example.

3.3.3. Definition. [Epistemic-probabilistic language] As in [48], the “static”
language we adopt to describe these models is the epistemic-probabilistic language
due to Halpern and Fagin [75]. The syntax is given by the following Backus-Naur
form:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | Kaϕ | α1 · Pa(ϕ) + . . .+ αn · Pa(ϕ) ≥ β

where p ∈ Ψ are atomic propositions, a ∈ A are agents and α1, . . . , αn, β stand
for arbitrary rational numbers. Let us denote this language by L.

The semantics is given by associating to each formula ϕ and each model
M = (S,A, (∼a)a∈A, (Pa)a∈A), some interpretation ∥ϕ∥M ⊆ S, given recursively
by the obvious inductive clauses3. If s ∈ ∥ϕ∥M ⊆ S, then we say that ϕ is true
at state s (in model M).

3It is worth noting that, when checking whether a given state s belongs to ∥ϕ∥, every
expression of the form Pa(ψ) is interpreted conditionally on agent a’s knowledge at s, i.e. as
Pa(∥ψ∥ ∩ {s′ ∈ S : s′ ∼a s}). See [75], [48] for details.
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In this language, one can introduce strict inequalities, as well as equalities, as
abbreviations, e.g.:

Pa(ϕ) > Pa(ψ) := ¬(Pa(ψ)− Pa(ϕ) ≥ 0),

Pa(ϕ) = Pa(ψ) := (Pa(ϕ)− Pa(ψ) ≥ 0) ∧ (Pa(ψ)− Pa(ϕ) ≥ 0)

One can also define an expression saying that an agent a assigns higher odds to
ϕ than to ψ (given her current information cell):

[ϕ : ψ]a > 1 := Pa(ϕ) > Pa(ψ)

3.3.2 Event Models

To model the incoming of new information, we use probabilistic event models,
as introduced by van Benthem et al. [48]: these are a probabilistic refinement
of the notion of event models of Dynamic Epistemic Logic [24]. Here we use a
simplified setting, which assumes introspection of subjective probabilities.

3.3.4. Definition. [Probabilistic Event Models] A probabilistic event model E
is a sextuple (E,A, (∼a)a∈A, (Pa)a∈A,Φ, pre) such that:

• E is a set of possible events,

• A is a set of agents;

• ∼a⊆ E × E is an equivalence relation interpreted as agent a’s epistemic
indistinguishability between possible events, capturing a’s hard information
about the event that is currently happening;

• Pa gives a probability assignment for each agent a and each ∼a-information
cell. This captures some new, independent subjective probabilistic informa-
tion gained by the agent during the event: when observing the current event
(without using any prior information), agent a assigns probability Pa(e) to
the possibility that in fact e is the actual event that is currently occurring;

• Φ is a finite set of mutually inconsistent propositions (in the above probabilistic-
epistemic language L), called preconditions ;

• pre assigns a probability distribution pre(•|φ) over E for every proposi-
tion φ ∈ Φ. This is an “occurrence probability”: pre(e|φ) expresses the
prior probability that event e ∈ E might occur in a(ny) state satisfying
precondition φ.

As before, the probability Pa can alternatively be expressed as probabilistic
odds [e : e′]a for any two events e, e′ and any agent a. Our event models are
drawn in the same fashion as our state models above: for each agent a, a-arrows
go from a possible event e towards all the events (of a’s information cell) to which
a attributes equal or higher odds.
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The first agent’s observation. As an example of an event model, consider
the first observation of a ball in our urn case, as represented in the model E1 from
Figure 3.2. Here a1 draws a white ball from the urn and looks at it. According
to all the other agents, two events can happen: either a1 observes a white ball
(the actual event w1, denoted by a thicker frame) or she observes a black one
(event b1). Moreover, only agent a1 knows which event is the actual one. The
expressions pre(UW ) = 2

3
and pre(UB) =

1
3
depicted at event w1 represents that

the prior probabilities pre(w1 | UW ) that event w1 occurs when UW is satisfied is
2
3
while the probability pre(w1 | UB) that event w1 happens when UB is satisfied

is 1
3
(and vice versa for event b1). The bidirectional arrow for all agents except a1

represents the fact that agent a1 can distinguish between the two possible events
(since she knows that she sees a white ball), while the others cannot distinguish
them and have (for now) no reason to consider one event more likely than the
other, i.e., their odds are 1 : 1.

w1 pre(UW ) = 2
3

pre(UB) =
1
3

b1 pre(UW ) = 1
3

pre(UB) =
2
3

1:1 (all a ̸= a1)

Figure 3.2: The probabilistic event model E1 of agent a1 drawing a white ball.

3.3.3 Product Update

To model the change of odds after new information is received, we now combine
probabilistic epistemic state models with probabilistic event models using a notion
of product update.

3.3.5. Definition. [Probabilistic Product Update] Given a probabilistic epis-
temic state model M = (S,A, (∼a)a∈A, (Pa)a∈A,Ψ, ∥•∥) and a probabilistic event
model E = (E,A, (∼a)a∈A, (Pa)a∈A,Φ, pre), the updated state model M ⊗ E =
(S ′,A, (∼′

a)a∈A, (P
′
a)a∈A,Ψ

′, ∥ • ∥′), is given by:

S ′ = {(s, e) ∈ S × E | pre(e | s) ̸= 0},

Ψ′ = Ψ,

∥p∥′ = {(s, e) ∈ S ′ : s ∈ ∥p∥},

(s, e) ∼′
a (t, f) iff s ∼a t and e ∼a f,

P ′
a(s, e) =

Pa(s) · Pa(e) · pre(e | s)∑
{Pa(t) · Pa(f) · pre(f | t) : s ∼a t, e ∼a f}

,
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where we used the notation

pre(e | s) :=
∑

{pre(e | φ) : φ ∈ Φ such that s ∈ ∥φ∥M}

(so that pre(e | s) is either = pre(e|φs) where φs is the unique precondition in Φ
such that φs is true at s, or otherwise pre(e | s) = 0 if no such precondition φs
exists).

This definition can be justified on Bayesian grounds: the definition of the
new indistinguishability relation simply says that the agent puts together her old
and new hard information4; while the definition of the new subjective probabil-
ities is obtained by multiplying the old probability previously assigned to event
e (obtained by applying the conditioning rule Pa(e) = Pa(s) · Pa(e | s) =
Pa(s) · pre(e | φs)) with the new probability independently assigned (without
using any prior information) to event e during the event’s occurrence, and then
renormalizing to incorporate the new hard information. The reason for using
multiplication is that the two probabilities of e are supposed to represent two
independent pieces of probabilistic information.5

Again, it is possible, and even easier, to express posterior probabilities in
terms of posterior relative likelihoods:

[(s, e) : (t, f)]a = [s : t]a · [e : f ]a ·
pre(e | s)

pre(f | t)
.

Result of the first agent’s observation. The result of the product update
of the initial state model M0 from Fig. 3.1 with the event model E1 of Fig. 3.2
is given by the new model M0 ⊗ E1 of Fig. 3.3. The upper right state is the
actual situation, in which UB is true, but in which the first ball which has been
observed was a white one. Agent a1 knows that she observed a white ball (w1),
but she does not know which urn is the actual one, so her actual information cell
consists of the upper two states, in which she considers UW to be twice as likely
as UB. The other agents still cannot exclude any possibility. This is going to
change once the first agent announces her guess.

4This is the essence of the “Product Update” introduced by Baltag et alia [24], which forms
the basis of most widespread versions of Dynamic Epistemic Logic.

5In fact, this feature is irrelevant for our analysis of cascades: no new non-trivial probabilistic
information is gained by the agents during the events forming our cascade example. This is
reflected in the fact that, in our analysis of cascades, we will use only event models in which
the odds are 1 : 1 between any two indistinguishable events.
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(sW , w1)
UW

(sB , w1)
UB

(sW , b1)
UW

(sB , b1)
UB

2:1 (all a)

2:1 (all a)

2:1 (all a ̸= a1) 2:1 (all a ̸= a1)

1:1 (all a ̸= a1)

1:1 (all a ̸= a1)

Figure 3.3: The updated probabilistic state model M0⊗E1 after a1 draws a white
ball.

3.3.4 Public Announcement

To model the agents’ announcements of their guesses, we will use the standard
public announcements of [133], where a (truthful) public announcement !ϕ of
a proposition ϕ is an event which has the effect of deleting all worlds of the
initial state model that do not satisfy ϕ. Note that, public announcements !ϕ
can be defined as a special kind of probabilistic event models: take E = {e!ϕ},
∼a= {(e!ϕ, e!ϕ)}, Φ = {ϕ}, pre(e!ϕ | ϕ) = 1, Pa(e!ϕ) = 1.

The first agent announces her guess. Now, after her private observation,
agent a1 publicly announces that she considers UW to be more likely than UB.
This is a public announcement !([UW : UB]a1 > 1) of the sentence [UW : UB]a1 > 1
(as defined above as an abbreviation in our language), expressing the fact that
agent a1 assigns higher odds to urn UW than to urn UB. Since all agents know
that the only reason a1 could consider UW more likely than UB is that she drew
a white ball (her announcement can be truthful only in the situations in which
she drew a white ball), the result is that all agents come to know this fact. This
is captured by our modelling, where her announcement simply erases the states
(sW , b1) and (sB, b1) and results in the new model M1 of Fig. 3.4.

(sW , w1)

UW

(sB , w1)

UB

2:1 (all a)

Figure 3.4: The updated probabilistic state model M1 after a1’s announcement.
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The second agent. By repeating the above reasoning, we know that, after
another observation of a white ball by agent a2 (the event model is as above
in Fig. 3.2 but relative to agent a2 instead of agent a1) and a similar public
announcement of [UW : UB]a2 > 1, the resulting state model M2, depicted in
Fig. 3.5, will be such that all agents now consider UW four times more likely than
UB.

(sW , w1, w2)

UW

(sB , w1, w2)

UB

4:1 (all a)

Figure 3.5: The updated probabilistic state model M2 after a2’s announcement.

3.3.5 The Birth of a Cascade

The third agent. Let us now assume that agent a3 enters the room and pri-
vately observes a black ball. The event model E3 of this action is in Figure 3.6,
and is again similar to the earlier event model (Fig. 3.2) but relative to agent a3
and this time, since a black ball is observed, the actual event is b3.

w3 pre(UW ) = 2
3

pre(UB) =
1
3

b3 pre(UW ) = 1
3

pre(UB) =
2
3

1:1 (all a ̸= a3)

Figure 3.6: The probabilistic event model E3 of a3 drawing a black ball.

The result of a3’s observation is then given by the updated state modelM2⊗E3
shown in Figure 3.7.

Since only agent a3 knows what she has observed, her actual information
cell only contains the states in which the event b3 has happened, while all other
agents cannot distinguish between the four possible situations. Moreover, agent
a3 still considers UW more probable than UB, irrespective of the result of her
private observation (w3 or b3). So the fact that [UW : UB]a3 > 1 is now common
knowledge (since it is true at all states of the entire model). This means that
announcing this fact, via a new public announcement of [UW : UB]a3 > 1 will not
delete any state: the model M3 after the announcement is simply the same as
before (Fig. 3.7).
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(sW , w1, w2, w3)
UW

(sB , w1, w2, w3)
UB

(sW , w1, w2, b3)
UW

(sB , w1, w2, b3)
UB

8:1 (all a)

2:1 (all a)

2:1 (all a ̸= a3) 2:1 (all a ̸= a3)

4:1 (all a ̸= a3)

4:1 (all a ̸= a3)

Figure 3.7: The probabilistic state model M2 ⊗ E3 after a3 draws a black ball,

So the third agent’s public announcement bears no information whatsoever :
an informational cascade has been formed, even though all agents have reasoned
correctly about probabilities. From now on, the situation will keep repeating
itself: although the state model will keep growing, all agents will always consider
UW more probable than UB in all states (irrespective of their own observations).
This is shown formally by the following result.

3.3.6. Proposition. Starting in the model in Fig. 3.1 and following the above
protocol, we have that: after n−1 private observations and public announcements
e1, !([UW : UB]a1 > 1) . . . , en−1, !([UW : UB]an−1 > 1) by agents a1, . . . , an−1, with
n ≥ 3, e1 = w1 and e2 = w2, the new state model Mn−1 will satisfy

[UW : UB]a > 1, for all a ∈ A.

To show this, we prove the following stronger proposition:

3.3.7. Proposition. After n − 1 private observations and announcements as
above, the new state model Mn−1 will satisfy

[UW : UB]ai ≥ 2, for all i < n, and

[UW : UB]ai ≥ 4, for all i ≥ n.

From this claim, the desired conclusion follows immediately.

Proof: We give only a sketch of the proof, using an argument based on partial
descriptions of our models. The base case n = 3 was already proved above.
Assume the inductive hypothesis for n − 1. By lumping together all the UW -
states in Mn−1, and similarly all the UB-states, we can represent this hypothesis
via the following partial representation of Mn−1:
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UW UB

≥ 2 : 1(all ai, i < n)

≥ 4 : 1(all ai, i ≥ n)

Note that this is just a “bird’s view” representation: the actual model Mn−1

has 2n−2 states. To see what happens after one more observation en by agent n,
take the update produce of this representation with the event model En, given
by:

wn pre(UW ) = 2
3

pre(UB) =
1
3

bn pre(UW ) = 1
3

pre(UB) =
2
3

1:1 (all a ̸= an)

The resulting product is:

UW , wn UB , wn

UW , bn UB , bn

≥ 1 : 1(all ai, i < n)

≥ 2 : 1(all ai, i ≥ n)

≥ 4 : 1(all ai, i < n)

≥ 8 : 1(all ai, i ≥ n)

2:1 (all a ̸= an) 2:1 (all a ̸= an)

(all a ̸= an)

(all a ̸= an)

where for easier reading we skipped the numbers representing the probabilistic
information associated to the diagonal arrows (numbers which are not relevant
for the proof).

By lumping again together all indistinguishable UW -states in Mn−1, and sim-
ilarly all the UB-states, and reasoning by cases for agent an (depending on her
actual observation), we obtain:

UW UB

≥ 2 : 1(all ai, i ≤ n)

≥ 4 : 1(all ai, i > n)

Again, this is just a bird’s view: the actual model has 2n states. But the
above partial representation is enough to show that, in this model, we have
[UW : UB]ai ≥ 2 for all i < n + 1, and [UW : UB]ai ≥ 4 for all i ≥ n + 1.
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Since in particular [UW : UB]an > 1 holds in all the states, this fact is common
knowledge: so, after publicly announcing it, the model stays the same! Hence,
we proved the induction step for n. □

So, in the end, all the guesses will be wrong: the whole group will assign a
higher probability to the wrong urn (UW ). Thus, we have proved that individual
Bayesian rationality with perfect higher-level reflective powers can still lead to
“group irrationality”. This shows that in some situations there simply is no
higher-order information available to any of the agents to prevent them from
entering the cascade; not even the information that they are in a cascade can
help in this case. (Indeed, in our model, after the two guesses for UW of a1 and
a2, it is already common knowledge that a cascade has been formed!)

3.3.6 Objection

A possible objection to the model presented in this section is that it still relies
on the key assumption that the involved agents are perfect Bayesian reasoners.
However, many authors argue that rationality cannot be identified with Bayesian
rationality. There are other ways of reasoning that can be deemed rational with-
out involving doing cumbersome Bayesian calculations. It is therefore possible to
object to our formalization of rational cascades which lead a group to collective
failure that it relies on this unrealistic notion of rationality. In practice, many
people seem to use much simpler “counting” heuristics, e.g. guessing UW when
one has more pieces of evidence in favor of UW than in favor of UB, i.e. one knows
that more white balls were drawn than black balls. Hence, the next section will
turn to a model of informational cascades based on simple counting instead of
Bayesian updates.

3.4 Counting DEL Modeling

To address the above objection, according to which an agent can be taken
to be rational without having to be a perfect probabilistic reasoner, this section
presents a formalized setting of the same urn example using a notion of rationality
based on a simple counting heuristic instead of full-fledge Bayesian probabilities.
The logical framework for this purpose is inspired by the probabilistic framework
of the previous section. However, it is substantially simpler: instead of calculating
the probability of a given possible state, agents simply count the evidence in favor
of this state. In a nutshell, an agent is deemed rational as long as he can count
and compare two numbers to decide which one is the biggest.
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3.4.1 State Models

More precisely, we label each state with a number representing the strength
of all evidence in favor of that state being the actual one. This intuition is
represented in the following formal definition:

3.4.1. Definition. [Counting Epistemic Models] A counting multi-agent epis-
temic model M is a structure (S,A, (∼a)a∈A, f,Ψ, ∥ • ∥) such that:

• S is a set of states,

• A is a set of agents,

• ∼a ⊆ S × S is an equivalence relation interpreted as agent a’s epistemic
indistinguishability,

• f : S → N is an “evidence-counting” function, assigning a natural number
to each state in S,

• Ψ is a given set of atomic sentences,

• ∥ • ∥ : Ψ → P(S) is a valuation map.

The initial situation. We can now represent the initial situation of the urn
example by the model of Figure 3.8. The two possible states sW and sB correspond
to UW (resp. UB) being placed in the room. The notation UW ; 0 at the state sW
represents that f(sW ) = 0 and that the atomic proposition UW is true at sW (and
all other atomic propositions are false). The line between sW and sB labeled by
“all a” means that the two states are indistinguishable for all agents a. Finally,
the thicker line around sB represents that sB is the actual state.

sW

UW ; 0

sB

UB ; 0

all a

Figure 3.8: The initial counting model of the urn example.

3.4.2 Event Models

We now turn to how to update counting epistemic models. However, first
note that, at this stage, there is not much that distinguishes counting epistemic
models from probabilistic ones. In the case where models are finite, one can
simply sum up the values of f(w) for all states w in a given information cell and
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rescale f(w) by this factor thereby obtaining a probabilistic model from a counting
model. Additionally, assuming that all probabilities are rational numbers one
can easily move the other way as well. Despite this similarity, when we address
dynamic issues, the counting framework becomes significantly simpler than the
probabilistic one. Indeed, we will not need to use multiplication together with
Bayes’ rule and renormalization, we can simply use addition. More formally:

3.4.2. Definition. [Counting Event Models] A counting event model E is a
quintuple (E,A, (∼a)a∈A,Φ, pre) such that:

• E is a set of possible events,

• A is a set of agents,

• ∼a⊆ E × E is an equivalence relation interpreted as agent a’s epistemic
indistinguishability,

• Φ is a finite set of pairwise inconsistent propositions,

• pre : E → (Φ → (N ∪ {⊥})) is a function from E to functions from Φ to
the natural numbers (extended with ⊥)6. It assigns to each event e ∈ E
a function pre(e), which to each proposition φ ∈ Φ assigns the strength of
evidence that the event e provides for φ.

The first agent’s observation. As an example of a counting event model, the
event model of the first agent drawing a white ball is shown in Figure 3.9. In
this event model there are two events w1 and b1, where the actual event is w1

(marked by the thick box). A notation like pre(UW ) = 1 at w1 simply means
that pre(w1)(UW ) = 1.7 Finally, the line between w1 and b1 labeled “all a ̸= a1”
represents that the events w1 and b1 are indistinguishable for all agents a except
a1.

w1; pre(UW ) = 1
pre(UB) = 0

b1; pre(UW ) = 0
pre(UB) = 1

all a ̸= a1

Figure 3.9: The counting event model of a1 drawing a white ball.

6Here, ⊥ essentially means “undefined”: so it is just an auxiliary symbol used to describe
the case when pre is a partial function.

7To fit the definition of counting event models properly, UW and UB must be pairwise
inconsistent, however, this claim fits perfectly with the example where only one of the urns is
placed in the room and we could simple replace UW by ¬UB .



3.4. Counting DEL Modeling 49

(sW , w1)
UW ; 1

(sB , w1)
UB ; 0

(sW , b1)
UW ; 0

(sB , b1)
UB ; 1

all a

all a

all a ̸= a1 all a ̸= a1

all a ̸= a1

all a ̸= a1

Figure 3.10: The updated counting model after a1 draws a white ball.

3.4.3 Product Update

A counting epistemic model is updated with a counting event model in the
following way:

3.4.3. Definition. [Counting Product Update]

Given a counting epistemic model M = (S,A, (∼a)a∈A, f,Ψ, ∥ • ∥) and a
counting event model E = (E,A, (∼a)a∈A, pre), we define the product update
M⊗E = (S ′,A, (∼′

a)a∈A, f
′,Ψ′, ∥ • ∥) by

S ′ = {(s, e) ∈ S × E | pre(s, e) ̸= ⊥},

Ψ′ = Ψ,

∥p∥′ = {(s, e) ∈ S ′ : s ∈ ∥p∥},

(s, e) ∼a (t, f) iff s ∼a t and e ∼a f,

f ′((s, e)) = f(s) + pre(s, e), for (s, e) ∈ S ′,

where we used the notation pre(s, e) to denote pre(e)(φs) for the unique φs ∈ Φ
such that s ∈ ∥φs∥M, if such a precondition φs ∈ Φ exist, and otherwise we put
pre(s, e) = ⊥.

The result of the first agent’s observation. With this definition we can
now calculate the product update of the models of the initial situation (Fig. 3.8)
and the first agent drawing a white ball (Fig. 3.9). The resulting model is shown
in Figure 3.10.
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3.4.4 Public Announcement

We need to say how we will represent the action that agent a1 guesses urn
UW . As in the case of probabilistic modeling we will interpret this action as
a public announcement. A public announcement of φ in the classical sense of
eliminating all non-φ states, is a special case of a counting event model with
just one event e, Φ = {φ}, ∼a= {(e, e)} for all a ∈ A, and pre(e)(φ) = 0.
Setting pre(e)(φ) = 0 reflects the choice that we take public announcements
not to provide any increase in the strength of evidence for any possible state,
but only revealing hard information about which states are possible. In the urn
example it is the drawing of a ball from the urn that increases the strength of
evidence, whereas the guess simply conveys information about the announcer’s
hard information about the available evidence for either UW or UB. As in the
previous section, we will interpret the announcements as revealing whether their
strength of evidence for UW is smaller or larger than their strength of evidence
for UB.

We therefore require a formal language that contains formulas of the form
φ <a ψ, for all formulas φ and ψ. The semantics of the new formula is given by:

∥φ <a ψ∥M = {s ∈ S | f(a, s, ∥φ∥M) < f(a, s, ∥ψ∥M)},

where for any given counting model M = (S, (∼a)a∈A, f,Ψ, ∥ • ∥) and any set of
states T ⊆ S we use the notation

f(a, s, T ) :=
∑

{f(t) : t ∈ T such that t ∼a s}.

The first agent announces her guess. The event that agent a1 announces
that she guesses in favor of UW will be interpreted as a public announcement of
UB <a1 UW . This proposition is only true at the states (sW , w1) and (sB, w1)
of the above model and thus the states (sW , b1) and (sB, b1) are removed in the
resulting model shown in Figure 3.11.

(sW , w1)

UW ; 1

(sB , w1)

UB ; 0

all a

Figure 3.11: The counting model after a1 publicly announces that UB <a1 UW .

The second agent. Moreover, the event that a2 draws a white ball can be
represented by an event model identical to the one for agent a1 drawing a white
ball (Fig. 3.9) except that the label on the drawn relation should be changed to
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“all a ̸= a2”. The updated model after the event that a2 draws a white ball will
look as shown in Figure 3.12. Note that in this updated model, UB <a2 UW is
only true at (sW , w1, w2) and (sB, w1, w2), thus when a2 announces her guess for
UW (interpreted as a public announcement of UB <a2 UW ) the resulting model is
pictured in Figure 3.13.

(sW , w1, w2)
UW ; 2

(sB , w1, w2)
UB ; 0

(sW , w1, b2)
UW ; 1

(sB , w1, b2)
UB ; 1

all a

all a

all a ̸= a2 all a ̸= a2

all a ̸= a2

all a ̸= a2

Figure 3.12: The updated counting model after a2 draws a white ball.

(sW , w1, w2)

UW ; 2

(sB , w1, w2)

UB ; 0

all a

Figure 3.13: The counting model after a2 publicly announces that UB <a2 UW .

3.4.5 The Birth of a Cascade

The third agent. Assuming that agent a3 draws a black ball this can be rep-
resented by an event model almost identical to the one for agent a1 drawing a
white ball (Fig. 3.9). The only differences are that the label on the line should be
changed to “all a ̸= a3)” and the actual event should be b3. Updating the model
of Figure 3.13 with this event will result in the model of Figure 3.14.

Note that in Figure 3.14 the proposition UB <a3 UW is true in the entire
model. Hence, agent a3 has more evidence for UW than UB and thus, no states
will be removed from the model when she announces her guess for UW (a public
announcement of UB <a3 UW ). If a3 had drawn a white ball instead, the only
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(sW , w1, w2, w3)
UW ; 3

(sB , w1, w2, w3)
UB ; 0

(sW , w1, w2, b3)
UW ; 2

(sB , w1, w2, b3)
UB ; 1

all a

all a

all a ̸= a3 all a ̸= a3

all a ̸= a3

all a ̸= a3

Figure 3.14: The updated counting model after a3 draws a black ball.

thing that would have be different in the model of Figure 3.14 is that the actual
state would be (sB, w1, w2, w3). Therefore, this would not change the fact that a3
guesses for UW and this announcement will remove no states from the model ei-
ther. In this way, none of the following agents gain any information from learning
that a3 guessed for UW .

Subsequently whenever an agent draws a ball, she will have more evidence for
UW than for UB. Thus, the agents will keep guessing for UW . However, these
guesses will not delete any more states. Hence, the models will keep growing
exponentially reflecting the fact that no new information is revealed. In other
words, an informational cascade has started. Formally, one can show the following
result:

3.4.4. Proposition. Let Mn be the updated model after agent an draws either
a white or a black ball. Then, if both a1 and a2 draw white balls (i.e. we are in
the model of Fig. 3.12), then for all n ≥ 3, UB <an UW will be true in all states
of Mn.

In words: after the first two agents have drawn white balls all the following
agents will all have more evidence for UW than UB (no matter which color of
ball they draw) and will therefore guess for UW , however, these guesses will be
uninformative to the subsequent agents as the public announcement of UB <a UW
will delete no worlds.

Before we can prove this proposition we need some definitions. For all n ≥ 3,
let En be the event model expressing that agent an draws either a white ball (wn)
or a black ball (bn)

8, for instance E1 is shown in Figure 3.9. Furthermore, let Mn

denote the model obtained after updating with the event En, henceMn = Mn−1⊗
En. The model M3 is shown in Figure 3.14. We will denote the domain of Mn by

8Which color of ball an draws does not matter as it only affects which state will be the
actual state.
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dom(Mn). For a proposition φ, we will by fn(φ) denote
∑

{f(s) | s ∈ ∥φ∥Mn
}.

Note that f 2(UW ) = 2, f 3(UW ) = 5, f 2(UB) = 0, and f 3(UB) = 1.
Now Proposition 2 follows from the following lemma:

3.4.5. Lemma. For all n ≥ 3 the following hold:

(i) Let [w]n := dom(Mn−1)×{wn} and [b]n := dom(Mn−1)×{bn}. Then [w]n
and [b]n are the only two information cells of agent an in Mn, dom(Mn) =
([w]n∪[b]n), and |[w]n| = |[b]n| = 2n−2. Additionally, for all k > n, Mn con-
tains only one information cell for agent ak, namely the entire dom(Mn).
Furthermore, UW is true in 2n−3 states of [w]n and 2n−3 states of [b]n, and
similar, UB is true in 2n−3 states of [w]n and 2n−3 states of [b]n.

(ii) For s ∈ [w]n, f(an, s, UW ) = fn−1(UW ) + 2n−3and f(an, s, UB) = fn−1(UB).
For s ∈ [b]n, f(an, s, UW ) = fn−1(UW ) and f(an, s, UB) = fn−1(UB) + 2n−3.

(iii) fn(UB) + 2n−2 < fn(UW ).

(iv) UB <an UW is true at all states of Mn.

Proof: The proof goes by induction on n. For n = 3 the statements (i) − (iv)
are easily seen to be true by inspecting the model M3 as shown in Figure 3.14
of section 3.4. We prove the induction step separately for each of the statements
(i)− (iv).

(i): Assume that (i) is true for n. Then, for agent an+1 the model Mn

consists of a single information cell with 2n−1 states where UW is true in half of
them and UB in half of them. Considering the event model En+1 it is easy to see
that updating with this will result in the model Mn+1, where there will be two
information cells for agent an+1 corresponding to the events wn+1 and bn+1, i.e.
[w]n+1 and [b]n+1, and each of these will have 2n−1 states. It is also easy to see
that for all k > n+ 1 there will only be one information cell for ak. Finally, it is
also easy to see that UW will be true in 2n−2 states of [w]n and 2n−2 states of [b]n
since Uw where true in 2n−2 states of Mn and likewise for UB.

(ii): Assume that (ii) is true for n. Assume that s ∈ [w]n+1. Then using (i),
the definition of the product update, and (i) again, we get:

f(an+1, s, UW ) =
∑

{f(t) | t ∈ [w]n+1 ∩ UW}

=
∑

{f((t, wn+1)) | t ∈ Mn, t ∈ UW (in Mn)}

=
∑

{f(t) + pre(wn+1)(UW ) | t ∈ Mn, t ∈ UW (in Mn)}

=
∑

{f(t) + 1 | t ∈ Mn, t ∈ UW (in Mn)}

= fn(UW ) + 2n−3.
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Similarly for UB we get

f(an+1, s, UB) =
∑

{f(t) | t ∈ [w]n+1 ∩ UB}

=
∑

{f(t) + pre(wn+1)(UB) | t ∈ Mn, t ∈ UB (in Mn)}

=
∑

{f(t) + 0 | t ∈ Mn, t ∈ UB (in Mn)}

= fn(UB).

If s ∈ [b]n+1 then,

• f(an+1, s, UW ) = fn(UW ) and

• f(an+1, s, UB) = fn(UB) + 2n−3,

follow by reasoning in similar manner.

(iii): Assume that fn(UB) + 2n−2 < fn(UW ). Note that from (i) and (ii) we
have that

• fn+1(UW ) = 2fn(UW ) + 2n−2,

• fn+1(UB) = 2fn(UB) + 2n−2.

But, then

fn+1(UB) + 2n−1 = 2fn(UB) + 2n−2 + 2n−1

= 2(fn(UB) + 2n−2) + 2n−2

< 2fn(UW ) + 2n−2

= fn+1(UW ).

(v): Now assume that UB <an UW is true at all states of Mn. Consider agent
an+1, we then want to prove that UB <an+1 UW is true at all states of Mn+1.
That is, we need to prove that

f(an+1, s, UB) < f(an+1, s, UW ),

for all s ∈ dom(Mn+1). By (i) and the definition of f , we only have to consider
two cases, namely when s ∈ [w]n+1 and when s ∈ [b]n+1. Moreover, by (ii) we
just need to prove that

a) fn(UB) < fn(UW ) + 2n−2;

b) fn(UB) + 2n−2 < fn(UW ).
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Note that a) follows from b) and b) follows directly from (iii).
This completes the proof. □

For a full syntactic encoding of an informational cascade within the logical
setting, the language has to be changed/extended. Note that the above logical
language does not contain a common knowledge operator, which is necessary
to render a full syntactic encoding. A solution to this problem is offered in a
new framework in [2], which uses a setting that combines a variant of the Logic
of Communication and Change from [47] and a variant of Dynamic Epistemic
Probabilistic Logic from [48].

3.5 Conclusion

3.5.1 Diagnosis: Too Much (or Not Enough) Information!

Imagine that we change the protocol to forbid all communication. This would
amount to making individual guesses entirely private. By Condorcet’s Jury The-
orem [66]9, we know that in this case, by taking a poll at the end of the protocol,
the majority vote would match the correct urn with very high probability, con-
verging to 1 as the number of agents increases to infinity.

This shows that examples such as the one analyzed in this chapter are indeed
cases of “epistemic Tragedies of the Commons”: situations in which communi-
cation is an obstacle to group truth-tracking. In these cases, a cascade can be
stopped only in two ways: either by “irrational” actions by some of the in-group
agents themselves, or else by outside intervention by an external agent with dif-
ferent information or different interests than the group. An example of the first
solution is if some of the agents simply disregard the information obtained by
public communication and make their guess solely on the basis of their own obser-
vations: in this way, they lower the probability that their guess is correct (which
is “irrational” from their own individual perspective), but they highly increase
the probability that the majority guess will be correct. An example of the second
solution is if the protocol is modified (or only disrupted) by some external agent
with regulative powers (the “referee” or the “government”). Such a referee can
simply forbid communication (thus returning to the protocol in the Condorcet’s
Jury Theorem, which assumes independence of opinions). Or she might require
more communication; e.g. require that the agents should announce, not only
their beliefs about the urns, but also their reasons for these beliefs: the evidence
supporting their beliefs. This evidence might be the number of pieces of evidence
in favor of each alternative (in the case that they used the counting heuristics);
or it might be the subjective probability that they assign to each alternative; or
finally, it might be all their available evidence: i.e. the actual color of the ball that

9The Condorcet protocol as well as other variations have been fully formalized as strategies
in a game theoretic setting in [1].
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they observed (since all the rest of their evidence is already public). Requiring
agents to share any of these forms of evidence is enough to stop the cascade in
the above example.

One may thus argue that partial communication (sharing opinions and beliefs,
but not sharing the underlying reasons is evidence) is the cause of the collective
failure in informational cascades. More (and better) communication, more true
deliberation based on sharing arguments and justifications (rather than simple
beliefs), may sometimes stop the cascade. A “total communication”, in which
everybody shares all their evidence, all their reasons, all the relevant facts, will
be an effective way of stopping cascades (provided that no agent lies and that
agents perfectly trust each other). In our toy example, this can be easily done:
the relevant pieces of evidence are very few. But it is unrealistic to require such
total communication in a real-life situation: the number of facts that might be
of relevance is practically unlimited, and moreover it might not be clear to the
agents themselves which facts are relevant and which not. So in practice this
would amount to asking agents to publicly share all their life experiences. With
such a protocol, deliberation would never end, and the moment of decision would
always be indefinitely postponed.

Therefore, in practice, the danger remains: no matter how rational the agents
are, how well-justified their beliefs are, how open they are to communication, how
much time they spend sharing their arguments and presenting their evidence,
there is always the possibility that all this rational deliberation will only lead the
group into a cascading dead-end, far away from the truth. The conclusion is that
communication, individual rationality and social deliberation are not absolute
goods. Sometimes, especially where the aim is the truth, it is better that some
agents effectively isolate themselves and avoid communication for some time.

3.5.2 Summary

This chapter has provided two modelings of the same example of collective
failure: a “bad” informational cascade, leading everybody in a group to make the
wrong choice between two alternatives:

• We have studied a case of informational cascade in two formal settings,
corresponding to two different assumptions for the agents’ rationality:

– First, we have generalized the standard Bayesian analysis of cascades
to show that such bad cascades also occur when rationality includes
unbounded higher-order reasoning power, which is usually left out of
the picture.

– Second, we have shown that the fact that such bad cascades frequently
occur in real societies cannot be imputed to the complexity of prob-
abilistic reasoning. Indeed, we have proven that such cascades would
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also occur if agents were simply assumed to count the number of pieces
of evidence for each alternative and compare those two numbers.

• By doing this, we have given more ground to the somewhat counterintuitive
claim that informational cascades are one of the collective consequences
of individual rationality, even when they lead inescapably to a failure in
society.

• After ruling out a flaw in the individuals’ rationality, we have pointed to-
wards another culprit: the intermediate situation in which agents find them-
selves: by sharing their decisions but not their justifications. Agents receive
too much information not to be influenced by each other’s choices, but not
enough information to get the correct interpretation of those choices10.

3.5.3 Further Research

Since a flaw in any of the individuals’ reasoning is not a necessary condition for
reaching collective failure, a natural aim for further research is to understand what
are the sufficient and necessary conditions for such failures, beyond the specific
phenomenon of informational cascades. This would help reaching another more
activist aim: to understand how to prevent or reverse such situations towards
better collective outcomes.

The next chapter takes a step in this direction. We will turn to a case-
study of a second social phenomenon exemplifying some level of collective failure,
pluralistic ignorance. This will have two important advantages: first, it will
allow us to see what those two phenomena have in common which might explain
collective failure. Moreover, by discussing how to reach a “better” collective
situation, we will have taken into account a parameter of social phenomena which
we have left implicit so far but which will be at the center of the chapters to come:
the social network structure.

10In this chapter we assumed that agents who communicate their guess are in fact truthful
sources of information. This assumption can be weakened by moving away from the public
announcement operators used in this chapter to soft information upgrades. This direction has
been explored in [162].





Chapter 4

Pluralistic Ignorance

4.1 Introduction

The previous chapter modeled how a population of perfectly rational indi-
viduals may form wrong beliefs by getting caught in a rational herding process.
This chapter continues our investigation into the dynamics of collective failures.
It focuses on another surprising but well-documented social phenomenon, often
described as a collective “ social comparison error” [92, p. 126]: pluralistic ig-
norance, a situation where all individuals of a group hold the same beliefs and
display the same behavior, but all believe that the others’ beliefs differ from
theirs.

By giving a minimal modeling of the phenomenon, we will be able to capture
its irony: it is precisely because no agent is different from the others that they
can persist in believing that they are. In other words, it is the uniformity of the
population which lets its individuals believe in their singular difference. We will
also give a characterization of the situations minimizing the change needed to
dissolve this collective error into a state where no error is left.

Beyond specific examples of collective failures, our objective is to design a
logical framework to capture real-life social influence phenomena and their cor-
responding opinion dynamics. To do so, we will build on the setting which Liu,
Seligman, and Girard designed in [120], designed to model opinion change un-
der peer pressure in social networks, introduced in Section 2.2.2. We will enrich
this framework by introducing a distinction between the purely private sphere
of agents, namely their mental states, and the public sphere of their observable
behavior, i.e., what they seem to believe, or what beliefs they publicly express.1

We will show how the resulting framework allows for modeling complex social
phenomena, and in particular cases where agents are wrong about each other’s
opinions, such as the paradigmatic case of pluralistic ignorance.

1This modeling of “two-layered agents” is also the first step towards the more general “n-
layered” framework which we will present in Chapter 5.

59
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4.1.1 Outline

We start by introducing the phenomenon of pluralistic ignorance (4.1.2) and
recalling its peculiar dynamic properties (4.1.3). Section 4.2 extends the setting
from [120] to allow distinguishing between private opinions and expressed opinions
of agents: we explain why such a distinction is useful in a framework for social
influence phenomena (4.2.1), we make some assumptions about how the dynamics
of social influence affects our agents’ public behavior (4.2.2), and we present our
logical framework (4.2.3). Section 4.3 then shows how this newly defined “two-
layered” social influence setting allows us to model the case of pluralistic ignorance
and to account for its dynamic properties: its “stability” (4.3.1), and its “fragility”
in (4.3.2). Finally, Section 4.4 summarizes the chapter, gives directions for further
research (4.4.3), and concludes by remarking that the two types of collective
failures considered so far – informational cascades and pluralistic ignorance – rely
on a common trigger: agents receive either too much or not enough information
about each other (4.4.1).

4.1.2 The Phenomenon of Pluralistic Ignorance

The term “pluralistic ignorance” originates in the social and behavioral sci-
ences in the work Allport and Katz [128]. It can be roughly defined as a situation
where each individual of a group believes that her private attitude towards a
proposition or norm differs from the rest of the group members’, even though
everyone in the group acts identically. For instance, after a difficult lecture which
none of the students understood, it can happen that none of them asks any ques-
tion even though the teacher explicitly requested them to do so in case they
did not understand the material. There are numerous examples of pluralistic
ignorance in the social and psychological literature such as, in addition to this
classroom example, drinking among college students, attitudes towards racial
segregation, and many more.2

Even though different definitions have been given in the literature [115, 92,
125, 128, 52], we follow [52] and define pluralistic ignorance as a collective dis-
crepancy between the agents’ private attitudes and their public behavior, namely
a situation where all the individuals of a group have the same private attitude
towards an object of opinion ϕ (say a belief in ϕ), but publicly “display” a con-
flicting attitude towards ϕ (say a belief in ¬ϕ).

2An extensive study of the classroom phenomenon was done by Miller and McFarland [124].
In a study of college students, Prentice and Miller [134] found that most students believed that
the average student was much more comfortable with alcohol norms than they themselves were.
Fields and Schuman [77] conducted a similar study, which showed that on issues of racial and
civil liberties most people perceived others to be more conservative than they actually were.
O’Gorman and Garry [129] found a similar tendency among whites to overestimate other whites’
support for racial segregation.
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4.1.3 A Stable State of Collective Error?

From a dynamic perspective, pluralistic ignorance is often reported as being
both a robust and fragile phenomenon. It is robust in the sense that, if nothing
changes in the environment, the phenomenon might persist over a long period
of time – the college students might keep obeying an unwanted drinking norm
for generations. On the other hand, it is fragile in the sense that if just one
agent announces her private belief, it may be enough to dissolve the phenomenon
– if just one student of the classroom example starts to ask questions about
the difficult lecture the rest of the students might soon follow. The two-layer
definition of social influence which we develop below will allow us to explain how
pluralistic ignorance may dissolve in a community by cascading effects and thus
allow us to illustrate both its robustness and its fragility.

4.2 Modeling Opaque Agents

In [120], Liu, Girard and Seligman design a hybrid logic to model opinion
change induced by social influence in a community (for more detail, see Sec-
tion 2.2.2). This chapter builds on their framework, both formally and concep-
tually. Let us briefly recall its most relevant features. On the static level: at any
given moment, each agent in the network is assumed to be in one (and only one)
of three possible opinion states (relatively to an implicit object of opinion ϕ):
either she believes it (Bϕ), or she believes that ¬ϕ (B¬ϕ), or she has no opinion
about it: (Uϕ). On the dynamic level: opinion change under social influence is
defined in terms of two possible changes. First, an agent adopts an opinion as an
effect of Strong Influence, i.e. when her friends unanimously hold that opinion.
And, second, an agent drops an opinion under Weak Influence, i.e when none of
her friends hold her current opinion and some hold the opposite opinion. In all
other cases, the agent’s opinion does not change.

4.2.1 Objections to Transparency

As mentioned in Section 2.2.2, an advantage of the simplicity of the framework
of [120] is that it makes it unproblematic to identify the stability and stabilization
conditions of social-doxastic configurations, both of which can be characterized
directly in the language of friendship and belief. However, this simplicity is
pricey: even though this is not explicitly mentioned as such, it relies on a strong
assumption: agents’ belief states are influenced directly by their friends’ belief
states. Thus, either all agents have direct access to their friends’ beliefs (as mind-
readers would), or their observed behavior always reflects their private beliefs, i.e.,
there is no difference between what they seem to believe and what they actually
believe. This transparency assumption (all agents always automatically know
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what their friends/neighbors believe) prevents capturing any social situations
where agents act in a way which does not reflect their mental states.3

Similar objections to the transparency assumption arise when discussing other
mental states. Consider for instance preferences instead of beliefs. Let us assume
that preferences are subject to social influence in a similar way, as in [166], in
the sense that if all of my friends prefer option A to option B, I end up favoring
A too. Intuitively, it seems that if I end up wearing a hat rather than none,
chances are that it is not directly because all of my friends privately prefer to
wear one, but rather because they act as if they do. For all I know, they could
all be pretending because they all observe that everybody else is wearing a hat,
and everyone could be following a trend that nobody actually likes.

Our main point here is that this distinction between private mental state
and public behavior seems to be a key component of social sciences. Consider
the documented cases where agents have been collectively enforcing a norm, for
instance a segregation norm, despite the fact that they individually do not agree
with it. It is precisely because they do not have access to each other’s preferences
and opinions that a collective behavior can result which goes against the ones of
most (or all) agents, considered individually.4 Therefore, it seems reasonable to
require that a framework which aims at modeling social influence accommodates
“opaque” agents.

Simply put, the situation of pluralistic ignorance on which this chapter focuses
can be considered as an extreme case of “anti-transparency”, since it involves all
agents being wrong about each other’s beliefs. Below, we will adapt the notion of
opinion change under social influence from [120] to propose a “two-layer” notion
to represent how “opaque” agents influence each other’s behavior. We will then
check whether this minimal two-layer adaptation captures the dynamic properties
usually assigned to pluralistic ignorance: stability and fragility.

4.2.2 Opaque Social Influence

To reflect the fact that agents do not have access to what others privately
believe, we introduce a distinction between private belief, which we name “inner
belief” (IB) and public (or observable) behavior, which we name “expressed belief”
(EB) Following [120], we define two notion of undecidedness or “unbelief” in the

3Such an additional “layer” of agents representation is also necessary for cases involving
higher-order beliefs, since the complexity of such cases usually arises precisely from the fact
that there might be a difference between what agent a believes that agent b believes and what
agent b actually believes. However, unlike in Chapters 3 and 7, we will not pursue the issue of
higher-order beliefs any further in this chapter. The two layers setting that we will use in this
chapter could be entirely interpreted as distinguishing what an agent privately believes and what
the others privately believe that she privately believes. Even though we might be interested of
designing a similar framework using this distinction (my first order versus their higher-order
belief), here we will distinguish merely between private belief and observable behavior.

4See for instance [144] on this issue.
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obvious way:
IUϕ := ¬IBϕ ∧ ¬IB¬ϕ (inner unbelief)

EUϕ := ¬EBϕ ∧ ¬EB¬ϕ (expressed unbelief)

To define our new social influence operator, we will make the following sim-
plifying assumption: from the subjective perspective of each agent, what matters
(what influences her) is what she herself privately believes and what the others
seem to believe. This reflects the fact that influence occurs (at least in good
part) at the behavioral (observable, visible, displayed) level. We therefore adapt
the notions of strong and weak influence from [120] (described in Section 2.2.2)
accordingly:

2-layer strong influence (SI2ϕ) is the situation where all (and some) of my
friends express the belief that ϕ: SI2 := FEBϕ ∧ ⟨F ⟩EBϕ.

2-layer weak influence (WI2ϕ) is the situation where some of my friends
express the belief that ϕ and none of them expresses the belief that ¬ϕ:
WI2 := ⟨F ⟩EBϕ ∧ F¬EB¬ϕ.

We want to define social influence dynamics according to which my (expressed)
reaction depends on asymmetric information: what I privately believe and what
the others express. This reflects the fundamental asymmetry between the first
and third person perspectives which is needed to model pluralistic ignorance. It
is symmetric in that everybody reacts in the same way and in that everybody
interprets the behavior of others in the same way; but it is asymmetric in that
people don’t have access to others’ mental states and have a “privileged” access
to their own.

Figure 4.1 lists the 24 possible situations of an individual among her friends,
from her perspective, and describes her reaction (on the expressed level).5 Her
private attitude appears in the first column, the possible repartition of her friends’
behaviors (expressed belief states) in columns 2,3,4 (in a truth table format – 1
for “true” and 0 for “false”), and her resulting behavior in one of the last three
columns (depending of which type of agents we are considering). It is easy to see
that our strong influence (rows 10 to 12 and 16 to 18 of the table) is still similar
to the one from [120] but defined on the level of “expressed belief” instead of what
was simply called “belief”. However, weak influence (when not strong, rows 7 to

5The notation used in this chapter reflects the one inherited from the setting of [120], as
introduced in Section 2.2.2. However, for simplicity, the next chapters we will adopt the more
concise notation used in our later publications: “IBϕ” will be replaced by “ip” (standing for
“inner pro opinion”);“IB¬ϕ” will be replaced by “ic” (“inner contra opinion”); IUϕ will be
replaced by “in” (“inner neutral opinion”),“EBϕ” will be replaced by “ep” (“expressed pro
opinion”), “EB¬ϕ” will be replaced by “ec” (“expressed contra opinion”), and EUϕ will be
replaced by “en” (“expressed neutral opinion”).



64 Chapter 4. Pluralistic Ignorance

Inner state ⟨F ⟩EBϕ ⟨F ⟩EB¬ϕ ⟨F ⟩EUϕ Type 1 Type 2 Type 3

1 IBϕ ❀ EBϕ ❀ EUϕ ❀ EBϕ

2 IB¬ϕ 1 1 1 ❀ EB¬ϕ ❀ EUϕ ❀ EB¬ϕ
3 IUϕ ❀ EUϕ ❀ EUϕ ❀ EUϕ

4 IBϕ ❀ EBϕ ❀ EUϕ ❀ EBϕ

5 IB¬ϕ 1 1 0 ❀ EB¬ϕ ❀ EUϕ ❀ EB¬ϕ
6 IUϕ ❀ EUϕ ❀ EUϕ ❀ EUϕ

7 IBϕ ❀ EBϕ ❀ EBϕ ❀ EBϕ

8 IB¬ϕ 1 0 1 ❀ EUϕ ❀ EUϕ ❀ EUϕ

9 IUϕ ❀ EUϕ ❀ EUϕ ❀ EUϕ

10 IBϕ

11 IB¬ϕ 1 0 0 ❀ EBϕ ❀ EBϕ ❀ EBϕ

12 IUϕ

13 IBϕ ❀ EUϕ ❀ EUϕ ❀ EUϕ

14 IB¬ϕ 0 1 1 ❀ EB¬ϕ ❀ EB¬ϕ ❀ EB¬ϕ
15 IUϕ ❀ EUϕ ❀ EB¬ϕ ❀ EB¬ϕ

16 IBϕ

17 IB¬ϕ 0 1 0 ❀ EB¬ϕ ❀ EB¬ϕ ❀ EB¬ϕ
18 IUϕ

19 IBϕ ❀ EBϕ ❀ EBϕ ❀ EUϕ

20 IB¬ϕ 0 0 1 ❀ EB¬ϕ ❀ EB¬ϕ ❀ EUϕ

21 IUϕ ❀ EUϕ ❀ EUϕ ❀ EUϕ

22 IBϕ ❀ EBϕ ❀ EBϕ ❀ EBϕ

23 IB¬ϕ 0 0 0 ❀ EB¬ϕ ❀ EB¬ϕ ❀ EB¬ϕ
24 IUϕ ❀ EUϕ ❀ EUϕ ❀ EUϕ

Figure 4.1: Influence on three different types of agents.

9 and 15 to 18) now results in a different state depending on the initial private
belief state of the agent herself (see for instance rows 7 and 8).

There are two possible cases in which I have friends (unlike in rows 22 to
24) but I am neither strongly nor weakly influenced: whenever all of my friends
express undecidedness (rows 19 to 21) and whenever some of them express the
belief that ϕ while some express the belief that ¬ϕ (rows 1 to 6). In the setting
of [120], nothing happens, i.e, the agent continues to believe whatever she did
before. In our setting, we have to make a choice as to what the agent expresses.
The simplest one is to assume that in both these cases, agents express their true
private belief (act sincerely). This corresponds to agent of type 1 in Figure 4.1,
which is entirely determined by the following instructions:

4.2.1. Definition. [2-layer social influence (agents of type 1)] The following
rules constitute the notion of 2-layer social influence:

• SI2ϕ: If an agent is in a situation of strong influence with ϕ, she will express
the belief that ϕ (EBϕ) at the next moment, whatever her current (inner
and expressed) state.
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• WI2ϕ: If an agent is in a situation of weak influence with ϕ she will express
the belief that ϕ (EBϕ) at the next moment if she is currently privately
undecided about ϕ (IUϕ) or if she already privately believes that ϕ (IBϕ),
and she will express undecidedness (EUϕ) if she privately believes ¬ϕ (IBϕ).

• Otherwise, the agent will express at the next moment her private current
state.

However, some agents might be more inclined to follow the others, and they
do so in different ways. Types 2 and 3 in the table are examples of other possible
types of agents which still comply with our definition of two-layer strong and
weak influence. If I am a type 2 agent, I will be sincere (i.e., my expressed belief
state will correspond to my inner belief state) whenever I face no opposition6.
For instance, if I privately believe that ϕ, I will express this belief if none of my
friends expresses a belief in ¬ϕ. And if I am a type 3 agent, I will be sincere
whenever some of my friends express support for my private belief state, I will for
instance express my inner belief in ϕ if some of my friends express a belief in ϕ
too. Type 1 agents are thus simply the ones that are sincere in both cases: when
they get some support and when they face no opposition.

We will see in section 4.3 how the dynamic properties of social phenomena
like pluralistic ignorance depend on the type of agents involved but let us first
introduce the tools we will use to represent changes of the (two-layered) state of
agents in a social network.

4.2.3 Two-layer Opinion Change Logic

In this section, we briefly introduce an extension of the setting of [120] to
reason about the influence dynamics for “two-layered” agents, which will allow
us to model cases such as pluralistic ignorance. We start with a static logic and
then move on to give the full dynamics.7

In section 4.2 we introduced the two relevant properties of each agent which
we want to model, namely her inner (private) belief state and her expressed
belief state. We assume that each of the two properties always takes exactly

6Note that the notion of sincerity we have adopted matches the one used in [25, 135], where
“an assertion of P is sincere if the speaker believes that P”. Later this concept received a more
generalized interpretation in [31]. In this thesis we adopt the first reading, hence an agent is
sincere if her expressed belief state will correspond to her inner belief state.

7The next chapter will present a generalization of the setting to be defined here with its
Hilbert-style proof system and completeness result. We therefore leave out the very similar
discussion of soundness and completeness for the particular case presented here. What we
want to focus on in this chapter is the conceptual necessity for any framework modeling social
influence to account for the distinction between (at least) the private mental states of agents and
their observable behavior, and to show how this simple distinction allows capturing the dynamics
of well-documented social phenomena, by focusing on the case of pluralistic ignorance.
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one of the three same values proposed by [120]: belief, disbelief, or undecided-
ness. Our language will therefore contain six atomic corresponding propositions:
PROP = {IBφ, IB¬φ, IUφ,EBφ,EB¬φ,EUφ, }. We assume a countable infinite
set of nominals (NOM) used as names for agents in possible networks (just as
they are used to name states in traditional hybrid logic [10]). The syntax of our
static language is given by:

ϕ ::= p | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | Gϕ | @iϕ ,

where p ∈ PROP and i ∈ NOM.8

Models. A model is a distribution of private and expressed opinions to each
agent in a symmetric and connected network. More precisely, a model is a tuple
M = (A,∼, g, ν), where A is a non-empty set of agents, ∼ is a binary relation
on A representing the network structure9, g : NOM → A is a function assigning
an agent to each nominal, and ν : A→ PROP is a valuation, with the particular
constraint that it assigns exactly two elements of PROP to each a ∈ A: one
element of {IBφ, IB¬φ, IUφ} and one element of {EBφ,EB¬φ,EUφ}.

To represent the change of opinions due to social influence, we add to our
language a dynamic modality [I] in the way of standard Dynamic Epistemic
Logic [24, 70]. Given a model M = (A,∼, g, ν) and an influence event I, the
updated model is given by M⊗I = (A,∼, g, ν ′), where ν ′ assigns to each a ∈ A:
the same element of {IBφ, IB¬φ, IUφ} as ν and the element {EBφ,EB¬φ,EUφ}
is the one given in the table in Figure 4.1 (for a given agent type among the three
types proposed).10

Given a M = (A,∼, g, ν), an a ∈ A, p ∈ PROP, an operator I defined by the
table in Figure 4.1 and a formula ϕ of our language, we define the truth of ϕ at

8We will use the standard abbreviations for disjunction, material implication, and equiva-
lence (∨, →, and ↔) and denote the dual operator of F by ⟨F ⟩ and the dual of G by ⟨G⟩.
The intuitive meaning of the F and @i operators were already discussed in Section 2.2.2. The
G-operator is the global modality quantifying over all agents in the network and Gϕ is read as
“all agents (satisfy) ϕ”.

9If we are talking about undirected networks, we will assume that ∼ is symmetric.
10There are more possible influence operators to be defined in terms of combination of inner

and expressed opinions. However, this chapter restricts itself to illustrating how some given
notion of social influence can be extended to model the dynamic properties of pluralistic ig-
norance. The next chapter will generalize to agents with more than two properties and to all
definable ways of updating the corresponding models.
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a in M inductively by:

M, a |= p iff p ∈ ν(a)
M, a |= i iff g(i) = a
M, a |= ¬ϕ iff it is not the case that M, a |= ϕ
M, a |= ϕ ∧ ψ iff M, a |= ϕ and M, a |= ψ
M, a |= Gϕ iff for all b ∈ A;M, b |= ϕ
M, a |= Fϕ iff for all b ∈ A; a ∼ b implies M, b |= ϕ
M, a |= @iϕ iff M, g(i) |= ϕ
M, a |= [I]ϕ iff M⊗I, a |= ϕ

Satisfiability, validity etc. are defined as usual.

4.3 Pluralistic Ignorance Revisited

We will use the idea developed in the previous sections to model pluralistic
ignorance. We assume that everyone in a “group” is connected to everyone else
through some finite number of steps (a “community” in the sense of [145]), and
that the social relation. In other words, we will work with connected network
models. Moreover, we will assume that the ∼ relation is symmetric in the rest of
the section.

Pluralistic ignorance, in the sense that everybody inner believes ϕ but ex-
presses a belief in ¬ϕ, can be formalized by:

PIϕ := G(IBϕ ∧ EB¬ϕ) (4.1)

If PIϕ is true in a network model M we will say that M is in a state of pluralistic
ignorance.

To investigate how social influence affects pluralistic ignorance we need to de-
fine the event model that captures the two-layer influence described in Section 4.2.
This is fairly straightforward given the table of Figure 4.1. For now we assume
that all agents are of type 1 mentioned in Section 4.2. We will return to consider-
ing other types of agents later on. For each of the 24 rows, the conjunction of the
first four columns will be a precondition. These 24 preconditions will clearly be
pairwise inconsistent. For instance, the fourth row gives the precondition formula

IBϕ ∧ ⟨F ⟩EBϕ ∧ ⟨F ⟩EB¬ϕ ∧ ¬⟨F ⟩EUϕ.

The corresponding post-condition will be the assignment assigning Bϕ to the
inner state of the agent and Bϕ to her express state, as specified by the first and
the fifth column of the table. The resulting event model will be denoted I.
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4.3.1 Stability

As claimed in Section 4.2, pluralistic ignorance constitutes a “robust” state, or
“equilibrium”, in the sense that if a network is in a state of pluralistic ignorance
it will stay in this state. This turns out to be trivially true (and this for all three
types of agents defined). We formalize this in the following lemma:

4.3.1. Proposition. A connected network model in a state of pluralistic igno-
rance is stable and the condition for being stable reduces to

PIϕ→ [I]PIϕ. (4.2)

Proof: If a network model M satisfies PIϕ, then by definition every agent
satisfies IBϕ and EB¬ϕ. A simple inspection of row 16 in the table of Figure 4.1
shows that all agents will keep expressing a belief in ¬ϕ and keep their inner
belief in ϕ after an update with I. Thus, PIϕ will remain true after the update,
i.e. [I]PIϕ is true, hence the situation is stable. □

4.3.2 Fragility

The “fragility” component of pluralistic ignorance is a little more complex. If
just one agent announces her private belief this may “dissolve” the phenomenon
into a radically opposite state of collective sincerity, or not, depending on the
structure of the network, as we will show. More precisely, we take pluralistic
ignorance (in the form of (4.1)) to be dissolved when it is true that G(IBϕ∧EBϕ).
Assume that the network model M is in a state of pluralistic ignorance, i.e.
M satisfies PIϕ. Now assume that some agent (maybe by mistake) suddenly
expresses her true inner belief in ϕ. Let us refer to this agent by the nominal i.
Then the following is now satisfied in M

UPIϕ := @i(IBϕ ∧ EBϕ) ∧G
(
¬i→ (IBϕ ∧ EB¬ϕ)

)
.

A model satisfying UPIϕ (where i might be replaced by another nominal) will
be said to be in a state of unstable pluralistic ignorance.11 How M will evolve
under iterated applications of the influence event I depends on several factors.

First, consider the case where i will keep expressing her true belief.12 Then,
if M is connected (and finite) it is easy to show that after a finite number of
updates by the influence event I, M will end up in a stable state where everyone

11Note that the name of “unstable pluralistic ignorance” used here does not refer to a partic-
ular case of pluralistic ignorance, but to a state of “almost” pluralistic ignorance, a state which
minimally differs from it at the observable level, by one agent expressing her private beliefs
sincerely, when nobody else does.

12Formally, remark that we have to make a small change to I to make sure that i will not
change her expressed belief after one step.
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expresses their true beliefs: By inspecting row 4 in the table of Figure 4.1, it
follows that after one update by I all of i’s friends will express a belief in ϕ and
that after another update with I the friends of friends of i will also express their
true belief. In this way, a cascade effect will spread the change throughout the
network and result in a stable state where everyone expresses the same true belief.

However, this was assuming the involvement of a special agent who would
not obey the rules of social influence we have assumed others to obey. If i is
only assumed to express her true belief for a single round, and then be subject
to social influence as anybody else, things get more complicated. She will, in
the next round already, revert to expressing a belief in ¬ϕ by the effect of social
influence (as all of i’s friends originally expressed a belief in ¬ϕ). For this reason,
other agents might be influenced back and forth too, and the distribution might
keep “fluctuating” and never stabilize. Here is an example of the later case, where
i refers to agent a13:

a

EBϕ

IBϕ

b

EB¬ϕ
IBϕ

❀

I

a

EB¬ϕ
IBϕ

b

EBϕ

IBϕ

❀

I

a

EBϕ

IBϕ

b

EB¬ϕ
IBϕ

❀

I
. . .

Figure 4.2: Two agents a and b with opposite expressed opinions influencing each
other, resulting in their expressed opinions oscillating.

The above example shows that a state of unstable pluralistic ignorance will not
necessarily stabilize, and hence not necessarily result in a state where pluralistic
ignorance is dissolved. Below, we give a characterization of the ones which do
result in such a state, given our assumption that all agents are of type 1.

4.3.2. Proposition. Let M = (A,∼, g, ν) be a finite, connected, symmetric
network model in a state of unstable pluralistic ignorance. Then the following are
equivalent:

(i) After a finite number of updates by the influence event I, M will end up in
a stable state where pluralistic ignorance is dissolved, i.e. there is a k ∈ N

such that M⊗k I |= G(IBϕ ∧ EBϕ) and M⊗k I = M⊗k+1 I.

(ii) There is an agent that expresses her true belief in ϕ for two rounds in a
row, i.e. there is an a ∈ A and a k ∈ N such that M⊗k I, a |= EBϕ and
M⊗k+1 I, a |= EBϕ.

(iii) There are two agents that are friends and both express their true beliefs in
ϕ in the same round, i.e. there are a, b ∈ A and a k ∈ N such that a ∼ b,
M⊗k I, a |= EBϕ, and M⊗k I, b |= EBϕ.

13Here we regain the same fluctuation case that was given in [120], except that it now occurs,
as wanted, at the level of expressed belief instead of “belief”.
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(iv) There are two agents that are friends and have paths of the same length to
the agent named by i, i.e. there are agents a, b ∈ A and a k ∈ N such that
a ∼ b, M, a |= ⟨F ⟩ki, and M, b |= ⟨F ⟩ki.

(v) There is a cycle in M of odd length starting at the agent named by i, i.e.
there is a k ∈ N such that M |= @i⟨F ⟩

2k−1i.

(vi) There is a cycle in M of odd length, i.e. there is a k ∈ N and a1, a2, ..., a2k−1 ∈
A such that a1 ∼ a2, a2 ∼ a3, ..., a2k−2 ∼ a2k−1, a2k−1 ∼ a1.

A proof of this proposition can be found in Appendix (4.5).
By this proposition (and its proof) we can also come up with an upper bound of

the number of update-steps needed for a network model in an unstable pluralistic
ignorance state to dissolve, if it stabilizes. If a network model M = (A,∼, g, ν)
stabilizes it follows from (iv) that there are a, b ∈ A and a k ∈ N such that a ∼ b
and a and b both have a path of length k to g(i). Choose the smallest such k.
For all c ∈ A, let m(c) be the length of the shortest path to either a or b. Then,
by inspecting the proof it is not hard to see that M stabilizes in a state where
pluralistic ignorance is dissolved in at most k +maxc∈A{m(c)} steps.

4.3.3 Comparing Types of Agents

As mentioned in section 4.2, the type of agents might also influence whether
unstable pluralistic ignorance will dissolve. In the above we have focused on what
happens when agents are of type 1. If one wants all agents to be of another type,
then one can simply change the definition of I. First, note that agents in a state
of pluralistic ignorance will always be strongly influenced and since all the three
different kinds of agents react the same to strong influence, Proposition 4.3.1
remains true for all types.

Now, let us consider a network of type 3 agents (expressing their inner belief
whenever they have some support for it). The lines 1, 4, 7, and 10 of Figure 4.1
will stay unchanged. Thus, Proposition 4.3.2 will remain true for this type of
agents. The only case left to consider is therefore whether Proposition 4.3.2 holds
for type 2 agents (expressing their inner belief whenever they face no opposition).
We leave this as an open problem.

4.4 Conclusion

4.4.1 Diagnosis: Too Much (or Not Enough) Information!

By modeling a well-known phenomenon of collective inefficient behavior, and
by showing that this modeling allows capturing its dynamic properties, we have
illustrated why the distinction between “visible” and “invisible” properties of
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agents is essential to their social condition, and hence to the dynamics of social
phenomena. If agents had access to each other’s private opinions, they would
know that they have some support from their network-neighbors and pluralistic
ignorance could simply not occur. Hence, the dynamics of social influence effects
seems to rely on the intermediate state agents find themselves in: agents are
influenced only by what they can observe from each other.

Similarly as in the case of informational cascades discussed in the previous
chapter, the very possibility of a collective error such as pluralistic ignorance
relies on the condition that people have access to some information about each
other, but not to all relevant information. In the case of informational cascades,
agents have access to the choices of others but not to the reasons justifying these
choices (and if they had, a cascade leading to the wrong choice could not occur).
In the case of pluralistic ignorance, agents can observe each other’s behavior but
not each other’s private opinion (and if they could, there would be no ignorance).

4.4.2 Summary

This chapter presented a “two-layer” framework for opinion change under
social influence in networks. Let us summarize its main findings:

• We have argued that a distinction between what agents privately believe and
what they display to their network-neighbors is essential to the dynamics of
social influence phenomena, and in particular to phenomena of “collective
failure”, such as pluralistic ignorance.

• We have extended the framework from Liu, Seligman, and Girard [120] to
a “two-layer” framework for opinion change over social networks.

• We have proposed a definition of social influence (for three types of agents)
relying on the following assumptions: 1) agents influence each other not
directly by what they privately believe but by what they publicly express;
2) what agents will express next depends on asymmetric information: what
their neighbors express and what they themselves privately believe, and 3)
agents tend to express their private opinions sincerely, unless social pressure
prevents them too.

• We have shown how those assumptions were sufficient to explain the dy-
namic properties of pluralistic ignorance as they are usually described by
social psychologists: its stability, as well as its fragility.

• We have given a characterization of the network configurations for which
a unique agent expressing her opinion sincerely would induce a “sincerity
cascade”, resulting in everybody sincerely expressing their opinion.
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• Finally, we have observed that, similarly as in the case of informational
cascades, the collective failure involved in pluralistic ignorance is the re-
sult of agents receiving some information about each other but not enough
information to prevent misinterpreting each other’s behavior.

4.4.3 Further Research

Mixing types of agents. An interesting case for further research would be
networks with mixed types of agents. Our framework can be used to model this
as well. We simply add another variable to the modeling of agents (in addition to
their inner and expressed belief states) to keep track of the agents’ types, which
we assume to always be of exactly one of the three types. We can then modify the
definition of the social influence operator I such that in the lines where the agent’s
type affects what they will do we split each line into three new lines distinguished
by the extra preconditions of the form “type 1” (or 2 or 3). Then we change the
corresponding post-conditions accordingly. In this way, a new event model I ′ can
be defined, resulting in an influence dynamics that also depends on the agents
types. We will leave the details of this for future research.

Resolving inner conflicts. Even though we have shown that pluralistic igno-
rance is stable, psychology also suggests that the phenomenon will not continue
forever. The discrepancy between one’s inner beliefs and one’s expressed beliefs
is a conflict which might have negative consequences for the agents and as such
they may very well try to resolve it. This is a well studied issue in the social and
psychological literature on pluralistic ignorance. It is usually assumed [134] that
the agents have three different ways in which they can act to resolve this conflict.
They can either internalize the perceived view of their peers, i.e. change their
private beliefs, attempt to change the perceived view of their peers, or alienate
themselves form their peers. In our setting, the first option simply corresponds to
the agents changing their inner beliefs in ϕ to inner beliefs in ¬ϕ. the only way
they can try and change the opinion of others is by their expressed belief. Thus,
the most natural interpretation of the second option would be that the agents will
start expressing their true beliefs in ϕ. Finally, one interpretation of the action
of alienating oneself from one’s peers would be to remove friendship links to all
agents that express a belief in ¬ϕ.

Different agents might choose different reactions to a conflict between their
inner and expressed beliefs. Therefore, it would be natural to add an additional
layer to keep track of what action an agent will chose in case of such a conflict.
Moreover, it would be natural to assume that agents only try to eliminate this
conflict after experiencing it for some time, i.e., for a given number of rounds.
We could also capture this by adding another variable that acts as a “counter”
of rounds. These new variables can then be included in the preconditions of the
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influence event I. For the first two options it is obvious what the new post-
conditions should be, but for the third option we need an extension of our notion
of event model such that it can also change the links in a network model. We
believe this can be done, but we leave the details for future research.
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Conclusion to Part II

By modeling two well-known social phenomena of collective failure, this part
of the thesis has given some insight into what a logic for social influence should
take into account. The distinction between “visible” and “invisible” properties of
agents is essential to their social condition, and hence to the dynamics of social
phenomena over networks. As we have shown, both cases of failure rely on the
condition that people have access to some information about each other, but not
to all relevant information. Therefore, a logical framework for social influence
dynamics should be able to capture the agents’ “sight”, in the sense of what they
know about each other. We have provided a logical framework which can do just
that.

In the next part of the thesis, we will continue our quest for a logical framework
for social influence dynamics. First, generalizing beyond the “two-layer” picture
of agents and beyond the case of opinion diffusion, we will introduce a “many-
layer” logical framework to capture a much wider range of diffusion phenomena
in social networks. And second, we will formally capture what is “visible” and
“invisible” to agents in a social network by bringing full-fledged epistemic logic
back into the picture. This will allow us to reason about the interaction between
information and social influence dynamics in a more general perspective.
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4.5 Appendix: Proof of Proposition 4.3.2

We give the proof of Proposition 4.3.2. The following lemma is a first step:

4.5.1. Lemma. The following is a validity of our logic for all j ∈ NOM and all
k ∈ N:

(
@i(IBϕ ∧ EBϕ) ∧GIBϕ ∧@i⟨F ⟩

kj
)
→ [I]k@jEBϕ. (4.3)

Intuitively, this lemma says that if i for one round expresses her private belief
in ϕ, if everyone else privately believes ϕ as well, and if there is a path from i to
j of length n, then after exactly n updates with I, j will express a belief in ϕ.

Proof: The proof goes by induction on k ∈ N. By inspecting the lines 1, 4, 7
and 10 of table of Figure 4.1 the validity for k = 1 easily follows. Now assume
that (4.3) is true for a k ∈ N and all j ∈ NOM. Assume furthermore that the
antecedent is true for k + 1 in a model M = (A,∼, g, ν). This means that there
is a path of length k + 1 from g(i) to g(j), in particular there is an agent a such
that there is path of length k from g(i) to a and a path of length 1 from a to
g(j). We can assume without loss of generality that there is a nominal h ∈ NOM,
different from i and j, such that g(h) = a. But then by the assumption that (4.3)
is true for k we obtain that [I]k@hEBϕ is true. But then by inspecting the lines
1, 4, 7, and 10 of table of Figure 4.1 it follows that [I]k+1@jEBϕ is true, as well.
This completes the proof. □

The following lemma will also be useful:

4.5.2. Lemma. Let M = (A,∼, g, ν) be a finite, connected, symmetric network
model in a state of unstable pluralistic ignorance. Then for all k ∈ N0,

M⊗k I |= G(EBϕ ∨ EB¬ϕ).

Thus, when a network starts out in an unstable state of pluralistic ignorance
and evolves under the influence event I, no one will ever express undecidedness.

Proof: Assume that M = (A,∼, g, ν) is a finite, connected, symmetric network
model in a state of unstable pluralistic ignorance. First note that since M is in a
state of unstable pluralistic ignorance all agents satisfy IBϕ and as the influence
event I does not change any agent’s inner belief, IBϕ will remain true of all agents
in all models of the form M⊗k I.

The proof goes on induction on k ∈ N0. The induction follows trivially from
the fact that M |= @i(IBϕ ∧EBϕ) ∧G

(
¬i→ (IBϕ ∧EB¬ϕ)

)
. Now assume that

M ⊗k I |= G(EBϕ ∨ EB¬ϕ) and consider an agent a ∈ A. Note that all a’s
friends either expressed a belief in ϕ or a belief in ¬ϕ in M⊗k I. But then, by
inspecting the lines 4, 10, and 16 of the table of Figure 4.1, a must either express
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a belief in ϕ or a belief in ¬ϕ in M⊗k+1 I. This completes the induction proof.
□

We can now prove the main proposition.
Proof of Proposition 4.3.2. (i) ⇒ (ii). This is straightforward.
(ii) ⇒ (iii). Assume that there are a ∈ A and k ∈ N such that M⊗k I, a |=

EBϕ and M⊗k+1 I, a |= EBϕ. By Lemma 4.5.2 and an inspection of the lines 4
and 10 of the table of Figure 4.1, it follows that there is a b ∈ A such that a ∼ b
and M⊗k I, b |= EBϕ. Hence, (iii) follows.

(iii) ⇒ (iv). Let a, b ∈ A and k ∈ N be such that a ∼ b, M⊗k I, a |= EBϕ,
andM⊗kI, b |= EBϕ. As previously, it follows by Lemma 4.5.2 and an inspection
of the lines 4 and 10 of the table of Figure 4.1, that there are ak−1, bk−1 ∈ A such
that ak−1 ∼ a, bk−1 ∼ b, M ⊗k−1 I, ak−1 |= EBϕ, and M ⊗k−1 I, bk−1 |= EBϕ.
But then, it follows by Lemma 4.5.2 and an inspection of the lines 4 and 10 of
the table of Figure 4.1, that there are ak−2, bk−2 ∈ A such that ak−2 ∼ ak−1,
bk−b ∼ bk−1, M ⊗k−2 I, ak−2 |= EBϕ, and M ⊗k−2 I, bk−2 |= EBϕ. Continuing
this way, we obtain a0, a1, a2, ..., ak−1 ∈ A and b0, b1, b2, ..., bk−1 ∈ A such that
a0 ∼ a1 ∼ ... ∼ ak−1 ∼ a, b0 ∼ b1 ∼ ... ∼ bk−1 ∼ b, M ⊗0 I, a0 |= EBϕ, and
M ⊗0 I, b0 |= EBϕ. Now since M ⊗0 I = M, and g(i) is the only agent in
M that satisfy EBϕ, it follows that a0 = b0 = g(i). Thus, M, a |= ⟨F ⟩ki and
M, b |= ⟨F ⟩ki and (iv) follows.

(iv) ⇒ (v). Assume that there are a, b ∈ A and k ∈ N such that a ∼ b,
M, a |= ⟨F ⟩ki, and M, b |= ⟨F ⟩ki. From M, a |= ⟨F ⟩ki, it follows that there are
a1, a2, ..., ak−1 ∈ A such that g(i) ∼ a1 ∼ a2 ∼ ... ∼ ak−1 ∼ a. Similar there are
b1, b2, ..., bk−1 ∈ A such that g(i) ∼ b1 ∼ b2 ∼ ... ∼ bk−1 ∼ b. But then

g(i) ∼ a1 ∼ ... ∼ ak−1 ∼ a ∼ b ∼ bk−1 ∼ ... ∼ b1 ∼ g(i)

is a path of length 2(k + 1)− 1. Hence, M, g(i) |= ⟨F ⟩2(k+1)−1i and (v) follows.
(v) ⇒ (vi). This is trivial.
(vi) ⇒ (iv). Assume that there is an odd cycle in M. Since M is connected,

there is a path from g(i) to the cycle. But then it is not hard to find agents a and
b of the cycle such that they both have same path length to g(i) and are friends.
Now, (iv) easily follows.

(iv) ⇒ (i). Assume that there are a, b ∈ A and a k ∈ N such that a ∼ b,
M, a |= ⟨F ⟩ki, and M, b |= ⟨F ⟩ki. Then by Lemma 4.5.1 it is not hard to see that
after k updates with I both a and b will express beliefs in ϕ, i.e. M⊗kI, a |= EBϕ
and M⊗k I, b |= EBϕ. Then, since a ∼ b, an inspection of the lines 1, 4, 7, and
10 of table of Figure 4.1 shows that a and b will keep expressing their belief in ϕ,
i.e. M⊗k+m I, a |= EBϕ and M⊗k+m I, b |= EBϕ for all m ∈ N. For the same
reasons, for all c ∈ A such that either c ∼ a or c ∼ b, M⊗k+1+m I, c |= EBϕ for
all m ∈ N. Similarly, for all d ∈ A such that there is a c ∈ A such that d ∼ c ∼ a
or d ∼ c ∼ b, we have that M⊗k+2+m I, d |= EBϕ for all m ∈ N. Generally for
all d ∈ A such that there are c1, ..., cl ∈ A such that d ∼ c1 ∼ c2 ∼ ... ∼ cl, cl = a
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or cl, we have that M⊗k+l+m I, d |= EBϕ for all m ∈ N. Since M is finite and
connected, there will be a stage l such that all agents in A have a path of length
less than l to a or b and thus they all express belief in ϕ and will continue doing
this. This completes the proof of Proposition 4.3.2.
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Diffusion Phenomena
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Introduction to Part III:
From Diffusion to Information and Back

Beyond the specific case studies presented in Part II, we are interested in a
logical perspective on diffusion and information phenomena in social networks in
general. This part of the thesis will therefore abstract away from specific examples
of opinion spread, moving further away from social psychology and getting closer
towards social network analysis.

Typically, the social network analysis perspective on the spread of information,
viruses, trends, opinions, or behaviors in social networks (see Section 2.1.2 and
[127, 105, 71]), sees them as locally and uniformly driven: whether an agent
adopts a behavior, opinion, disease, product, trend, etc., depends on whether the
agents linked to her within her social network have adopted it already.

Given that such processes depend on local properties of agents on a network
graph, it seems natural to aim to develop a complete dynamic modal logic to rea-
son about such “contagion via network-neighbors” phenomena in their generality.
The ambition here is to capture the general logical laws of diffusion and infor-
mation processes over networks, for a wide variety of dynamic processes. This is
exactly what we will do in this part of the thesis.

Chapter 5 presents our first general logical framework for reasoning about dif-
fusion processes within social networks, in which many different types of dynamics
can be “plugged-in”. Later on, Chapter 6 will include epistemic logic components
into this framework in order to capture the interaction between information and
diffusion phenomena, while Chapter 7 will propose a dynamic epistemic logic for
diffusion in threshold models.





Chapter 5

Hybrid Logic for Diffusion

5.1 Introduction

This chapter, based on work published in [63], designs a general logic for
reasoning about complex diffusion processes within social networks.

To do so, we build on work presented earlier. Conceptually, the idea of equip-
ping agents with several properties taking different values, originates from the
work from [62] presented in the previous chapter, generalizing the “one-property”
opinion dynamics of [120]. However, our discussion takes a significant turn here:
from the case-studies of specific social phenomena presented earlier, we now jump
into a more general and more technical discussion. Indeed, while Chapter 4 re-
stricted the modeling of (opinion) diffusion to two properties of agents, the frame-
work to be introduced here allows us to reason about a wide class of complex
phenomena involving an unbounded number of interacting properties of agents.

Formally, our framework is a dynamic extension of standard hybrid logic [10]
with a special kind of atomic propositions to describe the agents’ properties.
The axiomatization of the static fragment of our logic is very similar to the
axiomatizations of [54, 10] and the one of our full dynamic logic borrows the
reduction technique from Dynamic Epistemic Logic [24, 70].

5.1.1 Outline

This chapter is structured as follows. Section 5.1.2 recalls the type of diffu-
sion phenomena that our framework is designed to capture: local “contagion” pro-
cesses, as they are typically considered within social network analysis. Section 5.2
defines our logic for diffusion in social networks. The static part of the logic is
introduced first (5.2.1) and dynamic transformations are then added to it (5.2.2)
to obtain the full dynamic setting. Section 5.3 provides a complete axiomatiza-
tion of the logic. Section 5.4 shows how the logic applies to documented examples
of network behaviors: we first consider an example of diffusion of micro-finance
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loans in villages (5.4.2), and we then go back to the phenomenon of pluralistic
ignorance (5.4.1) discussed in the previous chapter. Finally, section 5.5 discusses
possible extensions of the framework and summarizes the content of the chapter.

5.1.2 Complex Diffusion Phenomena

We are interested in a specific type of processes: the threshold-limited diffu-
sion phenomena typically considered in network analysis, as introduced in Sec-
tion 2.1.2.

Let us briefly recall here the most relevant features of the simple SI (sus-
ceptible/infected) epidemics example introduced in 2.1.2. The way an infection
spreads within a community depends on how contagious the disease is, on how
many agents are currently infected, on their positions in the network, and on the
size and structure of the network. For instance, in the simplest version of such an
SI example, the diffusion dynamics is driven by the following contagion rule: If
any of your neighbors is infected, become infected yourself at the next moment,
and stay infected forever. Given such an assumption about contagion, and a finite
connected population, it is easy to see that all agents will end up being infected
forever after a finite amount of time steps, which is bounded by the diameter of
the graph.

Different contagion dynamics can lead to to differences in the long term dy-
namics: As mentioned in Section 2.1.2, we can also assume that after being
infected, an agent could immediately recover and become susceptible again. Ac-
cording to this contagion rule, agents might find themselves alternating forever
between being infected and being susceptible and the community will never reach
a stable state with respect to the epidemics.

In this simple SI example, what determines the future health status of agents
is their current health status and the one of their neighbors. That is, only one
property (the health status) of the agents is relevant, and this property can take
only two values (SI). But things are often much more complex. First, the health
status could count more possible values (think of the three values SIR version,
where agents recover and stop being contagious after being infected). Diffusion
phenomena typically involve several properties of agents. Some other features
of agents which might interfere with the diffusion of the infection. For instance,
imagine a genetic type such that agents of this type are immune to the disease
or stay infected for longer. In this case, the epidemic behavior reveals more
complexity, and the diffusion rule needs to combine several properties of agents to
take into account all factors. Some of these properties might be spreading within
the network, under various contagion rules, and some might not be spreading at
all.

Two aspects of the above examples will be particularly relevant to this chapter,
for which we fix some vocabulary to prevent any confusion. First, agents have
certain properties such as health status, genetic type, age, gender, hair color, etc,



5.2. Logic for Diffusion in Social Networks 85

some of which might be spreading within the network, under various rules. For
each agent all these properties are instantiated by particular features (or values),
such as infected, is of the immune genetic type, 34 years old, female, redhead,
etc. The features of some of these properties are spreading within the network
(in our simple examples, only the health status features are). For each property,
the associated possible features will come from some fixed set of values, such as:
the three possible health states, numbers 1 to, say, 130, male or female, a set of
possible hair colors, etc. We will represent this assignment of one value to each
property of agents by a particular kind of atomic propositions and a constraint
in the valuation in the framework developed in the next section.

The second thing to remark is that the dynamics are defined in a purely local
way. In the above, an agent changes her health status from being susceptible to
being infected if at least one of her neighbors is infected. Other kinds of local
dynamics could be considered: for instance, dying your hair red if all of your
friends have red hair or if at least one of your friends has a friend who has red
hair. This type of local conditions is ideally described by formulas of a modal
language. Thus, using an extension of basic modal logic will provide a natural
way of defining a large variety of dynamic processes on social networks.

We want a framework to capture the laws of complex dynamic phenomena.
More concretely, we design a general logic to model the change of repartition of
properties within social networks, which can accommodate: 1) as many proper-
ties as wanted 2) as many values as wanted for each of those properties 3) any
transformation rule which can be defined in the logic in terms of those properties,
while keeping the network structure (and the agents’ names) the same. This is
what we are going to propose in this chapter.

5.2 Logic for Diffusion in Social Networks

In this section, we introduce a hybrid logical framework to reason about the
change of distribution of features among agents within social networks. We start
with the static part of the logic, which we call logic for social networks, to model
the situation of agents in the network at a given moment. We then move on to
the full dynamic logic for diffusion in social networks to represent the evolution
of such situations.

5.2.1 Static Logic for Social Networks (N)

As in [145], our framework includes the standard tools from hybrid logic [10] to
be able to talk about the network structure. Hence, following [145], our formulas
will have an indexical reading.

The main novelty in our static logic is the format of the atomic propositions
used to talk about the properties of the agents. Recall that we view agents as
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having certain features that are instantiations of some fixed properties under con-
sideration. Instead of a set of standard propositional variables, we use equational
statements to talk about features of agents. We assume that each agent has n
different relevant properties, to each of which is assigned one value from a finite
set. To avoid any later confusion, let us first remind our reader of the vocabulary
we will be using: we use the term “property” to refer to for instance age, gen-
der, health status, etc., and the term “feature” to refer to the value assigned to
such a property, for instance 34 years old, infected, redhead, etc. In this sense, a
property is a “feature variable” and a feature is a value taken by this variable.

More formally, we fix a finite set of feature variables {V1, V2, ..., Vn} represent-
ing n different properties of agents, where each variable Vl is associated with a
given finite value set Rl. The atomic propositions (or feature propositions) of our
language will then be defined in the following way:

5.2.1. Definition. [Feature propositions] A feature proposition is of the form

Vl = r,

for some l ∈ {1, . . . , n} and some r ∈ Rl. The set of all feature propositions (for
fixed sets of variables and values) will be denoted FP.

The intuition is that the proposition Vl = r is true of an agent if and only
if the agent possesses feature r of property Vl. For instance, assuming that we
have two properties Vg for gender and Vh for health status, we could write Vg = f
to express that an agent is female and Vh = i to express that that an agent is
infected.1

In addition to the finite set of feature propositions (FP), we will assume a
countable infinite set of nominals (NOM) used as names for agents in networks,
just as nominals are used to refer to possible states in traditional hybrid logic
[10]. We can now give the syntax for the static social networks language:

5.2.2. Definition. [Syntax for social networks language LN ] The syntax of the
social networks language, denoted LN , is given by:

ϕ ::= Vl = r | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | Uϕ | @iϕ ,

where Vl = r ∈ FP and i ∈ NOM.2

1Note that feature propositions can be viewed as a generalization of classical propositional
variables. Given a classical propositional variable P one can add a variable VP and let RP =
{1, 0}. Then VP = 1 will represent that P is true and VP = 0 will represent that P is false (i.e.
¬P ).

2We will use the abbreviations ∨, →, and ↔ in the standard way and denote the dual
operator of F by ⟨F ⟩ and the dual of U by ⟨U⟩. Moreover, we define:∧n

i=1 ϕi :=
∧

ϕ∈{ϕ1,....,ϕn}
ϕ := (...((ϕ1 ∧ϕ2)∧ϕ3)∧ ...)∧ϕn), and

∨n
i=1 ϕi :=

∨
ϕ∈{ϕ1,....,ϕn}

:=

(...((ϕ1 ∨ ϕ2) ∨ ϕ3) ∨ ...) ∨ ϕn).
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The intuitive meaning of a formula Fϕ is that “ϕ is true of all my network-
neighbors” and the intuitive meaning of a formula @iϕ is that “ϕ is true of the
agent named i” – note the indexical reading of formulas here! The U -operator is
the global modality quantifying over all agents in the network and Uϕ is read as
“ϕ is true of all agents in the network”.

As previously mentioned, we have assumed that a fixed set of feature propo-
sitions FP is given. This assumption will be made throughout the rest of the
chapter unless otherwise specified. Whenever we need to be explicit about the
set of feature propositions to which our language is relative, we will use the no-
tation LN (FP).

Before defining the semantics, let us first introduce the notion of assignment
and define our models. Intuitively, an assignment will assign specific values to
the set of variables, hence determining the features of a given agent:

5.2.3. Definition. [Assignment/full assignment] An assignment (or partial as-
signment) is a partial function s from {1, ..., n} to

∪n
l=1Rl such that s(l) ∈ Rl for

all 1 ≤ l ≤ n where s is defined. The set of all assignments is denoted by V . For
a given assignment s, the domain of s is denoted by dom(s). A full assignment
is an assignment s such that dom(s) = {1, ..., n}. The set of all full assignments
is denoted Vfull.

The idea is that an assignment s assigns a feature s(l) ∈ Rl to the feature
variable Vl, for each l ∈ dom(s). Thus, a full assignment s assigns a feature s(l)
to every feature variable Vl (l ∈ {1, ..., n}).3

5.2.4. Definition. [Network model] A network model is a tupleM = (A,≍, g, ν),
where: A is a non-empty set of agents, ≍ is a binary relation on A representing
the network structure, g : NOM → A is a function assigning an agent to each
nominal, and ν : A→ Vfull is a valuation assigning a full assignment ν(a) to each
agent a ∈ A, i.e. a complete specification of the features of each agent in the
network. The pair (A,≍) will be referred to as a frame and a model built on a
frame (A,≍) is simply a model obtained by adding a g and a ν to the frame.

For instance, if we have two properties or “feature variables”, health status
and gender, a full assignment assigns one value for each variable to each agent
in the network. In other words, no property of any agent is left undefined in a
model. We can move on to the semantics for the language LN :

3The reader might notice that we only need full assignments to define models. However,
partial assignments will simplify things when we will define our dynamic logic for diffusion in
social networks in Section 5.2.2.
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5.2.5. Definition. [Semantics of LN ] Given a M = (A,≍, g, ν), an a ∈ A and
a formula ϕ ∈ LN , we define the truth of ϕ at a in M inductively by:

M, a |= Vl = r iff ν(a)(l) = r
M, a |= i iff g(i) = a
M, a |= ¬ϕ iff it is not the case that M, a |= ϕ
M, a |= ϕ ∧ ψ iff M, a |= ϕ and M, a |= ψ
M, a |= Uϕ iff for all b ∈ A;M, b |= ϕ
M, a |= Fϕ iff for all b ∈ A; a ≍ b implies M, b |= ϕ
M, a |= @iϕ iff M, g(i) |= ϕ

We say that a formula ϕ is satisfiable if there is a model M = (A,≍, g, ν) and an
agent a ∈ A such that M, a |= ϕ (and unsatisfiable otherwise). If this is the case,
we will also simply say that a satisfies ϕ (taking M to be given). Two formulas
ϕ and ψ are said to be pairwise unsatisfiable if ϕ ∧ ψ is unsatisfiable. Given a
model M = (A,≍, g, ν) and a formula ϕ we write M |= ϕ if M, a |= ϕ for all
a ∈ A. A formula ϕ is said to be valid with respect to a class of frames if M |= ϕ
for all models M built on some frame from the class. A formula is said to be
just valid if it is valid with respect to the class of all frames. The logic consisting
of the set of all valid formulas will be denoted N and referred to as the logic for
social networks.

While choosing a modal language seems natural to describe network struc-
tures, the reader might wonder why we choose a hybrid one. [38] has shown
that some global properties of graphs standardly discussed in graph theory are
neither definable in basic modal language (even if one adds a transitive closure
modal operator to the language) nor in any bisimulation invariant extension of it,
such as modal µ-calculus: connectivity, acyclicity, and Hamiltonian property (i.e.,
whether there is a cycle passing through each vertex of a graph exactly once), for
instance. Add nominals and @i normal modal operators and all those properties
become definable, as [38] shows. While our language does not include the transi-
tive closure operator used in [38] and therefore cannot express connectivity and
acyclicity with the same succinctness4, it can express the Hamiltonian property
in the exact same way as introduced in [38].

We leave the full expressivity comparison between the present framework and
others for future research, but we give four examples of global properties of net-
works expressible in our language: irreflexivity (no agent is linked to itself),
symmetry (if a first agent is linked to a second one, then the second one is also
linked to the first one), full connectivity (all different agents are linked to each
other), n-connectivity (there is a path of length at most n between any two pair
of different agents):

4Section 5.5.2 discusses extensions of our framework with transitive closure operators (of
both the static and dynamic modalities).
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A frame (A,≍) is

irreflexive iff (A,≍) |= @i¬⟨F ⟩i,

symmetric iff (A,≍) |= @i⟨F ⟩j → @j⟨F ⟩i,

fully connected iff (A,≍) |= @i(¬j → ⟨F ⟩j),

n-connected (n ∈ N ≥ 1) iff (A,≍) |= @i(¬j → (⟨F ⟩j ∨ ⟨F ⟩2j ∨ ....⟨F ⟩nj),
where ⟨F ⟩k is given by:

⟨F ⟩1 := ⟨F ⟩

⟨F ⟩k+1 := ⟨F ⟩⟨F ⟩k.

All such global connectivity properties will affect the diffusion phenomena
we are interested in. For instance, recall the initial epidemic “SI model” example
from Section 5.1: if a network is n-connected, all agents will become infected after
a period of length at most n. Hence, the hybrid static framework introduced so
far is rather promising: it is expressive enough to describe the distribution of
features among agents in the network, as well as some network properties which
are particularly relevant to how those features will be redistributed in the future.
In the next subsection, we introduce the tools to talk precisely about changes or
transformations of such network situations.

5.2.2 Dynamic Logic for Diffusion in Networks (ND)

We now extend our logic to deal with the dynamics of networks. We make two
important design choices. First, we will be concerned exclusively with one partic-
ular type of change: the change of distribution of features of agents within a social
network structure. This means that we assume that agents do not change names
and that the network structure is fixed. Second, we take a very general point
of view: our agents are essentially just bundles of features with stable names,
and the question of how such features should change is so open-ended that we
consider that the safest option is to offer a framework which is general enough to
allow for any such type of change, as long as it is locally definable in terms of our
language. Consequently, our setting can be refined in many ways to accommodate
different types of applications and represent their corresponding dynamics. Our
framework allows to “plug-in”: 1) how many properties of agents are relevant,
2) how many values each of these properties can take and 3) according to which
rules such static models should be updated, i.e, how those features should be
redistributed on the network. In other words, we are abstracting as much as pos-
sible from particular diffusion examples given by the networks analysis literature
by building a framework which can deal with most of them.

What we want is a way to obtain a new model from a given model through
some transformation. In this respect, our dynamic modalities will be comparable
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to the modalities for event models of Dynamic Epistemic Logic [24, 70]. However,
instead of event models, we will talk about dynamic transformations5.

5.2.6. Definition. [Dynamic transformations] A dynamic transformation is a
pair D = (Φ, post) consisting of a non-empty finite set Φ of pairwise unsatisfiable
formulas (from the language LND to be defined in Definition 5.2.7)6 and a post-
condition function post : Φ → V . The set Φ will be referred to as “preconditions”,
and given a precondition ϕ ∈ Φ, we will call the assignment post(ϕ) ∈ V the
“post-condition” of ϕ.

Note that the post-conditions are partial assignments and not full assignments.
The intuition behind this definition is that if an agent satisfies some formula ϕ ∈ Φ
(in which case, ϕ is necessarily unique), then after the dynamic transformation D,
a changes her features as specified by post(ϕ). As post(ϕ) is a partial assignment
a does not change all her features, only the ones in dom(post(ϕ)).

On the syntactic level, we add formulas of the form [D]ϕ for a given dynamic
transformation D. In the following we consider a fixed set of dynamic transfor-
mations to be given and denote it by DT. Here is the syntax of our full dynamic
language:

5.2.7. Definition. [Syntax of language for diffusion in social networks LND]
The syntax of the language for diffusion in social networks, denoted LND, is
given by:

ϕ ::= Vl = r | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | Uϕ | @iϕ | [D]ϕ ,

where Vl = r ∈ FP, i ∈ NOM, and D ∈ DT.

As for the static language LN , whenever needed, to make explicit which set
of dynamic transformations DT (and feature propositions FP) a language is built
upon, we use the notation LND(DT) (LND(FP,DT)).

The satisfaction of formulas involving dynamic modalities relies on transform-
ing the model at hand. This is captured by the following definition:

5The dynamic transformations in this chapter are defined by making use of both pre- and
postconditions. This is in line with the work done in Dynamic Epistemic Logic with “fact
change” and epistemic planning, see e.g. [55]. An alternative way to encode atomic fact change
doesn’t rely on postconditions but uses a flip-operator which changes the valuation of an atomic
sentence to its opposite value. The latter approach is developed in [17].

6We have to be a little careful here. To avoid circular definitions we cannot allow the dynamic
transformation D = (Φ, post) to have precondition formulas in Φ involving D itself. Neverthe-
less, we can allow formulas of LND in Φ constructed on an “earlier stage” in a simultaneous
inductive definition of dynamic transformations and the language LND. In other words, one
should view Definition 5.2.6 and Definition 5.2.7 as one simultaneous recursive definition. The
issue is similar to the issue of defining the full language of Dynamic Epistemic Logic [70, Ch. 6].



5.2. Logic for Diffusion in Social Networks 91

5.2.8. Definition. [Transformation updates] Given a model M = (A,≍, g, ν)
and a dynamic transformation D = (Φ, post), the updated model under the trans-
formation D is MD = (A,≍, g, ν ′), where ν ′ is defined by:

ν ′(a)(l) =





post(ϕ)(l) if there is a ϕ ∈ Φ such that M, a |= ϕ

and l ∈ dom(post(ϕ))

ν(a)(l) otherwise

(5.1)

for all a ∈ A and all l ∈ {1, ..., n}.

As previously mentioned, the intuition is that if an agent satisfies a ϕ ∈ Φ
then, after the dynamic transformation D, she changes her features as specified
by post(ϕ). More formally, assume that an agent a satisfies ϕ and consider the
variable Vl. If l /∈ dom(post(ϕ)), then Vl = r will be true of a after D if, and
only, if Vl = r was true of a before D. On the other hand, if l ∈ dom(post(ϕ)),
then Vl = r will be true of a after D if, and only, if post(ϕ)(l) = r. Note that
the “otherwise” case in (5.1) takes care of two situations, namely the situation
where there are no formulas in Φ true of the agent a, and the situation where
there might be a formula ϕ ∈ Φ true of a, but the feature in question, l, is not in
the domain of post(ϕ).

The semantics of the dynamic language can now be given:

5.2.9. Definition. [Semantics of LND] Given a M = (A,≍, g, ν), an a ∈ A
and a formula ϕ ∈ LND, we define the truth of ϕ at a in M inductively as in
Definition 5.2.5 with the additional clause:

M, a |= [D]ϕ iff MD, a |= ϕ.

Satisfiability, validity, and pairwise unsatisfiability are generalized in the obvious
way from Definition 5.2.5. The logic consisting of the set of all valid LND-formulas
will be denoted ND and referred to as logic for diffusion in social networks.

Before moving on, let us consider the SIR (susceptible, infected, recovered)
example introduced in Section 2.1.2 concerning diffusion of a disease again. Here
we might have two variables VHS and VGI keeping track of the health status of
the agents and whether they are genetically immune, i.e. RHS = {susceptible,
infected, recovered } and RGI = {yes, no}. Thus, VHS = susceptible ∧ VGI = no
is true of an agent if she is susceptible to the disease and she is not genetically im-
mune. We could then specify the following dynamic transformationD = (Φ, post),
for instance:

Φ : post :
VHS=susceptible ∧ VGI=no ∧ ⟨F ⟩VHS= infected post(HS)= infected
VGI = yes post(HS)=recovered
VHS = infected post(HS)=recovered
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This dynamic transformation represents the fact that a non genetically im-
mune susceptible agent becomes infected if at least one of her neighbors is infected,
while a genetically immune agent is immediately recovered and does not get in-
fected ever. Moreover, after being infected an agent moves to being recovered.
As there is no specification of how agents would move from being recovered to
being susceptible (or infected), recovered agents become immune to the disease
too. This example is minimal in the sense that it involves only two properties of
agents and assumes that one property is spreading (health status) while the other
is not (genetic immunity status). However, our framework can go way beyond
this simple example as it allows for combining several properties, spreading or
not. More complex examples of applications of ND can be found in Section 5.4.

It follows from Definition 5.2.8 that, for every network model M and ev-
ery dynamic transformation D, the updated network model MD always exists.
Moreover, no agent from A is deleted when moving to the new model MD. Thus
for every pair (M, a) of a network model M and an agent a of M, and for
every dynamic transformation D, the pair (MD, a) exists. Moreover, dynamic
transformations are “functional”, in the sense that each dynamic transformation
D behaves as a function on the class of pointed network models (M, a), in ac-
cordance with most of the examples in the network analysis literature. This is
reflected in the logic by the fact that all dynamic transformations are their own
duals, i.e.

[D]ϕ↔ ¬[D]¬ϕ,

is a validity for all dynamic transformations D and all formulas ϕ. For these
reasons, we can always define the sequential application of the same dynamic
transformation D in a straightforward way as follows:

5.2.10. Definition. [MkD] Given a network model M and a dynamic transfor-
mation D, let MkD be defined recursively for all k ∈ N0 by:

M0D := M

M(k+1)D := (MkD)D.

Some long-term behaviors of networks can be observed. Given a network
model M and a dynamic transformation D, an interesting question is whether
the network stabilizes, that is, whether successive updates by D will result in a
network model which does not change under further update by D, i.e. a fixed-
point of the model transformation D.

5.2.11. Definition. [Stability of a model] A network model M is said to be
stable under a dynamic transformation D, if M = MD. M is said to stabilize
under the dynamic transformation D, if there is a k ∈ N0 such thatMkD is stable.



5.2. Logic for Diffusion in Social Networks 93

Can our logic say something about such limit behaviors of networks? Yes,
it can: it can capture the notion of stability. Let us explain how to express in
our language that a network is stable.7 Given a model M = (A,≍, g, ν), the full
assignment ν(a) completely describes the features of a, thus the complete features
of a is expressed by:

ϕν(a) :=
n∧

l=1

Vl = ν(a)(l).

Moreover, note that the set of all possible full assignments V is finite. Thus, we
can “quantify” over it in our language and express that a network model is stable
under D by8:

ϕstable(D) :=
∧

s∈Vfull

(
ϕs → [D]ϕs

)
. (5.2)

That this is in fact so follows from the following lemma:

5.2.12. Lemma. A network model M is stable under D if, and only if,

M |= ϕstable(D).

Let us summarize what we have done so far. First, we have defined a static
logic to talk about features of agents in a social network. Then, we have defined
the set of transformations of the distribution of those features which are locally
definable in terms of preconditions and postconditions within our (restricted)
language. Moreover, we have shown that our language can capture some static
properties of networks, such as n-connectedness, and some dynamic properties of
network models such as stability. In a nutshell, we have presented a logic able to
describe the type of states of social networks and the type of changes which we
wanted to capture. In the next section, we will consider what kind of reasoning
about those networks is supported by our logic, by giving a complete proof-system
for it.

7While our language can express stability, it cannot express stabilization. The straight for-
ward way would be to add the Propositional Dynamic Logic (PDL) transitive closure construct
∗ to our modality [D] [95]. However, it would be interesting to find a formula without the
⟨D∗⟩ operator that defines stabilizing networks, just as done in [166] for the case of a logic of
preference change. We leave this for future research. Stabilization and the transitive closure
operator ∗ are discussed in more details in the concluding Section 5.5.

8Another way of expressing that a network model is stable would be to follow the line of
[120]. If VL = r is true of some agent and the network is stable, this means that none of the
preconditions ϕ ∈ Φ of D for which post(ϕ) would change the value of Vl can be satisfied at the
agent. Then, for every feature we can write the conjunction of the negation of all preconditions
that would change this feature. Finally, we can take the disjunction over all possible features
and thereby obtain a formula for a network being stable. This, of course, would result in a
much more complex formula, however, it would avoid the explicit use of the [D] modality.
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5.3 Axiomatization

In this section, we will provide sound and complete Hilbert-style proof systems
for the logics of Section 5.2. The axiomatization of the static logic N follows that
of [54, 10] with a few modifications, while the axiomatization of the dynamic
logic ND expands that of the static logic with “reduction axioms” – a standard
technique of Dynamic Epistemic Logic [24, 70].

Before giving the Hilbert-style axiomatization of N, we recall some standard
terminology for Hilbert-style proof systems: A proof of ϕ is a finite sequence of
formulas ending with ϕ such that every formula in the sequence is either an axiom
or follows from previous formulas in the sequence using one of the proof rules.
We denote this by ⊢ ϕ. We use ⊢S for provable in the proof-system for N and ⊢D

for provable in the proof-system for ND. In the following, X will thus stand for
either S or D. For a set of formulas Γ, Γ ⊢X ϕ holds if there are ψ1, ..., ψn ∈ Γ
such that ⊢X ψ1 ∧ ... ∧ ψn → ϕ. Given a set of formulas Σ, let X + Σ denote the
logic obtained by adding all the formulas in Σ as axioms. That ϕ is provable in
the logic X + Σ will then be denoted by ⊢X+Σ ϕ. A set of formulas Γ is said to
be X + Σ-inconsistent if Γ ⊢X+Σ ⊥, and X + Σ-consistent otherwise. A formula
ϕ is pure if it does not contain any feature propositions. A set of formulas Σ is
called substitution-closed if it is closed under uniform substitution of nominals
by nominals.

5.3.1 Complete Axiomatization of N

The Hilbert-style axiomatization of N is shown in Figure 5.1. As previously
mentioned, the axiomatization is fairly standard in the hybrid logic literature
except for the axioms Char.Prop.1 and Char.Prop.2. While Char.Prop.1 ensures
every variable Vl is assigned at least one value, Char.Prop.2 ensures that no
variable Vl is assigned more than one value.

Soundness and completeness of this type of axiomatization are also standard
results in the hybrid logic literature (see [54, 10]). Thus, we do not include the
proofs of these properties and only state the completeness theorem here:

5.3.1. Theorem (Completeness of N). Let Σ be a substitution-closed set of
pure formulas. Every set of formulas that is N + Σ-consistent is satisfiable in a
model whose underlying frame validates all the formulas in Σ.

This form of completeness theorem is typical for hybrid logic and highlights
one of its advantages. As traditional with completeness proofs, when assuming
that a formula ϕ is valid and that it is not provable, the set {¬ϕ} becomes
consistent. Then, by the above theorem, we can derive a counter-model to ϕ,
which yields a contradiction to the assumption that ϕ was not valid – thus ϕ
must be provable. The benefit of the hybrid logic is that we can make sure
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Axioms:

All substitution instances of propositional tautologies∧n
l=1

(∨
r∈Rl

Vl=r
)

Char.Prop.1∧n
l=1

∧
r∈Rl

(
Vl=r →

∧
s∈Rl\{r}

¬Vl=s
)

Char.Prop.2

X(ϕ→ ψ) → (Xϕ→ Xψ)1 KX

@i(ϕ→ ψ) → (@iϕ→ @iψ) K@

@iϕ↔ ¬@i¬ϕ Selfdual@
@ii Ref@
@i@jϕ↔ @jϕ Agree

i→ (ϕ↔ @iϕ) Introduction

⟨X⟩@iϕ→ @iϕ
1 Back

(@i⟨X⟩j ∧@jϕ) → @i⟨X⟩ϕ1 Bridge

⟨U⟩i GM

Rules:

From ϕ and ϕ→ ψ, infer ψ Modus ponens
From ϕ, infer Xϕ1 Necessitation of X

From ϕ, infer @iϕ Necessitation of @

From @iϕ, where i does not occur in ϕ, infer ϕ Name

From (@i⟨X⟩j ∧@jϕ) → ψ, where i ̸= j and j
does not occur in ϕ or ψ, infer @i⟨X⟩ϕ→ ψ

1
Paste

1 Here X denotes either F or U .

Figure 5.1: The Hilbert-style proof system of N.

that this counter-model is of a typical kind, namely a model where each world
is named by a nominal. This further implies that the underlying frame validates
all formulas in Σ (as Σ is substitution closed). Thus, our counter-model is based
on a frame from the class of frames defined by Σ and we thereby automatically
achieve completeness with respect to the class of frames defined by Σ. (Going
through an extension of the standard translation of modal logic into first-order
logic, one can see that pure formulas will always define first-order properties of
frames [53].)

The strength of this kind of automatic completeness is easily illustrated by
considering a particular class of networks, namely networks where the relation ≍
is irreflexive and symmetric – corresponding to the undirected networks very often
studied in social networks analysis.9 As mentioned in Section 5.2.1 irreflexivity
and symmetry can be expressed (by pure formulas) in N. Thus, adding all substi-
tution instances of these formulas allows us to derive a complete axiomatization
of the logic of undirected networks.

9This is also the class of networks, representing “friendship”, which is considered by [145,
120].
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Axioms:

All axioms for N of Figure 5.1

[D]Vl=r ↔
(∨

ϕ∈Φ, post(ϕ)(l)=rϕ
)
∨
(
¬(
∨

ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r
)

Red.Ax.Prop.

[D]i↔ i Red.Ax.Nom.

[D](ϕ ∧ ψ) ↔ [D]ϕ ∧ [D]ψ Red.Ax.∧

[D]¬ϕ↔ ¬[D]ϕ Red.Ax.¬

[D]@iϕ↔ @i[D]ϕ Red.Ax.@

[D]Fϕ↔ F [D]ϕ Red.Ax.F

[D]Uϕ↔ U [D]ϕ Red.Ax.U

[D][D′]ϕ↔ [(D;D′)]ϕ Red.Ax.DD

Rules:

All the rules for N of Figure 5.1

For all dynamic transformations D,D′ ∈ DT.

Figure 5.2: The Hilbert-style proof system of ND.

5.3.2 Complete Axiomatization of ND

We now move on to give a complete axiomatization of the full dynamic logic
ND. The axiomatization is shown in Figure 5.2. The new axioms, referred to
as reduction axioms, allow us to reduce all talk about dynamic properties of the
network models to talk about their static properties. Moreover, they give us a
better understanding of the dynamic transformations. For instance, the intuition
behind the first reduction axiom Red.Ax.Prop. is that if the variable Vl is assigned
the value r after the dynamic transformation D, then before the transformation
either i) one of the post-conditions of D that specify a change resulting in Vl = r,
is satisfied, or ii) no precondition of D that specify a change to the value taken
by variable Vl is satisfied and Vl = r is already true.

The intuition behind the axiom Red.Ax.Nom. is that dynamic transforma-
tions do not change the names of agents. The axiom Red.Ax.∧ says that dynamic
transformations commute with conjunction, while the axiom Red.Ax.¬ says that
they also commute with negation. That negation commutes with a dynamic
modality might seem a bit surprising to readers familiar with public announce-
ment logic or traditional dynamic epistemic logic. However, as dynamic transfor-
mations can always be executed (as discussed after Definition 5.2.9), ¬ϕ is true
after the dynamic transformation D if, and only if, it is not the case that ϕ is
true after a dynamic transformation D. The axioms Red.Ax.@, Red.Ax.F , and
Red.Ax.U further state that the modalities @i, F , and U commute with dynamic
transformations. The fact that dynamic transformation modalities commute with
the other modalities highlights the fact that dynamic transformations of network
models can be reduced to local changes at each agent in the network models. As
such, the reduction axioms provide new insights about the behavior of dynamic
transformations.
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The way we will show completeness of this proof system is the usual way in
Dynamic Epistemic Logic, namely by providing a truth-preserving translation
from ND into N. Before this, however, we need to define the composition of two
dynamic transformations10 as used in the last reduction axiom of Figure 5.2.11

5.3.2. Definition. [Composition of dynamic transformations] Given two dy-
namic transformations D = (Φ, post) and D′ = (Φ′, post′), the composition
(D;D′) = (Φ′′, post′′) is such that

Φ′′ = {ϕ ∧ [D]ψ | ϕ ∈ Φ, ψ ∈ Φ′} ∪ {ϕ ∧ [D]
( ∧

ψ∈Φ′

¬ψ
)
| ϕ ∈ Φ}

∪ {
(∧

ϕ∈Φ

¬ϕ
)
∧ [D]ψ | ψ ∈ Φ′},

and post′′ is such that

post′′(ϕ ∧ [D]ψ)(l) = post′(ψ)(l) , if l ∈ dom(post′(ψ))

post′′(ϕ ∧ [D]ψ)(l) = post(ϕ)(l) , if l ∈ dom(post(ϕ)) \ dom(post′(ψ))

post′′(ϕ ∧ [D]
( ∧

ψ∈Φ′

¬ψ
)
)(l) = post(ϕ)(l) , if l ∈ dom(post(ϕ))

post′′(
(∧

ϕ∈Φ

¬ϕ
)
∧ [D]ψ)(l) = post′(ψ)(l) , if l ∈ dom(post′(ψ)).

Note that this definition is well-defined as Φ′′ will consist of pairwise unsat-
isfiable formulas. Moreover, while this definition might seem a bit complicated,
this is only due to the fact that we have to take into account the following three
cases for a given agent:

(i) One of the formulas in Φ is satisfied at the agent and afterwards the agent
satisfies one of the formulas in Φ′.

(ii) One of the formulas in Φ is satisfied at the agent, but after the dynamic
transformation D the agent does not satisfy any formula in Φ′.

10Note that we treat “;” purely as a semantic operation on dynamic transformations. One
could also have included “;” directly in the syntax in Definition 5.2.7. However, we have
chosen not to do so, as we only use this composition of dynamic transformations for proving
completeness.

11At first sight the last reduction axiom Red.Ax.DD might seem superfluous. However, as
we define our translation from ND to N “outside-in” on formulas, we need this reduction axiom
for composition. If one defines the translation “inside-out” on formulas one would instead need
“replacement of equivalents”. However, “replacement of equivalents” cannot be derived from the
other axioms in standard axiomatizations of public announcement logic and we suspect it cannot
be here either. For an excellent discussion of these subtle issues concerning axiomatizations of
dynamic epistemic logics see [160].
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(iii) None of the formulas in Φ is satisfied at an agent, but after the dynamic
transformation D the agent does satisfy one of the formula in Φ′.

These three cases give rise to the three sets in the definition of Φ′′. Moreover,
these three cases give rise to different definitions of post′′. In the case of (i), there
are three additional sub-cases according to whether a) the partial assignment
post′(ψ) specifies a change of a feature, or b) post′(ψ) does not specify a change
of a feature, but post(ϕ) does, or c) neither a) nor b) is the case. The cases a)
and b) are directly taken care of in the definition of post′′, whereas c) is indirectly
taken care of by the fact that post′′ might be partial assignment.

The following lemma, about composition of dynamic transformations will be
useful:

5.3.3. Lemma. For every network model M and any two dynamic transforma-
tions D and D′ we have that:

(MD)D
′

= M(D;D′) (5.3)

Before proving completeness we need to check the soundness of the reduction
axioms (which, of course, also gives us soundness of the proof system). This is
ensured by the following lemma:

5.3.4. Lemma. For all models M = (A,≍, g, ν) and all a ∈ A, the following
hold:

M, a |= [D]Vl=r iff (5.4)

M, a |=
( ∨

ϕ∈Φ, post(ϕ)(l)=r

ϕ
)
∨
(
¬(

∨

ϕ∈Φ, l∈dom(post(ϕ))

ϕ) ∧ Vl=r
)

M, a |= [D]i iff M, a |= i (5.5)

M, a |= [D]¬ϕ iff M, a |= ¬[D]ϕ (5.6)

M, a |= [D](ϕ ∧ ψ) iff M, a |= [D]ϕ ∧ [D]ψ (5.7)

M, a |= [D]@iϕ iff M, a |= @i[D]ϕ (5.8)

M, a |= [D]Fϕ iff M, a |= F [D]ϕ (5.9)

M, a |= [D]Uϕ iff M, a |= U [D]ϕ (5.10)

M, a |= [D][D′]ϕ iff M, a |= [(D;D′)]ϕ (5.11)

Proof: We only provide the proof of (5.4) and leave out the other cases. Let
MD be (A,≍, g, ν ′), where ν ′ is defined as in (5.1). Then we have the following
equivalences:
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t(Vl = r) = Vl = r

t([D]Vl = r) = t(
(∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)
∨
(
¬(
∨
ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r

)
)

t(i) = i t([D]i) = t(i)

t(¬ϕ) = ¬t(ϕ) t([D]¬ϕ) = t(¬[D]ϕ)

t(ϕ ∧ ψ) = t(ϕ) ∧ t(ψ) t([D](ϕ ∧ ψ)) = t([D]ϕ ∧ [D]ψ)

t(✷ϕ) = ✷t(ϕ)1 t([D]✷ϕ) = t(✷[D]ϕ) 1

t([D][D′]ϕ) = t([(D;D′)]ϕ)
1 Here ✷ is either F , @i, or U .

Figure 5.3: The translation t : LND → LN .

M, a |= [D]Vl = r iff MD, a |= Vl = r

iff ν ′(a)(l) = r.

Note that, ν ′(a)(l) = r is the case if, and only if, either there is a ϕ ∈ Φ such that
M, a |= ϕ and post(ϕ)(l) = r, or there is no such ϕ, but ν(a)(l) = r. Now, the
first disjunct of this disjunction is equivalent to M, a |=

(∨
ϕ∈Φ,post(ϕ)(l)=rϕ

)
while

the second is equivalent to M, a |=
(
¬(
∨
ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r

)
. Hence,

ν ′(a)(l) = r iff

M, a |=
(∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)
∨
(
¬(
∨
ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r

)
,

and (5.4) has been proven. □

The soundness of the axiomatization of ND now follows from the soundness
of the axiomatization of N together with Lemma 5.3.4. To show completeness we
first define a translation t from LND into LN as shown in Figure 5.3. Note that
the translation t is not defined inductively on the usual notion of complexity of
a formula. Therefore we cannot prove results regarding t by induction on this
complexity. However, the complexity of the formula immediately succeeding a
dynamic transformation decreases through the translation, and we can use this
fact. A new complexity measure c, such that c decreases for every step of the
translation, can be defined as follows:
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5.3.5. Definition. [New complexity measure c] Let the new complexity measure
c : LND ∪ DT → N, be defined as follows:

c(Vl = r) = 1

c(i) = 1

c(¬ϕ) = 1 + c(ϕ)

c(✷ϕ) = 1 + c(ϕ)

c(ϕ ∧ ψ) = 1 +max(c(ϕ), c(ψ))

c([D]ϕ) = (3 · |Φ|+ 3 + c(D)) · c(ϕ)
c(D) = max{c(ψ) | ψ ∈ Φ}

where ✷ is “@i”, “F”, or “U”, and D = (Φ, post).

We can show the following useful result: the translation of a dynamic formula
can be reduced to the translation of a less complex formula:

5.3.6. Lemma. For all i ∈ NOM, all Vl = r ∈ FP, all ϕ, ψ ∈ LND, and all
D,D′ ∈ DT the following are true:

1. c([D]i) > c(i)

2. c([D]Vl = r) > c
((∨

ϕ∈Φ,post(ϕ)(l)=rϕ
)
∨
(
¬(
∨
ϕ∈Φ, l∈dom(post(ϕ))ϕ) ∧ Vl=r

))

3. c([D]¬ϕ) > c(¬[D]ϕ)

4. c([D]✷ϕ) > c(✷[D]ϕ)

5. c([D](ϕ ∧ ψ)) > c([D]ϕ ∧ [D]ψ)

6. c([D][D′]ϕ) > c([D;D′]ϕ)

The proof of this lemma is quite cumbersome and involves tedious computa-
tion. Thus, for space reasons, we do not include it here. This lemma allows us to
prove that every formula of the logic ND is provably equivalent to its translation
in N:
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5.3.7. Lemma. For all LND formulas ϕ,

⊢D ϕ↔ t(ϕ) (5.12)

Proof: The proof goes by induction on the new c-complexity. For c(ϕ) = 1, ϕ
is either of the form Vl = r or of the form i. In both cases ϕ = t(ϕ) and (5.12) is
trivially satisfied. Now suppose that (5.12) holds for all ϕ with c(ϕ) ≤ n. Then,
we need to prove that (5.12) holds for all ϕ with c(ϕ) = n+1. Thus, assume that
ϕ is a formula such that c(ϕ) = n+ 1. We need to distinguish 4 cases: i) ϕ is of
the form ¬ψ; ii) ϕ is of the form ✷ψ, with ✷ as in Def. 5.3.5; iii) ϕ is of the form
ψ1 ∧ ψ2; and iv)ϕ is of the form [D]ψ. We leave out the straightforward proofs
of cases i),ii) and iii). To prove iv), we need to check the following sub-cases,
corresponding to the 6 points of Lemma 5.3.6:

1. ϕ is of the form [D]i. By Lemma 5.3.6.1 and induction hypothesis,
⊢D i↔ t(i). By Red.Ax.Nom and the fact that t(i) = t([D]i),
⊢D [D]i↔ t([D]i).

2. ϕ is of the form [D]Vl = r. For readability, let us denote
(
∨
ϕ∈Φ,post(ϕ)(l)=r ϕ)∨(¬(

∨
ϕ∈Φ, l∈dom(post(ϕ))ϕ)∧Vl=r) by χ. By Lemma 5.3.6.2

and induction hypothesis ⊢D χ↔ t(χ). By Red.Ax.prop and propositional
logic, ⊢D [D]Vl = r ↔ t(χ). Since t([D]Vl = r) = t(χ), we conclude that
⊢D [D]Vl = r ↔ t([D]Vl = r).

3. ϕ is of the form [D]¬ψ. By Lemma 5.3.6.3 and induction hypothesis ⊢D

¬[D]ψ ↔ t(¬[D]ψ). By Red.Ax¬ and propositional logic,
⊢D [D]¬ψ ↔ t(¬[D]ψ) and since t([D]¬ψ) = t(¬[D]ψ), we can conclude
that ⊢D [D]¬ψ ↔ t([D]¬ψ).

4. ϕ is of the form [D]✷ψ. Similar to the case 3. just using Lemma 5.3.6.4
and the reduction axiom Red.Ax.✷ instead.

5. ϕ is of the form [D](ψ1∧ψ2). Similar to the case 3. just using Lemma 5.3.6.5
and and the reduction axiom Red.Ax.∧ instead.

6. ϕ is of the form [D][D′]ψ. Similar to the case 3. just using Lemma 5.3.6.6
and and the reduction axiom Red.Ax.DD instead.

□

From lemma 5.3.7 and the soundness of the proof system, it follows directly
that all formulas are also semantically equivalent to their translation:

5.3.8. Lemma. For all LND formulas ϕ, all models M = (A,≍, g, ν), and all
a ∈ A,

M, a |= ϕ ⇐⇒ M, a |= t(ϕ)
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Note that, translating pure formulas from LND results in pure formulas in
LN . The general completeness result now follows:

5.3.9. Theorem (Completeness for ND). Let Σ be a substitution-closed set
of pure LND-formulas. Every set of LND-formulas that is D + Σ-consistent is
satisfiable in a model whose underlying frame validates all the formulas in Σ.

Proof: Assume that Γ is D + Σ-consistent. For a set of LND-formulas X, let
t(X) := {t(ϕ) | ϕ ∈ X}. Then t(Γ) is S + t(Σ)-consistent, for assume otherwise:
Then there are ϕ1, ..., ϕn ∈ Γ such that ⊢S+t(Σ) t(ϕ1∧ ...∧ϕn) → ⊥. But then also
⊢D+Σ t(ϕ1 ∧ ... ∧ ϕn) → ⊥ (using lemma 5.3.7 on formulas in Σ) and by lemma
5.3.7, ⊢D+Σ ϕ1∧...∧ϕn → ⊥, which is a contradiction to Γ being D+Σ-consistent.
Now by Theorem 5.3.1, t(Γ) is satisfiable in a model M (which is also a model
for LND), and by lemma 5.3.8 it follows that Γ is also satisfiable in M.

Finally, for all pure formulas ϕ ∈ Σ, t(ϕ) is a pure formula. Thus by Theo-
rem 5.3.1 the underlying frame of M validates all of the formulas t(ϕ) ∈ t(Σ).
But by lemma 5.3.8 the underlying frame then also validates all ϕ ∈ Σ. □

5.4 Applications

This section provides a few examples of the kind of modeling and reasoning
about changes of distribution of features within social networks which ND allows
for.

5.4.1 Pluralistic Ignorance

In Chapter 4, we have studied pluralistic ignorance from a dynamic perspective
and we have discussed how the social network structure constrains the dynamics
of its dissolution into an opposite situation where all agents express sincerely their
private opinions. Our starting point was to note that such a phenomenon could
not be modeled without distinguishing two properties of agents, their private
belief state, which we call “inner belief” and their publicly observable behav-
ior, which we call “expressed belief”. As such, the phenomenon could not be
captured by the “one property” (or “one-layer”) framework for modeling belief
change under conformity pressure offered by [120]. At the time, modeling cases
of collective “failure” such as pluralistic ignorance was our first motivation for de-
signing a framework allowing to model the change of several properties of agents,
and hence for adopting the “multi-property” approach which we continued pur-
suing in this chapter. Our motivation here is much more general, since we now
consider any set of features of agents changing under local influence. However,
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we briefly recall below how to model the case of pluralistic ignorance, as an ex-
ample of application of our general framework to a well-known dynamic social
phenomenon.

Let two variables VI and VE correspond to the properties of “inner belief”
(private mental state) and “expressed belief” (observable behavior), respectively.
Each variable takes values from the same set: RI = RE = {p, c, n}, where p rep-
resents belief in something (a pro opinion), c represents the belief in its negation
(a contra opinion) and n represents the lack of belief or undecidedness (a neutral
opinion).

Let us briefly recall the treatment of pluralistic ignorance proposed in Chap-
ter 4. To model how a given opinion situation would evolve, we needed to assume
some notion of social influence, that is, some dynamic transformation encoding
how agents will change their belief states depending on the ones of their neigh-
bors. One possibility, inspired by the (one-property) influence operator assumed
in [120], was to consider that an agent is “brave enough” to express sincerely her
actual private belief (i.e, VE = VI) at the next moment only when she has some
“supporting” friend, i.e., some friends expressing what she privately believes or
when she has no “conflicting” friends, i.e., no friend expressing a belief in the
negation of what she privately believes.12 Moreover, to reflect the intuition that
influence affects, at least in good part, the observable side of agents, we consid-
ered that only their behavior (expressed opinion) was affected by social influence,
not their private belief state. What was important for us was that their behavior
depended on asymmetrical information: on the one hand, on what they them-
selves privately believe and, on the other hand, on what their neighbors publicly
express.

We can now define formally the corresponding dynamic transformation as
follows:13

DE = (ΦE, postE):

ΦE = {(VI = p ∧ (⟨F ⟩VE = p ∨ [F ]VE = n)) ∨ [F ]VE = p,

(VI = c ∧ (⟨F ⟩VE = u ∨ [F ]VE = n)) ∨ [F ]VE = c,

VI = n ∧ ¬[F ]VE = p ∧ ¬[F ]VE = c}

postE
(
(VI = p ∧ (⟨F ⟩VE = p ∨ [F ]VE = n)) ∨ [F ]VE = p

)
(VE) = p

postE
(
(VI = c ∧ (⟨F ⟩VE = c ∨ [F ]VE = n)) ∨ [F ]VE = c

)
(VE) = c

postE
(
VI = n ∧ ¬[F ]VE = p ∧ ¬[F ]VE = c

)
(VE) = n

Consider now a situation of pluralistic ignorance, in the sense that every-
body privately believes something but expresses a belief in its negation, that is

12This correspondeds to agents of “type 1” from Chapter 4 as given by the Table 4.1, modulo
the difference of notation.

13Note that this definition of the social influence operator is more succinct than listing all
the possible preconditions and postconditions corresponding to all the cases listed in Table 4.1.
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M |= U(VI = p ∧ VE = c). Now apply the transformation DE. Having another
look at the preconditions set ΦE above, note that none of them is satisfied at
any agent. Therefore, none of the agents will change her behavior. As expected,
a situation of pluralistic ignorance is stable under that dynamic transformation
DE.

Now assume that the situation is slightly different: a unique agent, let it be
named i, is expressing his private belief. This is what we have called a state
of “unstable pluralistic ignorance”: M |= @i(VI = p ∧ VE = p) ∧ U

(
¬i →

(VI = p ∧ VB = c)
)
. It is easy to see that this situation is not stable under the

transformation DE. For instance, considering the case of agent i itself: M, i ⊨
[F ]VE = c and therefore M, i ⊨ (VI = c∧ (⟨F ⟩VE = c∨ [F ]VE = n))∨ [F ]VE = c.
Since we know that postE

(
(VI = c ∧ (⟨F ⟩VE = c ∨ [F ]VE = n)) ∨ [F ]VE =

c
)
(VE) = c, agent i will change his expressed belief state to a state in conflict

with his private belief state, as a result of conformity pressure from all agents
around him. But what about i’s neighbors? Consider an arbitrary agent j such
that M, i ⊨ ⟨F ⟩j. Now M, j ⊨ VI = p ∧ ⟨F ⟩VE = p and therefore M, j ⊨ (VI =
p ∧ (⟨F ⟩VE = p ∨ [F ]VE = n)) ∨ [F ]VE = p. Since we know that postE

(
(VI =

p ∧ (⟨F ⟩VE = p ∨ [F ]VE = n)) ∨ [F ]VE = p
)
(VE) = p, agent j will now have

an expressed belief state in agreement with his private state. And similarly for
any neighbor of the initiator i. Hence, agent i and his neighbors have switched
their expressed belief states after one application of the transformation. After
one more step, i’s friends’ friends will express their actual inner state, and then
i’s friends’ friends’ friends, and so on. But then, by repeating the transformation
n times, all agents at distance less or equal to n from i will have changed their
state at least once.

This shows that the initial event of one agent being sincere will affect the
entire population after some time. However, in the long run, nothing guarantees
that process will stabilize. As we have shown in Proposition 4.3.2, stabilization
depends on the network structure itself: if the network graph contains an odd
cycle path, (that is, if the graph is not two-colorable), then a (connected, finite,
symmetric and irreflexive) model in a state of unstable pluralistic ignorance will
always stabilize and it will stabilize in a state where everybody expresses sincerely
their private belief. This reflects properly the well-known fragility of pluralistic
ignorance: one agent expressing her actual private belief state might influence
everybody else into doing the same.14

5.4.2 Diffusion of Microfinance

The fact that social network structures affect the adoption of new technolo-
gies has been well-documented for some time already. A classical example is the

14For more details about the dissolution of pluralistic ignorance and a proof of the claim of
stabilization, see Chapter 4. And for more details about stabilization of a sequence of models
under iterated transformation rules, see Chapter 8.



5.4. Applications 105

diffusion of hybrid seed corn among Iowa farmers [140] (additionally, see the ref-
erences in [35]). Still, the recent study [35] provides new insight about how social
structures affect the spread of microfinance loans in small Indian villages. The
authors of this study collected detailed data on various types of social ties and
structures in 43 rural villages in Southern India before a microfinance institution
entered the villages. Then, based on information from the microfinance institu-
tion, they compared the data on the social networks to the actual diffusion of
microfinance loans in the villages.

It is argued in [35] that the diffusion of who is informed about the loaning
possibilities is different from the diffusion of who chooses to participate in the mi-
crofinance loaning program. In the diffusion of microfinance, the most interesting
parameter is who chooses to participate in the microfinance program. However,
as shown by [35], this could not be estimated for individuals based on the par-
ticipation of their neighbors in the social network. Moreover, the people who did
not choose to participate in the microfinance program still passed on information
about the program and thus, the diffusion of who was informed about the program
did depend on whether an individual’s neighbor was already informed (and chose
to pass on the information). Hence, the two diffusion processes of information
spreading and endorsement can come apart and as such the typical “SI Model”
described in our introduction is not sufficient to represent such dynamics.

The spread of microfinance loans is a good example of why we might need
two feature variables, one representing whether an individual is informed and one
representing whether she has chosen to participate in the loaning program. The
model presented in [35] is a probabilistic model and as such we cannot completely
capture it in our framework. Nevertheless, we can describe some interesting
variations. First, let us use two variables VI and VP , where VI will keep track of
who is informed about the microfinance program, and VP will keep track of who
has actually chosen to take part in the program. As value set we will assume that
RI = RP = {y, n} for “yes” and “no”, with the obvious interpretation that an
agent satisfies VI = y if she is informed about the program and that she satisfies
VP = n if she is not participating in the program.

One could imagine that an agent becomes informed about the microfinance
program as soon as one of her friends is either informed or has chosen to par-
ticipate. However, [35] estimated that people participating in the program were
much more likely to pass on information about it than non-participants. Still,
the non-participants’ passing on of the information could not be neglected either.
Thus, an alternative principle could be that an agent becomes informed about
the microfinance program if at least one of her friends is participating or all of her
friends are already informed. This suggests the following dynamic transformation
DI = (ΦI , postI) of the diffusion of information about the program, where

ΦI = {⟨F ⟩VP = y ∨ FVI = y}

postI
(
⟨F ⟩VP = y ∨ FVI = y

)
(VI) = y.
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Concerning the diffusion of participation, [35] claims that, in their data at
least, there is no endorsement effect and thus whether an agent chooses to partic-
ipate in the microfinance program does not solely depend on whether her friends
have chosen to participate. One could assume that participation depends on
other properties of each agent, for instance whether she needs a loan, whether
she has potential for using such a loan etc. Let us collect all such reasons into
one feature variable VO representing whether an agents is open/responsive to a
loan (assuming that RR = {y, n} as well). Another precondition for choosing
to participate in the micro-loan program is of course that the agent is actually
informed about it. Thus, the diffusion of participation might be modeled by a
dynamic transformation DP = (ΦP , postP ), where

ΦP = {VI = y ∧ VO = y}

postP
(
VI = y ∧ VO = y

)
(VP ) = y.

With such dynamics we can, for instance, show that if agent j is friend with i
and i participates in the program, then after one step of the dynamics DI , j will
be informed, in other words:

(@j⟨F ⟩i ∧@iVP = y) → [DI ]@jVI = y.15

One can show that after an additional step of the dynamics DP , j will partici-
pate in the program as well. One can also prove more complex properties such as
if there is a path of length three from i to j where all agents on the path (including
i and j), are open to participation in the program and if i is initially informed,
then after three steps of the dynamics, j is participating in the program.

According to [35], participants in the microfinance program were seven times
more likely to pass on information about the program than non-participants,
while non-participants counted for a third of the passing on of information about
the program. This suggests that individuals were informed by non-participants
at a much higher rate than they would be if they needed all of their friends to be
informed first. It might be natural to assume that an agent gets informed when
more than a third of her friends are informed. This kind of preconditions based
on thresholds are quite common in the models of network science. Our current
logic cannot capture this. However, in the next section, we will briefly discuss
extensions of our framework to capture such thresholds preconditions and other
interesting traits.

5.4.3 Extension to Numerical Thresholds

In this chapter, we have illustrated how a simple modal logic can be used to
reason about a large class of dynamic processes. While our logic has limitations,
there are several possible extensions that can make it applicable to larger classes
of models from social networks analysis. In this subsection, we briefly sketch how
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Axiom:(∧n
s=1(@i⟨F ⟩js ∧@jsϕ) ∧

∧
1≤s<t≤n @js¬jt

)
→ @i⟨≥nF ⟩ϕ

1 n-Bridge

Rule:

From
(∧n

s=1(@i⟨F ⟩js ∧@jsϕ) ∧
∧

1≤s<t≤n @js¬jt
)
→ ψ, where i ̸=js

and js does not occur in ϕ or ψ (for all s), infer @i⟨≥nF ⟩ϕ→ ψ 1 n-Paste

1 Here j1, ..., jn denote distinct nominals.

Figure 5.4: The additional axioms and rules for the modalities ⟨≥nF ⟩.

to extend our logic with “numerical threshold modalities”. The next subsection
briefly discusses other possible extensions which we leave for future research.

In [145, 120, 166] the changes considered depend exclusively on whether “all”
or “some” of an agent’s neighbors believe/prefer/know something. Thus, changes
can be modeled based on the thresholds “at least one” or “all” of an agent’s
friends satisfying something. Similarly, in what precedes, we have restricted our
threshold dynamics to those which are definable using our language LND. How-
ever, one can argue that many diffusion phenomena involve numerical thresholds.
Consider an example where agents only adopt a new technology if at least 5 of
their friends/network-neighbors have adopted it already. To capture this idea, we
add numerical threshold modalities16 ⟨≥ nF ⟩ for any n ∈ N, with the interpre-
tation “at least n of my network-neighbors...”. Formally, the semantics is given
by:

M, a |= ⟨≥nF ⟩ϕ iff |{b ∈ A | b ≍ a and M, b |= ϕ}| ≥ n ,

where |B| denotes the cardinality of the set B.

Axiomatizing this extension of our logic turns out to be surprisingly straight-
forward due to our use of hybrid logic. We simply add the following modified
versions of the Bridge axiom and the Paste rule shown in Figure 5.4. With these,
straightforward extensions of the Lindenbaum Lemma and the Truth Lemma,
used in the completeness proof, yield completeness of our static logic N extended
with the numerical threshold modalities. For our dynamic logic ND adding the
numerical threshold modalities are now straightforward as well since the following
reduction axiom is easily seen to be valid:

[D]⟨≥nF ⟩ϕ↔ ⟨≥nF ⟩[D]ϕ .

16What we call “numerical threshold modalities” here are known as “graded modalities” in
the modal logic literature and date back to Kit Fine’s paper [78]. They are also known as
“qualified number restrictions” in the Description Logic literature [15].
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5.5 Conclusion

5.5.1 Summary

In this chapter, we have abstracted away from particular social phenomena
in order to design a general modal framework to reason about diffusion in social
networks in general:

• We have defined a hybrid logic framework for complex diffusion phenomena,

• We have shown how this new logic allows us to capture any dynamic trans-
formations, that is, any locally determined redistribution of features in so-
cial network structures definable in terms of preconditions of our language.

• We have shown how our logic can accommodate several refinements by
“plugging-in” some dynamic transformations depending on what type of
social phenomena we are focusing on. In particular, we have shown how to
apply the setting to the diffusion of micro-loans in villages and to the phe-
nomenon of pluralistic ignorance which was studied in the previous chapter.

• We have given a complete axiomatization of the logic.

• We have presented a simple extension to numerical threshold modalities.

5.5.2 Further Research

Extensions of the logic In addition to the numerical threshold modalities
just discussed, one can also consider “proportional threshold modalities”. For
instance, in the microfinance example of the previous section, it might be more
natural to specify that an agent gets informed if one third of her friends are
informed. Another example is the dynamics induced by coordination (or anti-
coordination) games played in social networks where the threshold to consider
will depend on the payoffs involved in the corresponding game [71, Ch. 19].

Formally, we could also add proportional modalities of the form ⟨≥ p
q
F ⟩ for

p, q ∈ N with p ≤ q, with the following semantics:

M, a |= ⟨≥ p
q
F ⟩ϕ iff |{b∈A | b≍a and M,b|=ϕ}|

|{b∈A | b≍a}|
≥ p

q
.

In addition to the already mentioned example of microfinance, the extended logic
could be used to reason about several standard network analysis issues. For
instance, the relationships between the density of clusters of a network structure
and the possibility of a complete diffusion or “cascades” under a given threshold
(see e.g. Chapter 19 of [71] for a presentation of a theorem without the use of
logic and [19] for the same result using logical tools considerably different from
our logic). In contrast to the numerical threshold modalities previously discussed,
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adding the proportional threshold modalities ⟨≥ p
q
F ⟩ to our static logic N requires

more work with respect to the axiomatization. Moreover, the given semantics of
⟨≥ p

q
F ⟩ might not be the obvious choice in networks where some agents have

infinitely many friends. However, for the case of p
q
= 1

2
a nice solution can be

found in [131]. Note that, with respect to the dynamic extension (in the finite
case) we still have a straightforward reductions axiom in form of the following
validity:

[D]⟨≥ p
q
F ⟩ϕ↔ ⟨≥ p

q
F ⟩[D]ϕ .

Another possible extension of our logic, in line with [166], is to add the tran-
sitive closure operator F ∗ of the modality F , with the following semantics:

M, a |= F ∗ϕ iff for all b ∈ A; a ≍∗ b implies M, b |= ϕ,

where ≍∗ is the transitive closure of the relation ≍.17 This “community modality”
quantifies over what [166] names an agent’s “community”, that is, the agent’s
friends, the agent’s friends’ friends, the agent’s friends’ friends’ friends, etc. Such
a modality, as mentioned earlier in Section 5.2, allows us to express that a network
is strongly connected [38, 39, 80]. We have left out this modality in our current
logic because it is not essential to the main ideas we wish to convey.

Occasionally, what is of interest is the limit behavior of diffusion processes
within social networks. To capture this, a second “transitive closure” modality
that we could add to our framework is the transitive closure of the dynamic
transformation ⟨D⟩, with the following semantics:

M, a |= ⟨D∗⟩ϕ iff there is a k ∈ N0 such that MkD, a |= ϕ.

In Section 5.2, we discussed how to describe stability, but our language as such
cannot capture stabilization. On the other hand, with the ⟨D∗⟩ modality we can
easily express that a network model M stabilizes under the dynamic transforma-
tion D by the following formula

⟨D∗⟩ϕstable(D).

However, sometimes, limiting behavior can be reduced to other properties of the
network structures. For instance, [145] gives a characterization of stable and
stabilizing models for the particular transformation under consideration, while
[62] reduces stabilization of some type of network models to the existence of an
odd cycle in the underlying network structure.18 Again, we have chosen not to

17Such transitive closure modalities are also fairly standard in Propositional Dynamic Logic
(PDL) [95].

18Talking about limiting behavior of social network dynamics using transitive closure modal-
ities is also done in [94] for a particular model of opinion dynamics in social networks. However,
the framework of [94] differs considerably from the present framework as it is based on a Fuzzy
Logic.
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include ⟨D∗⟩ in our logic as it is not essential to the main ideas of this chapter.
Moreover, adding ⟨D∗⟩ is again likely to complicate the axiomatization of our
logic.

Towards smarter agents Finally, since this chapter has designed a general
framework to reason about diffusion dynamics in social networks, a natural next
step for further research is to generalize our framework in order to take into
account information, and investigate the logical interaction between information
and diffusion.

The next two chapters will take this turn. We will propose frameworks in-
corporating the tools of epistemic logic, to capture how knowledge of the agents
interacts with the dynamics of diffusion phenomena. By doing so, we will make
a conceptual jump from agents who were so far considered as reacting automati-
cally to their environment in a “bacteria-like” behavior to agents who can reason
about each other’s behavior, infer each other’s private opinions (in Chapter 6),
and even anticipate each other’s behavior (in Chapter 7).



Chapter 6

Diffusion as Knowledge Source: Hybrid
Epistemic Account

In the reminder of this part of the thesis, we add a new component to our
picture of social influence and diffusion dynamics: knowledge. We will use two
different settings to model what agents know about each other and about the
social network structure and to investigate how this knowledge interacts with
diffusion phenomena. Roughly put, this chapter shows how the dynamics of the
diffusion phenomena affects the agents’ knowledge; while the next chapter shows
how the agents’ knowledge affects the diffusion dynamics.

The work presented in the two previous chapters was obtained through sequen-
tial generalizations. We added “layers” to the modeling of agents, and extended
the corresponding logics accordingly: Chapter 4 designed a dynamic “two-layer”
generalization of the hybrid “one-layer” opinion change setting from [120]; and
Chapter 5 brought us from “two-layer” opinion change to “many-layers” diffusion
phenomena.

By doing so, we have moved not only towards a logic capturing a wider class of
network phenomena but also towards more complex agents. This chapter, based
on work from [64], goes further in that direction: we now propose an epistemic
extension of the “many-layers” hybrid framework for diffusion developed in Chap-
ter 5. This will allow us to model agents who can not only observe each other’s
behavior and react to it, but who can also reason about the evolution of each
other’s behavior and “see through it” in this chapter, and even anticipate each
other’s behavior change (in the next chapter) .

6.1 Introduction

This chapter models what agents in a social network know about each other
(and about the network structure), in order to show how diffusion phenomena
affect this knowledge, which in turn affects the diffusion dynamics. In particu-
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lar, we will show how agents can come to gain knowledge about their network
neighbors by observing the evolution of their behavior under social influence.

To capture the interaction between knowledge and diffusion phenomena, we
will introduce a logic for social networks, knowledge, diffusion, and “learning”.
Formally, the framework extends the general hybrid logic for diffusion phenomena
developed in the previous chapter, enriching it with tools from dynamic epistemic
logic: a set of possible situations, some of which are indistinguishable to some of
the agents, and some information events. The result is a general two-dimensional
dynamic hybrid epistemic setting, containing two types of model transformations
to represent the effects social influence: one type to capture ontic changes, the
second one to capture epistemic changes. We will illustrate how this new setting
allows us to capture the examples we have considered so far.

6.1.1 Outline

The first part of the chapter gives some motivation and examples. The re-
minder of this section argues in favor of an epistemic treatment of the diffusion
phenomena we have been modeling so far, such as the diffusion of opinions under
social conformity pressure modeled in Chapter 4.

Section 6.1.2 first recalls our proposal of a “two-layer” opinion change dy-
namics under social influence from Chapter 4, and presents the main claim of
this chapter: our “opaque” two-layered agents might be more “see-through” than
we intended. Once we model explicitly the epistemic state of the agents, we can
show how agents can sometimes come to learn each other’s private opinion, de-
spite the fact that they can only observe their expressed opinion. Section 6.2
illustrates this social influence induced learning process by modeling a simple ex-
ample, and proposes a possible way to adapt our notion of social influence to a
knowledge-dependent one.

The second part of the chapter formalizes the issues discussed so far. Sec-
tion 6.3 introduces the Logic of Networks, Knowledge, Diffusion, and Learning
(NKDL) and Section 6.3.2 illustrates how a fragment of our logic capture all the
cases of social influence and learning described so far, both with the knowledge
independent and with the new knowledge-dependent social influence (fragment
NKIRO).1 Section 6.4 gives some conclusions and directions for further research.

6.1.2 “See-through” Agents After All?

Before illustrating how social influence may affect what agents know about
each other, we first need a brief “flashback” to some work presented earlier in the
thesis.

1Our [64] also provides a sound and complete tableau system for a fragment of the new logic,
which also contains the first tableau system for the “Facebook Logic” from [145].
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Recall the “two-layer” case of opinion dynamics under social influence in-
troduced in Chapter 4. There, we have argued that modeling social influence
phenomena requires to make agents “opaque” to each other, in the following
sense: typically, while agents can observe each other’s public behavior, they can-
not observe each other’s mental state.

We have then argued that it is this lack of transparency between agents which
explains how rational individuals may lead each other to a situation of collective
failure, in cases where agents communicate enough to influence each other, but
not enough to share all reasons of their behavior with each other. The two
social phenomena modeled in Part II of the thesis illustrated this point: Once an
informational cascade has started (see Chapter 3), each agent knows the choices
made by others preceding her in the sequence, but does not know the justification
for these choices.2 Similarly, in the case of pluralistic ignorance, each agent
observes the behavior of others around her, but does not know the reasons behind
their behavior.

The possibility of this “opacity” is an essential component of social life. We
have then proposed a “two-layer” model of social influence dynamics, where what
an agent publicly expresses depends on two factors: what she privately believes
herself and what others around her in the network publicly express. According to
our assumptions, each agents can observe the behavior of her network neighbors
and see this behavior evolve, without having a clue about their private opinions.

This way of conceiving social influence relies on making three implicit epis-
temic assumptions about our agents who are network-neighbors: 1) they know
their own private opinions, 2) they do not know each other’s private opinions,
and 3) they do know each other’s expressed opinions. Using the epistemic logic
tools, we will discuss a puzzling consequence of these very assumptions: assuming
that the rules of social influence are common knowledge, agents influencing each
other may come to “infer” each other’s private opinions by simply witnessing how
their expressed opinions evolve. Hence, the notion of social influence which we
had designed specifically to represent agents who are “opaque” to each other (see
Chapter 4.2) may actually allow them to “see through” each other after all. The
next section illustrates this effect in a simple example.

6.2 Modeling Knowledge and Social Influence

This section models an example of how agents can learn about other agents’
private opinions by reasoning about their public behavior, the rules of social
influence, and the involved social network structure.

2In our “urn” example, the second agent could infer what justified the choice of the first
agent, and the third agent could infer the choice of the second agents (according to our tie-
breaking rule), but all later agents were not in a position to know what color of ball the others
had observed. They could only observe what color proportion they decided to bid on.
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6.2.1 A Two-agent Example

In Chapter 4, we focused on the phenomenon of pluralistic ignorance, as a
paradigmatic example of a social phenomenon where the discrepancy between pri-
vate opinions and public behavior plays an essential role and where learning about
others’ private opinions might greatly affect the dynamics of the phenomenon. It
has been attested that situations of pluralistic ignorance can occur for instance
in board meetings [163] and corporate organizations [93]. Given the managerial
hierarchy of companies, it is obvious that social influence affects people’s behavior
and forces them to act strategically. Thus, the corporate setting seems to be a
highly relevant and realistic setting for an example:

Consider a small IT startup facing a buy up from a large well-established
company. The CEO (Bob) and the CTO (Alice) are deliberating on whether to
accept the offer or not. Alice would like to accept the offer as she knows the poor
quality of the startup’s software. Bob would like to accept the offer as he would
like to move on and found another company. Thus, both are of the opinion that
they should accept the offer (what we call pro opinion). However, Alice believes
that Bob sees the company as his life project and is afraid of telling him the
true state of their software. Hence, Alice publicly expresses an opinion against
accepting the offer (a contra opinion). Bob, on the other hand, is a bit more
cautious and shows a strong trust in the CTO’s ability to judge the true quality
of their product. Therefore, he decides to voice a neutral opinion towards the buy
up. Now, in a world of social influence and uncertainty of others’ true motives,
what will happen after the initial voicing of opinions by Alice and Bob? How will
they individually update their own knowledge about each other’s opinion of the
other? Will any of them start voicing another opinion than the one they have
initially voiced? This is precisely the type of questions which we want our formal
model to capture.

6.2.2 Opinion and Uncertainty

In the above example, the set of agents A just consists of Alice (a) and Bob
(b), and the issue towards which the agents have opinions is whether to accept the
buy up or not. Following the two-layer proposal from [62], we assume that both
hold a private “inner” opinion about the buy-out that is either pro (we note ip),
contra (ic), or neutral (in). Moreover, they voice their public “expressed” opinion
towards the issue that can also be either pro (ep), contra (ec), or neutral (en), In
our current example, Alice (a) has an inner pro opinion (ip) and expresses a contra
opinion (ec), while Bob has an inner pro opinion (ip) and expresses a neutral
opinion (en). We will refer to such a state of affair simply as a state. Hence,
mathematically, a state s is just a function s : A→ {ip, in, ic}×{ep, en, ec}. The
state of the world representing our example is shown in Figure 6.1.
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a:ip,ec
b:ip,en

Figure 6.1: A state where Alice (a) has an inner pro opinion (ip) and publicly
expresses a contra opinion (ep), while Bob (b) has an inner pro opinion (ip) and
publicly expresses a neutral opinion (en).

We now add to the modeling a representation of the agents’ uncertainty, in
classical epistemic logic. That is, different possible states of affairs are considered,
which each agent may be able to distinguish or not. For instance, in our example
we assume that Alice and Bob do not know each other’s private opinion. In this
case, Alice cannot distinguish between the state shown in Figure 6.1 and a similar
state differing only by Bob’s inner opinion being neutral or contra. Formally,
assume a finite set of possible states W , representing the possible assignments of
one inner opinion and one expressed opinion to each agent. For each agent a ∈ A
we will assume an equivalence relation ∼a on W representing the uncertainty
of agent a.3 Thus, that two states w and v are related by ∼a means that, for
all agent a knows, she cannot distinguish between them. Mathematically, what
we currently call a “model”, can be viewed as a tuple ⟨A,W, V, (∼a)a∈A⟩, where
V : W × A → {ip, in, ic} × {ep, en, ec} specifies for each agent and each state,
what the agents inner and expressed opinions are. A full fetched epistemic logic
to reason about this notion of uncertainty is introduced in Section 6.3.

We make the following simplifying assumptions. Agents know their own in-
ner and expressed opinions, Agents also know their network-neighbors expressed
opinions. In our example, Bob and Alice know each other’s expressed opinion.
Assuming further that Alice and Bob have no information about each other’s
inner opinions, the resulting epistemic model is as given in Figure 6.2, where the
thick box represents the actual state of affairs. In this model, Alice (a) cannot
distinguish between two states if she has the same inner and expressed opinions in
both and Bob’s expressed opinions also coincide (his inner opinions might differ
though). This indistinguishability is represented in the figure as a dashed line
between the states marked by a. Since the uncertainty relation is an equivalence
relation it is also reflexive and transitive, but to ease the reading of figures we
will not draw the corresponding reflexive and transitive dashed lines.

What do agents know about the network structure? It seems natural to allow
for uncertainty with respect to social relations, as agents might not know who are
their friends’ friends, for instance. To allow for uncertainty about the network
structure, each possible state will come equipped with its own network: we have
an irreflexive and symmetric social relation ≍w on A for each state w ∈ W . Then,
a ≍w b means that agent a and agent b are socially related in the state w. We

3We therefore use the standard epistemic logic definition of knowledge as S5 modality, system
of epistemic logic.
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Figure 6.2: In this figure, nodes represent possible states of affairs. The actual
state is highlighted by a thicker frame. A dashed line with superscript a (resp. b)
represents the indistinguishability between states for agent a (resp. b). We omit
reflexive and transitive edges between nodes.

make only one assumption about the interaction between the relations ∼a and
≍w, namely that all agents know to whom they are socially related to. Formally,
this means that for all states w, v ∈ W and all agents a, b ∈ A, if w ∼a v, then
a ≍w b if, and only if, a ≍v b.

In our running example, the network structure is assumed to be trivial: Alice
and Bob are the only two agents and they are connected to each other. For
this reason, we have also omitted the representation of the network structure in
the figures 6.1 and 6.2. However, we will consider an example with a non-trivial
network structure later on.

6.2.3 Opinion and Uncertainty Change

The models so far only represent a static picture of the world. We will add two
substantially different types of dynamics: social influence dynamics and learning
dynamics. The social influence dynamics will specify how agents change their
expressed opinion, as discussed in Chapter 4. The learning dynamics will spec-
ify how to update the epistemic dimension of our models, that is, the agents’
indistinguishability relations ∼a.

For the social influence dynamics, we will use the notion of “two-layer” social
influence given by Def. 4.2.1, extensively discussed in Chapter 4. This notion is
independent from the epistemic structure of the model. Let us recall here two
important simplifying assumptions: 1) only the agents’s expressed opinions are
affected by social influence (i.e, their inner opinion does not change), and 2) our
agents tend to express sincerely their inner opinion, whenever the social pressure
does not prevent them to do so. To avoid confusing the reader by the different
terms used in different chapters, we reformulate Def. 4.2.1 in terms of “pro”,
“contra”, and neutral opinions (instead of “inner belief that ϕ”,“inner belief that
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¬ϕ” and “inner undecidedness”):

6.2.1. Definition. [2-layer social influence (reformulated from Def. 4.2.1)] The
following rules constitute the notion of two-layer social influence

• Strong Influence: If all the friends of an agent express a pro (contra) opinion,
the agent will fall in line and express a pro (contra) opinion in the next
round.

• An agent is brave enough to sincerely express her inner pro (contra) opinion
if she has some support from her friends (i.e. at least one friend who also
expresses a pro (contra) opinion) or she has no opposing friends expressing
the opposite contra (pro) opinion (i.e all friends express a pro (contra) or
neutral opinion).

• If an agent has an inner neutral opinion and is not under strong influence
to express either a pro or contra opinion, she will express a neutral opinion.

• (Revised) weak influence: If an agent has an inner pro (contra) opinion, at
least one opposing friend, and no support (i.e. at least one friend expresses
a contra (pro) opinion and the other friends either express a contra (pro)
or neutral opinion), she will express a neutral opinion.

Let us illustrate this notion by returning to our buy-up example. As this
notion of social influence is independent of the epistemic structure of our model we
will ignore the epistemic structure for now and recall the state of Figure 6.1. Note
that Alice has no opposing friend and thus, according to the above-mentioned
rules of social influence, she will sincerely express her pro opinion in the next
round. Bob, on the other hand, is under strong influence to express a contra
opinion as all his friends (Alice) express a contra opinion. Hence, the initial
situation of step 0 will evolve into step 1 of Figure 6.3. Now Alice is under strong
influence to express a contra opinion and Bob is under strong influence to express
a pro opinion. Thus, we obtain Step 2 of Figure 6.3, where Alice is under strong
influence to express a pro opinion and Bob is under strong influence to express a
contra opinion. Hence, we will move on to Step 3, at which point Alice and Bob
have swiched expressed opinions.

a:ip,ec
b:ip,en

a:ip,ep
b:ip,ec

a:ip,ec
b:ip,ep

a:ip,ep
b:ip,ec❀ ❀ ❀ ❀ . . .

Step 0: Step 1: Step 2: Step 3:

Figure 6.3: The evolution of opinions under social influence (❀) in the running
example.
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This oscillation will continue: Alice and Bob will keep switching between
expressing a pro and a contra opinion towards the buy up. However, this may
seem counterintuitive and brings us to the key claim of our chapter: Agents
can learn about each others’ private opinions by observing each others behavior
(expressed opinion) and adapt their own behavior accordingly, essentially resulting
in an alternative, more enlightened, social influence dynamics. Before introducing
the alternative notion of social influence, let us formally introduce the learning
that can happen in the above example.

Recall the initial situation of our example with the uncertainty explicitly
present, as illustrated by Figure 6.2. As the rules of social influence are inde-
pendent from the epistemic structure, we can apply the rules of social influence
to all the states in Figure 6.2. This will result in the updated model shown Step
1 of Figure 6.4. We could continue to apply the rules of social influence again and
again, however, for the state we really care about, the actual state in the middle,
the resulting dynamics will just be the one shown in Figure 6.3.

Alternatively, we can take a closer look at the epistemic structure and con-
template on whether the social influence update should also induce a change in
the epistemic structure. This seems highly plausible indeed, if we assume that
Alice and Bob are aware of the rules of social influence and are always aware of
each other’s expressed opinion.

Consider the situation from the viewpoint of Bob in the actual state in Step 1.
Here Bob still does not know Alice’s inner state. Nevertheless, after seeing that
Alice now expresses a pro opinion, Bob can actually learn something, if he assumes
that Alice obeys the rules of social influence. If Alice had had an inner contra
opinion, she would now express such a contra opinion. Similarly, if she had had
an inner neutral opinion, she would now express a neutral opinion. In other
words, by counterfactual reasoning, Bob can now exclude the middle left and
the middle right state in Step 1 of Figure 6.4. Note that this potential counter-
factual reasoning by Bob is explicitly represented in our models by the fact that
Alice has a different expressed opinion in each of the middle states and by the
assumption that Bob can see Alice’s expressed opinion. Thus, while Bob could
not initially distinguish between any of the states in the middle row, he now can.
Note that, this argument also works if Bob’s inner opinion had been different
(that is if the actual state had been the upper middle or the lower middle state).
In conclusion, Bob’s learning should correspond to the removal of the horizontal
indistinguishability relations labeled b in Step 1 of Figure 6.4, since Alice has
different expressed opinions in each of them. Formally, this learning operation
simply corresponds to letting agents distinguish between states where their friends
have different expressed opinions.

By a closer inspection, it becomes clear that Alice cannot perform a similar
learning. Hence, the possible learning of the agents will result in the model of
Step 1’ of Figure 6.4. That is, Bob has learned that Alice has an inner opinion
in favor of the buy up, while Alice did not learn anything about Bob’s private
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Figure 6.4: The development of the example of Figure 6.2 under alternating
applications of the rules of social influence and learning.

opinion towards the buy up. Now, applying another round of the rules of social
influence would result in a model that looks like Step 2 of Figure 6.4 as the rules
are independent of the epistemic structure. Thus, while Bob has learned Alice’s
private opinion, the resulting opinion dynamics is still the same oscillating one
(as initially pictured in Figure 6.2).

6.2.4 Uncertainty-dependent Opinion Change

In the previous sections, we have shown how agents can learn about each
other’s private inner opinion by observing the evolution of their expressed opinion,
assuming that all agents obey our two-layer influence rules given by Def. 4.2.1.

One could now argue that the two layer notion of social influence, relying on
the very idea that agents do not have access to each other’s private opinions,
and according to which agents are influenced only by the expressed opinions of
their neighbors, does not make much sense anymore when agents might know
each other’s private opinions. When agents know the private opinions of others,
should this additional information not affect how they react to social conformity
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pressure? For instance, in a situation where all my neighbors express a contra
opinion, would the pressure to express a contra opinion not be considerably weak-
ened if I knew that none of them actually holds a contra opinion privately? This
section proposes an alternative notion of social influence which takes into account
the private opinion of neighbors, whenever it is known.

Consider again Step 1’ of Figure 6.4. Now that Bob knows that Alice’s inner
opinion is pro, he knows that he has private support for the buy up and it seems
only natural that he should thus express sincerely his inner pro opinion publicly
for all future instances. In Step 2 of Figure 6.4 Bob does indeed express a pro
opinion. However, under the previously defined rules of social influence, we will
see an infinitely oscillating pattern of expressing pro and contra opinion by Bob,
as discussed following Figure 6.2. What we claim here is that, given what he has
learned, Bob should not show this pattern of infinite oscillation, but instead stick
to expressing a pro opinion from now on.

It seems counterintuitive that an agent would keep feeling the same level of
conformity pressure if he knows (as Bob in our example) that others around
him privately agree with his opinion. To compensate for this counterintuitive
consequence of our two-layer definition of social influence, we propose to adapt
it to take into account what agents know about each other’s private opinion. We
will refer to this new notion of social influence as “reflective social influence”:

6.2.2. Definition. [Reflective social influence] The following rules constitute
the notion of reflective social influence:

• If an agent has an inner pro (contra) opinion and knows that she has some
private support (she knows that she has a friend with an inner pro (contra)
opinion as well) or she knows that she has no privately opposing friends
(she knows that none of her friends has a inner contra (pro) opinion), then
she will express sincerely her inner pro (contra) opinion.

• If an agent has an inner neutral opinion and she is not truly alone with this
opinion (she knows she has a friend who also has an inner neutral opinion),
then she will express a neutral opinion.

• If none of the above cases apply, then the old rules of social influence (Def-
inition 6.2.1) apply.

Intuitively, this notion of social influence simply makes sure that when an
agent knows that she is not truly (not sincerely) under strong or weak influence
to express anything else, she will express sincerely her inner opinion. In all other
cases, our previous two-layered definition still applied.

We have now seen how agents can sometimes learn each other’s private opinion
by observing their behavior and we have argued for a new notion of social influence
taking into account this observation.
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Figure 6.5: The buy-up example fro Fig. 6.3 with the new social influence operator
R defined in Def. 6.2.2. Step 0, Step 1, Step 1’ and Step 2 are the same as with
the initial influence operator I (see Fig. 6.4). However, in Step 2, since b knows
that a’s private opinion is ip, b will continue expressing sincerely his pro opinion
in Step 3 instead of aligning on a’s expressed opinion. Note that the situation
in the actual world stabilizes (unlike in Fig. 6.4), but not the situation in the
world just above it, in which agents will keep oscillating, because they privately
disagree.
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To conclude this section, let us briefly illustrate why the social network struc-
ture in our models matters.

Consider again our example. It might be the case that Alice does not entirely
form her publicly expressed opinion based solely on her own true opinion and
the expressed opinion of Bob, but she also takes the public opinion of Carol, the
startup’s lead developer, into account. Moreover, Bob may very well be aware
of this. Thus, the social network structure of “potentially direct influence of
opinions” is as follows:

c a b

Figure 6.6: The network of Alice, Bob and Carol.

That is, Alice influences and is influenced by both Bob and Carol. The crucial
modeling assumption is that Bob and Carol cannot observe each other’s expressed
opinion (and vice versa). Assume now that Carol has an inner contra opinion and
expresses a contra opinion.

Now, as there is no knowledge of inner opinions, the first step of social influ-
ence will result in Bob expressing a contra opinion (as before), Carol expressing a
contra opinion as well, and Alice expressing a neutral opinion (she is now under
weak influence). By the new expressed behavior of Alice, Bob cannot learn any-
thing anymore, since he does not know what opinion Carol expressed. In fact, for
all Bob knows, all possible inner opinions for Alice are consistent with her now
expressing a neutral opinion: If Alice had an inner neutral opinion and Carol
expressed a neutral opinion, Alice would also express a neutral opinion. Had
Alice had a inner contra opinion and Carol had expressed a pro opinion, Alice
would also express a neutral opinion. Thus, without knowing anything about
Carol’s expressed opinion, Bob simply cannot learn anything about Alice’s inner
opinion at this point. This shows the importance of the particular social network
structure for what agents can learn.

6.3 Logic of Networks, Knowledge, Diffusion,

and Learning

The previous section illustrates how network-neighbors under social influence
can sometimes discover each other’s private opinions even though they can only
observe each other’s expressed opinions. In this section, we introduce a general
formal framework to reason about such phenomena, named Logic of Networks,
Knowledge, Diffusion, and Learning (or NKDL).
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The logic will incorporate ideas and tools from different frameworks. We
extend the dynamic Logic for Diffusion in Social Networks ND introduced in
the previous chapter, in two ways. First, by adding an epistemic dimension to it,
with a standard knowledge operatorK, obtaining a two-dimensional setting in the
spirit of the “Facebook Logic” setting proposed by [145]. Secondly, by adding a
dynamic learning modality, inspired by the link cutting updates of [49], the graph
modifiers of [12], and the Arrow Update Logic of [113]. In other words, our setting
is at the same time a dynamic extension of the epistemic “Facebook logic” of [145]
and an epistemic extension of our dynamic “Logic of Social Networks Diffusion”
from Chapter 5.

Section 6.3.1 first introduces the general framework (NKDL), and Section 6.3.2
shows how the examples discussed in Section 6.2 can be captured by a fragment
(NKIRO) of this framework.

6.3.1 Introducing the Full Logic (NKDL)

Let us briefly recall the key ingredients from the setting of Logic for Diffusion
in Social Networks ND developed in the previous chapter. The language combines
tools from hybrid logic (nominals i and satisfaction operators @i), Fmodality F
quantifying over network-neighbors, a dynamic modality representing diffusion,
and a special type of atomic propositions, called feature propositions.

The feature propositions (coming from a fixed set FP), given by Definition 5.2.1,
are used to describe the agents’ state, that is, to express which value is assigned
to each of her relevant properties (or variables) under consideration. A feature
proposition Vl = r reads as “property Vl takes value r (at me)”. In particular,
in the cases of opinion distribution considered in the previous sections, the only
two relevant properties of an agent are her inner opinion (let us denote it by
Vi) and her expressed opinion (Ve). Therefore, the six propositions used so far
ip, ic, in, ep, ec, en can be considered as abbreviations for the feature propositions
resulting from the assignment of exactly one out of three values to two properties
of agents, respectively: Vi = p, Vi = c, Vi = n, Ve = p, Ve = c, Ve = n. Hence, for
instance, in (or “Vi = n”) reads “my inner opinion is neutral”.

A set DT (to be defined in Def. 6.3.3) contains all the possible ways of reassign-
ing values to properties which are definable in terms of preconditions expressible
in the language and dynamic modality [D] for each dynamic transformation D,
such that [D] reads “after applying the transformation D”. In particular, going
back again to our example of Section 6.2, the reflexive and non-reflexive influence
operators are such possible transformations: they output a unique new opinion
state of each agent in the network, depending on the distribution of opinions (and
of knowledge) in the input model.

To add the epistemic dimension, we add a standard knowledge modality K to
our language. We also add a dynamic modality [L], for learning, for a given finite
set L of formulas of our language (to be defined in Def. 6.3.1). This corresponds
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to a second type of model transformers (epistemic change), a “learning update”,
which outputs a model where ontic facts remain unchanged compared to the input
model, but where what the agents know might differ. [L] will thus read “after
the learning update L”.

Combining the above ingredients, our language LNKDL allows for describing
diffusion, knowledge, and learning in social networks:

6.3.1. Definition. [Syntax of LNKDL]

ϕ ::= Vl = r | i | ¬ϕ | ϕ ∧ ϕ | Fϕ | @iϕ | [D]ϕ | Kϕ | [L]ϕ

where Vl = r ∈ FP, i ∈ NOM, D ∈ DT, and L ⊆ LNKDL is finite.4 5

The definition of assignments and full assignments is kept as in Definition 5.2.3
and the two dimensional models are obtained by simply adding the new epis-
temic components (possible worlds and subjective indistinguishability relations)
to Def. 5.2.4:

6.3.2. Definition. [Epistemic Network Model (ENM)] A model is a tuple M =
(A,W, (≍w)w∈W , (∼a)a∈A, g, V ), where:

• A is a non-empty set of agents,

• W is a non-empty set of possible worlds,

• ≍w is an irreflexive, symmetric, binary relation on A, for each w ∈ W
(representing the network structure at the world w),

• ∼a is an equivalence relation on W for each a ∈ A (representing the uncer-
tainty of a),

• ≍w and ∼a satisfy: for all w, v ∈ W , a, b ∈ A, if w ∼a v, then a ≍w b iff
a ≍v b (the agents know who their friends are).

• g : NOM → A is a function assigning an agent to each nominal,

• V : W × A → Vfull is a valuation assigning a full assignment ν(w, a) in
each possible world w ∈ W , to each agent a ∈ A, i.e. a world-dependent
complete specification of the features of each agent in the network.

4To avoid circular definitions, the set L should be forbidden to have precondition formulas
involving [L] itself. Nevertheless, we can allow formulas of LNKDL in L constructed at an
“earlier stage” in a simultaneous inductive definition of learning modalities and the language
LNKDL. Similar restrictions will be imposed in the definition of DT below in Def. 6.3.3.

5We use the standard abbreviations for ∨, →, and ↔. Moreover we will denote the dual of
F by ⟨F ⟩ and the dual of K by ⟨K⟩, in other words ⟨F ⟩ϕ := ¬F¬ϕ and ⟨K⟩ϕ := ¬K¬ϕ.
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On the dynamic side, we define now the two model transforming operations,
the first one for modeling the redistribution of features of agents (ontic change),
in the same way as in the previous chapter, the second one for modeling what
agents come to learn (epistemic change).

The set DT of dynamic transformations (ontic changes) are defined as in
Def. 5.2.6 but with formulas from our newly extended language:

6.3.3. Definition. [Dynamic transformations (on ENM)] A dynamic transfor-
mation is a pair D = (Φ, post) consisting of a non-empty finite set Φ of pairwise
unsatisfiable formulas (from the language LNKDL defined in Def. 6.3.1)6 and a
post-condition function post : Φ → V . The set Φ will be referred to as “precondi-
tions”. Given a precondition ϕ ∈ Φ, we will call the assignment post(ϕ) ∈ V the
“post-condition” of ϕ.

The corresponding transformation updates are adapted to the two-dimensional
models in the obvious way, by performing the transformation update given by
Def. 5.2.8 in each of the possible states:

6.3.4. Definition. [Transformation updates (on ENM)]
Given a model M = (A,W, (≍w)w∈W , (∼a)a∈A, g, V ) and a dynamic transforma-
tion D = (Φ, post), the updated model under the transformation D is MD =
(A,W, (≍w)w∈W , (∼a)a∈A, g, V

′), where V ′ is defined by:

ν ′(w, a)(l) =





post(ϕ)(l) if there is a ϕ ∈ Φ such that M, w, a |= ϕ

and l ∈ dom(post(ϕ))

ν(w, a)(l) otherwise

(6.1)

for all all w ∈ W , all a ∈ A, and all l ∈ {1, ..., n}.

Let us now turn to the second type of model transformation process, the one
representing what agents learn:

6.3.5. Definition. [Learning updates ML]
Given a model M = (A,W, (≍w)w∈W , (∼a)a∈A, g, V ) and a finite set of formulas
L ⊆ LNKDL (such that it does not involve [L] itself), the learning updated model
ML is (A,W, (≍w)w∈W , (∼

′
a)a∈A, g, V ), where ∼′

a is defined by:

w ∼′
a v iff w ∼a v and, there is no agent b such that a ≍w b and;

M, w, b |= ϕ and M, v, b |= ¬ϕ, or
M, w, b |= ¬ϕ and M, v, b |= ϕ, for a ϕ ∈ L.

6Similarly as for modalities [L] in Def 6.3.1, the dynamic transformation D = (Φ, post)
should not contain precondition formulas in Φ involving [D] itself, but can contain formulas
of LNKDL constructed on an “earlier stage” in a simultaneous inductive definition of dynamic
transformations and the language LNKDL. In other words, one should view Definition 6.3.3
and Definition 6.3.1 as one simultaneous recursive definition.
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Informally, this means that we should cut all the indistinguishability links
of an agent that relate any pair of states among which the satisfaction of some
ϕ ∈ L differs at some of her neighbors. In our example above (Fig. 6.4), Bob
learns Alice’s private opinion because he can distinguish between states in which
her expressed opinion is different. This corresponds to saying that ep, en, ec ∈
L, which is precisely what we assumed as our starting point: agents know the
expressed opinions of their network neighbors.7

Now that we have defined our models and our two types of model transformers,
we give the full semantics of LNKDL:

6.3.6. Definition. [Semantics of LNKDL]
Given a modelM = (A,W, (≍w)w∈W , (∼a)a∈A, g, V ), a ∈ A, w ∈ W , and formulas
Vl = r, i, and ϕ ∈ LNKDL, the truth of ϕ at (w, a) in M is defined inductively
by:

M, w, a |= Vl = r iff ν(w, a)(l) = r
M, w, a |= i iff g(i) = a
M, w, a |= ¬ϕ iff M, w, a ̸|= ϕ
M, w, a |= ϕ ∧ ψ iff M, w, a |= ϕ and M, w, a |= ψ
M, w, a |= Fϕ iff ∀b ∈ A; a ≍w b⇒ M, w, b |= ϕ
M, w, a |= @iϕ iff M, w, g(i) |= ϕ
M, w, a |= Kϕ iff ∀v ∈ W ;w ∼a v ⇒ M, v, a |= ϕ

M, w, a |= [D]ϕ iff MD, w, a |= ϕ

M, w, a |= [L]ϕ iff ML, w, a |= ϕ

where MD is given by Def. 6.3.4 and ML by Def. 6.3.5. We say that a formula
ϕ is true in a model M = (A,W, (≍w)w∈W , (∼a)a∈A, g, V ) if M, w, a |= ϕ for all
w ∈ W and all a ∈ A. We denote this by M |= ϕ. We say that a formula ϕ is
valid if M |= ϕ for all models M and denote this by |= ϕ. The resulting logic
will be referred to as the logic of knowledge, diffusion and learning and will be
denoted NKDL.

How general is our framework? We did impose that agents know who their
neighbors are, but not that the network structure is common knowledge (although
it is in the examples throughout this chapter). We also restricted our learning
events to “learning about neighbors”: the learning update will not force agents
to come to know the formulas in L, but whether those formulas are satisfied at
their neighbors. Finally, we required that ∼a be an equivalence relation. The
logic of the knowledge modality K will thus be standard S5. Our framework
is therefore general enough to reason both about the diffusion of any number of
agents’ features dictated by any definable dynamic transformation and about how
agents learn features of their neighbors by observing how some of their (possibly
other) features change.

7Note that our framework does not rely on the assumption that the network structure is
common knowledge.
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In the next section, we will show how the examples of social influence relying
on private versus expressed opinions and learning, as introduced in the previous
sections, can be captured by our general framework (NKDL). More precisely, we
will define a fragment (NKIRO) of the framework which is sufficient for modeling
such cases.

6.3.2 Capturing our Examples (Fragment NKIRO)

In this section, we show how the above defined general framework (NKDL)
allows for modeling the cases of social influence and learning introduced in Sec-
tion 6.2. We define the fragment NKIRO of our logic: the logic of Networks,
Knowledge, Influence, Reflexion, and Observation.

To capture our examples, we only need to model the two relevant properties of
our agents: their inner opinion Vi and expressed opinions Ve, each of which takes
one of the three values p, c, or n. That is, we fix the set of feature propositions
of our language to be: FP = {Vi = p, Vi = c, Vi = n, Ve = p, Ve = c, Ve = n}, or
their above-mentioned respective abbreviations: {ip, ic, in, ep, ec, en}.

We then have to fix the dynamic transformations representing the two no-
tions of social influence we have chosen for opinion changes in our examples: the
“two-layer social influence” given in Def. 6.2.1 (and 4.2.1), and described case by
case in Figure 4.1; and the knowledge-dependent “reflexive social influence” from
Def. 6.2.2, described in a similar table below:

Inner state Knowledge state ⟨F ⟩ep ⟨F ⟩ec ⟨F ⟩en Update

1 ip K⟨F ⟩ip ∨K¬⟨F ⟩ic — — — ❀ ep

2 ic K⟨F ⟩ic ∨K¬⟨F ⟩ip — — — ❀ ec

3 in K⟨F ⟩in — — — ❀ en

4 ip ¬(K⟨F ⟩ip ∨K¬⟨F ⟩ic) see Fig. 4.1 see Fig. 4.1 see Fig. 4.1 see Fig. 4.1

5 ic ¬(K⟨F ⟩ic ∨K¬⟨F ⟩ip) see Fig. 4.1 see Fig. 4.1 see Fig. 4.1 see Fig. 4.1

6 in ¬K⟨F ⟩in see Fig. 4.1 see Fig. 4.1 see Fig. 4.1 see Fig. 4.1

Figure 6.7: Case by case description of the “reflexive social influence” transfor-
mation. “—” means that any value may be inserted here.

We now define the two corresponding dynamic transformations, denoted by I
and R, respectively:
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6.3.7. Definition. [Two-layer social influence dynamic transformation I] The
dynamic transformation I is given by I = (ΦI , postI), such that:

ΦI = { (ip ∧ (⟨F ⟩ep ∨ [F ]en)) ∨ [F ]ep,

(ic ∧ (⟨F ⟩ec ∨ [F ]en)) ∨ [F ]ec,

in ∧ (¬[F ]ep ∧ ¬[F ]ec) }

postI
(
(ip ∧ (⟨F ⟩ep ∨ [F ]en)) ∨ [F ]ep

)
(e) = p,

postI
(
(ic ∧ (⟨F ⟩ec ∨ [F ]en)) ∨ [F ]ec

)
(e) = c,

postI
(
in ∧ ¬[F ]ep ∧ ¬[F ]ec

)
(e) = n.

6.3.8. Definition. [Reflexive influence dynamic transformationR] The dynamic
transformation R is given by R = (ΦR, postR), such that:

ΦR = { (K⟨F ⟩ip ∨K¬⟨F ⟩ic) ∧ ip,

(K⟨F ⟩ic ∨K¬⟨F ⟩ip) ∧ ic,

K⟨F ⟩in ∧ in,

¬(K⟨F ⟩ip ∨K¬⟨F ⟩ic) ∧ ((ip ∧ (⟨F ⟩ep ∨ [F ]en)) ∨ [F ]ep),

¬(K⟨F ⟩ic ∨K¬⟨F ⟩ip) ∧ ((ic ∧ (⟨F ⟩ec ∨ [F ]en) ∨ [F ]ec),

¬K⟨F ⟩in ∧ ((in ∧ ¬[F ]ep ∧ ¬[F ]ec) }

postR
(
(K⟨F ⟩ip ∨K¬⟨F ⟩ic) ∧ ip

)
(e) = p,

postR
(
(K⟨F ⟩ic ∨K¬⟨F ⟩ip) ∧ ic

)
(e) = c,

postR
(
K⟨F ⟩in ∧ in

)
(e) = n,

postR
(
¬(K⟨F ⟩ip ∨K¬⟨F ⟩ic) ∧ ((ip ∧ (⟨F ⟩ep ∨ [F ]en)) ∨ [F ]ep)

)
(e) = p,

postR
(
¬(K⟨F ⟩ic ∨K¬⟨F ⟩ip) ∧ ((ic ∧ (⟨F ⟩ec ∨ [F ]en) ∨ [F ]ec)

)
(e) = c,

postR
(
¬K⟨F ⟩in ∧ ((in ∧ ¬[F ]ep ∧ ¬[F ]ec)

)
(e) = n.

Those two dynamic transformations represent the two type of opinion change
induced by social influence that we had considered in our examples. The set DT is
thus fixed to be DT = {I,R}. We also need to capture formally what agents can
observe of each other. Therefore, we fix the learning set to be O = {ep, ec, en}, to
represent the fact that after the corresponding learning update, all agents know
the (new) expressed opinions of all of their neighbors in the network. Hence,
by fixing the dynamic transformations I and R and the observation O and the
corresponding dynamic modalities [I][R] and [O], we obtain a fragment of our
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general setting NKDL, the fragment NKIRO. Moreover, we will denote by KIO the
(sub)fragment which leaves out the reflexive notion of social influence to contain
only the simple influence.

To show how fragment NKIRO captures what we wanted to model, let us now
return the example of Figure 6.4. If we let M denote the model of Step 0 of
Figure 6.4, then clearly the model of Step 1 is MI and the model of Step 1’ is
(MI)O. Applying the learning update amounts to cutting all accessibility links
between any two worlds where a satisfies two different propositions from the set
{ep, ec, en}. As a result, in Step 1’ Bob comes to know Alice’s private opinion
simply because he knows her expressed opinion, that is, because he “observes”
her change of expressed opinion.

Moreover, letting a and b be nominals for Alice and Bob respectively, and
letting w be the actual world of Figure 6.4, it is not hard to see that M, w, b |=
[I][L]K@aip (after a step of influence followed by a step of learning, b knows that
a’s inner opinion is pro), while M, w, a |= [I][L]¬K@bip (after a step of influence
followed by a step of learning a does not know that b’s inner opinion is pro).

In summary, we have shown how our framework, and in particular fragment
NKIRO, captures the type of examples discussed in the previous sections.8

6.4 Conclusion

6.4.1 “Opaque” Agents by Default

We started this chapter by considering the following limitation of our previ-
ous work: the notion of social influence we had specifically designed to capture
influence among “opaque” agents actually sometimes lets agents “see through”
each other. That is, as we have shown (in Section 6.2), agents who initially do
not know each other’s private opinion can come to “see through” each other as
an effect of our “two-layer” notion of social influence. It seemed problematic, es-
pecially when remembering that we introduced “two-layered” agents to allow for
distinguishing what agents can and cannot observe from each other, addressing
our own objection to the “one-layer” model from [120]. And indeed, it seems
strange that agents who know that their network neighbors privately agree with
them would still feel as strongly to align on their expressed opinion.

So where do we stand now? Did the epistemization conducted by this chapter
bring anything new on the table? Yes, it brought a more refined notion of social
influence: when an agent a does not know her network neighbors’ private opinions,
she is influenced by their expressed opinions (exactly as before). However, should
she come to know their private opinion (for any reason), then this information may

8We leave out of this chapter some of the work from our paper [64]. There, we provide a
sound a complete tableau system for the “non-reflexive” fragment of the new logic (KIO), which
also contains the first tableau system for the “Facebook Logic” from [145].
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sometimes trump the information about their expressed opinion. More precisely,
it trumps it only in cases where: 1) their expressed opinion is not sincere, and
2) their inner opinions disagree less with a’s inner opinion than their expressed
opinions. Hence, knowledge of the inner opinion of others is relevant only to the
extent that it may lower the pressure on a to express an insincere opinion. Hence,
we do not have to give up the claim made in Chapter 4, according to which the
possibility of a mismatch between private mental states and observable behavior
is essential to many emergent phenomena. The fact that agents sometimes know
each other’s mental state does not take away our point: what matters is that
sometimes, they do not know it, and that a logic designed to capture social
influence should allow for that possibility. The framework introduced in this
chapter simply allows for both possibilities.

6.4.2 Summary

In this chapter, we have given a starting point for capturing the interplay
between knowledge and diffusion phenomena:

• We have identified a possible objection to the work presented in Chapter 4:
our “opaque” agents modeled in Chapter 4 can sometimes “see through”
each other, i.e, come to know the others’ private opinions simply by observ-
ing how their expressed opinion evolves – under the assumption of common
knowledge of the rules of social influence.

• To reason about this type of learning induced by social influence, we have
extended the hybrid diffusion logic (ND) from Chapter 5 with an epistemic
dimension and some learning modalities, obtaining the dynamic hybrid epis-
temic logic NKDL for networks, knowledge, diffusion, and learning.

• We have modeled an extended example to show how ontic change (social
influence) induces epistemic change (learning) which should affect the way
agents are influenced by each other.

• We have proposed one way to take into account knowledge when modeling
opinion diffusion induced by social influence, in an attempt to reconcile the
ontic and epistemic correlated dynamics: we have proposed a new “reflex-
ive” notion of social influence, according to which agents are less pressured
to conform to the behavior of others around them when they know that this
behavior does not reflect their private opinion sincerely.

• We have shown how the fragment NKIRO of our logic is sufficient to model
the cases of opinion diffusion considered so far.

• We have concluded that, while “smart” agents should indeed be able to see
through the evolution of behavior and infer the private opinion of others,
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agents should still be assumed to be “opaque” by default: unless they know
that the behavior of their neighbors does not reflect their private opinion,
agents should still be influenced by their observable behavior.9

Note that our formal treatment of learning is actually more general than the
examples discussed may have suggested. First, although we assumed that the
network structure was common knowledge among the agents, our logic NKDL

can also represent learning and reasoning about social influence even in cases
where this assumption is dropped.10 Also, our analysis shows quite generally how
diffusion may increase the knowledge social neighbors have about each other. We
have shown one way to use such higher knowledge as a precondition for diffusion
dynamics, but clearly this is a general avenue of thought.

6.4.3 Further Research

The new “reflexive” (knowledge dependent) notion of social influence intro-
duced in this chapter seems more adequate for modeling opinion change under
social influence within intelligent agents than the simpler “two-layer” (knowledge-
independent) notion of social influence introduced in Chapter 4. Overall, our new
notion appears to be more appropriate with respect to the type of examples mo-
tivating this chapter, involving human agents who are typically “smart enough”
to reason about each other’s change of behavior.

However, we do not intend to claim that the latter is the correct notion of social
influence. Our aim was to show that knowledge can be included in the definition
of our dynamic transformations, and hence that our framework is flexible enough
to accommodate many different rules of contagion, whether additional knowledge
is relevant to the process or not.

Moreover, this chapter was restricted to take into account the first-order
knowledge of agents. However, in situations involving more strategic interac-
tion, this may not be sufficient, and higher-order knowledge may also need to be
included in the preconditions of diffusion.

If an agent is “smart” enough to reason about higher-order knowledge, she
should be able to reason about what her neighbors know that their neighbors
know. If she also knows the rules of social influence, shouldn’t she be able to
predict how others will be influenced in the future? And if so, shouldn’t she be
influenced now by this knowledge of their future behavior?

9In addition to the material presented in this chapter, [64] contains some technical discussion
that we do not include here. There, we give a complete terminating tableau system for a
fragment (NKL) of our logic without dynamic transformations, which also happens to be the
first tableau system for the Facebook logic from [145]. We also show how to reduce away the
influence modality (I) into that fragment, making the tableau for NKL a tableau system for
NKIL and therefore for NKIO, capturing the “two-layer” influence from Chapter 4.

10To do so, one merely allows different network structures ≍w at different worlds.
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The next chapter answers this question by considering how agents with un-
bounded higher-reasoning powers can predict and anticipate diffusion. Hence,
while this started by wondering how the dynamics of diffusion affect knowledge,
the next chapter’s starting point is this chapter’s conclusion: how does knowledge
affect diffusion dynamics?



Chapter 7

Knowledge as Diffusion Accelerator:
DEL for Threshold Models

This chapter, based on [19], introduces a dynamic epistemic logic for diffusion
phenomena. We model the diffusion process and show how knowing more about
the other agents’ behavior and about the network structure may interfere with
such diffusion dynamics.

Three main steps are taken here. First, we focus on the dynamics of thresh-
old models, as introduced in Section 2.1.2, where agents adopt a new behav-
ior/product/opinion as soon as the proportion of their network-neighbors who
have already adopted it meets the threshold, and do not “unadopt” it ever. In
terms of the susceptible/infected model mentioned earlier, this amounts to agents
who can catch a contagious infection, and stay infected forever.

Second, on the formal side, we leave behind the hybrid logic setting progres-
sively enriched throughout Chapters 4, 5, and 6, to introduce an entirely new
setting: a propositional dynamic epistemic logic for diffusion in threshold mod-
els. This allows us to reason both about networks and about knowledge without
requiring a much more complex setting with two modal dimensions.

And third, while the previous chapter proposed a way to define knowledge-
dependent diffusion rules, this was not pursued beyond first-order information.
Here, we will move forward towards diffusion rules taking into account unbounded
levels of higher-order reasoning. Hence, our agents become “smarter”: we started
with diffusion processes where agents reacted exclusively to their most direct
environment, and end up with agents able to predict and anticipate diffusion, in
order, for instance, to coordinate.

7.1 Introduction

The chapter has two goals. Our first goal is to design a logic for reasoning
about threshold models and their dynamics. Our second goal is to investigate
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how the agents’ knowledge affects such dynamics.
We construct a minimal dynamic propositional logic to describe the threshold

dynamics and show that the logic is sound and complete.
Conceptually, the work presented here is in line with the earlier chapters in us-

ing logic to model diffusion phenomena within network structures. However, our
new framework distinguishes itself by avoiding the use of static “neighborhood”
modalities or hybrid logic tools. In this sense, the logical setting we introduce
is “minimal”: only propositional logic is used to specify both the network struc-
ture and the agents behavior, and a single dynamic modality is used to represent
threshold-limited influence. Moreover, while our previous work focuses on the
limit thresholds of 100% (all neighbors) and non-0% (at least one neighbor), we
allow here for any (uniform) adoption threshold, as is standard within the liter-
ature on threshold models (see Section 2.1.2).

We then extend this framework with an epistemic dimension and investigate
how information about more distant neighbors’ behavior allows agents to antici-
pate changes in behavior of their closer neighbors. It is shown that this epistemic
prediction dynamics is equivalent to the non-epistemic threshold model dynamics
if agents know exactly their neighbors’ behavior, but that more knowledge might
accelerate diffusion, up to the point where maximal knowledge makes the whole
diffusion jumps to its fixed point in only one step.

7.1.1 Outline

Section 7.2 introduces a minimal logic to capture the dynamics of diffusion
in threshold models. We first recall the notion of threshold models introduced in
Section 2.1.2, before defining a sound and complete dynamic propositional logic
for modeling threshold influence within social networks. We then show how the
logic captures the relationship between clusters and cascades.

In Section 7.3 we add knowledge to the picture. We introduce epistemic
threshold models. These models come equipped with a knowledge-dependent up-
date procedure, called “informed adoption”, where agents must possess sufficient
information about their surroundings before they adopt. This is a conceptual
jump from the initial minimal modeling of influence from Section 7.2 to a more
sophisticated (information dependent) diffusion policy: instead of agents adopt-
ing a behavior whenever enough of their neighbors have adopted it already, agents
adopt whenever they know that enough of their neighbors have already adopted.
We then relate these two adoption policies by showing under which epistemic con-
ditions their diffusion dynamics are step-wise identical. The section is concluded
by extending the logic to a sound and complete dynamic epistemic logic for the
epistemic threshold models and the informed update procedure.

We further notice an interesting feature of the informed update procedure.
Even though the “informed update” requires that agents have enough informa-
tion to be influenced, the update does not require them to use all their available
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information when making their choices. Hence, if we consider threshold mod-
els as representing reflecting agents who are driven by a coordination goal, the
new knowledge dependent update procedure makes our agents choose an action
even when they know they could do better. To overcome this shortcoming, in
Section 7.4, we introduce a third adoption policy, a “prediction update”, where
agents utilize all the available information to predict the future behavior of other
agents in the network, and act upon their predictions. In other words, they an-
ticipate, and it is common knowledge that they do. We show that the agents’
reasoning about other predicting agents always reaches a fixed point and that
making adoption dependent on this very fixed point captures the best response of
agents trying to coordinate to the best of their knowledge. We give an example
illustrating how knowledge about the network and about the behavior of other
agents can be interpreted as an “accelerator” of diffusion dynamics, under this
last prediction policy: the fixed point of the diffusion process under the prediction
update is the same as under the informed update, but it can be reached faster if
agents know more about the network around them. In Section 7.5 we discuss the
relationship between how far agents can see and their prediction power.

Finally, Section 7.6 discusses the in-built assumptions of the introduced up-
dates as well as some alternative diffusion policies and Section 7.7 gives some
directions for further research.

7.1.2 Reaching for the Limits?

In the three previous chapters, we have assumed more and more complex
agents, making them progressively “smarter”. We have allowed them to have
expressed opinions which do not reflect their private opinions, we have shown how
knowledge can be gained as a consequence of diffusion and how this knowledge
should be taken into account when modeling social influence.

Here, we go beyond this “one-step” improvements of agents, and beyond one-
step dynamics, and we reach for limits: the limits of what knowledge agents with
unbounded higher-order reasoning power have, and the limits of the diffusion pro-
cesses. We will combine those limits to reach a result about maximally informed
and maximally smart agents: when both the network structure and the agents’
behavior are common knowledge, the diffusion dynamics reaches its speed limit:
it jumps to its fixed point in only one step.

7.2 Threshold Models and their Dynamic Logic

This section designs a logic to capture the dynamics of threshold models.
Section 7.2.1 first reminds the reader of the standard notion threshold models,
previously introduced in Section 2.1.2.
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7.2.1 Threshold Models for Social Influence

We start by recalling threshold models, introduced in 2.1, and formalizing
our simplifying assumptions. As the previous ones, this chapter restricts itself
to finite and undirected graphs without self-loops. We add here, for simplicity,
that each agent has at least one neighbor in the network, as isolated agents are
irrelevant to a discussion of social influence:

7.2.1. Definition. [Network] A network is a pair (A, N) where A is a non-
empty finite set of agents and the function N : A → P(A) assigns a set N(a) to
each a ∈ A, such that

a /∈ N(a) (Irreflexivity),
b ∈ N(a) if and only if a ∈ N(b) (Symmetry),
N(a) ̸= ∅ (Seriality).

Recall that the simplest type of threshold model consists of such a network
together with a unique behavior B (opinion, fashion, product, or “like-able item”)
distributed over A and a fixed uniform adoption threshold θ. A threshold model
thus represents the current spread of behavior B throughout the network, while
containing the adoption threshold which prescribes how this spread will evolve.

7.2.2. Definition. [Threshold Model]
A threshold model is a tuple M = (A, N,B, θ) where (A, N) is a network,

B ⊆ A is a behavior and θ ∈ [0, 1] is a uniform adoption threshold.

As we have done so far, we keep assuming that the network structure stays
unchanged. We also assume that the adoption threshold stay constant under
updates. Thus, the spread of the behavior (i.e., the extension of B) at ensuing
time steps may be calculated using the fixed threshold and network structure as
follows:

7.2.3. Definition. [Threshold Model Update] The update of threshold model
M = (A, N,B, θ) is the threshold model M′ = (A, N,B′, θ), where B′ is given
by

B′ = B ∪ {a ∈ A :
|N(a) ∩ B|

|N(a)|
≥ θ}.

This definition, standard in the literature [71], captures the idea that the new
set of agents who adopted the behavior B′ (in the new updated model M′) does
include the set of agents B who had already adopted the behavior before and it
includes those agents who have enough influential neighbors (given by the number
θ) that have adopted already.

By repeatedly applying this update rule in an initial threshold model, we
obtain a unique sequence of threshold models, which we call a diffusion sequence:
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7.2.4. Definition. [Diffusion Sequence] Let M = (A, N,B, θ) be a threshold
model. The diffusion sequence SM is the sequence of threshold models

⟨M0,M1,M2, ...,Mn,Mn+1, ...⟩,

such that, for any n ∈ N, Mn = (A, N,Bn, θ) where Bn is given by:

B0 = B and Bn+1 = B′
n.

Note that this diffusion process always reaches a fixed point, and that the
number of agents in the model gives an upper bound on the number of updates
that can be performed before reaching the fixed point:

7.2.5. Proposition. Let SM be a diffusion sequence. For some n ∈ N < |A|,
Mn = Mn+1.

Proof: The fact that there is a n ∈ N such that Mn = Mn+1 follows imme-
diately from the fact that A is finite and Bn ⊆ Bn+1 for all n ∈ N. The fact
that n < |A| is given by considering the slowest possible diffusion scenario, i.e.
where |B0| = 1 and only one agent adopts per round, i.e. for each m < n ∈ N,
|Bm| = m+ 1. In this case

∣∣B|A|−1

∣∣ = |A|. □

Interpretation. Threshold models and their dynamics may be interpreted in
two ways. One interpretation assumes that agents are mere automata and that
their behavior is forced upon them by their environment. This interpretation suits
the models that are used in e.g. epidemiology: viral infection “just happens”
to agents. Alternatively, agents may be interpreted as rational beings aiming
towards coordination with their neighbors. In fact, the above update rule also
corresponds to the best response dynamics of an associated coordination game
[126], under the assumption that there is a ‘seed’ set of players who always,
possibly irrationally, play B [71].

Numerous variations of threshold models exist in the literature, including in-
finite networks [126], networks with non-inflating behavior adoption [126], agent-
specific thresholds [109], weighted links [109] and multiple behaviors [8]. For
simplicity, and to fit most examples in the literature, we will stick to the above
simpler notion of finite threshold models. The next section proposes a logical
framework to reason about them.

7.2.2 The Logic of Threshold-Limited Influence

This section introduces a minimal logic to model the standard notion of
threshold-limited influence introduced in the section above. To describe the
situation of a social network at a given moment, the static language needs to
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allow us to capture two things: who is related to whom and who is displaying
the contagious behavior B. In this chapter, both features will be encoded using
propositional variables. To describe the change of situation of a social network,
the language includes a dynamic modality. This modality represents how agents
adopt the behavior of their neighbors, whenever the given adoption threshold is
reached, i.e., whenever enough neighbors have adopted.

7.2.6. Definition. [Languages L[] and L] Let A be a finite set and let atoms
be given by Φ = {Nab : a, b ∈ A} ∪ {βa : a ∈ A}. The language L[] is then given
by:

ϕ := Nab | βa | ¬ϕ | ϕ ∧ ϕ | [adopt]ϕ

The formulas of L are those of L[] that do not involve the [adopt]-modality.

Disjunction and material implication are defined in the standard way. L[] is an
extension of propositional logic with a unary dynamic modality, denoted [adopt].
The language is interpreted over threshold models, using the behavior set and the
social network to determine the extension of the atomic formulas. The [adopt]
modality is interpreted as is standard in Dynamic Epistemic Logic [24, 33, 70, 44]:
we evaluate [adopt]ϕ as true “today” if and only if ϕ is true “tomorrow”. Here,
“tomorrow” is given by the threshold update of Definition 7.2.3.

7.2.7. Definition. [Truth Clauses for L[]] Given a model M = (A, N,B, θ),
Nab, βa ∈ Φ, and ϕ, ψ ∈ L[]:

M ⊨ βa iff a ∈ B

M ⊨ Nab iff b ∈ N(a)

M ⊨ ¬ϕ iff M ⊭ ϕ

M ⊨ ϕ ∧ ψ iff M ⊨ ϕ and M ⊨ ψ

M ⊨ [adopt]ϕ iff M′ ⊨ ϕ, where M′ is the updated threshold
model (Definition 7.2.3).

Let us also introduce some abbreviations:

7.2.8. Definition. [adopt]nϕ is defined recursively:

[adopt]0ϕ := ϕ

[adopt]n+1ϕ := [adopt][adopt]nϕ

7.2.9. Definition. βN(a) ≥ θ expresses that the proportion of agent a’s neigh-
bors who have adopted is equal to or above the threshold θ:

βN(a) ≥ θ :=
∨

{G⊆N⊆A:
|G|
|N|

≥θ}

(
∧

b∈N

Nab ∧
∧

b/∈N

¬Nab ∧
∧

b∈G

βb)
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The following proposition captures within our language the fact (as noted
in Prop. 7.2.5) that all diffusion sequences stabilize after some finite number of
updates, illustrating how our language allows for capturing features of threshold
model dynamics, such as stability and stabilization of the diffusion sequence:

7.2.10. Proposition. Let M = (A, N,B, θ) be a threshold model. There exists
n ∈ N < |A| such that, for any ϕ ∈ L[]:

[adopt]nϕ↔ [adopt]n+1ϕ

Proof: As noted in the proof of Proposition 7.2.5, in the diffusion sequence SM,
for some n ∈ N < |A|, Mn = Mn+1.

Hence Mn and Mn+1 are guaranteed to satisfy the same formulas, whereby
M |= [adopt]nϕ↔ [adopt]n+1ϕ. □

Axiomatization. We obtain an axiomatization of the logic for threshold
models and their update dynamics by using the standard method of reduction
rules from dynamic epistemic logic [24, 70, 33, 44].

7.2.11. Definition. [The Logic of Threshold-Limited Influence, Lθ] The logic
Lθ is comprised of any axiomatization of the propositional calculus and of the
axioms and derivation rules of Table 7.1, for a given θ ∈ [0, 1].

The static logic consists of the axioms of propositional logic and the three
network axioms of Table 7.1, and the rule of Modus Ponens. These capture the
constraints imposed on the networks. In the dynamic part of the logic, we define
rules that reduce formulas that contain the [adopt] modality to formulas without
it. This is possible as the update procedure is deterministic: all the information
required to determine the update threshold model is present in the current model.
Hence the next state is “pre-encoded” in the present state.

As the [adopt] modality only affects the extension of B, the reduction axioms
are trivial in all cases except those involving βa. The corresponding reduction
law, Red.Ax.β, relies on the mentioned pre-encoding. The axiom Red.Ax.β states
that a has adopted B after the update just in case 1) she had already adopted it
before the update or 2) the proportion of her neighbors who had already adopted
it before the update was above threshold θ.

7.2.12. Definition. [Cθ] Let θ ∈ [0, 1] be given. The class of threshold models
Cθ contains all and only models with the same threshold θ.

For any given threshold, the minimal logic Lθ is sound and complete with respect
to the corresponding class of models Cθ:

1

1The proof system and model class are further parametrized by the set of agents A used to
define the corresponding language.
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Network Axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry
∨
b∈A

Nab Seriality

Reduction Axioms

[adopt]Nab ↔ Nab Red.Ax.N

[adopt]¬ϕ↔ ¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ ψ ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

[adopt]βa ↔ βa ∨ βN(a) ≥ θ Red.Ax.β

Inference Rules

From ϕ and ϕ→ ψ, infer ψ Modus Ponens

From ϕ, infer [adopt]ϕ Nec[adopt]

Table 7.1: Hilbert-style proof system Lθ.

7.2.13. Theorem (Completeness). Let θ ∈ [0, 1]. For any ϕ ∈ L,

|=Cθ ϕ iff ⊢Lθ
ϕ

Proof: Soundness: Let M = (A, N,B, θ) be an arbitrary threshold model
with a, b ∈ A. Then M satisfies Irreflexivity (Symmetry/seriality) directly by
the semantics and the assumption of irreflexivity (symmetry/seriality) of the net-
work. M |=[adopt]Nab ↔ Nab as the adoption operation never alters the network.
Soundness of Red.Ax.¬ and Red.Ax.∧ may be shown straightforwardly using in-
duction on the length of formulas.

To see that M satisfies Red.Ax.β, let M′ be the adoption update of M. Then

M |= [adopt]βa iff M′ |= βa iff a ∈ B′ = B ∪
{
b ∈ A : N(b)∩B

N(b)
≥ θ
}
iff M |= βa or

a ∈
{
b ∈ A : N(b)∩B

N(b)
≥ θ
}
. A syntactic decoding following Definition 7.2.9 of the

large, right-hand disjunct of Red.Ax.β (called βN(a)≥θ) shows that it is satisfied iff

a ∈
{
b ∈ A : N(b)∩B

N(b)
≥ θ
}
: The outer disjunction requires/ensures the existence of

two sets of agents, G and N , such that G ⊆ N and |G|
|N |

≥ θ. The inner conjunction

in Definition 7.2.9 is satisfied iff N = N(a) and G ⊆ B. Hence ϕ is satisfied iff

∃G ⊆ N(a) ∩ B : |G|
|N(a)|

≥ θ iff |N(a)∩B|
|N(a)|

≥ θ iff a ∈
{
b ∈ A : N(b)∩B

N(b)
≥ θ
}
. Hence

M |= [adopt]βa iff M |= βa or M |= βN(a)≥θ.

Completeness: The proof goes via translation of the dynamic language into the
static part of the language, in the usual way (see for instance [70, Ch. 7]). □
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7.2.3 Clusters and Cascades

An agent adopting a new behavior may influence some of her neighbors to
adopt it at the next moment, which in turn may cause further agents to adopt
it, and so on. Recall that, as mentioned in Section 2.1, such a cascade is said to
be complete when it results into a state where all agents have adopted the new
behavior (see e.g. [71, Ch. 19]). Because the above given updates of threshold
model always reach a fixed point, any cascade will eventually stop. However, a
cascade may stop before all agents have adopted, i.e. without being complete.
The following recalls a known result about how cascading effects are constrained
by the network structure and shows how the suitable constraint may be captured
by the minimal logic Lθ.

First of all, our language can express that a diffusion sequence will reach
a complete cascade, given the upper bound on the number of updates before
stabilization of the diffusion process noted in Proposition 7.2.5:

7.2.14. Definition. The sentence abbreviated by cascade expresses that all
agents will have adopted eventually:

cascade := [adopt]|A|−1
∧

a∈A

βa

As introduced in Section 2.1, strongly connected groups of agents are more
resilient to external influence. Dense components of a network may prevent com-
plete cascades and the denser a group, the better it resists change induced from
the outside. The relevant notion of density is capture by the notion of a cluster
of density d [71], as introduced in Section 2.1, defined by:

7.2.15. Definition. [Cluster of density d] Given a network (A, N) a cluster of
density d is any group C ⊆ A such that for all a ∈ C,

|N(a) ∩ C|

|N(a)|
≥ d.

Example: clusters. Let model M given as illustrated below, with B = {d}.
In this model, C = {a, b, c} is a cluster of density 2

3
, in which no member belongs

to B.

Figure 7.1: A social network with a cluster of density 2
3
.
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The language L can express the existence of a cluster: if C is a cluster of
density d then for each a in C, there is a big enough subset of C which are a’s
neighbors.

7.2.16. Proposition. The group C is a cluster of density d in (A, N) iff M =
(A, N,B, θ) satisfies

∧

a∈C

∨

{G⊆N⊆A:
|G∩C|
|N|

≥d}

(
∧

b∈N

Nab ∧
∧

b/∈N

¬Nab

)
(7.1)

Proof: Left to right: Let M = (A, N,B, θ) and assume C is a cluster of density

d in (A, N). Then by definition, for all a ∈ C, |N(a)∩C|
|N(a)|

≥ d. As M is based

on (A, N), {b : M |=Nab} = N(a) for all a ∈ A. Let a be given and pick

N = N(a) and G = N(a) ∩ C. Then |G|
|N |

≥ d. Given the choice of N , M |=∧
b∈N Nab ∧

∧
b/∈N ¬Nab. So M satisfies (7.1).

Right to left: Assume that M satisfies (7.1) for some C ⊆ A and some
d ∈ [0, 1]. Then for each a ∈ C, there is are sets G and N with G ⊆ N and
|G∩C|
|N |

≥ d, such that N = {M |= Nab} = N(a). Hence |G∩C|
|N(a)|

= |G∩C|
|N |

≥ d. As

G ∩ C ⊆ N = N(a), |N(a)∩C|
|N(a)|

≥ d. As a was arbitrary from C, C is indeed a

cluster of density d in (A, N). □

Alternative proof: As A is assumed finite, (7.1) can be unfolded to a finite,
propositional formula equivalent with the second-order statement

∀a ∈ C∃G ′ ⊆ C :

(
|G ′|

|N(a)|
≥ d ∧ ∀b ∈ G ′ : b ∈ N(a)

)
. (7.2)

(7.2) states that for each agent a in C, there is a sufficiently large (relative to d
and the size of a’s neighbourhood) subgroup G ′ of C, such that all of G ′ is in the
neighbourhood of a. Hence (7.2) states that for all a ∈ C, a has a large enough
proportion of neighbors in C for C to be a cluster.

Given Proposition 7.2.16, it is easy to see that the sentence below character-
izes the existence of a cluster of density d among agents who have not adopted
(abbreviated ∃C≥d¬β):

∃C≥d¬β :=
∨

C⊆A

∧

a∈C

∨

{G⊆N⊆A:
|G∩C|
|N|

≥d}

(
∧

b∈N

Nab ∧
∧

b/∈N

¬Nab ∧
∧

b∈G

¬βb

)

Note that we can express in the same way that there is a cluster of den-
sity greater than d, by replacing ≥ by the strict > in the formula (abbreviated
∃C>d¬β).
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Example: clusters, cont. The model illustrated in Figure 7.1 contains a clus-
ter C = {a, b, c} of density 2

3
, such that no agent in C has adopted. Hence, the

model should satisfy ∃C 2
3
¬β :

∨

C⊆A

∧

a∈C

∨

{G⊆N⊆A:
|G∩C|
|N|

≥ 2
3}

(
∧

b∈N

Nab ∧
∧

b/∈N

¬Nab ∧
∧

b∈G

¬βb

)
. (7.3)

To verify this, assume C is a group that satisfies the outmost disjunction. Then
for each a ∈ C there is must a G and N such that |G∩C|

|N |
≥ 2

3
for which M satisfies

∧

b∈N

Nab ∧
∧

b/∈N

¬Nab ∧
∧

b∈G

¬βb. (7.4)

To see that M satisfies (7.4), regard first agent c, for whom the appropriate N
is {a, b, d}. As |N | = 3, we must identify a group G ⊆ C with |G| ≥ 2 such
that for all b ∈ G, M |=Ncb. Such a G exists, being {a, b}. Finally, indeed
M |=¬βa∧¬βb, and hence the conjunct for c is satisfied. Similar reasoning shows
that the conjuncts for a and b also hold. This gives us (7.3).

The Cluster Theorem. Let us recall here the theorem from [126],[71, Ch.19.3],
introduced in Section 2.1.2 characterizing the possibility of a complete adoption
cascade in a network:

Given a threshold model M with threshold θ ̸= 0 and a set B ⊂ A
of agents who have adopted, all agents will eventually adopt if, and
only if there does not exist a cluster of density greater than 1− θ in
A\B.

As both the complete cascade and the existence of the relevant clusters are ex-
pressible in L[], the cluster theorem can also be encoded in our setting, in the
following way:

Let M = (A, N,B, θ) with θ ̸= 0. Then

M |= cascade↔ ¬∃C>1−θ¬β.

7.2.4 Logics for Generalizations of Threshold Models

So far, we have considered the “simplest” possible network structures: the
networks are finite, symmetric, irreflexive and serial. The constraints of symmetry
and irreflexivity could easily be relaxed in the initial definition of threshold models
(Def. 7.2.2) to generalize the logics to different types of social relationships (for
instance a hierarchical network).

For simplicity, we work with uniform thresholds. Obtaining logics for settings
without this uniformity constraint is unproblematic: 1) define θ not as a constant
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but as a function assigning a particular threshold to each agent; i.e., set θ : A →
[0, 1] in the definition of threshold models (Def. 7.2.2); 2) replace θ by θ(a) in
the definition of the update (Def. 7.2.3) and in the reduction axiom Red.Ax.β (in
Table 7.1). This will generate a logic for each such function θ, that is, for each
distribution of thresholds among agents.

The logical setting may also be generalized to capture the spread of sev-
eral behaviors and their interaction. This amounts to: 1) modify the defi-
nition of threshold models (Def. 7.2.2) to let B be a finite set of behaviors
(B = {B1, B2, ...Bn}) and define θ : A × B → [0, 1]; 2) Relativize the defini-
tion of the update to each behavior Bi; 3) extend our set of atomic propositions:
Φ = {Nab : a, b ∈ A}∪{βia : a ∈ A, i ∈ 1, ...n}; 4) relativize the semantic clause in
the obvious way: M ⊨ βia iff a ∈ Bi, and replace the reduction axiom Red.Ax.β
by Red.Ax.βi accordingly. The “signature” of the resulting logic would be given
by [θ,A,B]. Such a logic allows reasoning about the diffusion of a fixed number
of behaviors, given a specific distribution of thresholds for each behavior to each
agent, for any particular network structure.

Furthermore, we consider the proportion of neighbors who have adopted the
only relevant factor for decision making. This makes every neighbor as influential
as any other. To generalize, weighted links representing different “degrees of
influence” could be used instead. The condition for being influenced into adopting
would become: the weighted sum of my neighbors which have adopted is at least
θ. Alternatively, we could fix an ordering of neighbors of each agent a with b ≥a c
stating that agent b influences agent a at least as much as agent c does. Based
on such an ordering, on possible update policy would be that a adopts when a
given proportion of ≥a-maximal agents have adopted.

Additional alternative policies will be discussed in Section 7.6. These will also
involve epistemic considerations, the topic to which we turn next.

7.3 Epistemic Threshold Models and Their Dy-

namic Logic

By the definition of the above given standard update on threshold models,
agents react to their environment : they are always influenced by the actual be-
havior of their direct neighbors. In many situations, this “nomothetic” update
style seems to pose unrealistic requirements. The update requires that agents act
in accordance with the facts of others’ behavior, even in the face of uncertainty.
Hence, the standard update may require of agents that they act in accordance
with information that they do not possess. For an example, see Figure 7.2.
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Figure 7.2: A situation of uncertainty. Agent a cannot tell whether world w or
world v is the actual one, as indicated by the dashed line (when representing
indistinguishability relations we omit reflexive and transitive links). Hence, a
does not know whether c has adopted or not. Assume that the threshold θ > 1

2

and that v is the actual world. Then, according to the standard update, a should
adopt – but a does not know that!

To accommodate this shortcoming, we extend the standard threshold models
with an epistemic dimension and define a refined adoption policy where agents’
behavior change depends on their knowledge of others’ behavior. We moreover
define a logic suitable to reason about epistemic threshold models and their dy-
namics.

To add an epistemic dimension to threshold models, we add for each agent
a subjective epistemic indistinguishability relation in the standard way, as illus-
trated in Figure 7.2.

7.3.1 Epistemic Threshold Models

The most general version of threshold models with an epistemic dimension
that we will work with in this chapter is the following:

7.3.1. Definition. [Epistemic Threshold Model (ETM)] An epistemic threshold
model (ETM) is a tuple M = (W ,A, N,B, θ, {∼a}a∈A), where:

W is a finite, non-empty set of possible worlds (or
states),

A is a finite non-empty set of agents,

∼a⊆ W ×W is an equivalence relation, for each agent a ∈ A,

N : W → (A → P(A)) assigns a neighborhood N(w)(a) to each a ∈ A in
each w ∈ W , such that:

a /∈ N(w)(a) (Irreflexivity)

b ∈ N(w)(a) ⇔ a ∈ N(w)(b) (Symmetry)

N(w)(a) ̸= ∅ (Seriality)

B : W → P(A) assigns to each w ∈ W a set B(w) of agents who
have adopted.

θ ∈ [0, 1] is a uniform adoption threshold.

To reason about the impact of knowledge on diffusion in network situations,
we want to impose limiting assumptions regarding the agents’ uncertainty. It is
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for example natural to assume that agents know who their direct neighbors are,
though cases exist where it is natural that agents know more about the network.
Agents may know who the neighbors of neighbors are, or maybe the whole network
is even common knowledge. Likewise, the uncertainty about agents’ behavior
might be subject to various constraints: agents may know the behavior of their
neighbors, of their neighbors’ neighbors, of everybody, etc.

One way to impose restrictions on uncertainty is by giving agents an ego-
centric “sphere of sight”, corresponding to how far they can “see” in the network,
assuming that if they can see further, they can see closer. We will say that
an agent has sight n when she can “see” at least n agents away, i.e., when she
knows at least both the network structure and the behavior of all agents within
n distance. To provide a formal definition, we first fix what is meant by within
“n distance”:

7.3.2. Definition. [n-reachable ] Let M = (W ,A, N,B, θ, {∼a}a∈A) and let
n ∈ N. Define Nn : W → A → P(A) as follows, for any w ∈ W and any a, b, c ∈
A:

• N0(w)(a) = {a}

• Nn+1(w)(a) = Nn(w)(a) ∪ {b ∈ A : ∃c ∈ Nn(w)(a) and b ∈ N(w)(c)}

If b ∈ Nn(w)(a), then b belongs to the set of agents that a has within her sight
at world w. Morever, if b ∈ Nn(w)(a) we say that b is n-reachable from a in w.

7.3.3. Definition. [Sight n Model2]
A sight n ETM M = (W ,A, N,B, θ, {∼a}a∈A) is such that, for n ∈ N and for
any a, b ∈ A, and any w, v ∈ W :

• If w ∼a v and b ∈ Nn−1(w)(a), then N(w)(b) = N(v)(b) (agents know the
network at least up to distance n)

• If w ∼a v and b ∈ Nn(w)(a), then b ∈ B(w) iff b ∈ B(v) (agents know the
behavior of others at least up to distance n).

7.3.2 Knowledge-Dependent Diffusion

To remedy the problem of agents acting on information they may not possess,
we introduce a revised adoption policy. It captures the intuitive idea that an
agent should only be influenced by what he knows about other agents around
him. This amounts to a knowledge-dependent adoption policy: agents adopt
whenever they know that enough of their neighbors have adopted already. We
call this update policy informed update:

2We lump two notions of sight under one heading. A more general definition would be of
sight (n,m), where n specifies the sight of network structure, whilem specifies sight of behavior.
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7.3.4. Definition. [Informed Update] Let M = (W ,A, N,B, θ, {∼a}a∈A) be
an ETM with sight n. The informed adoption update of M produces ETM
Mi = (W ,A, N,Bi, θ, {∼i

a}a∈A) such that, for any a, b ∈ A and any w, v ∈ W :

• Bi(w) = B(w) ∪ {a ∈ A : ∀v ∼a w
|N(v)(a)∩B(v)|

|N(v)(a)|
≥ θ} and

• w ∼i
a v iff i) w ∼a v and ii) if b ∈ Nn(w)(a), then b ∈ Bi(w) iff b ∈ Bi(v).

The first condition tells us that the new set of adopters at world w includes
the previous set of adopters B(w) (hence agents do not give up their previously
adopted behavior) and it includes also all agents who, as far as they know, are
certain of the fact that enough influential neighbors (given by θ) have adopted
already. The second condition ensures that the informed update of an ETM with
sight n is again an ETM with sight n, i.e., agents’ sight is not diminished by
updates.

Updating de dicto and updating de re. The informed update policy is
defined using de dicto knowledge of others’ behavior: if an agent knows that
enough others will adopt, so should she, ignoring that she might not know exactly
who will adopt.

A de re update is definable by setting

Bi(w) = B(w) ∪ {a ∈ A :
b ∈ A : ∀v ∼a w, |N(v)(a) ∩ B(v)|

|N(v)(a)|
≥ θ}.

While both rules are interesting, in the remainder of this chapter we opt for the
de dicto version as it expresses in a stronger sense that agents can fully utilize all
their information while staying in the spirit of threshold models.

Figure 7.3: Adoption de re vs. adoption de dicto. We illustrate an ETM with
threshold θ = 1

2
and two possible worlds. Should b adopt or not? He knows de

dicto that enough neighbors have adopted, but he does not know so de re; he
knows that at least half of his neighbors have adopted, but he doesn’t know which
half.
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Learning the distribution. We have discussed in the previous chapter how
ontic change may induce learning. We can make a similar observation here: when
performing informed updates, agents may learn about the initial distribution of
behavior in the network even outside their range of sight, as it may be possible
to exclude possibilities based on the development of the dynamics. The learning
occurs due to the restriction of the indistinguishability relation, as build into the
definition of informed update. Figure 7.4 provides an example.

Figure 7.4: The learning process for agent d (bottom center) under blind adoption, in an

ETM with threshold θ ≤ 1
2 and sight 1. With sight 1, the ETM contains the 8 depicted possible

worlds/states. The last states to reach fixed points at time 5 are states w2 and w4 from the

left. Epistemic relations are drawn only for d to simplify representation. Note the development

of the indistinguishability relation from M0 to M5: as the updated ∼′
d is a restriction of ∼ d

to states where both c and e’s behaviors are identical, d learns about the initial distribution.

Learning may or may not be complete: compare the development of states w1 and w2.
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Implicit information and redundant knowledge. Under some epistemic
conditions, the epistemic and non-epistemic diffusion policies are equivalent. If
each agent always knows at least who her neighbors are and how they are behav-
ing, then the two policies give rise to the same diffusion dynamics, in the following
sense: the diffusion dynamics resulting from the informed update on an ETM re-
duces to the diffusion dynamics under the initial (non-epistemic) updated applied
to each possible world of the ETM. This is the content of Proposition 7.3.6 below.

Proposition 7.3.6 relates two important insights. The first is that standard
threshold models make the implicit epistemic assumption that agents know their
neighborhood and its behavior. The second is that knowledge about more distant
agents is redundant as it will not affect behavior.

To prove the result, we first define how to generate a (non-epistemic) threshold
model from a possible state of an epistemic threshold model:

7.3.5. Definition. [State-Generated Threshold Model (SGM)]
Let M = (W ,A, N,B, θ, {∼ a}a∈A) be an ETM and let w ∈ W and a ∈ A. The
state-generated threshold model M(w) = (A, NM(w), BM(w), θ) is given by:

NM(w)(a) = N(w)(a), and

a ∈ BM(w) ⇔ a ∈ B(w).

7.3.6. Proposition. Let M = (W ,A, N,B, θ, {∼ a}a∈A) be an ETM and w ∈
W. Let Mi and M(w) be respectively the informed update and state-generated
models of M. Let Mi(w) be the state-generated model of Mi and let M(w)′

non-epistemic update of M(w). Then

if M has sight n ≥ 1, then Mi(w) = M(w)′.

Proof: As neither the non-epistemic update nor the informed update changes
the set of agents, network or threshold, it need only be shown that Bi(w) = B(w)′

where Bi(w) is the behavior set ofMi(w) and B(w)′ is the behavior set ofM(w)′.
Assume a ∈ B(w). Then a ∈ B(w)i from Mi by monotonicity of informed

update. Hence also a ∈ BMi(w) from Mi(w) by Definition 7.3.5 of SGMs. From
a ∈ B(w) it also follows that a ∈ BM(w) by defintion of SGMs. By monotonicity
of the non-epistemic update, a ∈ B′

M(w) from M(w)′.

Assume that a /∈ B(w). Then a /∈ BM(w) by definition of SGMs.

By definition, a ∈ B(w)i iff ∀v ∼ aw : |N(v)(a)|∪B(v)
|N(v)(a)|

≥ θ. AsM has sight n ≥ 1,

∀v ∼ aw N(v)(a) = N(w)(a) and b ∈ N(w)(a) implies b ∈ B(w) ⇔ b ∈ B(v).

Hence |N(w)(a)|∪B(w)
|N(w)(a)|

≥ θ. As N(w)(a) = NM(w)(a) and B(w) = BM(w), it follows

that
|NM(w)(a)|∪BM(w)

|NM(w)(a)|
≥ θ iff a ∈ BM(w). □

Proposition 7.3.6 provides a precise, but partial, interpretation of the dy-
namics of non-epistemic threshold models as an information-dependent behavior
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diffusion. As witnessed by its proof, only the immediate neighborhood of agents
matters for the adoption behavior in a threshold model. This changes when agents
are imbued with predictive abilities; see Section 7.4.

The interpretation is only partial in that we do not obtain a full character-
ization of the standard threshold dynamics (see Definition 7.2.3) by requiring
sight n ≥ 1. Sight n < 1 does not imply that there will always be a difference
making neighbor about which some agent has uncertainty. If a has uncertainty
about some neighbor b’s behavior but is certain that a large enough proportion of
neighbors have adopted, then the model will have sight strictly less than 1 while
still developing according to the standard threshold dynamics.

Situations in which neighbors lack knowledge of some direct neighbors’ be-
havior are interesting in that they may cause the diffusion process to slow down
compared to the standard update policy:

7.3.7. Proposition. There exists an ETM M = (W ,A, N,B, θ, {∼ a}a∈A) with
sight n < 1 such that

BMi(w) ⊂ BM(w)u,

where Mi and M(w) are respectively the informed update and state-generated
models of M, and Mi(w) is the state-generated model of Mi and M(w)′ is the
non-epistemic update (Def. 7.2.3) of M(w).

Proof: By construction of a specific model: LetM = (W ,A, N,B, θ, {∼ a}a∈A)

with W = {w, v}, w ∼a v, N(w)(a) = N(v)(a) but |N(w)(a)∩B(w)|
|N(w)(a)|

≥ θ >
|N(v)(a)∩B(v)|

|N(v)(a)|
. Then a /∈ BMi(w), but a ∈ BM(w)′ . □

Figure 7.5 illustrates this “slower” diffusion.

7.3.3 Knowledge and Cascades

In Section 7.2.3, we have shown how our language can capture complete cas-
cades and the existence of clusters able to block diffusion, as captured by the
Cluster Theorem: a cascade will be complete if and only if the network does not
contain a cluster of non-yet-adopters of density greater than 1− θ.

Given proposition 7.3.6 above, the cluster theorem still holds for any epistemic
threshold model with sight at least 1. Moreover, the existence of a relevant cluster
will still block a cascade under the informed update policy, independently of
how much agents know. However in general, considering any epistemic threshold
model with any sight, the cluster theorem cannot be maintained as it was stated.
What we observe is that the left to right direction of the cluster theorem still
holds for epistemic threshold models with sight less than 1: indeed, if a complete
cascade occurs, then the network does not contain a cluster of density greater
than 1− θ.
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Figure 7.5: A diffusion process “slowed down” by the uncertainty of agent b, with threshold

θ = 1
2 . Consider the situation in world w: agent a has adopted, but agent b does not know

it. Therefore, agent b will not adopt immediately. The diffusion according to the informed

update policy in state w will only stabilize after applying the informed update rule twice. Note

that under the non-epistemic threshold update, or if agent b knew whether a has adopted, the

situation depicted in w would stabilize after only one step (i.e. the non-epistemic threshold

update of M0(w) gives us directly M2(w)).

However, the converse of does not hold in these models with sight less than
1. We briefly explain this point in more detail. Given proposition 7.3.7 above,
we know that the diffusion process, via the informed update rule, in an ETM
with sight < 1 might be “slower” than the process based on the non-epistemic
threshold update policy. Indeed, the lack of knowledge may for instance block
a cascade, despite the absence of a cluster-obstacle. Figure 7.6 illustrates this
difference.

Figure 7.6: A diffusion process “blocked” by the uncertainty of agent b, with
θ = 1

2
. Consider the situation in world w: agent a has adopted, but agent b

does not know it. Therefore, agent b will not adopt (under the informed adoption
rule). Note that under the non-epistemic threshold update, or if agent b knew
that a has adopted, the situation depicted in state w would evolve into a complete
cascade.
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7.3.4 The Epistemic Logic of Threshold-Limited Influence

To reflect the epistemic dimension in a formal syntax, the language L is ex-
tended by adding the standard Ka modalities reading “agent a knows that”, for
each agent a ∈ A.

7.3.8. Definition. [Languages LK[] and LK ] Let the set of atomic propositions
be given by {Nab : a, b ∈ A} ∪ {βa : a ∈ A} for a finite set A. Where a, b ∈ A,
the formulas of LK[] are given by

ϕ := Nab | βa | ¬ϕ | ϕ ∧ ϕ | Kaϕ | [adopt]ϕ

The formulas of LK are those of LK[] that do not involve the [adopt] modality.

As standard, we use the given language to define the other Boolean operators for
disjunction and implication and introduce < adopt > as the dual of [adopt].

7.3.9. Definition. [Semantics for LK[] with Informed Update] Formulas ϕ, ψ ∈
LK[] are interpreted over an ETM M = (W ,A, N,B, θ, {∼a}a∈A) with sight n,
w, v ∈ W :

M, w |= βa iff a ∈ B(w)

M, w |= Nab iff b ∈ N(w)(a)

M, w |= ¬ϕ iff M, w ⊭ ϕ

M, w |= ϕ ∧ ψ iff M, w |= ϕ and M, w |= ψ

M, w |= Kaϕ iff for all v ∈ W such that v ∼a w, M, v |= ϕ

M, w |= [adopt]ϕ iff M′, w |= ϕ, where M′ is the informed update
of M as specified in Def. 7.3.4.

Axiomatization. In the specification of the epistemic reduction axioms, the
following two syntactic shorthands are used:

Abbreviation. For any k ∈ N ≥ 1, we introduce the abbreviation Nk
ab by

induction,

N1
ab : = Nab

Nk+1
ab : = Nk

ab ∨
∨

c∈A

(
Nk
ac ∧Ncb

)

The formula Nk
ab expresses that b is k-reachable from a.
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Network Axioms

¬Naa Irreflexivity

Nab ↔ Nba Symmetry
∨
b∈A

Nab Seriality

Knowledge Axioms

Kaϕ→ ϕ (∗)Ax.T

Kaϕ→ KaKaϕ (∗)Ax.4

¬Kaϕ→ Ka¬Kaϕ (∗)Ax.5

Reduction Axioms

[adopt]Nab ↔ Nab Red.Ax.N

[adopt]¬ϕ↔ ¬[adopt]ϕ Red.Ax.¬

[adopt]ϕ ∧ ψ ↔ [adopt]ϕ ∧ [adopt]ψ Red.Ax.∧

[adopt]βa ↔ βa ∨Ka(βN(a) ≥ θ) (∗)Ep.Red.Ax.β

[adopt]Kaϕ↔
∨

B⊆A
(B = Nn

a β
+ ∧Ka (B = Naβ

+ → [adopt]ϕ)) (∗)Ep.Red.Ax.K sight n

Inference Rules

From ϕ and ϕ→ ψ, infer ψ Modus Ponens

From ϕ, infer Kaϕ for any a ∈ A (∗)Nec.Ka

From ϕ, infer [adopt]ϕ Nec.[adopt]

Table 7.2: Axioms and rules for the Epistemic Logic of Threshold-Limited Influ-
ence for sight n. Subscripts a, b are arbitrary over A. Entries marked (∗) are new
or modified relative to Table 7.1.

Abbreviation. For B ⊆ A, we introduce the abbreviation B = Nk
aβ

+ as follows:

(
B = Nk

aβ
+
)
:=
∧

b∈B

(
Nk
ab ∧ [adopt]βb

)
∧
∧

b∈A\B

(
Nk
ab → [adopt]¬βb

)
.

The expression B = Nk
aβ

+ refers to the set of agents which are 1) k-reachable
from a and 2) will have adopted after the next update.

Using these shorthands, the axioms for Epistemic Threshold Models and the
dynamics of Informed Update are as given in Table 7.2.

The reduction law Ep.Red.Ax.β states that a has adopted β after the update
just in case she had already adopted it before the update, or she knew that she
had a large enough proportion of neighbors who had already adopted it before
the update. Ep.Red.Ax.K.sight.n captures that an agent knows that ϕ will be
the case after the update if, and only if, she knows that, if those very agents who
actually are going to adopt do adopt, then ϕ will hold after the update.
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7.3.10. Definition. [Epistemic Logic of Threshold-Limited Influence] The logic
Lθn is comprised of the axioms and rules of propositional logic and the axioms
and rules of Table 7.2.

7.3.11. Definition. [Cθn] Let θ ∈ [0, 1] be given. The class of ETM Cθn contains
all and only ETM with threshold θ and sight n.

The logic Lθn is sound and complete with respect to the corresponding class
of models Cθn:

7.3.12. Theorem. Let θ ∈ [0, 1] and n ∈ N. For any ϕ ∈ LK[],

|=Cθn ϕ iff ⊢Lθn
ϕ.

Proof: Soundness: Let M = (W ,A, N,B, θ, {∼a}a∈A) be an epistemic thresh-
old model with sight n. Let a, b ∈ A and w, v ∈ W . Then (M, w) satisfies the S5
axioms as all ∼a are equivalence relations and satisfy the axioms reoccuring from
Table 7.1 for the same reasons non-epistemic threshold models satisfy them.

To see that (M, w) satisfies Ep.Red.Ax.β, let Mi be the informed update of
M. Then M, w |= [adopt]βa iff Mi, w |= βa iff

a ∈ Bi(w) = B(w) ∪
{
b ∈ A : ∀v ∼b w

|N(v)(b)∩B(v)|
|N(v)(b)|

≥ θ
}

iff M, w |= βa or a ∈
{
b ∈ A : ∀v ∼b w

|N(v)(b)∩B(v)|
|N(v)(b)|

≥ θ
}
. Using the same syntactic decoding as in the

proof of Theorem 7.2.13, we obtain that a ∈
{
b ∈ A : ∀v ∼b w

|N(v)(b)∩B(v)|
|N(v)(b)|

≥ θ
}

iff M, w |= Ka

(
βN(a) ≥ θ

)
. Hence M, w |= [adopt]βa iff M, w |= βa or M, w |=

Ka

(
βN(a) ≥ θ

)
.

For Ep.Red.Ax.K.sight.n, let again Mi be the informed update of M. Then

M, w |=
∨

B⊆A

((B = Nn
a β

+) ∧ Ka ((B = Naβ
+) → [adopt]ϕ))

iff
∃B ⊆ A : M, w |= (B = Nn

a β
+) ∧ Ka ((B = Naβ

+) → [adopt]ϕ)
iff

∃B ⊆ A : M, w |=
∧
b∈B

(Nn
ab ∧ [adopt]βb) ∧

∧
b∈A\B

(Nn
ab → [adopt]¬βb) and

M, w |= Ka

((
∧
b∈B

(Nn
ab ∧ [adopt]βb) ∧

∧
b∈A\B

(Nn
ab → [adopt]¬βb)

)
→ [adopt]ϕ

)

iff
∃B ⊆ A : B = Nn(w)(a) ∩ Bi and

for all v ∼a w, if B = Nn(v)(a) ∩ Bi, then Mi, v |= ϕ
(∗)
iff
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∃B ⊆ A : B = Nn(w)(a) ∩B′ and
if B = Nn(w)(a) ∩Bi, then Mi, w |= Kaϕ

(from (∗) as M is sight n, so Nn(v)(a) ∩Bi = Nn(w)(a) ∩Bi for all v ∼a w)
iff

Mi, w |= Kaϕ
(as such a B always exists)

iff
M, w |= [adopt]Kaϕ.

Completeness (sketch): It can be shown by induction that for all ϕ ∈ LK[],
there exists a ϕ′ ∈ LK such that ⊢Lnθ

ϕ ↔ ϕ′. Completeness then follows from
the standard proof of completeness for S5 over Kripke models with equivalence
relations and the straightforward insight that the network axioms characterize
the imposed network conditions. □

7.4 Prediction Update

In defining our informed update rule based on epistemic threshold models, we
ensure that agents do not act on information they do not possess. Such agents
are however still limited, in that they do not take all their available information
into account. This section investigates effects of agents that are allowed to reason
about more than only the present behavior of the network. In particular, we
focus on providing agents with predictive power.

Consider the ETM illustrated in Figure 7.7, with a given dynamics that runs
according to a blind or informed adoption policy.

Figure 7.7: An ETM with no uncertainty about the actual state w, developing
according to informed update. B is marked by gray, and a threshold θ = 1

2
is

assumed. At time 0 (w0), only a has adopted. According to informed adoption,
b adopts at time 1. At time 2, c also adopts the behavior, etc.

If one assumes that agents (nodes) are not merely blindly influenced by their
neighbors, but rather are rational agents seeking to coordinate, the dynamics in
Figure 7.7 seems to misfire. In particular, as the network and behavior distribu-
tion are known to c (and if the new behavior is considered the most valuable),
the choice of c not to adopt during the first update is irrational. As c knows



156 Chapter 7. Knowledge as Diffusion Accelerator

that a has adopted, he knows that b will adopt during the next update round.
Hence c also knows that he will be better off in round 1 if he, too, has chosen
to adopt. To represent this “predictive rationality” we define a new, predictive,
update mechanism.

Prediction update as the least fixed point. In defining “prediction up-
date”, we make use of the notion of a least fixed point. Even when agents’ attempt
to use all their available information, each will at some point reach a conclusion
about her next action. When the last agent does so, the prediction reaches a
fixed point.

This fixed point may be approximated using a chain of lower level predictions.
The intuitive idea of the approximation may be illustrated using Figure 7.7:

Assume agent a considers himself smart by predicting that he knows
his only neighbor b is going to adopt B in round 2, if b follows the
informed update policy. Then a may act preemptively, by also adopt-
ing B in round 2, rather than in round 3 as the informed update
prescribes.3 In this case, a may be thought of as a level 1 predictor :
he assumes no-one else makes predictions, that the others are of level
0. However, a may come to think that b is as smart as he is, i.e., that
also b is a level 1 predictor. Assuming this, a now foresees that b will
not adopt in round 2, but already in round 1; based on this prediction
about b’s predictions, a may now also adopt in round 1. In this case,
a is a level 2 predictor, etc.

If this reasoning is pushed to its fixed point, it will “catch up with itself”: in
the fixed point, every agent will be a level ω predictor, predicting under the
assumption that all others are the same. This is the trick we use to ensure that
agents draw the most powerful conclusion available.

Common knowledge of predictive rationality and complete information
use. Prediction update incorporates two epistemic assumptions. One is that it is
common knowledge that all agents act in accordance with the prediction update
policy. This assumption means that agents may not only predict the systems
behavior as if everybody else was acting in accordance with informed update.
Rather, agents foresee the behavior of other predictors.

Moreover, it is common knowledge that predictors predict as far into the future
as possible, given their information. This means that predictors attempt to use
all their available information about the network structure, the current behavior
spread and information available to others when determining their next action.

3If a acted according to the informed update policy, he must first see b adopt before he is
influenced by b’s choice
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Prediction update preliminaries. Before we define the prediction update, a
few preliminaries are required.

7.4.1. Definition. [Functions Γg] Let M = (W ,A, N,B, θ, {∼a}a∈A) be a fi-
nite4 ETM and let the set of all functions from W to P(A) be denoted by
P(A)W = {f |f : W → P(A)}.

For each g ∈ P(A)W let the function Γg : P(A)W −→ P(A)W be given by
∀w ∈ W , ∀f ∈ P(A)W

Γg(f)(w) = g(w) ∪

{
a ∈ A : ∀v ∼a w,

|N(v)(a) ∩ f(v)|

|N(v)(a)|
≥ θ

}
.

7.4.2. Lemma. Let M, P(A)W and Γg be as in Definition 7.4.1. Let ⪯ be a
partial order on P(A)W such that for any f, g ∈ P(A)W , all w ∈ W, f ⪯ g ⇔
f(w) ⊆ g(w). Then

1) (P(A)W ,⪯) is a finite, hence complete, lattice.

2) For each g ∈ P(A)W , the map Γg is order-preserving (monotonic).

Proof:

1) For any finite set A, (P(A),⊆) is a finite and hence complete lattice with
the order given by the set-theoretic inclusion. If (L,⊑) is a finite lattice and W
a finite set, then (LW ,≤) is also a finite lattice when LW = {f |f : W −→ L}
and f ≤ g iff ∀w ∈ W , f(w) ⊑ g(w). Hence, given that W is a finite set, also
(P(A)W ,⪯) is a finite lattice with the order given by definition of ⪯. Every
lattice over a finite set is also complete.

2) Let g, f, f ′ ∈ P(A)W , and let f ⪯ f ′. Hence ∀w ∈ W , f(w) ⊆ f ′(w). Pick
an arbitrary u ∈ W . Then

Γg(f)(u) =g(u) ∪

{
a ∈ A : ∀v ∼a u,

|N(v)(a) ∩ f(v)|

|N(v)(a)|
≥ θ

}

Γg(f
′)(u) =g(u) ∪

{
a ∈ A : ∀v ∼a u,

|N(v)(a) ∩ f ′(v)|

|N(v)(a)|
≥ θ

}
.

Let the second terms of the unions be denoted A and A′, respectively.
For all v ∈ W , as f(v) ⊆ f ′(v), |N(v)(a)∩f(v)|

|N(v)(a)|
≥ θ implies |N(v)(a)∩f ′(v)|

|N(v)(a)|
≥ θ.

Hence A ⊆ A′, so Γg(f)(u) ⊆ Γg(f
′)(u). As u was arbitrary, Γg(f) ≼ Γg(f

′).
Hence Γg is order-preserving. As g was arbitrary, this holds for all Γg, g ∈ P(A)W .
□

4In a finite ETM we assume that the set of worlds W is finite and the set of agents A is
finite.
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7.4.3. Definition. [Least Fixed Point] Let M = (W ,A, N,B, θ, {∼a}a∈A) be a
finite ETM and let (P(A)W ,⪯) be as in Lemma 7.4.2. Let Γg be as in Definition
7.4.1.

The least fixed point of Γg, lfp(Γg), is the unique x ∈ P(A)W such that

Γg(x) = x, and

∀y ∈ P(A)W , if Γg(y) = y, then x ⪯ y.

7.4.4. Theorem (lfp Existence). Let M, (P(A)W ,⪯) and Γg be as in Defi-
nition 7.4.3. Then lfp(Γg) exists.

Proof: The least fixed point lfp(Γg) exists by the Knaster-Tarski Fixed Point
Theorem (see e.g. [67, p. 50]), as (P(A)W ,⪯) is a complete lattice (Lemma 7.4.2)
and Γg is order-preserving (Lemma 7.4.2). □

Defining prediction update. Given the previous paragraph, we may now
define prediction update as follows:

7.4.5. Definition. [Prediction Update] Let M = (W ,A, N,B, θ, {∼a}a∈A) be
a finite ETM of sight n and let (P(A)W ,⪯) be as in Lemma 7.4.2. Let ΓB :
P(A)W −→ P(A)W be given as per Definition 7.4.1, i.e., the function such that
∀w ∈ W , ∀f ∈ P(A)W

ΓB(f)(w) = B(w) ∪

{
a ∈ A : ∀v ∼a w,

|N(v)(a) ∩ f(v)|

|N(v)(a)|
≥ θ

}
.

The prediction update of M results in the ETM M′ = (W ,A, N, B̃, θ, {∼′
a}a∈A)

where ∀w, v ∈ W ,

B̃(w) = lfp(ΓB)(w), and

w ∼′
a v iff w ∼a v and if b ∈ N≤n(w)(a), then b ∈ B̃(w) iff b ∈ B̃(v).

Finding the prediction update fixed point. The definition of prediction
update does not provide us with a method for finding the least fixed point. The
following theorem guarentees that we can find it using a bottom-up method:

7.4.6. Theorem. Let M, (P(A)W ,⪯) be as in Lemma 7.4.2 with bottom element

⊥. Let ΓB and B̃ be defined as in Definition 7.4.5. Then

lfp(ΓB) = sup{ΓB
n(⊥) : n ∈ N}
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Proof: This proof follows from the proof of the Knaster-Tarski Fixed Point
Theorem applied to finite structures. Given that we work with a finite structure
(P(A)W ,⪯) and that ΓB is order-preserving, a least fixed point is reached in a
constructive way in finitely many steps. The construction is similar to Proposition
3.1. of [111]. □

The above stated prediction update rule in definition 7.4.5 can now be used
to give a new semantics to the [adopt] modality in the logic language LK[].

7.4.7. Definition. [Semantics for LK[] with Prediction Update] Given a finite
ETM M = (W ,A, N,B, θ, {∼a}a∈A) with sight n, w ∈ W , and ϕ ∈ LK[] truth
clauses are as in Definition 7.3.9, except for ϕ := [adopt]ψ, ψ ∈ LK[] given by

M, w |= [adopt]ϕ iff M′, w |= ϕ, where M′ is the prediction update of M.

Axiomatization. We provide sound axioms that govern the least fixed point
behavior of the prediction update policy, but we do not provide a complete axiom
system. Finding a complete logic is the aim of planned future research. For now
we introduce a fixed point axiom and a least fixed point rule of inference. Note
that in this section, the [adopt] modality is a fixed point operator and hence
may no longer be reduced away. Contrary to the informed update process, using
prediction update results in a system that is strictly more expressive than its
non-dynamic counterpart.

To state the proof system, we first generalize the syntactic shorthand intro-
duced in Definition 7.2.9.

Abbreviation. Given a tuple of formula’s (ϕb)b∈A, one for each agent a ∈ A, we
introduce the following abbreviation:

Ka(ϕN(a) ≥ θ) := Ka




∨

{G⊆N⊆A:
|G|
|N|

≥θ}

(
∧

b∈N

Nab ∧
∧

b/∈N

¬Nab ∧
∧

b∈G

ϕb

)
 .

Here Ka(ϕN(a) ≥ θ) denotes that a knows that larger than a θ fraction of her
neighbors has the property ϕ (where for instance ϕb can stand for Nab ∧ βb). In
particular, Ka([adopt]βN(a) ≥ θ) expresses that a knows that at least a θ fraction
of her neighbors will have adopted β after the application of the prediction update
rule.

7.4.8. Definition. [Prediction Logic] The logic Lpredictθn is comprised of the ax-
ioms and rules of propositional logic and the axioms and rules of Table 7.2 with
the only change that the axiom Ep.Red.Ax.β is replaced by the Fixed Point Ax-
iom in Table 7.3 and we extend the set of rules of the logic with the least fixed
point inference rule in Table 7.3.
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Fixed Point Laws

[adopt]βa ↔ βa ∨Ka([adopt]βN(a) ≥ θ) Fixed Point
Axiom

⊢ {ϕa ↔ βa ∨Ka(ϕN(a) ≥ θ)}a∈A

⊢ {ϕa → [adopt]βa}a∈A
Least Fixed
Point Inference
Rule

Table 7.3: Fixed point laws of the prediction logic Lpredictθn .

The Fixed Point axiom of Table 7.3 is almost identical to Ep.Red.Ax.β of
Table 7.2, except for the inclusion of the [adopt] modality on the right-hand
side. This states that a will adopt after the prediction update iff she has already
adopted, or if she knows that enough of her neighbors will have adopted after
having applied the same predictive reasoning she uses.

The Least Fixed Point Inference rule reflects the fact that prediction update
is defined as a least fixed point operator.

We do not provide a complete logic for the prediction update policy. It is our
conjecture that the axioms and rules in definition 7.4.8 will be necessary to obtain
completeness. The listed axioms and rules are sound with respect to epistemic
threshold models using the prediction update rule as our semantics for the [adopt]
modality. For the axioms and rules not in Table 7.3, the proof of Theorem 7.3.12
carries over. The axiom and rule governing the fixed point behavior is shown to
be sound in the following proposition.

7.4.9. Proposition. The axiom and derivation rule of Table 7.3 are sound with
respect to epistemic threshold models with sight n, using prediction update as
semantics for the [adopt] modality.

Proof: Let M be a arbitrary finite ETM with sight n, domain W ∋ w and
a, b ∈ A.

Fixed Point Axiom. M, w |= [adopt]βa iff M′, w |= βa iff a ∈ B̃ = B ∪{
b ∈ A : ∀v ∼b w,

|N(v)(b)∩B̃|
|N(v)(b)|

≥ θ
}
iff M, w |= βa or ∀v ∼a w,

|N(v)(a)∩B̃|
|N(v)(a)|

≥ θ. The

right disjunct obtains iff

∀v ∼a w,∃G,N ⊆ A : G ⊆ N and |G|
|N |

≥ θ and

G ⊆ B̃ and N = N(v)(a)
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iff

∀v ∼a w,∃G,N ⊆ A : G ⊆ N and |G|
|N |

≥ θ and

∀b ∈ G, M′, v |= βb and ∀b ∈ N ,
M′, v |= Nab

iff

∀v ∼a w, M
′, v |=

∨

{G⊆N⊆A:
|G|
|N|

≥θ}

( ∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G

βb

)

iff

∀v ∼a w, M, v |=
∨

{G⊆N⊆A:
|G|
|N|

≥θ}

( ∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G

[adopt]βb

)

iff

M, w |= Ka


 ∨

{G⊆N⊆A:
|G|
|N|

≥θ}

( ∧
b∈N

Nab ∧
∧
b/∈N

¬Nab ∧
∧
b∈G

[adopt]βb

)


iff

M, w |= Ka([adopt]βN(a) ≥ θ)

Hence we conclude M, w |= [adopt]βa iff M, w |= βa ∨Ka([adopt]βN(a) ≥ θ).

Least Fixed Point Inference Rule. Let an arbitrary finite ETM M with
sight n and domain W be given. Where {ϕa}a∈A is a set of sentences from
LK[], let ϕ ∈ P(A)W with ϕ(w) = {a ∈ A : M, w |= ϕa}. Moreover, let
Γϕ : P(A)W −→ P(A)W , given by

Γϕ(f) = h such that

∀w ∈ W , h(w) = ϕ(w) ∪

{
a ∈ A : ∀v ∼a w,

|N(v)(a) ∩ f(v)|

|N(v)(a)|
≥ θ

}
.

As shown in Lemma 7.4.2, each such Γϕ is order-preserving.

Let β ∈ P(A)W be determined by {βa}a∈A and []β ∈ P(A)W by {[adopt]βa}a∈A.
Let Γβ be given by the above construction.

Given the prediction semantics of [adopt] and the fact that B̃ = lfp(ΓB) =
sup{ΓB

n(⊥) : n ∈ N} (Theorem 7.4.6), we may conclude that

[]β = Γβ([]β) (7.5)
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is the least fixed point of Γβ.

Assume for some {ϕa}a∈A that ⊢
{
ϕa ↔ βa ∨Ka(ϕN(a) ≥ θ)

}
a∈A

. This im-
plies

⊢
∧

a∈A

(ϕa ↔ βa ∨Ka(ϕN(a) ≥ θ)). (7.6)

From {ϕa}a∈A and {βa ∨Ka(ϕN(a) ≥ θ)}a∈A we may define functions ϕ and βK,

as specified above. Now notice that βK = Γβ(ϕ). Hence, for (7.6) to be satisfied,
we have that

ϕ = Γβ(ϕ).

Given that (7.5) is the least fixed point of Γβ, we have that ϕ = Γβ(ϕ) ⇒ []β ⪯ ϕ,
so

∀w∀a : a ∈ []β(w) ⇒ a ∈ ϕ(w) so
∀w∀a : w |= [adopt]βa ⇒ w |= ϕa so
∀w∀a : w |= [adopt]βa → ϕa

□

7.5 Sight and Prediction Power

Relationship between predictive power and non-epistemic update. Sim-
ilarly, as we compared the informed update policy with the non-epistemic thresh-
old model update, it is also natural to investigate the relationship between the
‘prediction update’, ‘informed update’ and the ‘non-epistemic threshold model
update’ (Definition 7.2.3). Indeed, given that the prediction update policy fore-
sees the non-epistemic deterministic development of the actual state under un-
certainty, such a comparison would be rather natural. Besides comparing the
cascading behavior and speed of convergence, (as illustrated in figure 7.5), other
results that we expect in this investigation relate to posing conditions and finding
a lower and upper bound of how far agents can predict into the future. We leave
the technical details of this investigation for future work.

Bounded rationality. Stating that prediction update is the fixed point of the
informed update, as we have done in this section, corresponds to assuming that
agents have unbounded rationality (maximal anticipation power given the infor-
mation available). A bounded rationality version of the prediction update dynam-
ics could be defined, in which agents can only anticipate a fixed finite number of
steps ahead. A natural way of doing this would be by defining an update that
updates to some finite level n of the prediction chain. The dynamics of bounded
rationality would only differ from the unbounded dynamics for a low enough n.
We leave the full exploration of technical details of the prediction update involving
such boundedly rational agents for future work.
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Figure 7.8: We use the prediction update to regulate the dynamics of this sight 2,
finite ETM with actual state w, θ = 1

2
(reflexive and transitive uncertainty rela-

tions are omitted in the illustration). Agents a, b, c are endowed with additional
information: they are fully informed about the actual state. The development of
the states is given according to blind/informed adoption; states w0–w4 are from
Figure 7.7. The thick arrow indicates the evolution of the actual world under the
specified prediction dynamics. With informed update, w reaches a fixed point
after 4 updates; with prediciton update, it reaches the same fixed point after
only 2 steps. Due to uncertainty, the prediction update does not jump to the
fixed point of the non-epistemic update in 1 step: as d does not know whether
a has adopted at time 0, she does not know that c will adopt under the pre-
diction update. Hence, she will refrain herself from adopting until w3. Similar
considerations goes for e.
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7.6 Alternative Adoption Policies

In the previous sections, we have presented three diffusion policies: one de-
pending solely on whether the agents’ neighbors have adopted (the “threshold
model update” from Def. 7.2.3); one depending on knowledge of this fact (the
“informed update” of Def. 7.3.4), and one depending on the anticipation of this
fact (the “prediction update” of Def. 7.4.5). This section questions some in-built
assumptions of these policies and discusses possible alternatives.

Enlarging the sphere of influence. The adoption policies hitherto presented
rely on the idea that an agent will adopt if (she knows that) enough of her direct
neighbors (will) have adopted.

For certain applications, decisions are made that are based not only on actions
of direct neighbors, but on the population at large. A case in point is the decision
of whether to support a revolution: the relevant factor is then whether a big
enough fraction of the total population supports the revolution, not whether
enough of one’s direct neighbors do so.

Generally, such policies may be obtained by enlarging the “sphere of influence”
of agents beyond their direct neighbors. A natural choice in the epistemic setting
is to fit the “sphere of influence” to agents’ “sphere of sight” (in models of sight
n). The influence principles would then become: the agent adopts if (he knows
that) enough of his n-distant neighbors (will) have adopted.

In the revolution case, agents might be influenced into adopting only if (they
know that) enough agents within the whole network (will) have adopted. A suit-
able “globalized” version of the prediction update from Def. 7.4.5 may be defined
as follows:

7.6.1. Definition. [Global Prediction Update]

Let M = (W ,A, N,B, θ, {∼a}a∈A) be a sight n finite model, and let (F,≤)
be as in Def. 7.4.5. The global prediction update of M results in the model
M′ = (W ,A, N, B̃, θ, {∼′

a}a∈A) where:

• B̃ is such that:

– ∀w ∈ W , B̃(w) = B(w) ∪ {a ∈ A : ∀v ∼a w,
|A∩B̃(v)|

|A|
≥ θ}

– ∀f ∈ F , if ∀w ∈ W , f(w) = B(w) ∪ {a ∈ A : ∀v ∼a w,
|A∩f(v)|

|A|
≥ θ},

then B̃ ≤ f .

and

• w ∼′
a v iff i) w ∼a v and ii) if b ∈ N≤n(w)(a), then b ∈ B̃(w) iff b ∈ B̃(v).
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Taking chances. Prediction update has been defined to allow agents to take
all their available information into account in their decision making. In acting
upon it, agents act conservatively, as the information-dependent adoption policies
defined require absolute certainty : agents will adopt only when they know that
enough of the others (will) have adopted.

An alternative to such conservative behavior is a risky one, where agents adopt
whenever they consider it possible that enough people (will) have adopted. In the
revolution example, this means that agents would join the revolution whenever
they see a chance that enough of their neighbors (or of the general population)
would join.

Such chance taking behavior is captured as follows:

7.6.2. Definition. [Risky Prediction Update]
Let M = (W ,A, N,B, θ, {∼a}a∈A) be a sight n finite model, and let (F,≤)

be as in Def. 7.4.5. The risky prediction update of M results in the model M′ =
(W ,A, N, B̃, θ, {∼′

a}a∈A) where:

• B̃ is such that:

– ∀w ∈ W , B̃(w) = B(w) ∪ {a ∈ A : ∃v ∼a w,
|N(v)(a)∩B̃(v)|

|N(v)(a)|
≥ θ}

– ∀f ∈ F , if ∀w ∈ W , f(w) = B(w) ∪ {a ∈ A : ∃v ∼a w,
|N(v)(a)∩f(v)|

|N(v)(a)|
≥

θ}, then B̃ ≤ f .

and

• w ∼′
a v iff i) w ∼a v and ii) if b ∈ N≤n(w)(a), then b ∈ B̃(w) iff b ∈ B̃(v).

To suitably capture e.g. a population of “risky revolutionaries”, the risky predic-
tion update should be suitably “globalized” by replacing N(v)(a) with A every-
where in the definition.

Betting that just any uneliminated possibility is in fact the case is very risky
behavior. A natural way to weaken the epistemic requirement of absolute cer-
tainty while still allowing for uncertainty to exist is to augment our framework
with beliefs. Modeling beliefs using the plausibility orders of [27], a middle ground
between conservative and risky prediction update could be defined. The natural
definition would make agents adopt if enough neighbors (are predicted to) have
adopted in each of the worlds the agent considers most plausible, i.e, if the agent
believes enough neighbors (are predicted to) have adopted.

Trendsetters versus followers. An assumption build into threshold models
in general is that agents are followers : even when they anticipate others’ behavior
with the prediction update, they only “anticipate their future following of others”.
Agents are thus reacting to others’ behavior, even when they are reacting fast.



166 Chapter 7. Knowledge as Diffusion Accelerator

An interesting alternative would be to utilize agents’ information to make
them proactive instead; to have trendsetters instead of followers. Adding a few
trendsetters to a network might induce behavior change towards B even when
no-one has adopted initially.

A simple trendsetting adoption policy would state that an agent should adopt
whenever she knows that if she were to adopt, then enough of her neighbors
will adopt afterwards. Such an adoption policy involves both counterfactual and
temporal reasoning, which complicates a predictive version. A non-predictive
version may be defined as follows:

7.6.3. Definition. [(a, w)-Counterfactual Behavior]
Let M = (W ,A, N,B, θ, {∼a}a∈A) be an ETM with w ∈ W . Let the (a, w)-
counterfactual behavior of M be

BC(a,w)(v) =

{
B(v) ∪ {a} if v ∼a w

B(v) else

7.6.4. Definition. [Trendsetter Update] Let M = (W ,A, N,B, θ, {∼a}a∈A) be
an ETM and let {F , T } be a partition of A into sets of followers and trendsetters.
The trendsetter update of M is the ETM M′ = (W ,A, N,B′, θ, {∼a}a∈A) with
B′ given by ∀w ∈ W

B′(w) =B ∪

{
a ∈ F : ∀v ∼a w,

|N(v)(a) ∩ B|

|N(v)(a)|
≥ θ

}
∪

{
a ∈ T : ∀v ∼a w,

|N(v)(a) ∩ BC(a,v)(v)
′
|

|N(v)(a)|
≥ θ

}

where BC(a,v)(v)
′
is the (a, v)-counterfactual behavior set of M after informed

update.

The trendsetter update may of course also be defined in global and risky
versions.

7.7 Conclusion

7.7.1 Summary

The chapter has focused on two intertwined objectives. On the one hand,
we have developed logical frameworks for diffusion dynamics of the behavior of
agents in social networks, and on the other hand we have developed models for the
diffusion dynamics under uncertainty. We focussed our attention on agents which
increasing cognitive abilities. At the beginning of this chapter, our threshold
models did only focus on the adopting behavior of agents while in the follow-
ing sections we have equipped agents with epistemic power and also predictive
epistemic powers. In the following paragraphs, we summarize our findings.
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Threshold Models. The static setting of threshold models may already be
described adequately using a propositional logic with proposition symbols that
are indexed by agents. On finite networks, threshold ratios may be encoded
together with other important structural notions, such as clusters of particular
density. As the dynamics of threshold model update is deterministic and state
dependent, these may be described using a dynamic modality reducible to the
static language. The dynamic modality therefore does not add any expressive
power, though it does add explicitness and convenience. We have shown that
the logic for threshold-limited influence is sound and complete, and as the static
fragment is stated in simple propositional logic, one sees that this logic is also
decidable.

Epistemic Threshold Models. Given the propositional logical representation
of networks, the epistemic extension of the logic for threshold-limited influence
works as expected. As both the diffusion and learning mechanism in the informed
update are deterministic and state dependent, the dynamic process that is induced
by the dynamic operation can be captured by a reducible dynamic modality. We
have shown the epistemic logic of threshold-limited influence to be both sound
and complete.

In epistemic threshold models, if agents’ behavior is dictated by that of their
direct neighbors, then knowledge of more distant agents is redundant. To act
under standard threshold model dynamics, however, knowledge of neighbors’ be-
havior is required. If this information is not available, the diffusion speed de-
creases. In the limit case where no information is available, the diffusion stops.
Taken together, the most economical epistemic interpretation of standard thresh-
old models is that their dynamics embodies an implicit epistemic assumption that
the network structure and behavior of agents at distance 1 is known.

Epistemic Threshold Models with Prediction Update. Prediction update
allows agents to fully utilize their information in deciding if and when to adopt
a spreading behavior. Describing the dynamics of prediction update requires a
dynamic fixed point operator, which is atypical of dynamic epistemic logic. Here
we have shown that formulas including this operator are not reducible to the
static language. The dynamic operator which is studied in the context of our
prediction update thus strictly adds expressive power. The learning mechanisms
of prediction update and informed update are identical, but given the fixed point
construction involved in the former, obtaining a complete logic is a complex task
and is left for future research. We have stated a fixed point axiom and a least
fixed point inference rule which were shown to be sound.
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7.7.2 Further Research

In future research we plan to work on a full comparative analysis of the dif-
ferent update processes that we have outlined in this chapter. While convergence
can be obtained for all different dynamic processes, among the ones we studied,
the prediction dynamics will be the fastest in its convergence. In the limit case,
where the network and behavior distribution is common knowledge, the predic-
tion update jumps in one step to the fixed point of the standard threshold model
update.

The logical treatment of threshold models and their epistemic extension under-
taken also yields several more options for further development. Beyond the open
problem about a complete logic for prediction update, we see three main directions
for further research: A) The logical apparatus and the epistemic extension of the
possible generalizations of threshold models discussed in Subsection 7.2.4 are yet
to be developed. B) The alternative diffusion processes introduced in Section 7.6
are to be further explored, both on the logical and on the set theoretic level. Their
logics may be developed, and their dynamics may be investigated with respect
to limit behavior and speed of possible stabilization. C) The epistemic and pre-
dictive treatment of non-increasing behaviors is yet to be investigated. Allowing
agents to freely unadopt radically changes the limit behavior of systems by intro-
ducing the possibility of cyclic dynamics, as we have encountered in the previous
chapters. Understanding the epistemics of such oscillating limit behavior requires
tools going beyond the fixed point oriented mathematics of the current work.
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Conclusion to Part III

In this part of the thesis, we have abstracted away from specific case studies
of social phenomena of opinion change. We have designed logical systems cap-
turing a wider classes of diffusion phenomena and how they interact with the
knowledge of agents in the network. In particular, we have proposed a general
complete dynamic hybrid logic to reason about the dynamics of locally driven dif-
fusion phenomena, with the advantage of allowing us to plug-in various dynamic
transformations, corresponding to different update rules of diffusion.

We have then extended this framework with a dynamic epistemic dimension,
to capture the specific type of learning induced by diffusion dynamics induce
learning. We have applied this enriched logic to the cases of opinion change
under social influence which had been discussed earlier. We have shown how
agents designed to be opaque to each other in the previous part of the thesis
might actually come to see-through each other, as a result of social influence
dynamics. To reconcile ontic and epistemic dimension, we have also introduced
a first knowledge-dependent notion of influence.

Finally, after capturing how diffusion induces learning, we have turned to the
converse question of how knowledge affects diffusion. We have designed a propo-
sitional dynamic logic to capture diffusion in standard threshold models. We have
shown how this simpler logic is able to capture some properties of networks, such
as the existence of clusters of a given density, and their relationship to the diffu-
sion behavior. By extending this minimal setting with epistemic the link between
the existence dynamic epistemic logic for diffusion in standard threshold-models.
We have shown how an increase of information about the network structure and
about the state of other agents may accelerate diffusion, assuming more sophis-
ticated agents than in the previous chapters, who can anticipate the behavior of
others. Hence, in this part of the thesis, we have made our logics more general,
and our agents smarter.

In part IV, we will give a summary of the whole thesis together with a few
directions for future research.
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Perspectives

171





Chapter 8

Conclusion and Outlook

8.1 High-Level Summary of Results

The work presented in this thesis is a first step toward a general logical un-
derstanding of networks dynamics. The order of the chapters takes the reader
along the path of our investigation, including its detours. We have taken pains to
structure the thesis text in a way that made its topic flow clear at various stages
in chapters and parts. Therefore, let us just give a brief high-level summary of
our main findings at the end of this road.

We started by focusing on specific social phenomena where the fact that agents
influence each other results in a negative collective outcome. Our examples of
informational cascades and pluralistic ignorance focused on the spread of opinions,
driven by observed incoming information. We found general features, for various
notions of rationality, that enabled us to prove that perfectly rational individuals
can lead a whole group to make the wrong choice.

We then showed how dynamic properties of social phenomena, such as their
degree of fragility, usually depend on the way the influence network is structured.
Moreover, we found a precise sense in which collective failure phenomena rely on
the typical “intermediate” situation of agents in social contexts: they share too
much information not to influence each other, but not enough information to fully
actualize their potential group knowledge. We concluded that a general logic for
network dynamics should be able to talk both about social network structure and
about what information agents receive about each other’s behavior.

Abstracting away from specific case studies of opinion change, we then moved
toward the design of suitable logics that can capture wider classes of diffusion
phenomena over social networks, as well as their interaction with information. In
particular, we designed a complete dynamic hybrid logic that can reason about
locally driven dynamic phenomena in a general fashion, allowing to “plug-in”
various transformations rules, corresponding to different diffusion dynamics.

Next, we considered how diffusion dynamics affect what agents know about

173
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each other, i.e. how diffusion processes induce learning. To capture the relevant
ontic and epistemic changes, we extended our hybrid framework with tools from
dynamic-epistemic logic. The resulting richer logic of social learning processes
was illustrated by returning to the earlier cases of opinion change under social
influence. We found that agents assumed to be “opaque” to each other might ac-
tually come to “see-through” each other. More precisely, by interpreting changes
of behavior of their neighbors and knowing the rules of social influence, agents
can sometimes come to know more about each other than what they can ini-
tially observe. This finding exemplified how diffusion may induce an increase of
information.

Finally, we also investigated the interaction between diffusion phenomena and
knowledge from a different angle. We studied the converse issue of how knowledge
affects diffusion, and in particular we were able to prove formal results that show
how more information may accelerate diffusion. In particular, we were able to
show how agents in threshold models with unbounded reasoning abilities can
predict, and anticipate, the spread of social behavior.

Along the way, we played with different levels of generality, different formal
tools, short term and long term dynamics, and different assumptions concerning
influence, agency, and rationality. While we have not settled on one unique
framework, something that may not even be a good thing to pursue, we hope to
have illustrated how logical methods can capture laws of networks dynamics, at
levels of generality that naturally mirror various grain levels for describing social
phenomena in different languages.

Thus, step by step, we hope to have shown how logic brings fresh perspectives,
and perhaps even a measure of abstract ordering, to the vast world of dynamic
processes over social networks.

Clearly though, we are just at the start, and we have not presented a logical
theory that matches the richness of social reality. In our view, there are at least
two things lacking for such a theory that lie beyond the work presented here. One
is further empirical coverage of all relevant aspects of social agency, the other is
more abstract mathematical foundations behind the various logics that we have
applied in our case studies. In the second section of this final chapter we give
some thoughts on both, referring to ongoing research of the author that was not
yet in a state to warrant inclusion in this dissertation.

8.2 Further Directions

Our ongoing research follows two main directions. The first is about technical
foundations, searching for a logical theory of dynamical systems, the mathematics
in the background of much social network theory. What are fundamental qual-
itative laws in this area, and what logical languages are best suited to capture
these? The second direction is about extended coverage: agents in networks do
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not just process information and form opinions, they also pursue goals. Hence
it is entirely natural to merge the perspective of this thesis with that of game
theory, where goals and strategic behavior come into their own. In this section,
we very briefly present some of our current observations on both directions.1

8.2.1 Stability, Oscillations, and Graph Properties

Generally speaking, all phenomena studied in this thesis are about how a given
static network model – a distribution of properties of nodes on a graph – evolves
through time, under application of some uniform deterministic local update rule.
The rule determines a node’s state at the next moment, given the current state of
the accessible nodes around it. The result of applying this rule once on all nodes
at the same time in parallel is a unique new model; and the result of iterating
this application is a unique sequence of models. In the long run, such a sequence
may stabilize to a unique model, or it may not. If not, it may enter an infinite
loop, or exhibit oscillations.2

Our ongoing work [61] concerns long term behavior of classes of update rules.
What are conditions on the format of update rules that lead to stabilization, or
make this fail – and given that the social network structure tends to be equally
important for this, what interplay of logical rule and network structure determines
limit behavior? We merely list some points in our current approach.

Our current approach to the format of update rules is to treat them as “modal
automata”, an example of which is found in the opinion change rule of [145]
introduced in Section 2.2.2. Many of the usual update rules that have been
studied in the logical literature on social networks are definable in systems of
modal logic, sometimes graded modal logic (that can count numbers of accessible
points with some property), and only rarely richer hybrid, first-order, or higher-
order languages. Now we can show that basic modal formulas correspond to
“semantic automata” (using a suitable modification of the approach in [40] that
check for truth of the formula in finite pointed models. One can think of such
automata as highly bounded agents, and stepping up in the hierarchy of logical
definability means ascending up to more powerful automata.

As for describing the long-term dynamic behavior produced by these au-
tomata that work stepwise, we are currently exploring two frameworks: dynamic-
epistemic logics of substitutions in the style of [47] enriched with an iteration
operator, and extensions of modal fixed-point logics such as the µ-calculus with

1This work is documented in two working papers [61, 59]. Part of this project is joint work
with Johan van Benthem, whose [46] provides a technical program for studying both dynamical
systems and social network games in a setting of dynamic-epistemic, temporal, and fixed-point
logics.

2On finite network graphs, it is always the case that the sequence either stabilizes or oscil-
lates, as there are only finitely many models to cycle through. On infinite networks, there is a
third possibility of “divergence”.
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an “oscillation operator” (cf. [46]).34

However, we are also exploring an opposite angle, focusing on limit behavior as
arising from network structure rather than logical form of the update rule. Just as
an illustration, fix the “Unanimity Rule” where an agent adopts property p only
if all its neighbors have p right now, and drops p only if none of his neighbors has
p now. We can show that a population behavior oscillates under this rule if and
only if agents with p and agents without p are distributed as a proper 2-coloring
of the network graph, that is, when a model validates the modal formula. Hence,
oscillating behavior can only occur over graphs which are properly 2-colorable. In
other words, there is a class of graphs which guarantees stabilization: the class of
non-2-colorable graphs, i.e any graph which contains a cycle of odd-length. Thus,
we also see how graph theoretic notions and facts are involved in the study of the
topics in this thesis.

We can even go one step further here, and bring in logic at a new abstraction
level, more in the sense of foundations of mathematics. Can colorability be defined
in the logical languages that we have considered for network dynamics, and can
its basic theory be axiomatized completely? While colorability is not definable in
basic modal logic (or in any bisimulation invariant extension of it), it is easy to
show that non-k-colorability is definable only relative to the class of graphs with
at most n nodes, or by adding the universal modality to the language. We are
currently investigating what other tools from logic have to say about colorability,
among which hybrid logic5, PDL, and non-standard inference rules in the style
of Gabbay’s rule for irreflexivity [79].

We hope to have given at least some flavor of where more foundational logical
studies of network dynamics might go. For formal definitions and theorems behind
the claims made so far, we refer to the working manuscripts [61, 60].

8.2.2 From Network Diffusion to Network Games

Social networks studied in the preceding dynamical systems mode involve
deterministic update rules, leaving agents no choices. Now in this thesis, we
did study many scenarios where intuitively, agents do deliberate about a best
response to what they know and observe about their environment. Making this
feature explicit takes us from automated agents to deliberating agents that have
choices an goals, i.e., to the area of game theory.6

3Another logical approach to dynamical systems for social networks is found in [110], where
the model space of dynamic-epistemic logic gets metrized.

4Eventually, we may also want to use the dynamic topological logic of [116] that integrates
dynamic update rules with topological structure inside the network.

5Here we have been inspired by the work on modal logics for elementary graph theory in
[38, 39].

6Of course, this same border-line occurs inside game theory, e.g., in the contrast between
the rich view of reasoning agents in epistemic foundations of classical game theory [130] versus
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An obvious sort of game that fits very well with social network are the it-
erated Boolean games [91, 96]. Here agents can choose their next action based
on observing their environment, while they have qualitative goals that come in
the form of logical formulas defining properties of histories that the agents con-
sider important (in some hierarchical order that induces a preference eon histories
much like in the criterion-based preference of [119]).7 With this set-up, we can
apply the standard notions of game theory, and look at Nash equilibria as a way
of measuring whether social agents with choices of update can achieve strategic
equilibria satisfying individual (and perhaps also social) goals. Of yet further
interest is the use of “finite-automata strategies” in [91] as a way of restricting
attention to bounded agents.

We can see this framework as an obvious extension of our earlier setting, with
agents that are now free to choose. This makes the concerns in the preceding
subsection a special case: the dynamics determined by an update rule corresponds
to a unique strategy profile, and the sequence generated by iteratively updating
a model with a given rule corresponds to a unique history of the game. We
can show, for instance, that for each given update rule (such as the unanimity
rule above), making satisfaction of the formula describing stability the goal of all
agents leads to stabilization being a Nash equilibrium for the associated Boolean
game.

We can also show that finite-automaton strategies in Boolean games for net-
works are in one-to-one correspondence with local update rules of the sort we
discussed earlier. While this may make our earlier framework look like an ex-
treme, and somewhat narrow-minded case of agents chained to automated pre-
determined responses, we can also see our earlier theory as one of strategy profiles,
that arose out of epistemic deliberation of the sort discussed in the main body of
this thesis.

Now social networks do suggest one type of crucial structure that is not explic-
itly present in Boolean games, namely the neighborhood relation that regulates
communication and influence.8 One can define social network games exploiting
this structure that seem to go beyond Boolean games.9 However, [147], which rep-
resents work done independently from our ongoing program, shows that natural
social network games are equivalent to iterated Boolean games, through a series of
clever encodings where network structure can be absorbed into the propositional
variables controlled by the players.10

the sparse views based on evolutionary dynamics favored in evolutionary game theory [103].
7Actions in Boolean games amount to assigning truth values to atomic propositions under

the player’s control. This may seem quite austere, but it does fit many of our network scenarios.
8For the importance of this relation in dynamical systems for evolutionary game theory, see

[155].
9See the survey article [106] for work that has already been done in this area.

10Several recent independent lines of work bring together game and networks from different
angles. One example is given by [157], which studies “formation network games”. Combining
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We do not believe that this equivalence is the end of the story, since there
are many natural games that can be played over networks, witness the variety
of games that is possible already on simple epistemic models. To see this, the
reader may consult the various logical games discussed in [45], or the “knowledge
games” of [3].

In particular, we believe that game scenarios will enable us to bring the rich
literature on logics of information, action, and preference in games to bear on the
study of social networks in a more systematic manner than we have done in this
thesis.

While we have not presented any technical results in this discussion, the reader
may have acquired a sense of a broader world behind social networks. We think
of the resulting situation in two complementary ways. One can view game sce-
narios as richer description level underneath rougher or poorer logics of social
phenomena, but one can equally well, in line with our reading of update rules as
strategies, view the logics studied in this thesis as well-chosen useful high-level
descriptions of patterns of behavior emerging from games. Again, for further
detail, we refer to a working manuscript, this time [59].

ideas from game theory, network theory [68] and formal learning theory [107, 98, 81], another
example is [82], which models how agents in a network can collectively learn via iterated games.
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influence through a social network. In KDD 03: Proceedings of the ninth
ACM SIGKDD international conference on Knowledge discovery and data
mining, pages 137–146. ACM, New York, NY, USA, 2003.

[110] Dominik Klein and Rasmus K. Rendsvig. Model transformers for dynamical
systems of dynamic epistemic logic. In Wiebe van der Hoek, Wesley H.
Holliday, and Wen fang Wang, editors, Logid, Rationality and Interaction,
Proceedings of the 5th International Workshop, LORI 2015, Taipei, Taiwan,
October 28-30, 2015, volume 9394 of LNCS. Springer, 2015.

[111] Phokion Kolaitis. Infinitary Logic in Finite Model Theory. In M. Dalla
Chiara, K. Doets, D. Mundici, and J. van Benthem, editors, Logic and
Scientific Methods, pages 9–58. Springer, 1997.

[112] Barteld Kooi. Probabilistic dynamic epistemic logic. J. of Logic, Lang. and
Inf., 12(4):381–408, 2003.

[113] Barteld Kooi and Bryan Renne. Arrow update logic. The Review of Sym-
bolic Logic, 4:536–559, 12 2011.

[114] Marcus Kracht, John-Jules Meyer, and Krister Segerberg. The logic of
action. In Edward N. Zalta, editor, Stanford Encyclopedia of Philosophy.
2008.

[115] David Krech and Richard S. Crutchfield. Theories and Problems of Social
Psychology. New York: McGraw-Hill, 1948.

[116] Philip Kremer and Grigori Mints. Dynamic topological logic. In Marco
Aiello, Ian Pratt-Hartmann, and Johan Van Benthem, editors, Handbook of
Spatial Logics, pages 565–606. Springer Netherlands, 2007.

[117] Keith Lehrer and Carl Wagner. Rational Consensus in Science and Society.
A Philosophical and Mathematical Study. D. Reidel Publishing Company,
Dordrecht, Holland, 1981.

[118] Fa-Hsien Li, Cheng-Te Li, and Man-Kwan Shan. Labeled Influence Maxi-
mization in Social Networks for Target Marketing. 2011 IEEE Third Int’l
Conference on Privacy, Security, Risk and Trust and 2011 IEEE Third Int’l
Conference on Social Computing, pages 560–563, October 2011.



Bibliography 189

[119] Fenrong Liu. Reasoning about preference dynamics, volume 354 of Synthese
Library. Springer, 2011.

[120] Fenrong Liu, Jeremy Seligman, and Patrick Girard. Logical dynamics of
belief change in the community. Synthese, 191(11):2403–2431, 2014.

[121] Cheng Long and Raymond Chi-Wing Wong. Minimizing Seed Set for Vi-
ral Marketing Paper. 2011 IEEE 11th International Conference on Data
Mining, pages 427–436, December 2011.

[122] Winter A. Mason, Frederica Conrey, and Eliot R. Smith. Situating social in-
fluence processes: Multidirectional flows of influence within social networks.
Personality and Social Psychology Review, 11:279–300, 2007.

[123] John-Jules Ch. Meyer and Wiebe van der Hoek. Epistemic Logic for AI
and Computer Science. Cambridge Tracts in Theoretical Computer Science
41. Cambridge University Press, Cambridge, UK, 1995.

[124] Dale T. Miller and Cathy McFarland. Pluralistic ignorance; when similarity
is interpreted as dissimilarity. Journal of Personality and Social Psychology,
53:298–305, 1987.

[125] Dale T. Miller and Cathy McFarland. When social comparison goes awry:
The case of pluralistic ignorance. In J. Suls and T. Wills, editors, Social
comparison: Contemporary theory and research, pages 287–313. Erlbaum,
Hillsdale, NJ, 1991.

[126] Stephen Morris. Contagion. Review of Economic Studies, 67:57–78, 2000.

[127] Mark E. J. Newman. Networks: An Introduction. Oxford University Press,
2010.

[128] Hubert J. O’Gorman. The discovery of pluralistic ignorance: An ironic
lesson. Journal of the History of the Behavioral Sciences, 22(October):333–
347, 1986.

[129] Hubert J. O’Gorman and Stephen L. Garry. Pluralistic ignorance – a repli-
cation and extension. The Public Opinion Quarterly, 40(4):449–458, 1976.

[130] Martin J. Osborne and Ariel Rubinstein. A Course in Game Theory. MIT
Press, Cambridge, Massachusetts, 1994.

[131] Eric Pacuit and Samer Salame. Majority logic. In Didier Dubois, Christo-
pher Welty, and Mary-Anne Williams, editors, Principles of Knowledge
Representation and Reasoning: Proceedings of the Ninth International Con-
ference (KR2004), pages 598–605. AAAI Press, 2004.



190 Bibliography

[132] Andres Perea. Game Theory: Reasoning and Choice. Cambridge University
Press, 2012.

[133] Jan Plaza. Logics of public communications. In M.L. Emrich, M.S. Pfeifer,
M. Hadzikadic, and Z.W. Ras, editors, Proceedings of the 4th International
Symposium on Methodologies for Intelligent Systems, pages 201–216. Oak
Ridge National Laboratory, 1989.

[134] Deborah A. Prentice and Dale T. Miller. Pluralistic ignorance and alco-
hol use on campus: Some consequences of misperceiving the social norm.
Journal of Personality and Social Psychology, 64(2):243–256, 1993.

[135] Ben Rodenhäuser. A Matter of Trust: Dynamic Attitudes in Epistemic
Logic. PhD thesis, Institute for Logic, Language and Computation, Uni-
versiteit van Amsterdam, Amsterdam, The Netherlands, 2014. ILLC Dis-
sertation Series DS-2014-04.

[136] Floris Roelofsen. Exploring logical perspectives on distributed information
and its dynamics. Master’s thesis, ILLC, University of Amsterdam, 2005.

[137] Hans Rott. Conditionals and theory change: revisions, expansions, and
additions. Synthese, 81(1):91–113, 1989.

[138] Olivier Roy. Thinking Before Acting. Intentions, Logic, Rational Choice.
PhD thesis, Institute for logic, Language and Computation, Universiteit
van Amsterdam, Amsterdam, The Netherlands, February 2008. ILLC Dis-
sertation series DS-2008-03.

[139] Ji Ruan and Michael Thielscher. A logic for knowledge flow in social net-
works. In Dianhui Wang and Mark Reynolds, editors, AI 2011: Advances in
Artificial Intelligence, volume 7106 of Lecture Notes in Computer Science,
pages 511–520. Springer Berlin Heidelberg, 2011.

[140] Bryce Ryan and Neal C. Gross. The diffusion of hybrid seed corn in two
Iowa communities. Rural sociology, 8(1):15–24, 1943.

[141] Katsuhiko Sano and Satoshi Tojo. Dynamic epistemic logic for channel-
based agent communication. In Kamal Lodaya, editor, Logic and Its Appli-
cations, volume 7750 of Lecture Notes in Computer Science, pages 109–120.
Springer Berlin Heidelberg, 2013.

[142] Thomas C. Schelling. Models of segregation. The American Economic
Review, 59(2):488–493, 1969.

[143] Thomas C. Schelling. Dynamic models of segregation. Journal of mathe-
matical sociology, 1(2):143–186, 1971.



Bibliography 191

[144] Thomas C. Schelling. Micromotives and Macrobehavior. Norton, New York,
1978.

[145] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Logic in the community.
In Mohua Banerjee and Anil Seth, editors, Logic and Its Applications, vol-
ume 6521 of Lecture Notes in Computer Science, pages 178–188. Springer,
2011.

[146] Jeremy Seligman, Fenrong Liu, and Patrick Girard. Facebook and the
epistemic logic of friendship. In Burkhard C. Schipper, editor, Proceedings of
the 14th Conference on Theoretical Aspects of Reasoning about Knowledge,
TARK 2013, pages 207–222, 2013.

[147] Jeremy Seligman and Declan Thompson. Boolean network games and it-
erated boolean games. In Wiebe van der Hoek, Wesley H. Holliday, and
Wen-fang Wang, editors, Logic, Rationality, and Interaction, volume 9394
of Lecture Notes in Computer Science, pages 353–365. Springer Berlin Hei-
delberg, 2015.

[148] Paulo Shakarian, Sean Eyre, and Damon Paulo. A Scalable Heuristic for
Viral Marketing Under the Tipping Model. 2013.

[149] Yoav Shoham and Kevin Leyton-Brown. Multiagent Systems:Algorithmic,
Game Theoretic and Logical Foundations. Cambridge University Press,
Cambridge, UK, 2009.

[150] Floor Sietsma. Logics of Communication and Knowledge. PhD thesis, Insti-
tute for Logic, Language and Computation, Universiteit van Amsterdam,
Amsterdam, The Netherlands, 2014. ILLC Dissertation Series DS-2012-11.

[151] Floor Sietsma and Jan van Eijck. Message passing in a dynamic epistemic
logic setting. In Krzysztof Apt, editor, Proceedings of the 13th Conference
on Theoretical Aspects of Rationality and Knowledge, TARK 2011, pages
212–220, 2011.

[152] Pramesh Singh, Sameet Sreenivason, Boleslaw K. Szymanski, and Gyorgy
Korniss. Threshold-limited spreading in social networks with multiple ini-
tiators. Scientific Reports, 3(2330), 2013.

[153] Brian Skyrms. The Dynamics of Rational Deliberation. Oxford University
Press, 1990.

[154] Brian Skyrms. Signals: Evolution, Learning & Information. Oxford Uni-
versity Press, Forthcoming.



192 Bibliography

[155] Brian Skyrms and Robin Pemantle. A dynamic model of social network
formation. Proceedings of the National Academy of Sciences, 97(16):9340–
9346, 2000.
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Samenvatting

Dit proefschrift gebruikt logische methoden om een aantal fundamentele ken-
merken te onderzoeken van sociale netwerken en hun ontwikkeling door de tijd
heen, waaronder het verwerken van binnenkomende informatie, en de verspreiding
van opinies door een netwerk.

Deel I bevat een inleiding tot de voornaamste verschijnselen in sociale netwer-
ken die vragen om een logische analyse van informatie en redeneren, een overzicht
van achtergrondmateriaal uit de logica en sociale netwerktheorie, en een beschrij-
ving van de hoofdlijnen van dit proefschrift.

Deel II introduceert logische modellen voor “collectief falen”, en analyzeert
hoe en wanneer op zich correct individueel micro-gedrag kan leiden tot contra-
productief collectief macro-gedrag. Hoofdstuk 3 gebruikt dynamisch-epistemische
logica’s voor informatieverwerking als model voor het verschijnsel van “informatie
cascades”, een vorm van suboptimaal groepsgedrag. Onze analyse maakt duide-
lijk hoe op zich rationele actoren die anderen imiteren kunnen terechtkomen in
een cascade waarbij zij de verkeerde keuze maken, ondanks de beschikbaarheid
van voldoende informatie om deze fout te vermijden. We laten zien dat dit zich
voordoet onder verschillende omstandigheden. Of actoren nu perfect Bayesiaans
redeneren met waarschijnlijkheden of een eenvoudigere telmethode hanteren, en
of zij nu onbeperkt hogere-orde kunnen redeneren over wat anderen weten en gelo-
ven of niet, sommige misleidende informatiecascades zijn domweg onvermijdelijk.
Hoofdstuk 4 bestudeert een ander contraproductief sociaal verschijnsel, “plura-
listic ignorance” waar iedereen zich vergist over hoe anderen denken, zoals in “de
kleren van de keizer”. Met behulp van hybride logica formalizeren we dit scenario
en verklaren zijn dynamische eigenschappen zoals geobserveerd in de sociale we-
tenschappen: stabiliteit, maar ook fragiliteit. Zo blijken in alle netwerken die niet
2-kleurbaar zijn, dat een gedragsverandering van een enkele actor al volstaat om
het collectieve gedrag te veranderen. Tezamen genomen bieden Hoofdstukken 3
en 4 een veelvoud aan nieuwe mechanismen voor meningsverandering van sociale
actoren in gestructureerde situaties.
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Deel III abstraheert van specifieke sociale scenarios naar een studie van de
algemene logica achter diffusieverschijnselen in sociale netwerken, en ook van
de wisselwerking tussen diffusie van meningen en de dynamiek van inkomende
nieuwe informatie. Hoofdstuk 5 presenteert een algemeen raamwerk, gebaseerd
op hybride logica, dat de logische wetten kan weergeven van het verloop door
de tijd heen voor een grote klasse van diffusieprocessen, waarbij we een breed
bereik aan mechanismen voor meningsverandering als drijvers kunnen gebruiken.
Door de toevoeging van de kennislogica aan het voorgaande raamwerk onderzoekt
Hoofdstuk 6 hoe de dynamiek van diffusie kan leiden tot leergedrag in actoren die
waarnemen hoe publiek gedrag zich ontwikkeld in antwoord op sociale druk tot
conformeren. Hoofdstuk 7, tenslotte, gaat nog een stap verder en introduceert een
minimaal raamwerk om de dynamiek te modelleren van modellen waar meningen
veranderen als een bepaalde drempel wordt bereikt. We laten zien hoe we nu inter-
acties kunnen weergeven en begrijpen van topologische eigenschappen van sociale
netwerken met de structuur van verschillende diffusiemechanismen. Zo tonen we
bijvoorbeeld aan dat in een netwerk met voldoende dichtheid van clusters geen
volledige informatie cascades kunnen optreden. Weer met een kennis-component
toegevoegd laten we vervolgens zien hoe meer kennis over de structuur van een
sociaal netwerk en over het gedrag van andere actoren diffusie kan versnellen in
netwerken met een drempel-regel. We bestuderen ook het limietgedrag van, en
bewijzen een reeks resultaten over, verschillende diffusiemechanismen met locale
veranderingen die al dan niet afhangen van kennis die actoren hebben over hun
situatie, waarbij we ook nog het onderscheid maken tussen kennis van de feiten
en kennis over andere actoren.

Het laatste deel IV geeft een samenvatting van onze resultaten in hoofdlijnen,
alsmede een vooruitblik op belangrijke verdere richtingen, gebaseerd op ons thans
lopende onderzoek. We bespreken modale logica’s en verwante formalismen voor
de bestudering van netwerkgedrag onder verschillende topologische eigenschap-
pen en regels voor bëınvloeding van anderen. We bespreken ook de natuurlijke
overgang van verloop van netwerken door de tijd heen naar netwerkspelen waar
actoren keuzes hebben en doelen nastreven.

Kort samengevat past dit proefschrift methoden toe uit moderne logica’s voor
informatieverandering en informatiegestuurd handelen op de studie van sociale
netwerken en de verspreiding van opinies door de tijd heen, waarbij we methoden
ontwikkelen die zowel gebruikt kunnen worden om specifieke sociale scenario’s in
detail te modelleren, maar ook om beter zicht te krijgen op de algemene rede-
neerwetten die ten grondslag liggen aan de dynamiek van informatie en diffusie
van meningen in sociale netwerken en de processen die zich daar afspelen.



Abstract

This thesis uses logical tools to investigate a number of basic features of social
networks and their evolution over time, including flow of information and spread
of opinions.

Part I contains the preliminaries, including an introduction to the basic phe-
nomena in social networks that call for a logical analysis of information and
reasoning, a review of background material from logic and social network theory,
plus an outline of the thesis.

Part II presents logical models of collective failures, and illuminates how and
when sound individual microbehavior can lead to counterproductive collective
macrobehavior. Chapter 3 uses dynamic-epistemic logics of information update
to model the phenomenon of informational cascades leading to suboptimal group
behavior. This analysis confirms that perfectly rational agents following the crowd
may get stuck in a cascade leading them to make the wrong choice, despite the
availability of enough evidence to avoid such a mistake. We show that this holds
under various basic assumptions. Whether agents are full-fledged Bayesian rea-
soners or use a simpler counting heuristics, and whether they have unbounded
higher-order reasoning or not, some misleading informational cascades are simply
inescapable by rational means. Chapter 4 models a second counterproductive
social phenomenon, that of pluralistic ignorance. Using a model based on hybrid
logic, we formalize and explain the dynamic properties of this scenario as observed
in the social sciences: its stability and its fragility. As for remedies, we show that,
on all but 2-colorable network graphs, changing the behavior of one unique agent
is sufficient to reverse the situation entirely. Together, Chapters 3 and 4 offer a
great variety of new update mechanisms for social agents in structured settings.

Part III abstracts from specific case studies to investigate the general logic of
diffusion phenomena in social networks, as well as the interaction of information
and diffusion dynamics. Chapter 5 presents a general hybrid dynamic framework
to capture the logical laws of the temporal evolution of a wide class of diffusion
dynamics, allowing us to plug-in various network update rules. Using an epistemic
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extension of this hybrid approach, Chapter 6 investigates how diffusion dynamics
may induce learning by agents who observe how their public behavior evolves in
response to social conformity pressure. Finally, Chapter 7 goes one step further,
and proposes a minimal framework for modeling the dynamics of threshold mod-
els. We show how this setting captures interactions of network properties with
diffusion processes, such as the fact that having dense enough clusters in a net-
work prevents full cascades. Adding an epistemic logic-based component, we also
show how knowing more about the network structure and the behavior of agents
in the network may accelerate diffusion in threshold models. Here we study the
limit behavior of various diffusion policies: knowledge-independent, first-order
knowledge dependent, or higher-order knowledge dependent.

Finally, Part IV presents a summary of our findings, and some ongoing work
and perspectives for future research. We discuss modal logics and related for-
malisms for studying network behavior under various graph properties and rules
of influence. We also discuss the natural transition from network evolution by
fixed rules as studied in this thesis to the study of network games where agents
have choices and goals.

Overall, this thesis applies tools from current logics of information update
and agency to social network analysis and opinion flow over time, offering both
tools for detailed modeling of specific scenarios and a better understanding of
the general laws of reasoning that underlie information and diffusion dynamics in
social settings.
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