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On the basis of Brown’s kinetic equation a consistent study of the regimes of cyclic magnetization reversal
of single-domain particles with a uniaxial anisotropy is performed. The applied field is harmonic and linearly
polarized, its amplitude equals the maximal coercive force of a Stoner-Wohlfarth particle. The dynamic mag-
netic hysteresis loops are obtained for a particle �oriented particle ensemble�, whose easy-magnetization axis is
tilted to the field direction under an arbitrary angle. It is shown that the Stoner-Wohlfarth regime �often termed
as quasistatic� is able to describe the behavior of a nanoparticle only in a quite limited material and external
parameter range. The developed approach has at least two major merits: it enables one to consider dynamic
magnetic hysteresis in the temperature-frequency domains inaccessible with the aid of approximate methods,
and provides a tool to test the accuracy of the latter.
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I. INTRODUCTION

Magnetic hysteresis in single-domain particles is one of
the most interesting effects in the applied physics of mag-
netic phenomena. At least two important technological areas
are entirely based on it. The first is magnetic information
storage, where the quality and the lifetime of a record cru-
cially depend on the parameters of the M�H� loop. Another,
also very important issue, which requires a detailed knowl-
edge of the magnetization reversal mechanism, is the mag-
netoinductive hyperthermia. The latter is rapidly progressing
in medical science and clinical practice. The above-
mentioned subjects, however significant they are, by no
means exhaust the variety of applications of magnetically
switchable fine particles and of the thermal effect produced
with their aid. Meanwhile, until now the theory of hysteresis
in single-domain particles has not achieved full clarity. This
concerns even the basic problem: magnetization reversal of
an isolated particle, let alone the problems of magnetic
switching of the particles in ensembles with dipole-dipole
interactions.

The first quantitative model of the effect was proposed by
Stoner and Wohlfarth.1 There, to find the equilibrium orien-
tation of the particle magnetic moment, minimization of the
internal energy was used. It had turned out soon, that this
model, being quite clear and concise at zero temperature,
does not have a simple extension for finite-temperature
cases. The same relates to finite frequencies despite that in
Stoner-Wohlfarth �SW� model the frequency is, formally, ar-
bitrary.

Remarkably, the publication of Ref. 1 almost coincided in
time with the prediction2 and experimental discovery3 of su-
perparamagnetism, the mechanism that establishes a strong
dependence of the nanoparticle remagnetization regimes on
temperature, field amplitude, and frequency. Therefore, about
60 years ago, together with the birth of SW and superpara-
magnetic approaches, there turned up the necessity to under-
stand their interrelation.

The attempts to build up a universally applicable model of
magnetic response of a single-domain particle to a strong
magnetic field are developing now along two main lines. The

first substitutes the energy considerations1 by some relations
from equilibrium statistical thermodynamics.4,5 In these
works the exact angular localization �trajectory� of the par-
ticle magnetic moment � is replaced by some “orientational
smear” of thermal origin, and at a given temperature the
obtained set of states is averaged over the Boltzmann distri-
bution. The other line of studies is based on the description
of the remagnetization process in terms of a master or
Fokker-Planck equation originally derived by Brown.6 In or-
der to obviate a full statement of the problem that is rather
complicated, certain strong simplifications are used,7–9 all of
which are some variations in the Kramers approximation and
thus imply that the ratio of the anisotropy energy to thermal
one is high.

The first paper, where the kinetic equation was solved in
full, dates back to 1974.10 There, the magnetization reversal
in a single-domain particle was considered assuming arbi-
trary values of the three major parameters, viz., temperature
and the amplitude and frequency of the field. However, in
Ref. 10 the magnetodynamics of the system was severely
simplified: the particle was assumed to be magnetically iso-
tropic, i.e., conventional superparamagnetism was excluded.
Due to that, in the absence of an external field the particle
magnetic moment is completely degenerated with respect to
orientation, thus making impossible a direct comparison of
the results of Ref. 10 with those of the SW model. Such
rather an unrealistic assumption of Ref. 10 notwithstanding,
this paper until now remains very valuable from method-
ological viewpoint.

A consistent kinetic study of the magnetization dynamics
of a single-domain particle with a finite uniaxial anisotropy
we began in Refs. 11 and 12, where the case of magnetic
field H parallel to the easy-magnetization axis �denoted by a
unit vector n� was considered. It was shown that for the field
with amplitude H=HA �for the definition of HA see Eq. �3�
below� and moderate frequencies, the dynamic magnetiza-
tion curves ��H� tend to the rectangular loop predicted by
the SW model. This evolution is controlled by the “super-
paramagnetic” parameter EA /kBT that is the ratio of the par-
ticle anisotropy energy barrier height EA to thermal energy.
In Ref. 11 the dependence of the dynamic magnetic hyster-
esis �DMH� loops and the energy of an ac field absorbed by
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the particle on the field amplitude H0 were also considered.
The dynamic coercive force as a function of H0, �, and T
was investigated in Ref. 12.

In what follows a solution of the cyclic magnetization
problem for a single-domain particle, whose anisotropy axis
is tilted under an arbitrary angle with respect to the linearly
polarized field, is given. The sets of loops for various com-
binations of the particle material parameters, field amplitude,
and frequency are presented for orientationally textured and
randomly oriented ensembles of noninteracting particles. Our
consideration is essentially based on the superparamagnetic
theory, i.e., on the Brown’s Eq. �4�, see below. The solution
of this equation—the distribution function W—when ex-
panded in a series of spherical harmonics, yields a countable
spectrum of relaxation times. Any observable physical quan-
tity �e.g., the particle magnetic moment� is obtained by av-
eraging a respective dynamic variable with the distribution
function W so that the obtained kinetics incorporates the ef-
fect of all the infinite relaxation spectrum.

We remark that the DMH cycles shown below in Figs.
1–5 are evaluated in result of calculations, where several tens
of the spherical harmonic amplitudes are taken into account
and the calculation errors are strictly controlled. As such,
these curves are quantitatively correct. However, to make
their analysis comprehensible, we use a qualitative approach
based on a hypothesis of a single �effective� relaxation time.
This enables one to reveal some important features of the
DMH process without excessive complications. On the other
hand, such a model is quite rough even if to let alone the
restricted applicability of the relaxation time concept to non-
linear regimes. So, it is no surprise that certain details of the

obtained curves could not be interpreted in this simple
framework.

II. KINETIC EQUATION AND THE REFERENCE
TIME SCALE

Consider a uniaxial ferrite or ferromagnet particle, whose
size ensures its absolute single-domain state, i.e., is of the
order of several nanometers. We denote by v the volume of
the particle, Ms its magnetization, EA its anisotropy energy,
and present the orientation-dependent part of the particle en-
ergy in the form

U = − �H�eh� − EA�en�2, �1�

where h is a unit vector of the applied field and e a unit
vector of the particle magnetic moment, �=Msve.

In the absence of thermal fluctuations �T→0 and/or a suf-
ficiently large particle�, the magnetodynamics is described by
the Landau-Lifshitz equation

de

dt
=

�

�
�e �

�U

�e
� +

��

�
�e � �e �

�U

�e
�� , �2�

where � is the gyromagnetic ratio and � a dimensionless
damping parameter. The acting magnetic field

Heff = −
1

�

�U

�e
= Hh + HA�en�n, HA =

2EA

�
�3�

that enters Eq. �2�, is a sum of the external field and the
contribution from uniaxial anisotropy. From Eqs. �2� and �3�
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FIG. 1. DMH loops for the tilt angles �a� �
=0, �b� 15°, �c� 30°, �d� 45°, �e� 60°, �f� 75°, and
�g� 90°; ��0=10−3; the anisotropy parameter �
=2 �line 1�, 5 �2� and 15 �3�; dashed lines show
the respective SW contours.
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FIG. 2. Same as in Fig. 1 for ��0=10−2.
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FIG. 3. Same as in Fig. 1 for ��0=10−1.
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it follows that the magnetic moment proper oscillation is the
Larmor precession with the frequency �L=�Heff and damp-
ing time �L= ���L�−1. Under zero external field, the reference
relaxation time is determined only by the particle properties,
�0=� /2��EA.

In the presence of thermal fluctuations, which induce clas-
sical superparamagnetism at H=0, the magnetic state of the
particle is described by the orientational distribution function
W�e ,H , t� that depends parametrically on n, and obeys the
rotary diffusion �Fokker-Planck� equation6

2�D � W/�t = ĴWĴ�U/kBT + ln W� , �4�

where Ĵ=e�� /�e is the infinitesimal rotation operator, and
�D=�0EA /kBT is the reference time of rotary diffusion of the
magnetic moment. Under a constant field, Eq. �4� reduces to
the condition of static equilibrium, and its solution takes the
form of Boltzmann distribution: W	exp�−U /kBT�. Note that
the kinetic Eq. �4� does not contain a contribution from the
gyration �precession� term of Eq. �3�. This means that we

restrict further considerations to the limit of so-called
intermediate-to-high damping,13 i.e., assume that parameter
� is sufficiently large.

Scaling the magnetic energy terms with thermal energy
kBT, we introduce the dimensionless parameters of the prob-
lem


 = �H/kBT, � = EA/kBT, q = 
/2� = H/HA. �5�

Further on, taking q to be temperature independent, we de-
scribe the instantaneous strength of the ac field H�t�
=H0 cos �t with the function q�t�=H�t� /HA of the amplitude
q0=H0 /HA. Assuming that the anisotropy energy EA is tem-
perature independent, it is convenient to employ the param-
eter � introduced in Eq. �5� as the dimensionless inverse
temperature, and the product ��0 as the dimensionless fre-
quency since it does not depend neither on the field nor on
temperature. To describe the orientation of the applied field
with respect to the particle anisotropy axis, the angle �
=arccos�nh� is introduced.
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FIG. 4. Same as in Fig. 1 for ��0=1.
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FIG. 5. Panel �a�: DMH loops for ��0=0.1
�1�, 0.32 �2�, and 1 �3� at �=15; panel �b�: fre-
quency dependencies of the amplitudes of the
first three odd harmonics, i.e., �, 3�, and 5�, of
m�t� for �=15; panel �c�: frequency dependen-
cies of the real part of the first harmonic of m�t�
�left� and of its phase lag �right�; horizontal line
at the left shows the level �=� /2.
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The problem of magnetic relaxation is the key point for
all the superparamagnetic theory and for the DMH problem,
in particular. The difficulties are mostly due to the fact that
the motion of the magnetic moment comprises several time
scales. Let us begin with the ground state of the particle
�H=0� introducing the orientation angle =arccos�en� of
vector �. In this case, potential �1� is bistable: it has two
equivalent minima at =0 and � separated by a symmetrical
barrier of the height EA centered at =� /2. If T=0, then the
magnetic moment is confined in one of the minima, and the
particle magnetization reversal, if any, is possible only by the
tunnel effect.14 At a finite but sufficiently low temperature
���1�, in the magnetic moment motion two qualitatively
different modes could be distinguished. The “fast” �in-
trawell� mode corresponds to the random walk �diffusion� of
vector e about the given potential minimum with the refer-
ence time �D. The “slow” �interwell� mode corresponds to
the fluctuational transitions �flips� of vector e between the
minima of the potential U��, i.e., causes the superparamag-
netic behavior of a nanoparticle. The reference time of this
process ��� ,q� in the ground state has the order of magni-
tude ��� ,0�	�0 exp��� and is widely known as the Néel
time. Temperature being diminished �� grows�, the Néel time
enhances rapidly. Meanwhile, the intrawell time changes
rather weakly and tends to the temperature-independent limit
�0 at T→0. On the temperature increase �� decreases�, the
difference between the intrawell and interwell times reduces
and at ��1 virtually disappears since ��� ,0�→�D.

Let now the external field be nonzero. In this case the
orientational potential U� ,�� looses the symmetry ↔�
−, and the positions of its minima are determined by the
equation e� �H+HA�=0. Under not so strong fields, the po-
tential U still has two minima but their depths are different
so that one of them is metastable. Accordingly, the times of
thermally activated transitions between the minima differ
from one another. If the external field exceeds the particle
coercive force qc, one minimum disappears yielding a one-
well potential. Given that, the notion of interwell transition is
no longer applicable, and the motion of the magnetic mo-
ment becomes to much greater extent forced than diffusive.
In this limit, the relaxation time does not depend on tempera-
ture and decreases unboundedly as the field grows, ��� ,q�
	�H=�D / ��q�= ���H�−1	1 /H.

In a field with the amplitude q0�qc���, that is in the
regime where switching is granted, the above-mentioned
strong dependence of � on q entails that during the field
cycle the response rate of the magnetic moment changes “on
the flight” by orders of magnitude. Due to that, the particle
magnetodynamics in a strong ac field could not be reduced to
a fixed combination of interwell and intrawell modes; to get
a valid description, one has to solve the complete kinetic Eq.
�4�.

III. SOLUTION OF THE SET OF MOMENT EQUATIONS

Consider Eq. �4� for a mechanically fixed single-domain
particle, whose easy-magnetization axis n makes the angle �
with the direction of a harmonic linearly polarized field H
=H0h cos �t of an arbitrary amplitude. In a spherical frame
with the polar axis along n, the unit vectors e and h have
coordinates 
 ,��, 
0,0�, and 
� ,0�, respectively; then the
energy term in the kinetic Eq. �4� takes the form

U/kBT = − ��2q0 cos �t�cos � cos  + sin � sin  cos ��

+ cos2 � . �6�

We expand the distribution function in a series

W�,�,t� = �
l=0

�

�
k=−l

k=l

bl,k�t�Yl,k�,�� �7�

of normalized spherical harmonics defined as

Yl,k�,�� = �− 1�k�2l + 1��l − k�!
4��l + k�!

Pl
k�cos �eik�,

− l � k � l; Yl,k
� = �− 1�kYl,−k, �8�

where Pl
k are associated Legendre polynomials. Coefficients

bl,k, which determine the time dependence of expansion �7�,
are the statistical moments of the distribution function

bl,k�t� =� Y��,��W sin dd� = �Yl,k
� �,��� . �9�

Substitution of Eq. �7� in Eq. �4� with allowance for Eq. �6�
yields an infinite chain of ordinary differential equations

2�0
d

dt
bl,k +

l�l + 1�
�

bl,k − 2� l + 1

2l − 1
�l − k − 1��l + k − 1��l − k��l + k�

�2l − 3��2l + 1�
bl−2,k +

l�l + 1� − 3k2

�2l − 1��2l + 3�
bl,k

−
l

2l + 3
�l − k + 2��l + k + 2��l − k + 1��l + k + 1�

�2l + 1��2l + 5�
bl+2,k� − q cos ���l + 1� �l − k��l + k�

�2l − 1��2l + 1�
bl−1,k

− l�l − k + 1��l + k + 1�
�2l + 1��2l + 3�

bl+1,k� −
1

2
q sin ���l + 1��l − k − 1��l − k�

�2l − 1��2l + 1�
bl−1,k+1 + l�l + k + 2��l + k + 1�

�2l + 1��2l + 3�
bl+1,k+1

− �l + 1��l + k − 1��l + k�
�2l − 1��2l + 1�

bl−1,k−1 − l�l − k + 2��l − k + 1�
�2l + 1��2l + 3�

bl+1,k−1� = 0 �10�

with respect to bl,k.
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After expanding the functions bl,k�t� into a Fourier series
with respect to frequency, Eq. �10� yields a set of linear
algebraic equations for the three-index coefficients bl,k

p . Due
to the multidimensionality of the phase space, the derivation
of these equations is rather cumbersome; it is given in the
Appendix together with the algorithm to obtain a steady so-
lution of this set by matrix sweep method. The latter proce-
dure allows to evaluate the function

m�t� = �eh� =4�

3
�b1,0�t�cos � − 2b1,1�t�sin �� ,

that is the ensemble average of the projection of the particle
magnetic moment on the direction of the field.

IV. DYNAMIC HYSTERESIS: THE RELATION BETWEEN
THE KINETIC SCENARIO AND THE STONER-

WOHLFARTH APPROXIMATION

Eliminating time as the argument from the pair of func-
tions m�t� and q�t�, one arrives at the function m�q� that is a
normalized magnetization curve varying within intervals �
−1,1� with respect to both m and q. Indeed, as the dimen-
sionless field is defined by Eq. �5�, in these units the maximal
coercive force of an SW particle equals qc��=0��qSW=1.

Let us point out the essential difference between the SW
and kinetic scenarios of the magnetic hysteresis. In the SW
�energy� approach1 the magnetic moment response time is
assumed to be infinitesimal: the switching occurs at this very
instant when, under the influence of the applied field, the
minimum of the orientational potential, that shelters vector e,
disappears. The kinetic viewpoint on the process of particle
remagnetization is completely different. On the one hand,
under a sufficiently slow-changing field the magnetic mo-
ment is able to switch from yet existing metastable state.
This would happen if the time ��� ,q� of the thermally acti-
vated magnetization reversal, which decreases with the field,
would satisfy the condition ���� ,q��1. On the other hand,
at a high frequency, the period of the field might get well
below the orientational response time of the magnetic mo-
ment, i.e., the relation ���� ,q��1 would hold even at q
�qSW. This situation could be termed “kinetic freezing” be-
cause, due to its low mobility, the magnetic moment does not
depart from its actual orientation despite the fact that with
respect to the energy this direction had become utterly unfa-
vorable. In the long run, with the further increase in the field,
the condition ���� ,q��1, i.e., that of “kinetic melting,”
would eventually occur; however, the value of the field nec-
essary for that could be arbitrarily greater than qSW.

In terms of the kinetic scenario, the magnetization rever-
sal of an SW particle with a given tilt angle � is described by
the discontinuous conditions

����,q� = � q � qSW

���,q� = 0 q � qSW.
� �11�

which should hold for any nonzero value of the anisotropy
parameter �. Obviously, Eq. �4� does not have solutions
compatible with Eq. �11�. Therefore, in the framework of
kinetic approach, the SW loops are just some benchmark

contours, which the magnetization curves tend to in certain
particular cases.

The series of Figs. 1–4 gives the details of transformation
of m�q� curves obtained by numerical calculations described
in Sec. III and Appendix. In these plots the frequency of the
field increases from ��0=10−3 �Fig. 1� to ��0=1 �Fig. 4�,
and the field tilt angle varies from �=0° to 90°. In each plot
we present three curves corresponding to finite temperatures,
which we conditionally term high ��=2�, moderate ��=5�
and low ��=15�; by dashes the SW curves �zero tempera-
ture, �=�� are given.

Let us define the effective coercive force qc as the abso-
lute value of the field q, at which the magnetization turns to
zero; the value of qc depends parametrically on the angle �.
For an SW particle one has qc���=qSW���, and the depen-
dence qSW��� is well known; in particular, qc�0�=1. From
the discussion above, it follows that at any finite temperature
the DMH loops of a superparamagnetic particle at low fre-
quencies are more narrow than their SW analogs �qc�qSW�
while for high frequencies and strong fields they are wider
than SW loops �qc�qSW�.

The loops would widen until, due to the frequency
growth, the condition ���� ,1��1 that grants switching of
the magnetic moment each half period of the field cycle,
would be violated. After that, the loops m�q� would shrink
along the m axis due to kinetic freezing. From these consid-
erations it also follows that, if at a given value of � the
frequency is increased, then yet greater magnetizing field is
necessary to ensure the particle switching. This tendency is
easy to retrace comparing Figs. 1–3: one sees that as the
parameter ��0 increases from 10−3 to 10−1, the respective
loops are wider than the respective SW contours; this hap-
pens for all the tilt angles, except for �=0° and 90°, see Figs
3�b�–3�f�.

V. DYNAMIC HYSTERESIS: TRANSITION
TO THE HIGH-FREQUENCY REGIME

The increase in frequency at a given temperature causes
the change in magnetodynamic response of the particle: from
switching ���0�1� to the situation of kinetic freezing ���0
�1�. In the transition region ���0�1� one encounters a spe-
cific phenomenon that qualitatively changes the loop shapes.
In Fig. 5�a� curve 2 the loop for �=0 at �=15 �low tempera-
ture� and frequency ��0=0.32 is plotted together with those
corresponding to ��0=0.1 and 1.0. As seen from the figure,
the curve 2 is distinguished by the fact that at the field values
�q�	1 the differential magnetic susceptibility dm /dq be-
comes negative.

In order to correctly interpret this effect, which might
seem anomalous, one has to take into account the following.
As is shown in Ref. 15, when proceeding to high frequen-
cies, the magnetic response of a single-domain particle “lin-
earizes”: in the frequency spectrum of the magnetization the
weights of all the oscillations, except for the first one, fall
down rapidly. Therefore, in the range ��0�1 the magnetiza-
tion comprises just a very little number of harmonics. Our
calculation confirms this conclusion. Indeed, from Fig. 5�b�,
where frequency dependencies of the amplitudes of the first
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three harmonics are shown at �=15 �low temperature�, one
sees that in the range ��0�0.3 the main part of the magne-
tization oscillates with the frequency of the field. Let us de-
fine the amplitude of the real �in-phase� component of the
magnetization m�q� by the relation

Re m� � m�� = ��/�q0��
0

2�/�

m�t�q�t�dt . �12�

The frequency dependencies of m�� and of the phase lag ��1�
between m�t� and q�t� are presented in Fig. 5�c�. As the
curves show, in some interval around ��0�0.3 the in-phase
part becomes negative and simultaneously ��1� exceeds � /2.
Clearly, this entails the negativeness of the differential mag-
netic susceptibility dm /dq and the specific loop shapes like
curve 2 in Fig. 5�a�.

At the first sight, a smooth line in Fig. 5�c� suggests that
there exists a single-valued function ������0�, which at a
certain frequency surmounts the � /2 level reminding of the
resonance in linear oscillations. In our case, however, the
oscillatory motion of the particle magnetic moment is over-
damped and completely unable for any resonance. The true
origin of both the nonmonotonic behavior of m�� and the
averaged phase lag shown in Fig. 5�c� is the drastic enhance-
ment of phase fluctuations inside the frequency interval sepa-
rating the switching and kinetic freezing regimes. Indeed, as
the frequency increases, there sooner or later occurs the situ-
ation, where the period of the field becomes a bit shorter than
the interwell response time. Under this condition, the prob-
abilities for the particle magnetic moment to switch but once
during one, two, three, … sequential half periods of the field
are comparable. Thence the magnetic moment motion could
be looked at as a superposition of regular field-induced weak
oscillations and relatively rare random reversals. In result, in
correlator Eq. �12� the fraction of states, where the magnetic
moment is antiparallel to the field, increases. On the average,
this manifests itself as a formal negativeness of m�� . With
further growth of the frequency, the interwell mode virtually
“freezes.” Then the phase lag between m�t� and q�t� becomes
entirely due to the intrawell relaxation and falls down back
to the interval ��� /2.

Similar effect was discovered before in numeric modeling
of the dynamic behavior of multispin systems with thermal
noise. A “descend” of the analog of correlator Eq. �12� to the
negative region at some frequency interval is described in
Ref. 16, where Monte Carlo simulations of DMH in a two-
dimensional square-lattice Ising ferromagnet were per-
formed. In Ref. 17 the same behavior of m�� was encountered
for DMH in plane lattices of elongated iron nanoparticles.
From the plot given there �Fig. 1 in Ref. 17� it follows that
m�� becomes negative in the frequency region that lies in
between the switching and linear oscillation regimes. In Ref.
17 the statistical spread of the realizations of m�� values was
analyzed, and it turned out that in the same interval this
spread was anomalously high.

We surmise that the above-mentioned peculiar magnetic
behavior is quite universal and is entirely due to the presence
of thermal noise. This is supported by the fact that the mag-
netic structures of the compared systems are very different: a

Heisenberg multispin ensemble that remagnetizes via mul-
tiple domain nucleation controlled by the nonuniform
exchange16,17 and a considered here absolutely single-
domain particle �a single macrospin�, whose only mode of
magnetization reversal is the coherent rotation.

VI. DYNAMIC HYSTERESIS: HIGH FREQUENCIES

DMH loops at high frequencies ���0�1� are shown in
Fig. 4. Here all the curves are quasielliptic, by which they
differ strikingly from both the SW and the low-frequency
kinetic loops, presented in Figs. 1–3. Evidently, the high-
frequency cycles of Fig. 4 have much in common. First, the
effective coercive force qc is close to the maximal attainable
value qc=1. Second, the loops rather weakly depend on the
angle �. Third, for the field inclinations ��45° the tempera-
ture changes have almost no effect on the loops. Summariz-
ing this, we conclude on universalization of the magnetiza-
tion process in the high-frequency range.

The following considerations help to understand this situ-
ation. At ��0=1 kinetic freezing is quite strong even at the
highest of the considered temperatures ��=2�. In this limit
the Néel �interwell� mode falls out from the relaxation spec-
trum conceding the dominating role to the fast intrawell
modes. This means that the magnetic moment cannot leave a
given �initial� potential well, albeit the energy function
U�q , ,�� undergoes dramatic transformations in the course
of the field cycle. In other words, an ac field, even of a large
amplitude �in our case q0=1� induces only weak oscillations
of the magnetic moment about its initial direction. Such a
behavior justifies description of the particle magnetodynam-
ics with the aid of linear dynamic susceptibility ����. Taking
the field in the form q=q0 cos �t and splitting �m into real
���=m�� /q0� and imaginary ���=m�� /q0� parts, one obtains

�m − ��q

��q0
�2

+ � q

q0
�2

= 1. �13�

Formula �13� renders a well-known result �see Refs. 9, 11,
and 18, for example�: a DMH loop of a linearly polarizable
particle has an elliptic shape with the major axis tilted under
the angle �= 1

2arctan�2�� / �1−��2−��2��. In Ref. 15 the ef-
fect of “linearization” of the magnetic response was found
only for the case �=0; our calculations prove, see Fig. 4, that
this conclusion holds for any field tilt angle.

The frequency-induced linearization effect suggests that a
simple approximation for the high-frequency DMH loops
can be obtained from the formulas for the linear dynamic
susceptibility of a particle by elimination from them the Néel
�interwell� contribution. We present this function as

� = ���� sin2 � · f� + ���� cos2 � · f � , �14�

where f �,� are dispersion factors. Valid expressions for the
static susceptibility components ���� and ���� follow from the
results of Ref. 19 and have the form

���� = � 1

2�
+

3

2�2 +
25

4�3 +
259

8�4 +
3177

16�5 + ¯� , �15�
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���� = �1 +
1

2�
+

5

4�2 +
37

8�3 +
353

16�4 +
4081

32�5 + ¯� .

�16�

Formulas �15� and �16� correspond to the low-temperature
case ���1�, and in this limit have different temperature be-
havior. The longitudinal component at T→0 ��→�� tends
to zero since no moderate field is able to change the magni-
tude of the particle magnetic moment. Meanwhile, the trans-
verse part in the considered athermic limit remains finite be-
cause angular deviations of the magnetic moment from its
equilibrium orientation e �n are always possible. According
to relations �14�–�16�, a considerable shrinking of the DMH
loops under temperature decrease should occur only for �
�1. As the angle � grows, the fraction of the perpendicular
component in the particle response grows, and the tempera-
ture dependence of the loops weakens. These qualitative con-
clusions fairly well agree with the behavior of the numeri-
cally obtained plots of Fig. 4.

Assuming that interwell relaxation is absent, we set the
dispersion factors in Eq. �14� in the form f�= f � = �1
+ i��0�−1, thus assuming all the intrawell relaxation times
equal. Comparison of approximation formulas �14�–�16�
with our numerical results is shown in Fig. 6. A considerable

difference is observed only for the angles � close to zero.
The most probable reason for that is that the form of f �,
which we use in formula �14�, is oversimplified.

VII. EFFECTIVE COERCIVE FORCE

As follows from Figs. 1–4, by large, the effective coercive
force qc of a nanoparticle grows with temperature diminution
�Figs. 1–3�, increases with the frequency and goes down
when the tilt angle is augmented. The particular dependen-
cies of the coercive force deduced from the numerical calcu-
lations are given in Fig. 7. As seen, qc varies in a wide range
and, generally speaking, has little in common with the cor-
responding SW characteristics. Depending on the particular
values of the parameters, the qc��� curves are located on
both sides of the qSW��� plot and do not have much in com-
mon with the latter. Some resemblance could be found only
at ��0 in certain angle intervals, see curves 1–3 in Fig.
7�c�. This fact once again infers that the predicting force of
the SW model is rather limited; we remind that it works only
if conditions �11� hold simultaneously.

There are two evident limiting situations for the effective
coercive force: the high-temperature and kinetic-freezing re-
gimes. In the first case qc is very small while in the second it
is close to the maximum value. The corresponding transfor-
mations could be observed in any of Fig. 7. One sees that, as
the frequency increases up to ��0	1, the value of qc grows
logarithmically; meanwhile, the angular dependence of qc
becomes weaker. Beginning with ��0�1, the coercive force
�the DMH loop half width� virtually coincides with the field
amplitude q0=1. On further increase in frequency, the coer-
cive force at �=0 does not change but the interval of �,
where the equality qc�1 holds, keeps on widening. To illus-
trate this tendency, in Fig. 7 a curve for ��0	10 is shown;
as seen qc�1 practically everywhere.

It does not seem possible to obtain simple closed expres-
sions for qc under an arbitrary tilt angle. However, an impor-
tant case of �=0 is liable for analysis. We do that using a
representation for ��� ,q��=0 from Ref. 20. Assuming that the
magnetic moment switching occurs at ���� ,q�=1, one finds

qc = 1 −1

�
ln� 1

���0
� , �17�

provided that condition ��D=���0�1 is satisfied. Formula
�17� is close kin to a well-known expression21–23
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FIG. 6. Comparison of DMH loops, obtained numerically �solid
lines� and taken in the dynamic susceptibility approximation, see
Eq. �13�, for dimensionless temperatures �=5 �lines 1� and 15 �2� at
tilt angles �a� �=0, �b� 30°, �c� 60°, and �d� 90°; the frequency
parameter ��0=1.
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qc = 1 − � 1

�
ln� tp

�0
��1/n

, �18�

widely used to deduce the coercive force of nanoparticles
from switching field experiments; here tp is the duration of
the field pulse. For the case �=0 the exponent in Eq. �18� is
n=2, i.e., coincides with that of Eq. �17�. Note that applica-
bility of Eq. �17� to nanoparticles of the type considered
here, is restricted to the high-barrier case. For instance, for-
mula �17� agrees well with the numerical calculations for
��0=10−3 and 10−2 at �=15 but for the same frequencies
and �=5 the comparison becomes impossible: Eq. �17� ren-
ders negative qc.

VIII. DISCUSSION

The obtained solutions of the DMH problem cover a wide
range of parameters. The studied temperature interval spans
from the regime of deep kinetic freezing, i.e., virtual absence
of thermally activated magnetization reversal, to the regime
of developed superparamagnetism, where thermal motion is
the dominating factor. With respect to frequency, the pre-
sented model enables one to proceed from virtual equilib-
rium �single-valued magnetization curve� through the quasi-
static �the SW model� and dispersion regimes to the high-
frequency limit, where the period of the applied field is
shorter that the reference time of spin-lattice relaxation �in-
trawell� processes. The superparamagnetic effect, due to
which the temperature to a great extent affects the particle
magnetic relaxation time, causes high temperature-frequency
variability of the DMH loops.

The constructed scheme of numerical solution of Brown’s
equation proved its ability to determine the angular depen-
dencies of DMH in all the above-mentioned regimes. It is
found that at a fixed frequency, the influence of the tilt angle
on the loop shape is most strong at low temperatures and
weakens with the increase in the fluctuation intensity.

In the present work the dependence of DMH on the field
amplitude is not investigated, we use all throughout a fixed
value q0=1, that is H0=HA. This choice is usual and follows
from a well-known property of the SW model: a field higher
than qSW=1 cannot induce any qualitative changes because
the magnetization is already saturated. The carried out con-
sideration clarifies the relation between the SW and kinetic
models. It turns out that the SW cycles do not belong to the
family of regular solutions of the kinetic equation in the
sense that they cannot be obtained in result of the limiting
transition T→0. From the general viewpoint, this is due to
the fact that the kinetic equation describes the magnetic re-
laxation to a minimum of the particle free energy, while the
SW model, being based on minimization of the particle in-
ternal energy, has no time scale inside. Therefore, the SW
model is applicable only in the low-temperature range and
within the frequency interval whose boundaries �at a given
field amplitude� are imposed by the conditions �11�.

Only in this temperature-frequency domain the SW loops
can indeed play a role of benchmarks with respect to true
DMH cycles; Fig. 1 provides an appropriate illustration for
that. At any of its plots, the temperature diminution ��=2 to

�=15� brings the DMH curve closer to the respective SW
contour �dashed line�. However, one should be aware that
this tendency is not an ordinary limiting behavior. If to de-
crease the frequency yet further and to such an extent that the
condition ���� ,0��1 would be attained, the inflation of the
loops toward the SW contours would stop and then change
for shrinking, ultimately transforming them into single-
valued Langevin-type curves characteristic of anhysteretic
�equilibrium� magnetization.

An example of how all the found dependencies should
manifest themselves in a real system is given in Fig. 8. There
we present the DMH loops calculated for an ensemble of
noninteracting �-ferric oxide �maghemite� particles of diam-
eter 8 nm; for their magnetic parameters we set Ms=480 G
and EA=Kv with K=105 erg /cm3. The considered system is
assumed to be orientationally textured, i.e., all the particle
easy axes are aligned parallel to one another. The maximal
anisotropy field HA=2K /Ms, and, thus, the applied field am-
plitude, equal 420 G. The frequency parameter in Fig. 8 is
��0=10−6; with a typical estimation �0	10−10 s, this corre-
sponds to dimensional frequency f �1 kHz. Such an
amplitude-frequency regime is easily attainable experimen-
tally. As seen from Fig. 8, all the substantial changes in the
DMH loops take place in the low-temperature range: T
�20 K.

When choosing the parameters for the above-given ex-
ample, we deliberately addressed a case of weakly aniso-
tropic particles because this region is inaccessible with
asymptotic methods essentially based on the condition �
�1. Note that we have encountered limitations imposed by
this Kramers-type approach yet in Sec. VII, when it turned
out that Eq. �17� is poorly applicable in the parameter do-
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FIG. 8. DMH loops of an ensemble of oriented monodisperse
maghemite particles �particle diameter 8 nm, magnetic anisotropy
constant 105 erg /cm3� for orientation of the field with respect to
the easy axis of the texture �a� �=0, �b� 30°, �c� 60°, and �d� 90°;
plotted curves correspond to temperatures 20 K �1�, 10 K �2�, 7 K
�3�, and 5 K �4�; dashed lines show the results of the SW model for
the same particles and same tilt angles.
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main we deal in. Yet greater errors this approximation would
produce when determining the loop shapes, where the depen-
dence of the response time on the instantaneous value of the
field strength is a crucial issue. Taking this into account, we
infer that our approach, which does not employ any high-
barrier approximation, has at least two important merits.
First, it enables one to correctly describe DMH in the nano-
particles with weak to moderate anisotropy, and, second, it
could be used for ultimate testing of validity of the existing
and would-be asymptotic methods.

One more example is given in Fig. 9 where the results of
numerical modeling of the frequency- and temperature-
induced evolution of DMH loops in an ensemble of particle
with randomly oriented easy axes are shown. This distribu-
tion seems to be more realistic in comparison with orienta-
tionally textured systems. As seen, with the frequency in-
crease the magnetization curves at first approach the SW
cycle but after that begin to withdraw from it. The inflation
of the loops, see Figs. 9�c� and 9�d�, is certainly due to the
enhancement of the kinetic freezing effect. Note also that the
particles have different tilts of their easy axes, and, hence,
they enter the “freezing” regime at different temperatures
and frequencies. In result, the loops of Fig. 9 differ consid-
erably from the model loops of textured systems presented in
Figs. 1–4. However, qualitatively, the temperature as well as
frequency behaviors of the DMH lines follow the same ten-
dencies as those in the oriented ensembles.

IX. CONCLUSIONS

On the basis of Brown’s kinetic equation a consistent
study of the regimes of cyclic remagnetization �via coherent
rotation� of single-domain particles with a uniaxial aniso-
tropy is performed. The applied field is harmonic and lin-
early polarized, its amplitude equals the maximal coercive
force of a Stoner-Wohlfarth particle. The dynamic magnetic
hysteresis loops are obtained for a particle �oriented particle
ensemble�, whose easy-magnetization axis is tilted to the
field direction under an arbitrary angle. It is shown that the
Stoner-Wohlfarth regime �often termed as quasistatic� is able

to describe the behavior of a nanoparticle only in a quite
limited material and external parameter range.

Two major limiting cases of the particle magnetic moment
behavior—the equilibrium superparamagnetism and kinetic
freezing—take place at low and high frequencies, respec-
tively. In the high-frequency range the magnetic response
could be described with the aid of a linear dynamic suscep-
tibility. In the frequency scale, the complete kinetic freezing
is preceded by the regime, where the statistical average of
the phase lag between the magnetic moment and the field
exceeds � /2 and the differential magnetic susceptibility be-
comes negative. The analysis shows that this effect is inher-
ent to any magnetic system capable of switching and occurs
in the situation, where the period of the applied field is close
to the reference time scale of the overbarrier magnetic mo-
ment fluctuations; in a single-domain particle those fluctua-
tions are responsible for the Néel superparamagnetism.

Our description of the dynamic magnetic hysteresis is
valid in a wide field—frequency-temperature domain and is
free of oversimplifications such as linear response or high-
barrier approximation. This makes it a useful tool for verifi-
cation of already existing solutions and for studying new
problems related to magnetic nanoparticle applications. The
most known of the latter is the low-frequency magnetic hy-
perthermia: heat generation mediated by single-domain par-
ticles. Note that the intraparticle dynamic magnetic hyster-
esis plays the leading role in magnetic heating of both solid
and liquid �colloid� nanodisperse systems.24,25 The processes
employed in hyperthermia �under linearly polarized or rotat-
ing fields� are steady oscillatory ones. This is exactly the
magnetodynamic case that we consider here. Therefore, the
results presented here, provided the particle material param-
eters are specified, can be directly used for theoretical pre-
dictions and experiment interpretation.

The developed model is closely related to physics of mag-
netic recording as well. Apparently, the dynamic magnetic
hysteresis could be used to characterize the recording den-
sity, signal-to-noise ratio, etc., in a given nanogranular me-
dium. As the effect of thermally driven magnetization rever-
sal �superparamagnetism� is fully accounted for, one would
be able to model switching processes for any desirable field-
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FIG. 9. DMH loops of an ensemble of ran-
domly oriented nanoparticles for frequency pa-
rameter �a� ��0=10−3, �b� 10−2, �c� 0.1, �d� 0.32,
�e� 1, and �f� 10; the anisotropy parameter � �di-
mensionless inverse temperature� is 2 �line 1�, 5
�2�, and 15 �3�; dashed lines show the result of
the SW model for a random particle assembly.

POPERECHNY, RAIKHER, AND STEPANOV PHYSICAL REVIEW B 82, 174423 �2010�

174423-10



temperature �thermomagnetic� protocol: heat-assisted or hy-
brid magnetic recording techniques, for example. The ob-
tained description for the angular dependence of the dynamic
magnetic hysteresis �angle � in above� could be used to
analysis the switching times in the bits of granulated media
with allowance for imperfect orientational distributions of
the grain easy axes and nonuniformity of the head field in-
side the recording layer.
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APPENDIX

Let us expand function bl,k�t� in a Fourier series over
multiples of the applied field frequency � and restrict this
expansion by a finite number of harmonics,

bl,k�t� = �
p=−P

p=P

bl,k
p eip�t. �A1�

Substituting Eq. �A1� in Eq. �10�, we get a set of linear
algebraic equations for three-index coefficients bl,k

p

2ip��0bl,k
p +

l�l + 1�
�

bl,k
p − 2� l + 1

2l − 1
�l − k − 1��l + k − 1��l − k��l + k�

�2l − 3��2l + 1�
bl−2,k

p +
l�l + 1� − 3k2

�2l − 1��2l + 3�
bl,k

p

−
l

2l + 3
�l − k + 2��l + k + 2��l − k + 1��l + k + 1�

�2l + 1��2l + 5�
bl+2,k

p � −
1

2
q0 cos ���l + 1� �l − k��l + k�

�2l − 1��2l + 1�
�bl−1,k

p−1 + bl−1,k
p+1 �

− l�l − k + 1��l + k + 1�
�2l + 1��2l + 3�

�bl+1,k
p−1 + bl+1,k

p+1 �� −
1

4
q0 sin ���l + 1��l − k − 1��l − k�

�2l − 1��2l + 1�
�bl−1,k+1

p−1 + bl−1,k+1
p+1 �

+ l�l + k + 2��l + k + 1�
�2l + 1��2l + 3�

�bl+1,k+1
p−1 + bl+1,k+1

p+1 � − �l + 1��l + k − 1��l + k�
�2l − 1��2l + 1�

�bl−1,k−1
p−1 + bl−1,k−1

p+1 �

− l�l − k + 2��l − k + 1�
�2l + 1��2l + 3�

�bl+1,k−1
p−1 + bl+1,k−1

p+1 �� = 0, �A2�

for k�1. Taking into account the symmetry relation bl,−k= �−1�kbl,−k that follows from the fact that the statistical moments �9�
is real, it is sufficient to solve the set Eq. �A2� for bl,k

p with non-negative k’s. The equation for bl,0
p makes a special case, as its

right-hand side contains bl,−1
p . Expressing the latter coefficient with the aid of the same symmetry rule, one arrives at the

equation

2ip��0bl,0
p +

l�l + 1�
�

bl,0
p − 2� l�l + 1��l − 1�

�2l − 1�
 1

�2l − 3��2l + 1�
bl−2,0

p +
l�l + 1�

�2l − 1��2l + 3�
bl,0

p

−
l�l + 1��l + 2�

�2l + 3�
 1

�2l + 1��2l + 5�
bl+2,0

p � −
1

2
q0 cos �l�l + 1�� 1

�2l − 1��2l + 1�
�bl−1,0

p−1 + bl−1,0
p+1 �

− 1

�2l + 1��2l + 3�
�bl+1,0

p−1 + bl+1,0
p+1 �� −

1

2
q0 sin ���l + 1� l�l − 1�

�2l − 1��2l + 1�
�bl−1,1

p−1 + bl−1,1
p+1 �

+ l �l + 1��l + 2�
�2l + 1��2l + 3�

�bl+1,0
p−1 + bl+1,0

p+1 �� = 0. �A3�

Equations �A2� and �A3� make a closed set that can be presented in the form of a matrix recurrence equation

AlGl−2 + BlGl−1 + ClGl + DlGl+1 + ElGl+2 = 0, �A4�

where the following notations are used:
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Gl =�
gl,0

gl,1

gl,2

. . .

gl,l−1

gl,l

�
�l+1���2P+1�

, Al =�
al,0 0 0 0

0 al,1 0 0

. . . . . . . . . . . .

0 0 0 al,l

�
�l+1��2P+1���l−1��2P+1�

,

Bl =�
vl,0 vl,0

+ 0 0 0 ¯ 0 0 0 0

vl,1
− vl,1 vl,1

+ 0 0 ¯ 0 0 0 0

0 vl,2
− vl,2 vl,2

+ 0 ¯ 0 0 0 0

0 0 vl,3
− vl,3 vl,3

+
¯ 0 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 0 ¯ 0 vl,l−2
− vl,l−2 vl,l−2

+

0 0 0 0 0 ¯ 0 0 vl,l−1
− vl,l−1

0 0 0 0 0 ¯ 0 0 0 vl,l
−

�
�l+1��2P+1��l�2P+1�

,

Cl =�
cl,0 0 ¯ 0

0 cl,1 ¯ 0

¯ ¯ ¯ ¯

0 0 ¯ cl,1

�
�l+1��2P+1���l+2��2P+1�

,

Dl =�
dl,0 dl,0

+ 0 0 0 ¯ 0 0 0 0 0

dl,1
− dl,1 dl,1

+ 0 0 ¯ 0 0 0 0 0

0 dl,2
− dl,2 dl,2

+ 0 ¯ 0 0 0 0 0

0 0 dl,3
− dl,3 dl,3

+
¯ 0 0 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 0 ¯ dl,l−2
− dl,l−2 dl,l−2

+ 0 0

0 0 0 0 0 ¯ 0 dl,l−1
− dl,l−1 dl,l−1

+ 0

0 0 0 0 0 ¯ 0 0 dl,l
− dl,l dl,l

+

�
�l+1��2P+1���l+1��2P+1�

,

El =�
el,0 0 ¯ 0 0 0

0 el,1 ¯ 0 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 ¯ el,l 0 0
�

�l+1��2P+1���l+3��2P+1�

.

In above and hereafter the subscript indicates the number rows�columns of a matrix.
Vector Gl and matrices Al . . .El are constructed of blocks. Vector Gl could be presented as a set of subvectors gl,k arranged

as

gl,k =�
bl,k

−P

bl,k
−P+1

bl,k
−P+2

¯

bl,k
P−1

bl,k
P

�
2P+1

,

and matrices Al . . .El consist of square submatrices
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0 =�
0 0 ¯ 0

0 0 ¯ 0

¯ ¯ ¯ ¯

0 0 ¯ 0
�

�2P+1���2P+1�

, al,k = − 2
�l + 1�

�2l − 1�
�l − k − 1��l + k − 1��l − k��l + k�

�2l − 3��2l + 1�
I1,

vl,k
− =

1

4
q0 sin ��l + 1��l + k − 1��l + k�

�2l − 1��2l + 1�
I2, vl,k = −

1

2
q0 cos ��l + 1� �l − k��l + k�

�2l − 1��2l + 1�
I2,

vl,k�1
+ = −

1

4
q0 sin ��l + 1��l − k − 1��l − k�

�2l − 1��2l + 1�
I2, vl,0

+ = −
1

2
q0 sin ��l + 1� l�l − 1�

�2l − 1��2l + 1�
I2,

cl,k = 2i��0�
− P 0 0 0 0 0

0 − P + 1 0 0 0 0

0 0 − P + 2 0 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 0 P − 1 0

0 0 0 0 0 P

�
�2P+1���2P+1�

+ � l�l + 1�
�

− 2
l�l + 1� − 3k2

�2l − 1��2l + 3��I1,

dl,k
− =

1

4
q0l sin ��l − k + 2��l − k + 1�

�2l + 1��2l + 3�
I2, dl,k =

1

2
q0l sin ��l − k + 1��l + k + 1�

�2l + 1��2l + 3�
I2,

dl,k�1
+ = −

1

4
q0l sin ��l + k + 2��l + k + 1�

�2l + 1��2l + 3�
I2, dl,0 = −

1

2
q0l sin � �l + 1��l + 2�

�2l + 1��2l + 3�
I2,

el,k =
2l

2l + 3
�l − k + 2��l + k + 2��l − k + 1��l + k + 1�

�2l + 1��2l + 5�
I1,

where

I1 =�
1 0 0 ¯ 0 0

0 1 0 ¯ 0 0

0 0 1 ¯ 0 0

¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 1 0

0 0 0 ¯ 0 1

�
�2P+1���2P+1�

, I2 =�
0 1 0 ¯ 0 0 0 0

1 0 1 ¯ 0 0 0 0

0 1 0 ¯ 0 0 0 0

¯ ¯ ¯ ¯ ¯ ¯ ¯ ¯

0 0 0 ¯ 1 0 1 0

0 0 0 ¯ 0 1 0 1

0 0 0 ¯ 0 0 1 0

�
�2P+1���2P+1�

.

Note that the objects gl,k and al,k . . .el,k are not the elements of the respective matrices but their minors, i.e., parts.
The set �A4� is solved by matrix sweep method. We denote

Gl = �lGl−1 + �lGl−2, Gl+1 = �l+1Gl + �l+1Gl−1, Gl+1 = ��l+2�l+1 + �l+2�Gl + �l+2�l+1Gl−1. �A5�

After substituting Eq. �A5� in Eq. �A4� and comparison with Eq. �A4�, one arrives the recurrence equation for the matrix
sweeping coefficients

�l = − �−1�Bl + Dl�l+1El�l+2�l+1�, �l = − �−1Al, �A6�

where

� = Cl + Dl�l+1 + E��l+2�l+1 + �l+2� .

Expansion �A6� is truncated to a finite number L of terms by setting GL=GL+1= . . . =0, �L=�L+1= . . . =0, �L=�L+1= . . . =0.
Using this condition, with the aid of Eq. �A5�, we find �1. Then, with allowance for relation G0= 
0,0 , . . . , 1

4�
, . . . ,0 ,0�

following from b0,0
0 = 1

4�
and b0,0

k�0=0, we evaluate G1 and finally the dimensionless magnetization ��eh��.
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