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Abstract. We consider the problem of maintaining a maximum match-
ing in a convex bipartite graph G = (V, E) under a set of update opera-
tions which includes insertions and deletions of vertices and edges. It is
not hard to show that it is impossible to maintain an explicit represen-
tation of a maximum matching in sub-linear time per operation, even in
the amortized sense. Despite this difficulty, we develop a data structure
which maintains the set of vertices that participate in a maximum match-
ing in O(log2 |V |) amortized time per update and reports the status of a
vertex (matched or unmatched) in constant worst-case time. Our struc-
ture can report the mate of a matched vertex in the maximum matching
in worst-case O(min{k log2 |V |+log |V |, |V | log |V |}) time, where k is the
number of update operations since the last query for the same pair of ver-
tices was made. In addition, we give an O(

p

|V | log2 |V |)-time amortized
bound for this pair query.

1 Introduction

Let G = (V, E) be a finite undirected graph. A subset M ⊆ E of the edges is
a matching if each vertex is incident with at most one edge in M . A matching
of maximum cardinality is called a maximum matching. In this paper we study
the problem of maintaining a maximum matching in a convex bipartite graph;
G is bipartite if V can be partitioned to subsets X and Y such that E ⊆ X ×Y .
A bipartite graph G = (X ∪ Y, E) is convex if there is a linear arrangement
y1, . . . , ym of the nodes of Y such that the neighborhood of every node in X is
an interval of the nodes of Y . Given a linear order for Y we can represent G in
O(|V |) = O(n+m) space (instead of O(|V |+ |E|)), where n = |X | and m = |Y |,
since it suffices to specify the smallest and largest neighbor in Y for each x ∈ X .

Matchings in convex bipartite graphs correspond to a basic variant of the
ubiquitous job scheduling problem. Namely, the case of unit-length tasks that
need to be scheduled on a single disjunctive resource (i.e., one at a time) and
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where we are given, for each job, a release time and a deadline. Another applica-
tion for convex matching is in constraint programming, where filtering algorithms
for the AllDifferent constraint [21] essentially identify edges in a bipartite graph
which do not belong to any maximum matching. The vertices of X then repre-
sent variables of the program while the vertices of Y represent the values in their
domains and the edges connect every variable with every value in its domain. In
some cases, the domains are intervals and the graph is convex. In other cases,
the constraint solver assumes that they are intervals as a heuristic that speeds
up computations. Motivated by this application, and to avoid confusion, in the
rest of the paper we call the vertices of X variables and the vertices of Y values.
Furthermore, we sometimes refer to the interval of neighbors of a variable as its
domain.

The problem of finding a maximum matching has a rich history [5]. Currently,
the best upper bound for both bipartite and general matchings is randomized
O(|V |ω) [13], where ω is the exponent of matrix multiplication (ω < 2.376 [2]). A
simpler randomized algorithm with the same bound was presented recently [9].
The best deterministic bound is O(|E|

√

|V |) both for bipartite graphs [10] and
general graphs [12].

Finding maximum matchings in convex bipartite graphs has also been ex-
tensively studied. Glover [7] showed that a maximum matching in such a graph
can be found by traversing the values in increasing order and matching each
value y ∈ Y with the variable whose domain ends earliest, among those that
have y in their domain and were not matched with smaller values, breaking ties
according to a predetermined lexicographic order of the variables. Such a match-
ing is called a greedy matching. This algorithm runs in O(m + n log log n) time
with the use of a fast priority queue [20]. Lipski and Preparata [11] presented an
O(n + mα(m))-time algorithm. (Here α is a functional inverse of Ackermann’s
function.) This running time was reduced to O(n+m) in [4]. Further research [6,
18] aimed at decreasing the dependence on m, finally leading to an O(n)-time
algorithm by Steiner and Yeomans [19].

In this paper we study the problem of maintaining a maximum matching
in a dynamic convex bipartite graph. In the job scheduling view, this problem
amounts to maintaining an optimal schedule for a dynamic set of unit-length
jobs. Notice that Glover’s algorithm can easily be adapted to operate in a dy-
namic setting where a job may be deleted or its release time and deadline may be
available before the job is actually released. But still we cannot infer the service
time of a given job (or even whether the job will eventually be serviced) before
it is either actually dispatched or its deadline elapses.

Intuitively it is clear that maintaining a maximum matching dynamically
must be hard; even a single edge insertion can change all the edges in the match-
ing. Apparently, due to this difficulty, this problem has not received much atten-
tion. To the best of our knowledge, the only related previous work is presented
in [16, 17]. In [16], Sankowski considers dynamic graphs, modified by edge inser-
tions and deletions, that maintain the invariant that a perfect matching exists,
i.e., all vertices are matched. He shows how to update the graph in O(n1.495)
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Fig. 1. Sequence of operations inducing linear number of changes in any explicit rep-
resentation of a convex matching. Only edges in the maximum matching are shown.

time per operation and support queries asking whether a given edge is contained
in any perfect matching. The same asymptotic update bound is achieved in [17]
for maintaining the size of a maximum matching in general dynamic graphs
(modified by edge insertions and deletions). The running time in both results
depends on the value of the the exponent ω of matrix multiplication.

The situation is similar in the case of convex bipartite graphs; it is not hard
to construct examples where a single update changes all the matching edges.
Still, due to the special structure of the convex graphs it is less obvious that any

representation of a maximum matching can change dramatically due to a small
change in the input. For example, since the values in Y are ordered, a matching
can be described by giving a corresponding order for X (together with a dummy
variable ε for each unmatched value). To measure the difference between two
convex matchings more accurately we can count the number of inversions be-
tween pairs of successive variables in the two corresponding orderings of X .
Figure 1 shows that even with respect to this measure, the difference between
two matchings after O(1) updates can be Θ(|V |), also in the amortized sense.
Such problematic cases rule out the possibility of maintaining any explicit repre-
sentation of a maximum matching in sub-linear time, even for convex bipartite
graphs. On the other hand, it is easy to verify that the sets of matched vertices
in X (and Y ) can change only by one element per update. (This fact holds also
for general graphs modified by edge insertions and deletions, since a matching
M is maximum iff there is no augmenting path relative to M [1].) The structure
we develop is based on the previous observation and on a parallel algorithm of
Dekel and Sahni for convex bipartite matchings [3]. We review their algorithm
in Section 2.1.

2 Dynamic Convex Matchings

Recall that Y is totally ordered and the input graph G = (X∪Y, E) is represented
succinctly by giving an interval [s(x), t(x)], for each x ∈ X ; s(x) (t(x)) is the
first (last) vertex in Y adjacent to x. For convenience, we identify the vertices
in Y by their rank in the underlying linear arrangement, and henceforth assume



Y = {1, . . . , m}. We allow G to be modified by a collection U composed of the
following update operations:

· Insert a vertex x into X together with an interval [s(x), t(x)]; make x adjacent
to every y ∈ Y such that s(x) ≤ y ≤ t(x).

· Delete a vertex x from X ; remove all edges incident to x.
· Insert a vertex y into Y ; make y adjacent to any x ∈ X such that s(x) <

y < t(x).
· Delete a vertex y from Y if there is no x ∈ X such that s(x) = y or t(x) = y;

remove all edges adjacent to y.

Clearly, the above operations maintain the convexity of G, and also maintain the
given order of Y . As a result, we do not need to test if G remains convex after
each operation (in fact we are not aware of any efficient dynamic algorithm for
this test), but this also implies that we cannot support arbitrary edge updates.
Restricted edge updates are possible by deleting a variable and re-inserting it
with a different interval. Given a dynamic convex bipartite graph G that is
modified subject to U , we wish to support a collection Q of the following query
operations:

· Given a vertex x ∈ X or y ∈ Y , return the status matched or unmatched of
this vertex.

· Given a matched vertex u (u ∈ X ∪ Y ), return its mate w in the maximum
matching; the pair {u, w} is an edge of the maximum matching.

Our results are summarized in the following theorems.

Theorem 1. We can maintain a maximum matching of a convex bipartite graph

G = (X ∪ Y, E), under the update operations in U , in O(log2 |X |) amortized

time per update and O(|Y | + |X | log |X |) space. A status query can be answered

in constant worst-case time. A pair query for a vertex u can be answered in

O(min{k log2 |X | + log |X |, |X | log |X |}) worst-case time, where k is the number

of update operations that occurred since the last pair query for u or its mate.

Theorem 2. The amortized running time for a pair query is O(
√

|X | log2 |X |).
Also, there is an update sequence which forces our structure to spend Ω(

√

|X |)
amortized time for each pair query.

2.1 The Dekel-Sahni algorithm

Let S = {s1, . . . , sk} be the set of start-points of the n variable domains (si =
s(xi)). The base structure in the algorithm of Dekel and Sahni [3] is a balanced
binary search tree T over S. Each leaf si is associated with the interval of values
[si, si+1 − 1]; each internal node is associated with the interval of values formed
by the union of the intervals of its children in T . We denote the interval of
values associated with a node P in T by values(P ); we let s(P ) and t(P ) be,
respectively, the smallest and largest value in values(P ). We let variables(P )
denote the set of variables x ∈ X such that s(x) ∈ values(P ). Also, define



matched(P ) to be the set of variables that belong to the greedy matching of
the subgraph induced by variables(P ) ∪ values(P ). Let transferred(P ) be the
variables x in variables(P ) \ matched(P ) such that t(x) > t(P ), i.e., their end-
points extend beyond values(P ); these variables, although not matched at P ,
may become matched at an ancestor of P in T and thus participate in the
final (global) matching, computed at the root of T . The remaining variables in
variables(P ) form a set infeasible(P ) and are discarded from later computations.

Now let P be an internal node of T with left child L and right child R.
Assume that matched(L), transferred(L), matched(R) and transferred(R) were
already computed. Dekel and Sahni show that matched(P ) and transferred(P )
can be computed as follows: Let variables’(R) = transferred(L) ∪ matched(R).
First compute a greedy matching in the subgraph G′

R induced by variables’(R)∪
values(R). Let matched’(R) be the subset of variables’(R) in that matching,
and let transferred’(R) = {x | x ∈ variables’(R) \ matched’(R) and t(x) >
t(R)}. Then, matched(P ) = matched(L) ∪ matched’(R) and transferred(P ) =
transferred(R) ∪ transferred’(R). The key theorem of Dekel and Sahni [3, Theo-
rem 2.1], shows that there is a simple way to compute matched’(R): It is safe to
assume that the start-point of every interval in variables’(R) is s(R). Although
the matching produced this way may not be feasible in G′

R, the set of matched
variables that are identified is correct, i.e., there is a greedy matching in this
graph that matches exactly this set of variables.

After identifying the matched vertices in X , the algorithm of Dekel and
Sahni performs a top-down phase that constructs a feasible matching. For each
node P of T , it constructs the set matching(P ), containing the variables that
are matched with a value in values(P ). Although matched(P ) is a subset of
variables(P ), this is not true, in general, for matching(P ). Clearly, if P is the
root of T , matching(P ) = matched(P ). The matching sets for the children L
and R of P are constructed by partitioning matching(P ) as follows. Let W be
the subset of matching(P ) consisting of variables x such that s(x) < s(L) or
x ∈ matched(P ). (Note that W does not contain any variable in transferred(L).)
If |W | ≤ |values(L)|, then set matching(L) = W . Otherwise, pick |values(L)|
variables x ∈ W with the smallest t(x) and insert them in matching(L). The
remaining variables are inserted into matching(R). Finally, we notice that for
any leaf F , each x ∈ matching(F ) satisfies s(x) ≤ s(F ). (Because we cannot have
s(F ) < s(x) ≤ t(F ) for any x ∈ X .) Hence, sorting matching(F ) by increasing
right endpoint, gives us the matching at F ; the variable with rank i in the sorted
order is matched to the ith value.

2.2 Overview of the dynamic algorithm

We achieve an efficient dynamization of the Dekel-Sahni algorithm by showing
(1) how to perform logarithmic-time local updates of the sets matched(P ) and
transferred(P ), for each node P ∈ T , and (2) that each operation in U requires
a logarithmic number of local updates. These updates will allow us to report
the status of any vertex in O(1) worst-case time. The construction of this data
structure is described in Section 3. In order to report the mate of a matched



vertex we also need to update the matching sets. These updates are performed
just-in-time, as required by a pair query. We analyze the performance of this
method in Section 4.

3 Data Structure supporting Status Queries

Here we present a structure supporting the update operations in U in O(log2 n)
amortized time, and answers status queries in O(1) worst-case time. Due to
the limited space, we only consider the case of the insertion of a new variable.
The remaining update operations are performed in a similar manner. Our first
building block is a structure which allows us to maintain a greedy matching in
O(log n) time per update, for the special case where all intervals have the same
starting point. We describe this in Section 3.1. Then, in Section 3.2, we show
how an update can propagate bottom-up in T and give the new set of matched
vertices in X . Given this set, we can update the set of matched vertices in Y in
O(log n) time, using the same ideas as in Section 3.1. (Due to limited space we
omit this last part.)

3.1 The Equal Start-Points Case

Suppose we wish to maintain a greedy matching when all intervals have the
same start-point. That is, the input graph G = (X ∪ Y, E) is such that s(x) = 1
for all x ∈ X , and Y = {1, . . . , m}. We say that an x ∈ X has higher priority

than an x′ ∈ X if t(x) < t(x′). Define ni as the number of variables whose
interval is [1, i]. Also define ai to be the number of matched variables x ∈ X ,
such that t(x) ≤ i. These quantities satisfy the recurrence ai = min{ai−1+ni, i},
for 1 ≤ i ≤ m and a0 = 0. Inserting (deleting) a variable x with domain [1, k]
amounts to incrementing (decrementing) nk. Let n′

i (a′

i) be the value of ni (ai)
after the update (insertion or deletion of [1, k]).

Consider the insertion of the variable [1, k]. For the given k we have n′

k =
nk + 1 and for i 6= k, n′

i = ni. Let j be the smallest integer such that j ≥ k and
aj = j, if such a j exists, and let j = m + 1 otherwise. If j = k then all the first
k values are matched with variables that have the same priority as x or higher,
and nothing changes. Otherwise, ak < k and the new variable will be matched;
this happens because we always maintain a greedy matching and [1, k] has higher
priority than any interval that ends after k. Thus, a′

i = ai + 1 if k ≤ i < j, and
a′

i = ai otherwise. The remaining update operations are analyzed similarly. In
every update operation, we are interested in the quantities bj = j − aj − nj+1

for all j ∈ Y . When we insert a variable with domain [1, k], we need to locate
the first j ≥ k with aj = j. Then, by the definition of aj we have aj−1 + nj ≥ j,
so j′ − aj′ − nj′+1 ≤ −1 for j′ = j − 1. Similar inequalities are derived for the
remaining update operations.

We construct a data structure that maintains the bi quantities implicitly.
This implicit representation is necessary because a single update can change
many bi’s. The data structure consists of a balanced binary search tree T (e.g.,



a red-black tree [8]) over Y with each leaf corresponding to a value. Leaf i stores

ni and a number b̂i; an internal node v stores the numbers add(v) and min(v).
We define these quantities later. Given a node or leaf u and an ancestor v of u in
T , define sum(u, v) to be the sum of add(w) for all nodes w on the tree path from
u to v, excluding v. Given a node or leaf u, define sum(u) to be sum(u, root),
where root is the root of T . Let leaves(v) be the set of leaves contained in the
subtree rooted at v. The numbers stored in the tree will satisfy the invariants:
(a) bj = b̂j + sum(j), and (b) min(v) = min{b̂j + sum(j, v) | j ∈ leaves(v)}.

Combining (a) and (b) we get min{bj | j ∈ leaves(v)} = min{b̂j + sum(j, v) | j ∈
leaves(v)} + sum(v) = min(v) + sum(v). Initially add(v) = 0 for all nodes v ∈ T .
As T is modified after an update operation the values add(v) keep track of the
changes that have to be applied to the affected bj values. By its definition add(v)

affects the bj values of all the leaves j ∈ leaves(v). Also, b̂j is simply the value
of bj before the update. We note that the numbers stored at the internal nodes
are easy to maintain in constant time for each restructuring operation of the
balanced tree (e.g., rotation).

We sketch how T is updated when we insert a variable with domain [1, k].

After locating leaf k we increment nk. Since this affects bk−1, we increment b̂k−1

and update min(v) for the ancestors v of k − 1 in T bottom-up. As we ascend
the path toward the root we calculate sum(k − 1, v) at each node v, which takes
constant time per node. Next we locate the first leaf j ≥ k such that bj < 0. To
that end we perform a top-down search on the appropriate subtree of T . Note
that as we descend the tree we can compute sum(v) at each node v that we
visit, and thus compute min(v) + sum(v) (in constant time per node). So, let
P = (v0 = root, v1, . . . , k) be the search path for k in T . Let P ′ = (u1, u2, . . .) be
the subsequence of P composed of the nodes vi such that vi+1 is the left child
of vi; let ri′ be the right child of ui′ . Then, j is located at the subtree rooted
at ri∗ where i∗ is the largest index i′ that satisfies min(ri′ ) + sum(ri′ ) < 0. We
can locate ri∗ in O(log m) time. Then the search for j proceeds top-down in
the subtree of ri∗ as follows: Let v be the current node, and let u be its left
child. If min(u) + sum(u) < 0 then the search continues in the subtree of u.
Otherwise, we move to the right child of v. The last step is to subtract one from
bi, for k ≤ i ≤ j. Since the involved leaves may be too many, we perform the
decrements implicitly using the add quantities. Let η be the nearest common
ancestor of k and j in T ; we can locate η easily in O(log m) time since T is
balanced. Let Pk be the path from η to k, excluding the end-points, and let Pj

be the path from η to j excluding the end-points. Let v be a node on Pk such
that its right child u is not on Pk. If u is a leaf then decrement b̂u; otherwise
decrement add(u). Perform the symmetric steps for Pj (visiting the left children

of nodes on this path). Finally, decrement b̂k and b̂j and update min for all
O(log m) nodes on Pk, Pj and on the path from root to η; each update takes
constant time if we process the paths bottom-up.

Notice that by storing at each leaf i the variables x with t(x) = i, we can
locate a variable that is replaced in the maximum matching by the newly inserted
variable. This is a variable stored in the leaf j that satisfies αj = j and j ≥ k.



Similarly, after a deletion we can locate a variable that replaces the deleted one
in the maximum matching. We will use this capability in the next section. Also,
we note that by grouping successive empty leaves (i.e., leaves j with nj = 0) we
can reduce the number of leaves in T to min{m, n}. Thus, we get:

Lemma 1. Updates of variables and values in the equal start-points case take

worst-case O(log n) time.

3.2 The Complete Data Structure

The complete data structure maintains the matched and transferred sets of all
nodes of T . Its building block is the special-case structure of Section 3.1 which
maintains these sets, assuming that all start-points of variables are equal. By
[3, Theorem 2.1], such a data structure can be used to maintain the matching
matched’(R) for every internal node and the complete matching for every leaf.
Hence, each node P in T is associated with such a local structure TP , as follows.
First, the interval [s(R), t(R)] of available values for matching with variables’(R)
is translated to [1, s(R)−t(R)+1], and every variable in variables’(R) is assumed
to have start-point equal to one. Also, each such variable with end-point t(x) >
t(R) is stored in the leaf of TP that corresponds to value s(R)−t(R)+1. When we
have an update in variables’(R) we use the structure TP to update matched’(R)
accordingly. As noted in Section 3.1, this process will also return the variables
that enter or leave matched’(R), so we can propagate the changes towards the
root of T .

For simplicity, we assume that the base tree T is fixed (i.e., we do not insert
and delete leaves). Given this, we show that the global data structure can be
updated upon the insertion or deletion of a variable or value in O(log2 n) time,
by proving the next lemma.

Lemma 2. Each operation in U causes O(log n) operations on local data struc-

tures of the nodes of T .

The fully-dynamic data structure can be obtained by applying standard tech-
niques, e.g., maintaining T as a (weight-balanced) BB[α]-tree [14, 15]. As a result,
however, our update bounds become amortized.

Insertion of a variable. Assume that we insert a new variable x with domain
[s, t] (s, t ∈ Y ). Then s determines the leaf F of T where the variable is inserted.
After inserting x into TF , the sets matched(F ) and transferred(F ) may change.
The changes to these sets need to be propagated to the parent of F in T , in turn
causing new changes to the parent of the parent of F , and so on; potentially,
changes occur at all nodes on the path from F to the root of T . We will show
that at each node, only a constant number of update operations is necessary.

Consider the two possible results of inserting x to the leaf F . The first is that
x entered matched(F ) and, possibly, some other variable x′ left matched(F ).
The insert operation on TF will report if x has entered matched(F ) and will
return x′ if it exists. If this x′ exists, it either entered transferred(F ) or not,



depending on its end-point, which can be tested in constant time. The second
case is that x did not enter matched(F ), and depending on its end-point either
entered transferred(F ) or not. In both cases, the information that needs to be
propagated to the parent of F in T is a triplet of the form (a, b, c), where each of
a and b is either a variable or the symbol ε which is a place-holder that represents
nothing, and c is either transferred or infeasible. Such a triplet is interpreted to
mean “a is inserted into matched(F ), b is deleted from matched(F ) and inserted
into c”. Note that a and b are not necessarily distinct. For instance, the case in
which the inserted variable x is not matched and is inserted into transferred(F )
is encoded as (x, x, transferred).

We now show by induction on the height of the nodes in T , that the infor-
mation that needs to be propagated from an internal node to its parent can also
be represented as a triplet of this form. To that end, let P be a node of T with
left child L and right child R. By the induction hypothesis, P received a triplet
(a, b, c) from one of its children, indicating the changes that have occurred at
this child. We analyze the two possible cases separately.

First, assume that it was the left child who sent the triplet (a, b, c). This
implies a was inserted into matched(L) and b was removed from matched(L) and
inserted into c. The effects of these changes on matched(P ) and transferred(P )
are as follows. The first part of matched(P ) is simply matched(L), so it changes in
the same manner. The second half is the matching obtained from variables’(R).
If c is equal to infeasible, neither of these sets has changed and the changes that P
needs to report to its parent are (a, b, infeasible). If c is equal to transferred, then
b may belong to the second part of matched(P ), possibly replacing some other
variable b′ which was matched there before. Again, notice that b′ is returned
after the update operation on TP . Now, the important point to note is that P
does not need to report anything about b to its parent; b was and remains in
matched(P ). The changes that P needs to report are summarized in the triplet
(a, b′, c′), where c′ is transferred or infeasible, depending on the end-point of b′.

Now, assume that the triplet (a, b, c) was reported to P from its right child.
In this case a was inserted into matched(R) and may or may not need to be
inserted into matched(P ). If not, then b was not in matched(P ) before and will
not be in matched(P ) afterwards; since a replaced b in matched(R), we know
that its end-point is smaller than b’s, hence, it cannot be that b ∈ matched(P )
if a was not inserted. Therefore, P does not report any change to its parent. On
the other hand, if a was inserted into matched(P ), then if b was in matched(P )
before the update it becomes unmatched, and if b was not in matched(P ) before
the update then some other variable b′ may have become unmatched to make
space for a. In the first case, the change reported by P to its parent is the triplet
(a, b, c′) where c′ depends on the end-point of b. In the second case, P sends
the triplet (a, b′, c′) where c′ depends on the end-point of b′, and b′ is found
during the update in TR. It is important to note that even if b was inserted into
transferred(R) after the update, it is not inserted into transferred(P ). This is
implied by the fact that b is not in matched(P ): If b is in transferred(P ) after
the update then b must have already been in transferred(P ) before the update.



4 Pair Queries

Now we augment the structure of Section 3 in order to support the pair query. As
Figure 1 suggests, we cannot afford to change all the affected matching sets after
an update operation. (In this example we would need to change O(n) such sets.)
However, we can get a more efficient solution, based on the following observation:

Observation 3 An update operation in U can change only one member of a

matching(P ) set, for any P ∈ T .

A pair query will need to visit the nodes of a root-to-leaf path Tq of T , and our
plan is to update the matching(P ) sets of the nodes P on this path. If the query
vertex is y ∈ Y then Tq is simply the path from the root to the leaf corresponding
to y. Otherwise, the query vertex is x ∈ X and Tq is discovered as we decide
at each node P if x belongs to matching(L) or matching(R), where L and R
are the children (left and right respectively) of P . To make this decision fast,
we store at node P a list `(P ) representing the set W defined in Section 2.1.
This list is sorted by the end-points t(x) of the variables x ∈ W . A variable x ∈
matching(P ) belongs to matching(L) iff it appears in `(P ) and its rank in W is
at most |values(L)|. Otherwise, x ∈ matching(R). Hence the decision of whether
to follow the left or the right child of P can be made in O(log n) time if the
lists matching(P ) and `(P ) are updated. To handle the updates in matching(P )
(and `(P )), node P also maintains a list of variables update(P ), which keeps
track of the operations that need to be performed to bring matching(P ) back to
date. This list is arranged in the order the variables were inserted. The meaning
of x ∈ update(P ) is that x has to be inserted into matching(P ) if it does not
already appear there, otherwise x has to be deleted. Notice that we can construct
matching(P ) in O(|values(P )|) time, using the lists maintained at its parent
in T . Therefore, in our analysis we can assume that the size of update(P ) is
O(|values(P )|). We use this assumption in the amortized analysis in Section 4.1.

Now consider what happens after an update operation. Observation 3 implies
that at most one variable has to be inserted into matching(P ) and at most one
variable has to be deleted. If P is the root of T then these are exactly the changes
in matched(P ). Hence, the updates can be performed immediately at the root.
Let L and R be, respectively, the left and right child of P . Using `(P ) we can
find the variables that change in matching(L) and matching(R) and insert them
into update(L) and update(R), all in O(log n) time. (At most two variables are
inserted in each of these lists.) To update matching(P ) for any non-root node
of T , we process the variables in update(P ) one by one. Each variable can be
processed in the same way an update for the root of T was performed. After each
update we insert the appropriate variables in the update lists of the children of
P in T , and so the changes propagate downwards the tree. As noted earlier, the
time spent per variable in update(P ) is O(log n), and every update list contains a
number of variables at most twice the number of update operations in U . To get
a bound on the pair query that is always O(n log n), we note that we can rebuilt
the whole structure for T in O(n log n) time. If we do that after O(n/ log n) total
updates, each update list will have O(n/ log n) variables at any time. Rebuilding



T results to an additional O(log2 n) amortized cost for the updates in U , so the
asymptotic update bound is not affected and the bounds stated in Theorem 1
follow. Next we sketch the proof of Theorem 2.

4.1 Amortized cost of pair queries

Lower bound. We begin with T being a full binary tree with n leaves, where
each leaf stores a unique variable: The ith leaf stores a variable with domain
[i, n]. For simplicity we take m = n. Next we insert

√
n variables with domains

[1, j], j = 1, . . . ,
√

n. These variables will shift the matching by
√

n positions,
and the last

√
n variables will become infeasible. Consider the

√
n nodes of T

at height log
√

n. For each such node Pi we make a pair query for a leaf in Pi’s
subtree. The corresponding query paths intersect only above the Pi’s. To get
the claimed bound it suffices to count the work done at each Pi. When the pair
query algorithm visits Pi, update(Pi) will have Θ(

√
n) variables, so it will spend

Ω(
√

n) time to process these variables. Hence the total work for all nodes at
height log

√
n is Ω(n). By deleting the variables [1, j] and reinserting them, we

can repeat this process
√

n times. This implies an amortized cost of Ω(
√

n) for
a pair query.

Upper bound. For simplicity, we consider T to be a full binary tree with n leaves,
each storing a single variable. Informally, having more variables in some leaves
cannot increase the asymptotic cost bound because both the height of the tree de-
creases and also each pair query updates the matching for more than one variable.
We analyze the worst case running time of a sequence of operations composed of ν
updates, followed by µ pair queries. This will give us the worst-case scenario, be-
cause the total cost for querying a set of paths is maximized after all updates are
performed. At any node P , processing update(P ) takes O(2i log n) if the height
i of P is at most log ν, and O(ν log n) for i > log ν. We calculate separately
the cost for processing the nodes at height above log ν (top subtree) and below
log ν (bottom subtrees). First, for the top subtree of T we observe that each pair
query visits log n/ν of its nodes and at each node it spends at most O(ν log n)
time. Hence, if µ ≤ n/ν, the total cost is O(µν log n/ν log n) = O(µν log2 n),
so the amortized cost is O( µν

ν+µ
log2 n) = O(

√
n log2 n). For µ > n/ν, the total

cost is O(n log n + µ log n), because the top subtree has O(n/ν) nodes. So, in
this case, the amortized cost is O( n

ν+µ
log n+ µ

ν+µ
log n) = O( nν

ν2+n
log n+log n),

which is O(
√

n log n). We now turn to the bottom subtrees. The contribution of
a path inside a bottom subtree is O(ν log n). Hence, if µ ≤ n/ν, the total cost
is O(µν log n), which gives O(

√
n log n) amortized cost. The total contribution

of a bottom subtree to a pair query is O(ν log n), because the total number of
variables in all update lists is O(ν). Since we have O(n/ν) bottom subtrees, for
µ > n/ν the total cost is O(n log n + µ log n), i.e., O(

√
n log n) amortized cost.
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